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Abstract

We study the problem of identifying the best
arm in a stochastic multi-armed bandit game.
Given a set of n arms indexed from 1 to n, each
arm ¢ is associated with an unknown reward
distribution supported on [0, 1] with mean 6; and
variance o2. Assume 67 > 0y > --- > 0,. We
propose an adaptive algorithm which explores
the gaps and variances of the rewards of the
arms and makes future decisions based on the
gathered information using a novel approach
called grouped median elimination. The pro-
posed algorithm guarantees to output the best
arm with probability (1 — ¢) and uses at most
O(Sr (% +4) s +mla))

samples, where A; (¢ > 2) denotes the reward gap
between arm 7 and the best arm and we define
Ay = As. This achieves a significant advantage
over the variance-independent algorithms in some
favorable scenarios and is the first result that
removes the extra Inn factor on the best arm
compared with the state-of-the-art. We further

2
show that (2 (Z?:l (% + Ai) In 5_1) samples
are necessary for an algorithm to achieve the same

goal, thereby illustrating that our algorithm is
optimal up to doubly logarithmic terms.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) is a famous frame-
work that captures well the trade-off between exploration
and exploitation. In the MAB game, a player faces a set
of n (n > 2) arms indexed from 1 to n. When arm i is
sampled, the player observes an instant reward which is
i.i.d. generated from an unknown distribution D; supported
on [0, 1] with mean 6; and variance o?. In the pure explo-

ration setting of a MAB game, by making a sequence of
samples, the player identifies one (or a set of) desired arm(s).
This framework is motivated by many application domains
such as medical trials Robbins [1952], communication net-
works Audibert and Bubeck [2010], simulation optimization
Chen and Lee [2011], recommendation systems Kohli et al.
[2013], and crowdsourcing Zhou et al. [2014].

In this paper, we focus on the best arm identification prob-
lem. The best arm is the one with the maximum expected
reward. Without loss of generality, we assume 61 > 05 >
--- > 6,, which is however not known beforehand to the
player. We say an algorithm is J-correct if it returns the
best arm with probability at least (1 — §). The goal of the
best arm identification problem is to design an algorithm
equipped by the player to §-correctly identify the best arm,
with as few samples as possible. Previously, the confidence
intervals were mainly constructed utilizing the mean re-
wards of the arms, e.g., Even-Dar et al. [2002], Audibert
and Bubeck [2010], Gabillon et al. [2012], Karnin et al.
[2013], Jamieson et al. [2014], Chen and Li [2015]. It is
worth noting that the variance of the rewards also embodies
important information. The variance of rewards could be
employed to provide significant advantages over the pure
mean-based algorithms. We design an efficient algorithm to
solve the problem of best arm identification by exploiting
the variance of the rewards, which requires significantly
fewer samples in many favorable cases. We further provide
a lower bound which illustrates that our algorithm is optimal
up to doubly logarithmic terms.

1.1 Related Works

In the seminal work of Even-Dar et al. [2002], the authors
showed that if 8; — 65 > /A, then their Median Elimination

algorithm uses at most O( % Ind~') samples . In the same

'In fact, the algorithm provides the following stronger (PAC)
guarantee — if there are multiple arms with mean rewards at least
(61 — A), then the algorithm returns an arbitrary one among these
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paper, they also showed that for every J-correct algorithm,
the worst-case sample complexity among all instances such
that 0, —6 > Aisatleast Q(x5 Ind~'). The O(Zz In s~ 1)
bound can be improved when the input data is easy, which
is measured via the reward gaps between every sub-optimal
arm and the best arm. Formally, let A; = 6, — 0, fori > 2
and A; = A, denote the reward gaps. Intuitively, less
samples are required if many reward gaps are significantly
larger than A = A;. With this intuition, Even-Dar et al.
[2002] showed the first gap-dependent algorithm called
Successive Elimination, which achieves §-correctness using
O o A7 ?(Ind~! +1Inn+InlnA; ")) samples. Since
then, the gap-dependent algorithms for the best arm identifi-
cation problem have been extensively studied, e.g., Gabillon
et al. [2012], Karnin et al. [2013], Jamieson et al. [2014],
Chen and Li [2015], Chen et al. [2017]. Both the Expo-
nential Gap Elimination algorithm in Karnin et al. [2013]
and the 1iI’UCB algorithm in Jamieson et al. [2014] achieve
J-correctness with sample complexity 2

0] (ZAﬁ(lna—l +lnlnAi1)>. (1)
=2

Chen et al. [2017] further showed a d-correct algorithm with
sample complexity

An))

=2 !

O<Z %(lnéfl + Ent(Ao, ...

1 1
— Inln — - polyl -1 2
+ g in 5+ polylog(n 5 >>, @

where Ent(Aq, ..., A,) is an entropy-like function. This
bound improves the result of Karnin et al. [2013] and
Jamieson et al. [2014] when the second additive term is
dominated by the first term (which is the usual case).

On the lower bound side, Mannor and Tsitsiklis [2004],
Kaufmann et al. [2016] showed that every gap-dependent
§-correct algorithm uses at least Q(3°1_, A; 2In 1) sam-
ples in expectation; and this lower bound holds for all possi-
ble gap parameters. Based on the results in Farrell [1964],
Jamieson et al. [2014] showed that even when there are only
two arms, for every 0.1-correct algorithm, there exists an in-
put instance where Q(A~21Inln A~1) samples are needed.
Therefore the sample complexity in (1) matches the lower
bound up to Inln A ! terms for i > 3. The first mentioned

lower bound was further improved by Chen et al. [2017] to
Q" , A2 (Iné ™ 4 Ent(Ag, ..., Ay)).

To further improve the sample complexity, another line of
research tries to leverage information beyond reward gaps

arms.

Here for simplicity we assume A; is sufficiently small, and
the same applies to the rest of this paper. When A; approaches 1,
the doubly logarithmic term should be In(e + In A7) to avoid
negative evaluations.

i.e., variance Gabillon et al. [2012] and Kullback—Leibler
(KL) divergence Maillard et al. [2011], Garivier and Cappé
[2011], Kaufmann and Kalyanakrishnan [2013], Tanczos
et al. [2017] to construct a more refined confidence interval.
Let KL(X,Y") denote the KL-divergence between two ran-
dom variables X and Y. The state-of-the-art algorithm lil-
KLUCB proposed in Tanczos et al. [2017] utilizes Chernoff
information, derived from the KL divergence and achieves a
high-probability sample complexity upper bound scaling as

_inf ;N In(n/d) + Inln %
0a,...,0, D*(601,6) D*(61,0)

1 Ino~t —|—ln1n% ,
0;) D*(6;,6;)

s

where gz S ((91',91), 5 = max;z2 51‘7 and D*(Z‘,y) =
max_ ¢, ,,) min{KL(Ber(z), Ber(z)), KL(Ber(z), Ber(y))}
denotes the Chernoff information. However, there is still
a Inn factor appearing in the term corresponding to the
number of samples on the best arm.

1.2 Our Results

Theorem 1 (Restatement of Theorem 23) We propose an
algorithm called VD-BESTARMID(n, &) which, with prob-
ability at least (1 — &), outputs the best arm and uses at
most

n 2
0 <Z <Z2 + Al) (Ins~! + 1n1nA;1)> 3)

=1

samples.

Since the expected sample complexity of VD-BESTARMID
is not guaranteed to be bounded, using the trick devel-
oped in Chen et al. [2017], we are also able to transform
VD-BESTARMID to an algorithm whose expected sample
complexity is bounded.

Theorem2 We  can  construct an  algorithm
VD-BESTARMID*(n,d) (& < 1) to e
turn the best arm with probability at least
(1 — ), while the expected sample complexity is

@) (22;1 (222 + A%) (Ino—1 + IHIIIAi_l)).

For completeness of the paper, we present the proof of
Theorem 2 in Appendix B.

Note that the square term scales with the variance instead
of a constant, which could lead to significant improve-
ment in some cases. We present a specific example that
VD-BESTARMID(n, d) achieves better performance than
other mean-based algorithms as follows.



Example 1 Suppose we are given n Bernoulli arms (i.e.,
the reward of each arm is either 0 or 1), the mean re-
ward of arm i is 0; = 1 — %fori = 1,2,...,n. Our
variance-dependent algorithm achieves §-correctness with
O(nlnn(Ind=! + Inlnn)) samples. In contrast, the ex-
pressions in the big-O notations in both (1) and (2) are
Q(n?Iné—1t). We show the detailed calculation in Ap-

pendix C.

Let [n] = {1,2,...,n}. In the following theorem, we
present a lower bound for algorithms aiming to identify
the best arm. Therefore, our algorithmic bound (3) matches
the lower bound up to doubly logarithmic terms.

Theorem 3 (Restatement of Theorem H.7) For any
0?2 <0.1,i € [n]and 0 < A; < 0.1,i = 2,...,n, there
exists an input instance with matching parameters (gaps
and variances) such that any §-correct algorithm (§ < 0.1)
needs at least

n 2
Q0 (Z (22 + Al) ln(51> )

=1 g

samples.

1.3 Organization and Proof Outline

In Section 2, we first describe and analyze a few procedures
to estimate the variance of the rewards of a given arm, and
the arm’s mean reward based on the variance estimation. In
Section 3, we present a straightforward way to use these pro-
cedures to identify the best arm, with the sub-optimal sample

complexity O(>""_, (Z—Z + A )Ind~'+InlnA; ' +1Inn))
(note the extra In n term comparing with our desired bound
(3)). Then we develop our main variance-dependent algo-

rithm for best-arm identification in Section 4 and Section 5.

