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Abstract

We study the problem of identifying the best
arm in a stochastic multi-armed bandit game.
Given a set of n arms indexed from 1 to n, each
arm i is associated with an unknown reward
distribution supported on [0, 1] with mean θi and
variance σ2

i . Assume θ1 > θ2 > · · · > θn. We
propose an adaptive algorithm which explores
the gaps and variances of the rewards of the
arms and makes future decisions based on the
gathered information using a novel approach
called grouped median elimination. The pro-
posed algorithm guarantees to output the best
arm with probability (1 − δ) and uses at most
O
(∑n

i=1

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)

samples, where ∆i (i > 2) denotes the reward gap
between arm i and the best arm and we define
∆1 = ∆2. This achieves a significant advantage
over the variance-independent algorithms in some
favorable scenarios and is the first result that
removes the extra lnn factor on the best arm
compared with the state-of-the-art. We further
show that Ω

(∑n
i=1

(
σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

)
samples

are necessary for an algorithm to achieve the same
goal, thereby illustrating that our algorithm is
optimal up to doubly logarithmic terms.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) is a famous frame-
work that captures well the trade-off between exploration
and exploitation. In the MAB game, a player faces a set
of n (n > 2) arms indexed from 1 to n. When arm i is
sampled, the player observes an instant reward which is
i.i.d. generated from an unknown distribution Di supported
on [0, 1] with mean θi and variance σ2

i . In the pure explo-

ration setting of a MAB game, by making a sequence of
samples, the player identifies one (or a set of) desired arm(s).
This framework is motivated by many application domains
such as medical trials Robbins [1952], communication net-
works Audibert and Bubeck [2010], simulation optimization
Chen and Lee [2011], recommendation systems Kohli et al.
[2013], and crowdsourcing Zhou et al. [2014].

In this paper, we focus on the best arm identification prob-
lem. The best arm is the one with the maximum expected
reward. Without loss of generality, we assume θ1 > θ2 >
· · · > θn which is however not known beforehand to the
player. We say an algorithm is δ-correct if it returns the
best arm with probability at least (1 − δ). The goal of the
best arm identification problem is to design an algorithm
equipped by the player to δ-correctly identify the best arm,
with as few samples as possible. Previously, the confidence
intervals were mainly constructed utilizing the mean re-
wards of the arms, e.g., Even-Dar et al. [2002], Audibert
and Bubeck [2010], Gabillon et al. [2012], Karnin et al.
[2013], Jamieson et al. [2014], Chen and Li [2015]. It is
worth noting that the variance of the rewards also embodies
important information. The variance of rewards could be
employed to provide significant advantages over the pure
mean-based algorithms. We design an efficient algorithm to
solve the problem of best arm identification by exploiting
the variance of the rewards, which requires significantly
fewer samples in many favorable cases. We further provide
a lower bound which illustrates that our algorithm is optimal
up to doubly logarithmic terms.

1.1 Related Works

In the seminal work of Even-Dar et al. [2002], the authors
showed that if θ1 − θ2 > ∆, then their Median Elimination
algorithm uses at mostO( n

∆2 ln δ−1) samples 1. In the same

1In fact, the algorithm provides the following stronger (PAC)
guarantee – if there are multiple arms with mean rewards at least
(θ1 − ∆), then the algorithm returns an arbitrary one among these
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paper, they also showed that for every δ-correct algorithm,
the worst-case sample complexity among all instances such
that θ1−θ2 > ∆ is at least Ω( n

∆2 ln δ−1). The Θ( n
∆2 ln δ−1)

bound can be improved when the input data is easy, which
is measured via the reward gaps between every sub-optimal
arm and the best arm. Formally, let ∆i = θ1 − θi for i > 2
and ∆1 = ∆2 denote the reward gaps. Intuitively, less
samples are required if many reward gaps are significantly
larger than ∆ = ∆1. With this intuition, Even-Dar et al.
[2002] showed the first gap-dependent algorithm called
Successive Elimination, which achieves δ-correctness using
O(
∑n
i=2 ∆−2

i (ln δ−1 + lnn+ ln ln ∆−1
i )) samples. Since

then, the gap-dependent algorithms for the best arm identifi-
cation problem have been extensively studied, e.g., Gabillon
et al. [2012], Karnin et al. [2013], Jamieson et al. [2014],
Chen and Li [2015], Chen et al. [2017]. Both the Expo-
nential Gap Elimination algorithm in Karnin et al. [2013]
and the lil’UCB algorithm in Jamieson et al. [2014] achieve
δ-correctness with sample complexity 2