In Section 4, we present a key technical component, proce-
dure BESTARMEST, to estimate the best-arm’s mean reward
up to e precision with probability (1 — §) and uses at most
o, (:—22 +1)(Iné~" + Inlne')) samples. Note that
this bound is similar to that of the median elimination al-
gorithm proposed in Even-Dar et al. [2002] in the sense
that both are independent on the reward gap parameters.
However, our BESTARMEST procedure does explore the
variance information and forms its strategy accordingly. To
achieve this goal, BESTARMEST uses the idea grouped me-
dian elimination and iteratively performs the following pro-
cedure: first estimate each arm’s reward variance and divide
the arms into groups, so that arms in the same group have
similar reward variance estimations; then perform variance-
dependent mean estimation and median elimination within
each group. If the variance estimations were always accu-
rate and the arms were all assigned to the desired groups, it

would be relatively easy to show that the algorithm makes
progress in each iteration (where “progress” is defined to
be an multiplicative reduction of the total variances of the
remaining arms). However, in our analysis, we need sub-
stantial technical effort to deal with the mis-placed arms,
which is achieved by making very refined upper bounds for
the number of mis-placed arms according to the severity of
the mistake.

In Section 5, we use BESTARMEST as a helper procedure
to build our main algorithm. The high level idea here is
similar to that of the exponential gap algorithm introduced in
Karnin et al. [2013]. However, due to the non-uniformity of
variances among the arms, we have to design a new stopping
condition for our iterative algorithm. In Appendix H, we
prove the variance-dependent lower bound result. Finally
we conclude the paper by mentioning a few future directions
in Section 6.

2 VARIANCE-DEPENDENT MEAN ESTI-
MATION

We first build a few subroutines to estimate the variance of
the rewards of a given arm (Section 2.1), as well as the arm’s
mean reward based on the variance estimation (Section 2.2).
These procedures will be useful in building blocks to design
our main algorithm. All missing proofs in this section are
deferred to Appendix D.

2.1 Variance Estimation

Our goal of this subsection is to design a procedure to
estimate order of the variance of the rewards of a given
arm. More specifically, our VAREST(i, 0, £) (Algorithm 1)
takes arm i, confidence level § and a positive number
¢ > 0 (which is used to control the precision of the es-
timation) as input, and returns an estimate of the variance
o2 up to precision ©(27¢). We also need a helper proce-
dure VARTEST(4, 7, §, ¢) (Algorithm 2), which takes arm ¢,
threshold 7, confidence parameters § and a positive number
c > 1 asinput, and checks whether O'Z-Q is above the threshold
T.

Algorithm 1: Variance Estimation, VAREST(¢, 0, £)
>0

1 Input: Arm 4, confidence level § and a positive
number £
2 forr+1,2,3,... do
3 T+ 1/27
4 if 7. < £ or VARTEST(i,7,-,0/e,80) then
5 Output: 7 = 7, as the estimated variance of
the rewards of arm ¢




Algorithm 2: Variance Test, VARTEST(i,T,J,c)

(cz1)

1 Input: Arm ¢, threshold 7, confidence level § and a
positive number ¢

2T+ £Iné -1

3 Sample arm ¢ for 27" times and let x4, . . .,
the empirical rewards in sequence

407 o D (mr_mT+T)

s ifo 57 > 7 then Output true else false

ToT be

The following lemma shows the guarantee for the procedure
VARTEST.

bility at least 1 — § - (a ) VARTEST(Z 7,0,¢) outputs

Lemma 4 Suppose 6 < 2 > 27, with proba-

2 c
true. If o2 < 7/2, with probability at least 1 — & - (%) ,
VARTEST(4, T, 0, ¢) outputs false. Moreover, the sample
complexity is % Ins—1.

Now we present the lemma on the guarantee of the proce-
dure VAREST. Note that Lemma 5 not only shows a lower
bound on the success probability of VAREST(4, d, £), but
also provides an upper bound on the error probability that
depends on the logarithmic distance between the algorithm’s
output and the real variance o?.

Lemma 5 Suppose VAREST(i,0, () returns 1. Let 1., =

2
[[log, Z=|] denote the logarithmic mistake ratio. The algo-
rithm has the following three properties.

(a) It always holds that T > (/2 and the sample complexity
is O($Ind~1);

(b) If 02 € (¢,1], with probability at least 1 — §, we
have T € [02/4,202) and the sample complexity is
0] (% Ind— 1) We also have Pr[r > z] < § - 2720m

when © > 20i and Pr[r 5 - 2720mm ywhen
T < Jf /4;
(c) If 0 < 20, we have Pr[r > 1]

x > max{2/(,202}.

< 2] €

=0 ((5 . 2_207‘m)f0r

2.2 Variance-Dependent Mean Estimation

In this section, we present MEANEST(4, €, §) (Algorithm 3)
which estimates the mean reward of a given arm ¢ up to €
additive error with probability at least 1 — § with sample
complexity depending on o?.

At a high level, we first estimate the variance of the rewards
of a given arm, then apply Proposition A.2 (Bernstein’s
Inequality) to control the number of samples needed for an
estimate up to the given precision requirement. We show the
following lemma.

Algorithm 3: Mean Estimation, MEANEST(, €, 6)

1 Input: Arm 4, accuracy ¢, and confidence level §
2 57 < VAREST(i,5/2,€)

. 852
3 Sample arm ¢ for ( 7

2 4 0

g) In 5 times and let 0;
denote its empirical mean reward

4 Output: 6; as the estimated mean reward of arm %

Lemma 6 With probability at least 1—0, MEANEST(i, €, 0)

outputs an estimate (namely 0;) of the mean reward of arm
i such that 10; — 0;| < ¢ and the sample complexity is

0(@§+§)m54)

Now we prove a few stronger properties of MEANEST
which will be useful for building our main algorithm.

Lemma 7 Let Q) be the samples used by MEANEST(i, €, §).
There exists a constant ¢ > 0 such that

(@) Q< SIné;
(b) for  integers j = 3, we have

Pr [Qéc(jﬁ —|—%> ln6_1} > 1 — 6§ - 2720,

3 WARM-UP: NAIVE VARIANCE-
DEPENDENT BEST-ARM IDENTIFICA-
TION

In this section, we present a straightforward way (Algo-
rithm NATIVEBESTARM) of using the variance-dependent
procedure MEANEST to iteratively reject non-optimal arms
and finally identify the best arm. The analysis adopts the
union bound on all arms and therefore introduces an extra
In |S| (where S is the input candidate arms) factor in the
sample complexity. In particular, we show the following
theorem. The algorithm and missing proofs in this section
are deferred to Appendix E.

Theorem 8 With probability at least 1 — 6, the
NAIVEBESTARM(S, §) algorithm outputs the
best arm in S and the sample complexity is

0 (ZiGS (Z—i + Ai) (Iné~' +Inln A + 111|S|)>.

It is also straightforward to get the following PAC-style
statement where an e-optimal arm denotes an arm whose
mean reward is e-close to that of the best arm in S.

Corollary 9 There exists an algorithm that with proba-
bility at least 1 —4, finds an e-optimal arm in S using at most

0 (Sies (5 + 22) o + (A7)~ +1n8)))



samples, where A =  max{A;,e}. We use
NAIVEBESTARMEST(S, ¢, 0) to denote this algorithm.

4 FIND AN «-OPTIMAL ARM

Now we start to develop our main algorithm. We use S} to
denote the index of the i-th best arm in S. When there is a
tie, we break it arbitrarily. In this section, we design a pro-
cedure BESTARMEST(.S, ¢, d) (described in Algorithm 4)
which returns an e-optimal arm. In particular, we prove the
following theorem. All missing proofs in this section are
deferred to Appendix F.

Theorem 10 With  probability at least 1 — 0§,
BESTARMEST(S,¢,0) outputs an arm (denoted
by a) satisfying [0, — 0s,| < € and uses

0 (Zz‘es (Z—g + %) (Iné~! +Inln 671)) samples.

Algorithm 4: Best
BESTARMEST(SS, €, d)

1 Input: A set of arms S, accuracy ¢, and confidence
level §

2 Sp + ITERELIM(S, €/3,0/3)

3if ¢! <In|S|then Sy < S else
Sy < ITERELIM(Sy,€/3,6/3)

4 a + NAIVEBESTARMEST(S2,€¢/3,0/3)

5 Output: Arm a

Arm Estimation,

BESTARMEST can be viewed as an extension of the Me-
dian Elimination algorithm. The number of samples used
by neither of them depend on the reward gaps. However,
our BESTARMEST algorithm explores the variance infor-
mation and adapts its strategy accordingly. This procedure
is the most technical part of our main algorithm. It employs
two subroutines ITERELIM and GROUPELIM described in
Algorithms 5 and 6.

Algorithm 5:
ITERELIM(S, €, §)

1 Imput: Arm set S, accuracy ¢, and confidence level §
2 Let B+ v/255/16 - %1, ¢, < B7(1 — B)e, and
§p e "1 —eH)dforr >0
3T+ S, Ry 0,r<0
4 while |T,| > 10 do
5 (Ty11, R"TY) « GROUPELIM(T,, €., J,)
6 R, 1+ R.UR!
7 r<—r+1

8 Output: 7' < T, UR,

Iterative Elimination,

Comparing our algorithm with the Median Elimination al-
gorithm in Even-Dar et al. [2002], we note that the major

Algorithm 6: Grouped Median Elimination,
GROUPELIM(S, €, 0)

1 Input: Arm set S, accuracy ¢, and confidence level §

2 Let N <+ [logy(2/€)] be the number of buckets

3 fori € Sdo G2 < VAREST(i,5/(2N?),¢€)

4 Define bucket B, + {i € S|277 < 52 < 279 +1}
for j = [N],and let T+ 0)

5 for j < 1to N do

6 | if|B;| > 2 then

7 Let 0; < MEANEST(i, ¢/2,6/(9N)) for all
1€ E]‘
8 Let m; be the median of the empirical means
of the arms in §j
9 Tj <—§]\{’L€§]‘é\l <T/T\7,j}
10 T+ TUT;
11 else
12 L Put arm in §j into the recycle bin R

13 Output: 7" and R

difference is that we use the grouped median elimination
(GROUPELIM) instead. If, in each iteration, we simply elim-
inate a constant fraction of the arms according to their em-
pirical means, we cannot guarantee that the samples needed
in each iteration reduces at an exponential rate and the total
work converges, which is the case in Median Elimination.
This is because in our algorithm, the sample complexity re-
lates to the total reward variances of the active arms, rather
than the number of active arms. This non-uniformity among
the arms may admit the scenario where the eliminated arms
have small reward variances and the elimination process
does not reduce the total variances by a constant fraction
after each iteration.

To solve this problem, our GROUPELIM procedure parti-
tions the arms into buckets according to their empirical
reward variances, so that the arms in the same bucket have
similar variances of rewards (up to a multiplicative constant
factor). If the partition is perfect (i.e., the empirical esti-
mation matches with the true variances and every arm is
assigned to the correct bucket), performing median elimina-
tion within each group would successfully reduce the total
variances by a constant fraction.

To deal with variance estimation noise and imperfect parti-
tion, we make considerable effort to upper bound the frac-
tion of arms put in wrong buckets, where the bound is very
refined and depends on the distance between the desired and
empirical buckets. Another consequence of the noise is that,
besides the active arm set 7" returned by GROUPELIM, we
have to introduce a recycle set R of arms. The arms in R do
not participate in future rounds of elimination in ITERELIM.
However, they appear as the returned arms of ITERELIM.
Indeed, the procedure ITERELIM returns a small set of arms



instead of the optimal arm. Finally, we use BESTARMEST
to examine this small set again to identify the best arm.

We start the sketch of the analysis of our algorithms by
presenting the following statement for GROUPELIM.

Theorem 11 With  probability at least 1 — §,
GROUPELIM(S, €,0) outputs two sets T and R of
arms and has the following four guarantees:

(a) |R] = O(lne™t);

(b) Sger(oi+e) < 355

(C) ‘G(TUR)[I] - 93[1 ‘ < €’

(d) uses O (ZiES (:—2 + %) (In6~! +1Inln 6*1)> sam-
ples.

aES(Jg + 6)’.

The proof of Theorem 11 is split into three subsections.
The first claim is easy to verify and shown in the form of
the short Lemma 15. In Section 4.1, we define an event £
(Equation (5)) concerning about the fraction of the arms put
in wrong buckets, and use Lemma 16 to show that £ holds
with high probability 1 — §/3. In Section 4.2, we prove
Lemma 22, i.e., £ implies the second claim of the theorem.
In Appendix F.10, we prove Lemmas F.4 and F.6, showing
that both the probabilities that the third and the fourth claims
of the theorem hold are at least 1 — ¢/3. Finally the theorem
is proved by a straightforward union bound.

The following theorem shows the guarantee of ITERELIM,
and will be proved in Appendix F.11.

Theorem 12 With  probability at least 1 — 0§,
ITERELIM(S, €,0) outputs an arm set T and has the
following three guarantees,

(a) |T| =0((In|S])*Inet);

(b) 01, —Os,)| < €

(c) uses O (Zz‘es (6" %) (Iné=t +Inlne- )> sam-
ples.

Finally, with the help of Theorems 11 and 12, we prove the
main theorem on BESTARMEST in Section 4.3.

4.1 Upper Bounds on Fraction of Arms in
Wrong Buckets

For notational convenience, for each Ej G=12,...,N),
we set [(B;) = 277 and u(B;) = 277! as the lower and
upper bounds on the estimated reward variances of the arms
in B;. We also introduce the “ideal” partition B; = {i €
S |27 <o? <279} forj = 1,2,...,N — 1 and
By ={i € S |0 < 02 < 27N} Similarly, we set
I(Bj) =29 forj=1,2,...N — 1 and u(B;) = 279!
forj =1,2,..., N, with the exception that [(By) = 0.

Now we list the following simple facts about the procedure
GROUPELIM.

Lemma 13 {El, Bo,..., EN} is a partition of S.

Lemma 14 If|B,| > 2, there is |T;| < 2|B;].

Lemma 15 |R| = O(Ine™1).

We define £ to be the event
{1B:0 Byl

< |Bj|-2710li=3l . N for Vi — 4] >

3}. (5)

In words, it means that the fraction of the arms that are
empirically put in a wrong bucket becomes exponentially
small as the error distance increases. We now show such
an event happens with high probability, which is the main
statement of this subsection.

Lemma 16 Pr[&] > 1—§/3.

4.2 Procedure GROUPELIM: Multiplicative
Reduction of the Total Variances

We say that B; pollutes §j (or §j is polluted by B;) if and
only if | B; N B;| > |B;| - 2°/"=3. Intuitively, this means
that too many arms (those are supposed to be in B;) are
incorrectly put in B;. Note that the definition of “too many”
is in terms of the fraction compared to |§j\ rather than | B;|
as defined in the event £. If ﬁ is polluted by some B; where
i —jl >
BJ is good.

3, we say that B is bad. Otherwise, we say that

The following lemma shows that for a good bucket éj, as
long as it is not the last three buckets, the arms discarded
from the bucket aggregate a constant fraction of variances.

Lemma 17 Given thatj -3, if |B | 2 and Ej is
good, thereis y . o2 < g; weB; O
Corollary 18 Given that j < N — 3, if |B | > 2and B is

good, there is y . (02 +€) < 2T Zaeg (07 + ).

We now prove a similar statement as Corollary 18, but for
the last three buckets.

Lemma 19 Given that j > N — 2, 1f|B | > 2 and ]§ is
good, there is 3 . (02 + e) < 13- acB, (07 + ).



The following two lemmas control the total reward variances
of the arms in a polluted bucket.

Lemma 20 Conditioning on &, if E is polluted by some
B; wherez N—land|z— i| >3, wehavez 5 02 <

a€B;j
N~ ZaGS o 256

Lemma 21 Conditioning on &, iféj is only polluted by
By where [N — j| = 3, we have Zaeéj o2 < N7L.

ZaES(Jg + E) ’ 10%

Now, we show that with high probability the total reward
variances of the active arms reduce by a constant fraction
after the procedure GROUPELIM. In particular, we prove
the following lemma.

Lemma 22 Conditioning on event £, we have Y, (02 +
255 2
€) < 356 2-aes(9a T €)-

Proof According to Lemma 20 and Lemma 21, if Ej
is polluted by some B; where |i — j| > 3, there is
Zaeéj 02 < N7'- ¥, c5(02 +€) - 5 which implies
Zj,gj is good ZaGB 2 2 2?2 ZaES(U +6) Hence there
is
Daes(0zt€) =P erlozte)
>aes(oz +e)

N N 2
Zj,Bj is good Zaij\Tj Ta

= 256 _ 42

255 4,B; is good Eaij Ogq

2

255 . 2 aeBAT T4
> — - min ¢. 6)

Zaeﬁj O-g

= —~
256 j,Bj is good

. 0(21
When | B;| = 1, T; = () which implies Ze@fﬂ; =1.
ZaGBj Ta

When B is good and |B | >

ZGE(B-—T y%a

2, accordmg to Corollary 18

and Lemma 19, there is —2 > 128 Therefore,
aeB]» Ta
we have (6) > 220 - 1o > oL which concludes the proof

of this lemma.

4.3 Analysis of the BESTARMEST algorithm

Now we are ready to analyze the BESTARMEST algorithm
and prove the main theorem (Theorem 10) of this subsection.

First, we define the following three events about the
BESTARMEST procedure. Let ¢ be the hidden constant in
Corollary 9 and Theorem 12.

s Let & denote the event |S1| < c¢(In|S|)?lnet,
0(s1)) — Osyy| < €/3, and the sample complex-
ity of Line 2 is at most ¢}, ¢ ( ; %) (Ins—t +

Inlnet).

e Let & denote the event |So| = ¢(In|S;|)?Inet,

0(52), — sy | < €/3, and the sample complex-
ity of Line 3 is at most ¢} ;. g, (Z—j + %) (Iné~—* +
Inlne1).

* Let & denote the event |0, — 9(52)[1]| < €/3
and the sample complexity of Line 4 is at most

cTics, (‘L n %) (I~ +Inlne + In|Sy)).

Proof of Theorem 10 By Theorem 12, we have Pr[&;] >
1—6/3 and Pr[&2] > 1 — §/3. By Corollary 9, we have
Pr[€3] > 1—4§/3. Conditioning on event & A€y A E3 which
happens with probability 1 — §, we will show both claims
of Theorem 10 hold.

The first claim is because of |6,
102y = sy |+ 10cs0yy —

- 93[1]| < |9a -

6(52)[1] ‘ +
95[1]| <e

Now we focus on the second claim (about the sample com-
plexity). It suffices to show that the sample complexity of
Line 4 of Algorithm 4 meets the desired asymptotic upper
bound. We discuss the following two cases.

Case 1: ¢! < In|S|. Note that S, = S; and
2

0(Ties, (G +)misl) = o)

0 (M) =0 (@) , where the last equality

is due to |S;| = O((In|S])?Ine?
complexity of Line 4 is

o? 1 - -
0 <Z (62 +6) (In6~" +Inlne! +1n|52|)>

). Hence, the sample

i€Sy
o? 1 1
1€Ss
1 o? 1
+1HIH6 ) +O Z; 672—’_2 1H|SQ|
op 1 -1 5]
_0(2; (€2+6) (6~ +mlne)) +0( : >
=0 Z 042—&—1 (Ind~* +Inlnet)
- €S ¢ € .
Case 2: ¢! > In|S|. Note that In|S3| = O(Inln|S;| +

Inlne!) = O(lnlnln|S| + Inlne™!) = O(lnlne™t),
where the first and second equalities are due to |S3| =
O((In|S1])?Ine™t) and [S;] = O((In|S])?Inet) re-
spectively. Hence, the sample complexity of Line 4 is

O(Sics, (% +1) (o™ + e + In|Ss)) =
O(Zles (0’2 )(ln(S_ +Inlne~ ))

In both cases,

@ (Zies (%22 +

the sample complexity of Line 4 is
%) (Ind~! +1Inln 6_1)). Therefore, the



sample complexity of the whole procedure also meets the
desired upper bound.