O

(
n∑
i=2

∆−2
i (ln δ−1 + ln ln ∆−1

i )

)
. (1)

Chen et al. [2017] further showed a δ-correct algorithm with
sample complexity

O

(
n∑
i=2

1

∆2
i

(ln δ−1 + Ent(∆2, . . . ,∆n))

+
1

∆2
2

ln ln
1

∆2
· polylog(n, δ−1)

)
, (2)

where Ent(∆2, . . . ,∆n) is an entropy-like function. This
bound improves the result of Karnin et al. [2013] and
Jamieson et al. [2014] when the second additive term is
dominated by the first term (which is the usual case).

On the lower bound side, Mannor and Tsitsiklis [2004],
Kaufmann et al. [2016] showed that every gap-dependent
δ-correct algorithm uses at least Ω(

∑n
i=2 ∆−2

i ln δ−1) sam-
ples in expectation; and this lower bound holds for all possi-
ble gap parameters. Based on the results in Farrell [1964],
Jamieson et al. [2014] showed that even when there are only
two arms, for every 0.1-correct algorithm, there exists an in-
put instance where Ω(∆−2 ln ln ∆−1) samples are needed.
Therefore the sample complexity in (1) matches the lower
bound up to ln ln ∆−1

i terms for i > 3. The first mentioned
lower bound was further improved by Chen et al. [2017] to
Ω(
∑n
i=2 ∆−2

i (ln δ−1 + Ent(∆2, . . . ,∆n)).

To further improve the sample complexity, another line of
research tries to leverage information beyond reward gaps

arms.
2Here for simplicity we assume ∆i is sufficiently small, and

the same applies to the rest of this paper. When ∆i approaches 1,
the doubly logarithmic term should be ln(e + ln ∆−1

i ) to avoid
negative evaluations.

i.e., variance Gabillon et al. [2012] and Kullback–Leibler
(KL) divergence Maillard et al. [2011], Garivier and Cappé
[2011], Kaufmann and Kalyanakrishnan [2013], Tanczos
et al. [2017] to construct a more refined confidence interval.
Let KL(X,Y ) denote the KL-divergence between two ran-
dom variables X and Y . The state-of-the-art algorithm lil-
KLUCB proposed in Tanczos et al. [2017] utilizes Chernoff
information, derived from the KL divergence and achieves a
high-probability sample complexity upper bound scaling as

inf
θ̃2,...,θ̃n

1

D∗(θ1, θ̃)

(
ln(n/δ) + ln ln

1

D∗(θ1, θ̃)

)

+
∑
i>2

1

D∗(θi, θ̃i)

(
ln δ−1 + ln ln

1

D∗(θi, θ̃i)

)
,

where θ̃i ∈ (θi, θ1), θ̃ = maxi>2 θ̃i, and D∗(x, y) =
maxz∈[x,y] min{KL(Ber(z),Ber(x)),KL(Ber(z),Ber(y))}
denotes the Chernoff information. However, there is still
a lnn factor appearing in the term corresponding to the
number of samples on the best arm.

1.2 Our Results

Theorem 1 (Restatement of Theorem 23) We propose an
algorithm called VD-BESTARMID(n, δ) which, with prob-
ability at least (1 − δ), outputs the best arm and uses at
most

O

(
n∑
i=1

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i )

)
(3)

samples.

Since the expected sample complexity of VD-BESTARMID
is not guaranteed to be bounded, using the trick devel-
oped in Chen et al. [2017], we are also able to transform
VD-BESTARMID to an algorithm whose expected sample
complexity is bounded.

Theorem 2 We can construct an algorithm
VD-BESTARMID*(n, δ) (δ 6 .1) to re-
turn the best arm with probability at least
(1 − δ), while the expected sample complexity is

O
(∑n

i=1

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)

.

For completeness of the paper, we present the proof of
Theorem 2 in Appendix B.