S THE MAIN VARIANCE-DEPENDENT
ALGORITHM

Now we are ready to present the main variance-dependent
best arm identification algorithm VD-BESTARMID(n, ¢)
with the help of MEANEST and BESTARMEST developed
in previous sections. All missing proofs in this section are
deferred to Appendix G.

Theorem 23 With  probability at least 1 — 0,
VD-BESTARMID(n, d) outputs the best
arm and the number of samples used is

O(Sr (% +4) s +mla)),

Algorithm 7: Variance-Dependent Best Arm Identifi-
cation, VD-BESTARMID(n, §)

1 Input: Arm set S = [n] and confidence level ¢
2 51+ S, r+1

3 while |S;| > 1 do

4 | Sete, «1/2""2and 4, « 1/(2r%) -0

s | foric S, do 67 < MEANEST(, &, 3z)
6 | a, « BESTARMEST(S,, &, %)

7 | a; < BESTARMEST(S,\{a,}, §, o)

8 if \0; » then Output: a,

9 | S SA\{ieS |0 <o —e)

0 | rer+l

11 Output: The remaining arm in S,

We present the details of VD-BESTARMID(n, §) in Algo-
rithm 7. It has a similar structure to that of the Exponential
Gap Elimination algorithm in Karnin et al. [2013] as our
algorithm also keeps a confidence interval €, which halves
after each round. Within a round, we estimate the mean
reward of each arm up to confidence interval €, and an arm
will be discarded if its estimation is ¢, below that of the
best arm. However, due to non-uniformity of the reward
variances of the arms, we cannot repeat this process until
there is only one arm left (as is done in the Exponential
Gap Elimination algorithm), otherwise the sample complex-
ity would not satisfy the desired upper bound. Instead, we
design a new stopping condition (Line 8) which may be
triggered earlier.

The proof of Theorem 23 is split into two parts: correctness
(the best arm is identified with high probability proved by
Lemma 26 in Section 5.1) and sample complexity (proved
by Lemma 32 in Section 5.2). We finally obtain Theorem 23
by combining these two lemmas with a union bound.

The rest of this section is devoted to the proof of Theo-
rem 23.

5.1 Correctness

We use M to denote the event (?gm > 52
every round 7, and use My to denote the event that
VD-BESTARMID(n, §) terminates with 7 = O(In A; ')
and returns the best arm. We have the following two lem-

mas.

— ¢, for

Lemma 24 Pr[M;] >1—4/9.

Lemma 25 Pr[My|M;] >1—2§/9.

We now show the correctness lemma as follows.

Lemma 26 With probability at least 1 — §/3,
VD-BESTARMID(n, §) terminates with r = O(In A;")
and returns the best arm.

Proof It suffices to prove Pr[M3] > 1—4/3. By Lemma 24
and 25, we have Pr[Ms] > Pr[Ma| M ]Pr[M;y] > 1 —
6/3.

5.2 Sample Complexity

For each 1 < s < [logy(1/A) + 1], we define the set
As={ie S |27 <A, <275} and let n, = |Asl.
Also, we denote the set of arms from Ay surviving after
round r by S, s = S, N A,.

We will show that from round s onwards, every sub-optimal
arm in A, is eliminated with high probability. Specifically,
we show the following lemma.

Lemma 27 Conditioning on My, with probability at least
1-46,/4 wehave@r < 0’” — € forany armi € S,_1 g
and round r 2= s.

Let I! denote the random variable 1{i € S,.}. We also
2
define T} = (:—2 + ei) (Ind,; ! +1Inlnet).

In the desired event (which is explicitly defined by event
M3 and analyzed in Lemma 31 soon afterwards), we may
bound the number of pulls to arm ¢ in round r by I7 7. In
light of this, the following two lemmas help to upper-bound
the number of pulls to the sub-optimal arms where c is a
constant.

Lemma 28 Conditioning on My, we have that

with probability at least 1 — (%)j, joi T <

e (G + ) ot + I A7) fori # Sp.




Lemma 29 Conditioning on My, we have that with
probability at least 1 — et <

r=17"1

' i Ditsy
O (i, (5 + ) Mot +mmarh).

The following lemma helps to upper-bound the number of
the pulls to the best arm.

Lemma 30 When My happens,
we have e Ig, T5, =

O((%+2)ms ! +mmarh).

We use M3 to denote the event that, for each r, the number
of samples used inround is >, O(I7T}"). The following
lemma shows that M3 happens with high probability.

Lemma 31 Pr[M;3] >1-4/6.

We are now ready to prove the following lemma on the
sample complexity of VD-BESTARMID.

Lemma 32 With probability at least 1 — 25 /3, the sample
complexity of VD-BESTARMID(n, ) is

= o? 1 _ _
0 (Z (A% + Az-) (Iné~t +Inln A, 1)) .

i=1

Proof Note that Pr[M;] > 1 — §/9 by Lemma 24. Further
by Lemma 29, with probability at least (1 — §/9)(1 —
4/18) > 1 — 6/6, we have 37, g Ty =

r=1"1
o? _ _

0] (Z#Sm (P + f) (Iné~'+Inln A; 1))
Note that Pr[Ms] > 1 — ¢/3 by Lemma 26.
Further by Lemma 30, with probability at

: 400 rp T —
least 1 — 0/3, it holds that > ) Ig Tg — =
@) ((% + Ai) (Ind~! +1Inln Af1)>. Via a union

1 1

bound, with probability at least 1 — 6/2,

n —4oo

D) LT

=1 r=1

n 2
=0 (Z (ZQ + Al) (Ins~* +1n1nA;1)> G

i=1

Note that Pr[M3] > 6/6 by Lemma 31. Condition-
ing on (7) and event Mg which happens with prob-
ability at least 1 — 2§/3 (via a union bound), the
sample complexity of algorithm VD-BESTARMID(n, )

s YL 00T = O(SL SN =
O, (% +4) s +mmAarh)).

6 CONCLUSION AND FUTURE WORKS

In this paper, we present a variance-dependent best arm
identification algorithm and the nearly matching sample
complexity lower bound.

While our algorithm almost achieves theoretical optimality,
its empirical performance suffers from the large constant
factors introduced by multiple subroutines. It is worthwhile
to design algorithms with better empirical performance and
the same sample complexity bound. The UCB-style algo-
rithms (e.g. li’'UCB in Jamieson et al. [2014]) are a very
promising direction towards this end.

On the theoretical side, we believe that it is promising to
combine our approach with the ideas in Chen et al. [2017]
and improve the doubly-logarithmic terms in our sample
complexity bound. It is very interesting to investigate the
ultimate sample complexity of the problem.
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A  CONCENTRATION INEQUALITIES

Proposition A.1 (Multiplicative Chernoff Bound) Let X; (1 < i < n) be i.i.d. random variables supported on [0, 1]. Let
X =213" X, and E X1 = j1. We have that

T n

—€

€

np
(1—6)(15)> ,VE S (O, 1), and

PriX < (1—e)y] < (

€

n
e
PI‘[X > (1 =+ €),U] < <(1_‘_€)(1+€)> ,VE > 0.

Proposition A.2 (Bernstein Inequality) Let X, (1 < i < n) be i.i.d. random variables. Suppose | X;| < M holds almost
surely, for any i. Let X = - 3" | X;, E[X1] = p and Var X1 = o*. Then, for all positive t, it holds that

nt?/2
Pr||X —p| >t <2exp| ————+— | .
1= > 1 < 200 (-0

B PROOF OF THEOREM 2

Let A; denote the algorithm VD-BESTARMID(n, §/2¢). Algorithm VD-BESTARMID*(n, §) is constructed as follows. It
is easy to verify that after the finish of round r, A; makes |r/ 2iJ samples. Therefore, after round r, the total number of

samples made is at most 31052 "1 | /21 ] < 7.
Before proceeding, let us define some symbols. For simplicity, we define ® = > | <Z—’22 + Ai) and ¥ =

2
Dy (% + Ai) Inln A; ", Let ¢ be a constant hidden in the big-O notation of Theorem 2 and G; denote the event

that A; outputs the best arm and the sample complexity is ¢(® In(2¢/5) + ¥).

We first prove the §-correctness of Algorithm VD-BESTARMID*(n, §). By Theorem 2, we have Pr[G;] > 1 — 6/2%. Let G
denote the event A\~ G;. Via a union bound, we have Pr[G] > 1 — 37X Pr[G,] =163 727" > 1 — §. We now
condition on the event G until the end of this paragraph. Note that during the first 7 rounds of VD-BESTARMID*, A; makes

at least | /2] samples. Hence, VD-BESTARMID* must stop with r < 2¢(® In(2/6) + ¥) + 2. Since every A; outputs the
best arm, so does VD-BESTARMID*. Therefore, the first part of Theorem 2 is proved.

Next, we focus on proving the upper bound of the expected sample complexity of VD-BESTARMID*. Let H; denote the

Accepted for the 37" Conference on Uncertainty in Artificial Intelligence (UAI 2021).



Algorithm 8: VD-BESTARMID*(n, §)

1 Input: Number of arms n and confidence level o
2 forr < 1to +ocodo
for i < 1to |log,r| do
if 2°|r then
Run A; until one of the following two conditions is satisfied:
i) A; needs to sample some arm, or
ii) A; terminates with an output arm a

if i) is satisfied then Sample the arm for one time and feed the observation to A;
else Output: Arm a

N-JEN-1IEN BEY- N

event Gf A G§ A --- A G A G;. Since samples are independently made, we have

Pr(3,] = Prigs) - Pr(gs ] Prigy] < [](6/2)) < 6. ®

j=1

We claim that the set {Hz}:;"f is almost a partition of the whole probability space €2 i.e., it satisfies the following two
properties:

i) H;NH; =0, forany i < j, and

i) Pr U ) = 1.

The first property can be easily verified since H; C G; and H; C Gy For the second property, since the partial sum ngl H; is
equal to Q\(GfAGEA- - -AGS). Hence Pr [ o ’Hl} = lim; 400 (1 =Pr[GfAGSA- - -AGF]) = 1-lim;_, 4 o0 H;:1 §/20 =
1. Therefore this claim is proved.

Let T" and T; be the random variables representing the sample complexities of VD-BESTARMID* and A; respectively. Note

that during the first 7 rounds of VD-BESTARMID*, A; makes |r/2¢| samples. Hence we have T < 2¢(T; + 1). Further by
the law of total expectation, there is

“+o0
E[T] = Z Pr[H;| E[T|H,]

“+o0
<) 6@ In(2'/8) + ¥ + 1)

i=1

=0 <§i(o.2)i—1q>> +0 (f(o.z)i-l(qnn ST+ U+ 1))

i=1 i=1

=0(@Inst + ),

where the inequality is due to (8) and the second equality is due to § < 0.1, which concludes the proof of the second part of
Theorem 2.

C CALCULATION FOR EXAMPLE 1

We first calculate the expected sample complexity of VD-BESTARMID* (.S, §) upon the input described in Example 1. By
Theorem 2, the number of samples used is upper bounded by

n 2
o) <Z (ZZ? + All) (Ino~! 4+ 1In(e + lnAi_l))> . 9

=1



Note that 1) §; = 1—% and for Bernoulli arms we have 0? = 6;(1—0;) < 1—0, foralli = 1,2,...,n;2) 07 AT +A =
O(03A5% + A1), Therefore,

©) = (z; (((Z _Z/ln/n 4 _11)/n> (1n5—1 +ln( tln- _1)>>

n
1=
n

- (Z ”((22’ <1n5_ +1n <e+1n1>>>

=2

=0 <Z - (1n5 1 +1n1n1‘:’")> )
1=2

Note that 37" , 2 < ;" Zdzand Y7, 2 Inln 352 < [ 2 Inln 132 dx. We further have

T xT

(9)<O</ de~1n6’1+/ nlnlnmd:c>O(nlnn(ln51+lnltln)).
1 T 1

In contrast, the expressions in the big-O notation in both (1) and (2) are lower bounded by

Q <Zn: A;21n51> (Zn: 5Ing~ ) =Qn%nd ).

1=2

D MISSING PROOFS IN SECTION 2

D.1 Proof of Lemma 4

_ 2
Let X, be the random variable representing the r-th sample and Y,. = (XT%T) Note that EY,. = J,? and Y,’s are i.i.d..
If 02 > 27, we have
Tcri2
o271
o2 -1 P c(e2—7) \emd 7\°¢
Pr[&\ng]:Pr[&?g(l— 5 )a?}< _ gd?.(Q) gg.(2>’
gy (i O*
1 K 3

(L) (=)

where the second inequality is due to Proposition A.1 and the last inequality is due to § < e~'. Condition on event 57 > 7
c
which happens with probability at least 1 — 4 - (ﬁ) , algorithm VARTEST(i, 7, 4, ¢) outputs true.

If 02 < 7/2, we have

T—O’2 e o2 or 0_2 clns~?t 0_2 c
Pr[e? > 7] = Pr[ <1+ >o§] < | = <5 () <5 (> ,
U' T T T
’ (g)("?)

where the second inequality is due to Proposition A.1 and the last inequality is due to § < e~'. Condition on event 57 < 7

g

which happens with probability at least 1 — 4 - ( 712) , algorithm VARTEST(i, 7, 4, ¢) outputs false.

Finally, it is straightforward to verify that the sample complexity is % In 1. This concludes the proof of the lemma.



D.2 Proof of Lemma 5

Suppose algorithm VAREST(¢, 0, £) terminates with r = .

Consider the first claim. It is the easy to check that 7,,, > /2. By Lemma 4, VARTEST(i, 7,-, 6 /¢, 80) uses O(=Ind~!)
samples. Hence, total samples is bounded by

> o <1ln51) =0 <1ln51) =0 <1ln51) ,
T Tro Y4

r=1
where the last equality holds since 7, > ¢/2 concluding the proof of the first claim.
Let t be the smallest index such that 0? > 7;. Hence, 02 € (74, 27]). It is straightforward to verify the following facts: 1)
forr=1,...,(t —2), we have 07 < 27y < 7,./2;2) forr > t + 1, we have 02 > 7, > 27,.. Let € denote the event when
r=1,...,(t —2), VARTEST(4, 7, § /e, 80) outputs false, and when r > ¢ + 1, VARTEST(4, 7, 0 /e, 80) outputs true. By
Lemma 4 and a union bound, we have

2o} 8§ X 7 a1 0 R 1\
>1— - R B ~Z>1-- ) —= - >1-4.
Prig] > 1 e~ T e Z o? =1 ez<2> e Z (2> z1-¢

r=t+1 r=1 r=t+1

Now consider the second claim. Recall that 0? € (74, 27¢]. Given that 02 € (¢, 1], we have 7; > £/2. Condition on event
& which happens with probability at least 1 — §. VAREST(4, 4, £) stops with r = ¢ — 1,¢ or t + 1. Therefore, we have
o? € (1,27) C (7, /2,475, ], which means 7 = 7,,, € [02/4,207). Moreover, the sample complexity is bounded by

t+1
ZO <1ln<5_1) =0 ( 1 1n5—1) =0 (glna—l) ;
Tr Tt+1 g

r=1 g

where the last equality is due to 02 = O(7y41).

Suppose VAREST(i, d, ¢) terminates with 7, > 202 which means VARTEST(i, 7,-, § /e, 80) outputs true when r = rg.
Recall that 02 < 7,,,/2. By Lemma 4, the probability that this event happens is no greater than

2+ 80 _80los. (™0
5.<oi> :5,2801g2<”?)<5.2*4‘)rm7

Trg

where the last inequality is due to r,, = {log2 (;3 )—‘ < 2log, (2—;’) when ;5’ > 2. On the other hand, suppose

VAREST(i, 6, £) terminates with 7,,, < o7 /4 which means VARTEST(i, 7., § /e, 80) outputs false when r = r — 1. Since
0?2 > 27, _1, by Lemma 4, the probability that this event happens is bounded by

5 (Tm;)w g (o (5) ) <50

0;

where the last inequality is due to r,,, = {log2 ( i ﬂ <4 <log2 ( i ) — 1) when Tg? > 4 concluding the proof of the

Tro Tro L)
second claim.

For the last claim, recall that 7 = 7,,, > 2¢ > ¢, which means VARTEST(, 7., § /e, 80) outputs true when r = ry. Also, we
have 7 = 7,,, > 207. Using the same way as that in the proof of the second claim, this claim can also be proved.

D.3 Proof of Lemma 6

Let &; be the event that 52 > 02 /4. According to Lemma 5(b), we have Pr[€1|0? € (¢,1]] > 1 — §/2. Also note that when
02 < {, there is 52 > (/2 > o2 /4. Hence, it holds that Pr[&;] > 1 — §/2.

Condition on event £; which happens with probability at least 1 — §/2. Let & be the event that |§7 — 0;] < € and the
2
number of samples used at Line 3 of MEANEST(i, €, §) is bounded by O ((Z—; + %) In 6‘1>. According to event £; and



Proposition A.2, it holds that with probability at least 1 — §/2, event £ happens, which means Pr[&|&1] > 1 — §/2.
Therefore,

Pr(&s] > Pr[€1 A &) = Pr[&]&1] - Pr[&] = (1 - 6/2) - (1 - 5/2) =1 — 6.

Conditioning on event £ which happens with probability at least 1 — J§, we have |§, — 0;] < € and the number of samples
2

used at Line 3 of MEANEST(¢, €, d) is O ((%2 + %) In 5’1>. Also note that the number of samples used at Line 2 of

MEANEST(i, €, §) is always bounded by O(% In§~') by Lemma 5(a). Therefore, this lemma is proved.

D.4 Proof of Lemma 7

According to Lemma 5(a), Line 2 of MEANEST(i, €, §) uses at most O (2 In6~') samples. We bound the number of
samples used at Line 3 by observing 52 < 1. Hence, the first claim of the lemma is proved.

For the second claim, according to Lemma 5(b) and 5(c), there is Pr[c2 = 27%] < § - 2729 for 27% > max{302, 2¢}.
Via a union bound, with probability at least 1 — Zk>j §-2720k > 1 _ §.2720J jt holds that 31»2 < jcri2 < max{jaiz, 2¢}

2¢

for j > max{3, 2 }. Note that when 3 < j < 25, 57 < max{jo?, 2¢} holds with probability at least 1 —§ -2 ~ % >

1 —6-272% Hence, Line 3 of MEANEST(i, €, &) uses O ((%3226} + %) lnéfl) =0 ((J;L: + %) In 5*1) samples

with probability at least 1 — § - 272% for j > 3. Therefore, for j > 3, with probability at least 1 — ¢ - 272% we have
.2 -2

Q<0 ((% + %) In 6‘1) +0(tmét)y=0 ((% + %) lné_l) concluding the proof of the second claim of this

lemma.

E MISSING MATERIALS IN SECTION 3

E.1 Algorithm NAIVEBESTARM

Algorithm 9: Naive Best Arm Identification, NAIVEBESTARM(S, §)

1 Input: Arm set S and confidence level &
2 815, r+1

3 while |S,| > 1 do

4 Sete, < 1/2" and 6, < 1/(2r2) -6
s | foric S, do 67 + MEANEST(i,€,/2,6,/|S,|)
6 Let a, = argmax; g 5{

7 Sr1 S \{i € 5,107 <0, —e}

8 r1r+1

9 Qutput: The remaining arm in S,

E.2 Proof of Theorem 8

Let £ denote the event that |§f — 0;] < €-/2 and the sample complexity of algorithm MEANEST(, €,./2, d,./|S;|) is
2
@) ((”1 + i) In |§—T> By Lemma 6, we have Pr[E]] > 1 — §,/|S,|. Let " be the event A

€2 €,

ies, €1 - Via a union bound,
we have Pr[€7] > 1 — 4,.. Let £ denote the event A\ "5 £”. Again via a union bound, we can get Pr[€] > 1 — 3§, =

1-6-30%1/2r%) > 1.