Note that the square term scales with the variance instead
of a constant, which could lead to significant improve-
ment in some cases. We present a specific example that
VD-BESTARMID(n, δ) achieves better performance than
other mean-based algorithms as follows.



Example 1 Suppose we are given n Bernoulli arms (i.e.,
the reward of each arm is either 0 or 1), the mean re-
ward of arm i is θi = 1 − i

n for i = 1, 2, . . . , n. Our
variance-dependent algorithm achieves δ-correctness with
O(n lnn(ln δ−1 + ln lnn)) samples. In contrast, the ex-
pressions in the big-O notations in both (1) and (2) are
Ω(n2 ln δ−1). We show the detailed calculation in Ap-
pendix C.

Let [n] = {1, 2, . . . , n}. In the following theorem, we
present a lower bound for algorithms aiming to identify
the best arm. Therefore, our algorithmic bound (3) matches
the lower bound up to doubly logarithmic terms.

Theorem 3 (Restatement of Theorem H.7) For any
σ2
i < 0.1, i ∈ [n] and 0 < ∆i < 0.1, i = 2, . . . , n, there

exists an input instance with matching parameters (gaps
and variances) such that any δ-correct algorithm (δ < 0.1)
needs at least

Ω

(
n∑
i=1

(
σ2
i

∆2
i

+
1

∆i

)
ln δ−1

)
(4)

samples.

1.3 Organization and Proof Outline

In Section 2, we first describe and analyze a few procedures
to estimate the variance of the rewards of a given arm, and
the arm’s mean reward based on the variance estimation. In
Section 3, we present a straightforward way to use these pro-
cedures to identify the best arm, with the sub-optimal sample
complexityO(

∑n
i=1(

σ2
i

∆2
i

+ 1
∆i

)(ln δ−1 +ln ln ∆−1
i +lnn))

(note the extra lnn term comparing with our desired bound
(3)). Then we develop our main variance-dependent algo-
rithm for best-arm identification in Section 4 and Section 5.

In Section 4, we present a key technical component, proce-
dure BESTARMEST, to estimate the best-arm’s mean reward
up to ε precision with probability (1− δ) and uses at most
O(
∑n
i=1(

σ2
i

ε2 + 1
ε )(ln δ−1 + ln ln ε−1)) samples. Note that

this bound is similar to that of the median elimination al-
gorithm proposed in Even-Dar et al. [2002] in the sense
that both are independent on the reward gap parameters.
However, our BESTARMEST procedure does explore the
variance information and forms its strategy accordingly. To
achieve this goal, BESTARMEST uses the idea grouped me-
dian elimination and iteratively performs the following pro-
cedure: first estimate each arm’s reward variance and divide
the arms into groups, so that arms in the same group have
similar reward variance estimations; then perform variance-
dependent mean estimation and median elimination within
each group. If the variance estimations were always accu-
rate and the arms were all assigned to the desired groups, it

would be relatively easy to show that the algorithm makes
progress in each iteration (where “progress” is defined to
be an multiplicative reduction of the total variances of the
remaining arms). However, in our analysis, we need sub-
stantial technical effort to deal with the mis-placed arms,
which is achieved by making very refined upper bounds for
the number of mis-placed arms according to the severity of
the mistake.

In Section 5, we use BESTARMEST as a helper procedure
to build our main algorithm. The high level idea here is
similar to that of the exponential gap algorithm introduced in
Karnin et al. [2013]. However, due to the non-uniformity of
variances among the arms, we have to design a new stopping
condition for our iterative algorithm. In Appendix H, we
prove the variance-dependent lower bound result. Finally
we conclude the paper by mentioning a few future directions
in Section 6.

2 VARIANCE-DEPENDENT MEAN ESTI-
MATION

We first build a few subroutines to estimate the variance of
the rewards of a given arm (Section 2.1), as well as the arm’s
mean reward based on the variance estimation (Section 2.2).
These procedures will be useful in building blocks to design
our main algorithm. All missing proofs in this section are
deferred to Appendix D.