Condition on event & which happens with probability at least 1 — 6.



First, we claim that the best arm always survives i.e., S (1 ¢ € Sy. Suppose arm S}y survives after round 7 = k. In round
r = k + 1, we have 9T <O, +6/2< | Her/2 < 92‘[1] + €, which means arm Sy} is not eliminated after round
r = k + 1. Note that S[l] € S. Therefore, this claim is proved.

Let ¢; be the smallest index such that A; > ¢;,. Define ¢g = 1. Hence A; € (e, €, —1]. Next, we claim that arm Syt #1
is eliminated before round r = ¢; + 1 finishes. Suppose arm S;; survives after round 7 = ¢; finishes. Consider round

r = t; + 1. According to the first claim, we know that Sj;; € Sy, 1. Also, we can find that gfiﬂ <0 +e,11/2 <

nti+1
95[1] — €, + 615'5-‘1-1/2 = (95[1] - 6ti+1/2) — €41 < 95[1]

finishes arm S}, 4 # 1 must be eliminated. Therefore, this claim is also proved.

— €4,41 < 05! — €, 1, which means after round r = ¢; + 1

Above all, we have proved that Sy, 1 = {S [1]} and hence the best arm in S is output after round r» = ¢5 + 1 finishes. Thus,
the first part of this lemma is proved.

By event &£, the sample complexity of algorithm MEANEST(i, €,./2,6,./|S,|) is O ((:—2‘2 + ) In 12 ‘) Therefore, the
number of samples used for arm S is bounded by

ti+1 |S ‘ ti+1 o2 1
Ejo(( )m ): 0((;+>mm*+mr+mwn>
€r Oy € €r

T

:o((ﬁ n 1)@m*+mm+n+m50

€41 G+l

02 1 —1 -1
O(<N+A>(1n§ +InlnA; +1H|S|)>v

where the last equality is due to 4,41 = O(4A;) and t; + 1 = O(In A;l). Finally, the total sample complexity equals to the
summation of those for every arm in .S.

E.3 Proof of Corollary 9

The algorithm can be derived by running the while loop in algorithm NAIVEBESTARM(.S, §) for at most O(In ¢ ~!) rounds
and then randomly output an arm in S..

F MISSING PROOFS IN SECTION 4
F.1 Proof of Lemma 13

According to Lemma 5(a), we have that for any arm i € S, 52 > €/2. Also note that I(By)=2"N € (¢/4,¢/ 2]. Therefore,
every arm ¢ belongs to one of the buckets {B;|j = 1,2,...,N}.

F.2 Proof of Lemma 14

When \§j| is even, half ofﬁ is deleted. Hence, we have |T| < %|§j| When |§j| is odd, suppose \§j| = 2k + 1 where

k> 1, 5 = 5(1— 57) = 5 of Bj is deleted. Hence, we have |T}| < 2|B;].

F.3 Proof of Lemma 15

Just note that the number of non-empty buckets (i.e. Ej’s) is no greater than N = O(Ine~1).

F.4 Proof of Lemma 16

Let Zf; be the random variable 1{a € B; A a € LA?]} We only consider those with |i — j| > 3



When ¢t < N — 2, we have cr > l(By_2) = 2-N+2 > ¢, for any a € B;. What’s more, for any two arms a € B; and
be ﬁj, it holds that M > 4. By Lemma 5(b), we have

min{o2,52}

a 5 —20r 0 20)i—j|
where the last inequality is due to r,,, = [|log, ijialﬂ > |i—j|—1.Wheni > N—1,wehave 02 < u(Bn_1) < 2¢,a € B;.

What’s more, note that j < i — 3 < N — 3. Hence 52 > 402 and 52 > Z(BN,g) > 2e. By Lemma S(C) and using the same
argument, we can also get Pr[Z¢; = 1] < % . 9720li=3l " Apove all, we obtain

a a g —20|i—j
E[Z5) < PrZ =1] < 5 - 27201, (10)
Note that | B; N J§]| = > ueB, Zi5- By Markov’s Inequality, there is
T |Bim§j| B;| -2~ 10]i—j4] , :| Z |Bi|.2710\i*j\,N71
a€B;
E[Yaes 25l Yaen ElZ§] < 0 5-10fij

= |Bz| .9—10fi—j] . N—1 |Bz| 9-10li—j] . N—1 = N
where the last inequality is due to (10).
Therefore, via a union bound, we obtain

o 5/3
L 9—10li—jl _ 27101l <N D <63,
<X Y gemUery oy %

Jali—j=3 i,i—j123

where the last inequality is due to the number of buckets ]§j is no greater than V.

F.5 Proof of Lemma 17

2
Za,eTj Oq

P
a€B; %a

Our goal is to give a constant upper bound on

Define o(B ) tobe the set |, |, J‘>3(B N
that n(B;) N o(B;) = 0 and n(B;) U o( B;
Note that

B i) nd n(B ) to be the set |, Ji= _jj<2(BiN B; ). It is straightforward to verify
) =

;. which means n(Bj) o(B]) is a partition of set B

R JR B
oBl= S BNBI<IBl Y 2o < 12 (an

ili—j]>3 iJi—j|>3

and |Tj| < §|§ | by Lemma 14. We have that at least (1 — t17) |B;| arms in n(B;) are discarded. Also since o2 >

max - 275 for any arm a € n(B;), we have

1 ~ _ (1
Za —Z 02> <—1024) n(B;) - max 02.25225<3—1024> Z o? (12)

aGB a€T} ’ a€n(B )

aen(B;) ¢

Next, we would like to derive a lower bound on » | o2. Note that

a€n(§j)

Yooz= Y > o2< Y [BinBjl-uB)

aeo(ﬁj) i7|i—j|23a€Biﬁ§j i,]i—5]=3
< § : |Bj‘.2—5\z—3\_u( |B| 2 : 29— 5li—j| . z+17
i,]i—j|>3 i,li—j]>3



and
~ 1023, ~

> 02> In(B)l - UBjy2) = ol Byl - 2777,

where the first inequality is due to (11). Therefore, we can get

2 S 1023\ 3 | 9—j—2 %7102

62 B 9-blimil g—it1
2aco(B;) %a _ 1Bl 2 i ji—j|>3 2 2 C g, 102 S il ¢ i,
Laen(B;) %4 T024

i,]i—j| >3
1 . 2 64 =N 2
which leads to § aen(B;) oy = 65 2<acB, o,

Plugging this relation between }, ., 7 o2 and > ach, o2 into (12), we have

1 64 _
Y-y a2t (g g LT

aeB acC; acB; aeéj

Therefore,

Daer, Oa g7 12

Z acB, 03 128°
F.6 Proof of Corollary 18

0_2
According to Lemma 14 and Lemma 17, we know that % < 13% and IT; || 2. Hence,
aEB

ZaETJ (0—2 + E) ZCLETj O—Z + |T1J|E ZaETJ 02 |T ‘ 127
5 = =— SMaX{ = 5 = (< T5g
Daep, (00t €) ¥, p 0%+ [Bjle Y e, 2 |B,| 128

which concludes the proof of this corollary.

F.7 Proof of Lemma 19

The key part is to prove ZQGB = O(|Bj]e). Note that S e, 02 = Luen(s) 02 + Laco(s,) o2 We bound
ZaEn(B )J and ZaEO(B o2 respectlvely.

It is easy to see
3 o2 <IBy| u(Bya) = |By| - 2774 < Byl - 27N < 16/Bje. (13)
aen(B;)
Also, we have

Yooo= > > e2< Y BinBj|-uB)

aco(B;) 1,i<j—3 aeB;NB; 1,i<j—3
< Z |B;| - 27519l .y(B;) = | B - Z 9—5(j—i) , g—itl
1,1 —3 1,1<j—3
=B -2791. N 270D (B 27N N 90D |1BQjS|E' (14)
i,i<j—3 i,i<j—3
Hence, by (13) and (14), we have ZaeB 17\B le.

Therefore,
Yoer, (0 +¢) _ Faes, %atITile _ 17|Bjle+[Tle _ 127

Yuep, 02+ T % scB, o2+ |Bjle  17|Bjle + |Bje S 1287

where the second last inequality is due to |T}| < |B | and the last inequality is due to |T};| < %|j§ | by Lemma 14.



F.8 Proof of Lemma 20

Note that Eaij 0’3 = ZaEn(Bj) 03 + ZaEO(B,-) o

First, we give an upper bound on » o2, Let i* be the smallest index such that B;~ pollutes Bj. Hence i* < N — 1.

aen( B i)
Since B is polluted by B« where |i — j| > 3, we have |B;« N B | > |B \ —517=jl, Also by event £, we have that
|B;- N Bj| < |By+| - 27101 =il . N1 Therefore, it holds that | B;| < |B;-| - 275" =il . N~1. Hence,

Zaen(B < IB | ( i 2) < ‘Bz| .2—5|i -7l 'N_l '2_j+3

< < <27%.N"L (15)
> aes Oa > wecB,. Oa |Bi| - 1(Bi+)

Then we give an upper bound on Zaeo(B-) o2. For any |i — j| > 3, we have

2ueminB, O |Bi N By| - u(By)
ZaGBi g h |B’L| ( z)

< 9—10li—jl+1  p—1 < 9-29  Ny—1

Hence, we have

2 2
Z(;LEO(BJ-) Oa Z Ji—j1>3 Zan B ) {ZaEBiﬁBj Oa

max
§ 0-2
a€B; Y a

<
EaGS Ug \ Z Iz ]\>3 ZaEB h i7|i7j|23

} <272 . N (16)
Combining (15) and (16), we prove this lemma.

F.9 Proof of Lemma 21

Recall that ), 5 02 = > aen(B;) o2+ > aco(B,)C
For Zaen(é) o2, we have

S 02 < Byl -u(By ) < [By] -2 NI N1 9708 < By g NI N9 N g < 910 N g
aen(B;)

Ea o a C
For 3° (3, 0 from the proof of Lemma 20, it holds that Ee(iB) 2729 . N~! Hence,
J a€s

2 2 2 2 2
2acB; % _ 2 aco(By) %a + 2aen(B;) %a < max 2 aco(B;) %a Doaen(B,) %a PRTI
> aes(0d +e) > aes 04+ 1S]e b DaesTa ISle '

F.10 Correctness and Sample Complexity of the Procedure GROUPELIM

In this subsection, we prove the second and the third items of Theorem 11. We first introduce a helper lemma as follows.

Lemma F.3 Given that |9 — 0] < Aforeveryarmi € S. Let 0, > 0y, > -+ > 0, be the sorted sequence of 0;’s.

Also, let qu > 0q2 > .. >0, be the sorted sequence of 0;’s. Then for every index t € [|S|], we have |§qt —0,,| <A

qd|s|

Proof Suppose this lemma does not hold. Let t* be the smallest index such |§qt* —Op,.| > AIf é\qt* < 0p,. — A, there
are at least t* arms with means in interval [0, §,,,. ), which is a contradiction since there are only t* — 1 arms with means in

that interval. If §,,.. > 6,,.. + A, there are at least » — t* + 1 arms with means in interval (th* , 1], which is a contradiction
since there are only n — ¢t* arms with means in that interval. Hence, the assumption is wrong, and this lemma is proved.

The following lemma proves the second item of Theorem 11.



Lemma F.4 With probability at least 1 — 6/3, we have |0(ryr),, — 05| < €

Proof According to Lemma 6, with probability at least 1 — §/(9N), it holds that |f; — 6;| < /2. By Lemma 1 from
Even-Dar et al. [2002], there is Pr[G(Tj)m > G(EJ)M — €] 21— 0/(3N). Next, via a union bound and Lemma F.3, with

probability at least 1 — 6/3, we have
10712, = G(Uj,u%j»z éa')ml Se
Note that S = T'U R. Hence, this lemma is proved.

Lemma F.6 proves the third item of Theorem 11. Before proceeding to the lemma, we first introduce the following statement.

Lemma F.5 Let Z; denote the sample complexity for MEANEST (i, €, 8). With probability at least 1 — §/3, >
bounded by O (ZiGS (%2‘2 + %) (Ind~! +1Inln 6_1)).

ies Ziis

Proof Define T; = (:—; + %) (Iné6~! +Inlne=!). According to Lemma 6 and Lemma 7, we can find a constant ¢ > 0

such that Pr[Z; < ¢T;] > 1 —§ and Pr[Z; > jcT;] < §-272% for j > 3. Define Z; = (Z; — 3cTy) - 1{Z; > 3cT;}. Hence,
we have Z; > 0 and

E[Z]) <Y Pr(Zi € ((j — )Ty, jeTi]) - jeT < 62729 jeTy = | Y 2729 j | 6eTy < 8¢y

Jj=z1 Jj=1 Jj=z1

Note that Z; > Z; — 3¢T}. Therefore, > Zi > >~; Zi — 3¢, T;. Further by applying Markov’s Inequality, we can get

B[S 2] wEZ)_sex.m

P = <
g 3¢5 T, BeSL T S 3ey T

< Pr <

=4/3,

which means with probability at least 1 — §/3, >

Z; is bounded by

i€S

o (ZT) =0 (Z (i + 1) (Ino—" +lnlne_1)> .

€S

Lemma F.6 With probability at least 1 — §/3, the sample complexity of GROUPELIM(S, ¢, §) is
@) (Zz‘es (:—5 + %) (Iné~* +Inln 671)>.

Proof According to Lemma 5(a), the sample complexity of VAREST(i, §/(2N?), ¢) is bounded by
O(1In(6/(2N?%))) = O(1(In6~' + Inlne1)). Hence, the number of samples used at Line 3 is

0 <|S| (Ins~ '+ lnlnel)> . (17)

e
According to Lemma F.5, with probability at least 1 — §/27 > 1 — §/3, the number of samples used at Line 7 is

of 1 -1 -1
o 2(62+6)(ln5 +Inlne ) ). (18)

i€S

Combining (17) and (18), we prove this lemma.



F.11 Analysis of the Procedure ITERELIM

In this subsection, we prove Theorem 12 as follows.

Proof of Theorem 12  Let 7, denote the event that the claim in Theorem 11 holds for GROUPELIM(T,., €, 4,.). Hence,
Pr[F,] > 1 —§,. Let F = A= F,.. Via a union bound, we can see Pr[F] > 1— 3725, > 1 4.

Conditioning on event F which happens with probability at least 1 — §, we will show all three items in the theorem statement
hold.

For the first item, note that |7} 41| < 2|7,| by Lemma 14. Hence, there are at most O(In |T0|) = O(In |S]) rounds. Suppose
when algorithm ITERELIM(S €,0) terminates, r = ro. Also note that |R"T*| = O(In e !) by Theorem 11(a). Therefore,
|Ry,| = O(In|S|Ine," ) = ((ln |S])? Ine~1). Together with |T}.,| < 10, the first item is proved.

For the second item, for each round, we have |9 Ty URMH) ) — G(Tr)[1]| < e by F.Since Ry = R, U R, we get
\Q(THluRHl)m Q(T,‘URT) | < €. Therefore, we obtain

ro—1 ro—1 ro—1
|9T[1] 795[1]| = |0(TTOURTO)[11 79(T0UR0)[1]| < Z |0(TT+1URT+1)[1] 70(TTUR7‘)[1]| = Z & = €( Z BT <e,
r=0 r=0
which concludes the proof of the second item.
Now we come to the third item. By F, we have 35, (07 + €41) < 322 Xicq, (07 +¢,) forr = 0,1,...,m0 — 1.

Therefore, the sample complexity is
To— 1
+ €
Z 0 <16T)(1n(5r1 + 1n1n€,,1)>
To— 1 r
+ 255/2
_ Z O( i€7, ¢ (07 +¢) ( 55ﬁ/2 56) (ln6;1+lnlner_1)>

) % Y s £ lnlne?
= ZE—Q—FE (In +Ilnlne ) |,

i€S

which concludes the proof of the third item.

G MISSING PROOFS IN SECTION 5

G.1 Proof of Lemma 24

Assume the best arm is not eliminated before round r > 1 begins i.e., S|y € ;.. According to Lemma 6, with probability at
least 1 — §,./18, there is

07 — 0 < er/2 (19)
for every arm 7. Via a union bound, with probability at least 1 — 4,./9, it holds that
Oy, <O, + /2 < Osy, + 6/2 < O3, + e,

where both the first and last inequalities are due to (19), which means the best arm Sj;; will not be eliminated during round
T.

Since S[y) € S1, we obtain with probability at least [15(1=6,/9) 2 1-3"26,/9=1-6/93121/(2r?) > 1-5/9,
M holds concluding the proof of this lemma.

G.2 Proof of Lemma 25

Throughout this proof we condition on the event M.



By M, we know that the best arm is never eliminated. Hence, there is |S,.| > 1 when r < ﬂog2 A;lw + 1.

By Lemma 6, with probability at least 1 — d,./18, there is

67— 60 | < e )2 (20)
and with probability at least 1 — §,./18, there is

10r — Oz | < /2. @1
By Theorem 10, with probability at least 1 — §,- /18, there is

00, — 05,y | < €/2, (22)

7‘)[1]‘

and with probability at least 1 — 0,./18, there is
00z — O(s,\{ar})y | < €r/2- (23)

Let M/, denote the event that (20), (21), (22) and (23) hold for all round r. By a union bound, we have Pr[M}] >
1—307528,/9=1-25/93721/(2r%) > 1 — 25/9.

Conditioning on event M/, which happens with probability at least 1 — 26/9, we will show that M5 holds.
First we claim that the algorithm must terminate at round » where r» < rg = ﬂog2 A 1} + 1. Note that when r = g, we

have €, = €., < Ay/8. Also by My, we have (S,)[1; = Spij. Then according to (22), we can get 6, > Osp,) — €/2 > 052>
which means a, = Sy;. Further by (23), we can also get 0, < 95[2] + €,-/2. Hence, when r = 7, it holds that
|§ar - é\a:i

2 04, — Our = 0o, — O — € = 05, — Oax — 3/2¢, > O, — Ospy — 26, = Do — 26, > 26,

[2]

where the second inequality is due to (20) and (21). This means that the algorithm must terminate when r = ry. Hence, this
claim is proved.

Next we claim that when the algorithm terminates, it holds that a,, = S [1]- Suppose not, by (23), we have |9a; — 95[1] | <e./2.
Hence, R R R R
|9ar - ga:‘ < |92T - 92T| =+ ‘0; - 08[1]| + |95'[1] - ea:i =+ ‘ga;t - ga:‘ < 2¢p,
which is a contradiction since the only termination criteria is |§ar — é\a; > 2¢€,.
G.3 Proof of Lemma 27
Note that A; > 27% > 2" = 4d¢, wheni € S,_1 s and 7 > s.
By Lemma 6, with probability at least 1 — §,./18, we have
07 — 0:] < €-/2 24

and with probability at least 1 — §,./18, we have

07— 0a,] < /2. (25)
By Theorem 10, with probability at least 1 — §,./18, we have

|0, — 95[11| < €-/2. (26)

Via a union bound, we can get with probability at least 1 — ¢,. /4, it holds that
0/ <O +6/2=00 — A+ 6/2< 0o +6/2— D +6./2<0 +3/2¢, — N <0, —e,

where the first inequality is due to (24), the third inequality is due to (26) and the second last inequality is due to (25).



G.4 Proof of Lemma 28

By Lemma 27, the probability that arm ¢ € A is eliminated at round r > s + 1 is at most
r—1
H(Si/4 61/41" s—1 (5/8)7“5 iy

Hence, with probability at least 1 — (6/8)" 5=, S I"T7" is bounded by

r=1"1

zr:Tt ZO<< )(ln51+1n1ne +1nr)>

=0 ‘Liz+i (Ins'+Inlne ' +1Inr) ) =0 (475! J—g+i (Ino~" +Inln A7)
= o n nilne nr) | = Az T4, n nin A, )

r

where the last inequality is due to A; = O(e).

G.5 Proof of Lemma 29

Let Z; = >./°5 I'T!. Here, we only consider the arms indexed with i # Sp1). Define T; = ((Z% + A%)(ln 5+

Inln A;l)). According to Lemma 28, we can find a constant ¢ > 0 such that Pr[Z; < 49¢T;] > 1 — (6/8)7. Define
Z; = (Z; — Ac¢T;) - 1{Z; > AcT;}. Hence, we have Z; > 0 and

E[Z] <Y Pr[Zi € (W'l 4T - 47T < (8/8) - 47cTi = | Y (6/2)7 | Ti < 6cTh.

jz1 Jjz1 Jjz1

Note that Z; > Z; — 4cT; which implies > Zi > >; Zi —4cy_, T;. Applying Markov’s Inequality, we obtain

]E[Ziz} _ LEZ] _ e T = §/18.

P < = <
' 8¢S T, I8¢5, T, ~ 18¢ S, T

< Pr

> 7z >22) T 2221&2:&

Therefore, with probability at least 1 — 6/18, >, , Sy, Zi is bounded by

o? 1 _ _
ol m|=0 Z(A’Z+Ai>(ln51+lnlnAi1)

#5n) #Sup !

G.6 Proof of Lemma 30

By M, the algorithm terminates with » = O(In A; ') = O(In A;'). Hence, j:f I, Ts,,, is bounded by

[1]
- o2 1 1 1
E O (<; + ) (Iné™" +Inlne” —i—lnr))
€ €¢

t=1
-0 of l (Iné~ ' +Inlne ! +Inr) ) =0 —22 —l——l (Iné~ '+ mnlnATY
62 . n nlne n 2 ) 1 )

where the last inequality is due to Ay = O(e;.).



G.7 Proof of Lemma 31

We analyze the sample complexity in round r as follows. According to Lemma F.5, with probability at least 1 — 4,./54,
2
Line 5 of Algorithm 7 uses O(3_,cg (% + =)(Ind; ' + Inlne, *)) samples. By Theorem 10 and a union bound, with

probability at least 1 — 4,./9, Line 6 and Line 7 use O(} ;. (0’2 + - )(ln 571 +1Inlne 1)) samples. Via a union bound,
we obtain that with probability at least 1 — §,./54 — §,,/9 > 1 — 6 / 6 the sample complexity of round r is

012 1 _ _ T
19) <Z (6$+61~> (ln5rl+ln1nerl)> = ZO(IiTi )-

i€ESy i€S

Applying a union bound over all rounds, we have that with probability at least 1 — 325 8,/6 = 1 —46/6 30 1/(2r2) >
1 — /6, for each , the sample complexity of round ris ) ;. O(I7TY).

H THE LOWER BOUND

Before presenting the lower bound, we would like to introduce some notations. Let I = {X1, ..., X, } denote the input
instance where X; represents the random reward when arm 4 is sampled. With a little abuse of notations, we let I;) to be the
index of the i-th best arm in I. For any best arm identification algorithm A, and any input instance I, let 7*(I) and T*(I)
be the random variables denoting the numbers of samples made by A on input I and arm ¢ respectively. When it is clear
from the context, we usually omit the superscript. Let us denote by Z,2 ;2 A, .. A, the set of instances where the i-th
best arm has variance o2 and for i > 2, the gap between the i-th best arm and the best arm is A;. Our goal of this section is
to prove the following theorem

Theorem H.7 For any 0? < 0.1,i € [n] and 0 < A; < 0.1,i = 2,...,n, there exists an instance I € L2, 02 Ao,
such that for any d-correct best arm identification algorithm As (6 < 0.1), there is
I 1
E[T(1)) 1

M o? = ’
E : v ( 72 1b) Ins—1 80
where T(I) =Ths (I) is the number of samples used bv Ag.

To prove the theorem, given {0 }ic[,) and {A;}i—o . 5, we create an instance I € Z,2 ;2 A, A, - Note that E[T'(I)] =
St E[T(I)] where T;(I) = T3 (I is the number of samples used by As on arm i. We utilize the Change of Distribution
lemma (Lemma I.10) to bound every E[T;(I)] separately. In order to bound E[T} (I)], we create new instances similar to [
where the best arm in I becomes the second best. To deal with the upper bound of E[T;(I)] for i > 2, we create different
new instances where the ¢-th best arm in I becomes the best arm.

More specifically, for any fixed 07 < 0.1,i € [n] and 0 < A; < 0.1,i = 2,...,n, we consider the following instance
I={Xy,...,X,} where

_J 05401, wp.05
X1 = { 0.5— 01, wp. 0.5 29
0.5 —A; + o, w.p. 0.5 .
P = > 2.
Xi { 05— A; — 0y, wp. 0.5 ©OFF=2

It can be easily verified that I € Z;2 ;2 A, a,-For this instance, we have the following two lemmas (Lemma H.8 and
Lemma H.9), among which Lemma H.8 gives a lower bound on E[T}[I]] and Lemma H.9 gives a lower bound on E[T;[I]]
for i > 2. We defer the proof of these two lemmas to Section H.1 and Section H.2 respectively.

Lemma H.8
BL(D 1

(%3 + ﬁ) Ino-1 80




Lemma H.9 For any i > 2, it holds that
L) 1

(Zfz )ln5 17307

With these two lemmas, we are ready to prove Theorem H.7.

Proof of Theorem H.7 By Lemma H.8, Lemma H.9, and noting that A; = A, we have

E[T(D)] > min |
i (Z’i All)lnél i€[n] (ngjLA%)lm;fl 80

H.1 Proof of Lemma H.8
We prove the lemma under two different scenarios.

Case 1: 07 > 5A,.  Since o1 < 1, we have 01 > 5A,, Consider the following instance I = {X7,..., X/} where

X, _ O.5+O’1, Ww.p. 0.57A2/0’1
L 0.5—0’17 Wp05+A2/0'1

and X = X; fori > 2. Since I3 = 1 # 2 = (I])[1], applying Lemma I.10, we have

1 1
BT[] > ———In ——
[l > KL(X;, X]) " 2.46
P 1
= In —
In(1—4A2%/03)~1 " 2.4
S 1—4A3/0? 1

2A3 /03 tes
1 o}
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where the second last inequality is due to In(1 4+ z) < « for z > —1 and the last inequality is due to Ay/o; < 0.2 and
6 < 0.1. Hence, there is
2
. % In 571 1
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where the first inequality is due to cr% > 5As.
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Case 2: 07 < 5A,. Consider the following instance I} = { X7, ..., X!/} where

0.5+ 01, w.p.0.5—2A5
X! =¢ 05—01, wp.0.5-2A,
0, w.p. 4/A\q

)

and X" = X; fori > 2. Since I[;) = 1 # 2 = (I{')[1), applying Lemma I.10, we have

1 L
KL(X1, X))~ 246

I S N
©In(1 —4A5)"1 246

S 1—4A, In 1
- 4A2 ed
3

>7 R 1
10 A2 Inéd~

E[T1[1]] >



where the second last inequality is due to In(1 4+ ) <  for x > —1 and the last inequality is due to A < 0.1 and ¢ < 0.1.

Hence, there is [
B[ EMI) _doa et 1
(%4»%2)111671 6~Ai21n(5—1 6-Ai2h16—1 80

where the first inequality is due to 07 < 5A,.

Combining (27) and (28), we prove this lemma.

H.2 Proof of Lemma H.9

The idea is the same as that used for bounding E[T7 [I]]. However, we need to construct slightly different instances.

Let 7 be any fixed integer satisfying 2 < ¢ < n. Similarly, we prove the lemma under two different scenarios.

Case 1: 02 > 5A,;. Since 0; < 1, we have o; > 5A;. Consider the following instance I/ = {X7, ..., X/} where

K3

05—A1 — 05, W.p. 05—A1/01

and X} = X for j # i. Since I[;) = 1 # i = (I}) (1), applying Lemma .10, we get

1 1
EGI > ———~In——
L2 o M am
2 1
= In —
In(1 —4A2/c?)~1 7~ 2.46
_1-4A%/e? 1
> —— 5 n—
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>z A? Inéd™ -,

(28)

where the second last inequality is due to In(1 + ) < « for ¢ > —1 and the last inequality is due to A;/o; < 0.2 and

6 < 0.1. Hence, there is
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where the first inequality is due to 02 > HA,;.

Case 2: 07 < 5A;. Consider the following instance I/ = {X},..., X!/} where

1, w.p. 24;
X!'"=4¢ 05—A;+0; wp.05-—A;
057A1 — 05, W.p. 057A1

and X' = X for j # i. Since I;) = 1 # i = (I;)1), applying Lemma L.10, we have

1 1
ET,(I)] > ———In——
ITi(1)] KL(X;, X/) 240

R N
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where the second last inequality is due to In(1 + x) < « for x > —1 and the last inequality is due to A; < 0.1 and ¢ < 0.1.
Hence, there is

) A 1. Lpst
_ E[T;(1)] > E[sz(I ]_1 > 5 All " — = ij (30)
(22 + A%) Ins-1  6-x%; Ind 64 Ind 30

where the first inequality is due to 02 < 5A,.

Combining (29) and (30), we prove this lemma.

I CHANGE OF DISTRIBUTION LEMMA

Lemma 1.10 (A special case of Lemma 1 in Kaufmann et al. [2016]) Given two multi-armed bandit instances 1 =
{X1,..., Xp}yand I' = {X1,..., X} such that I;1) # I[’l],for any 6-correct algorithm A, it holds that

n

> R[THI)KL(X;, X[) > -
s 2.48
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