2.1 Variance Estimation

Our goal of this subsection is to design a procedure to
estimate order of the variance of the rewards of a given
arm. More specifically, our VAREST(i, δ, `) (Algorithm 1)
takes arm i, confidence level δ and a positive number
` > 0 (which is used to control the precision of the es-
timation) as input, and returns an estimate of the variance
σ2
i up to precision Θ(2−`). We also need a helper proce-

dure VARTEST(i, τ, δ, c) (Algorithm 2), which takes arm i,
threshold τ , confidence parameters δ and a positive number
c > 1 as input, and checks whether σ2

i is above the threshold
τ .

Algorithm 1: Variance Estimation, VAREST(i, δ, `)
(` > 0)
1 Input: Arm i, confidence level δ and a positive

number `
2 for r ← 1, 2, 3, . . . do
3 τr ← 1/2r

4 if τr 6 ` or VARTEST(i, τr, δ/e, 80) then
5 Output: τ = τr as the estimated variance of

the rewards of arm i



Algorithm 2: Variance Test, VARTEST(i, τ, δ, c)
(c > 1)
1 Input: Arm i, threshold τ , confidence level δ and a

positive number c
2 T ← c

τ ln δ−1

3 Sample arm i for 2T times and let x1, . . . , x2T be
the empirical rewards in sequence

4 σ̂2
i ← 1

T

∑T
r=1

(xr−xr+T )2

2
5 if σ̂2

i > τ then Output: true else false

The following lemma shows the guarantee for the procedure
VARTEST.

Lemma 4 Suppose δ 6 e−1. If σ2
i > 2τ , with proba-

bility at least 1 − δ ·
(
τ
σ2
i

)c
, VARTEST(i, τ, δ, c) outputs

true. If σ2
i 6 τ/2, with probability at least 1 − δ ·

(
σ2
i

τ

)c
,

VARTEST(i, τ, δ, c) outputs false. Moreover, the sample
complexity is 2c

τ ln δ−1.

Now we present the lemma on the guarantee of the proce-
dure VAREST. Note that Lemma 5 not only shows a lower
bound on the success probability of VAREST(i, δ, `), but
also provides an upper bound on the error probability that
depends on the logarithmic distance between the algorithm’s
output and the real variance σ2

i .

Lemma 5 Suppose VAREST(i, δ, `) returns τ . Let rm =

d| log2
σ2
i

τ |e denote the logarithmic mistake ratio. The algo-
rithm has the following three properties.

(a) It always holds that τ > `/2 and the sample complexity
is O( 1

` ln δ−1);
(b) If σ2

i ∈ (`, 1], with probability at least 1 − δ, we
have τ ∈ [σ2

i /4, 2σ
2
i ) and the sample complexity is

O
(

1
σ2
i

ln δ−1
)

. We also have Pr[τ > x] 6 δ · 2−20rm

when x > 2σ2
i and Pr[τ 6 x] 6 δ · 2−20rm when

x < σ2
i /4;

(c) If σ2
i 6 2`, we have Pr[τ > x] = O

(
δ · 2−20rm

)
for

x > max{2`, 2σ2
i }.

2.2 Variance-Dependent Mean Estimation

In this section, we present MEANEST(i, ε, δ) (Algorithm 3)
which estimates the mean reward of a given arm i up to ε
additive error with probability at least 1 − δ with sample
complexity depending on σ2

i .

At a high level, we first estimate the variance of the rewards
of a given arm, then apply Proposition A.2 (Bernstein’s
Inequality) to control the number of samples needed for an
estimate up to the given precision requirement. We show the
following lemma.

Algorithm 3: Mean Estimation, MEANEST(i, ε, δ)

1 Input: Arm i, accuracy ε, and confidence level δ
2 σ̂2

i ← VAREST(i, δ/2, ε)

3 Sample arm i for
(

8σ̂2
i

ε2 + 2
3ε

)
ln 4

δ times and let θ̂i
denote its empirical mean reward

4 Output: θ̂i as the estimated mean reward of arm i

Lemma 6 With probability at least 1−δ, MEANEST(i, ε, δ)

outputs an estimate (namely θ̂i) of the mean reward of arm
i such that |θ̂i − θi| 6 ε and the sample complexity is

O
((

σ2
i

ε2 + 1
ε

)
ln δ−1

)
.

Now we prove a few stronger properties of MEANEST
which will be useful for building our main algorithm.

Lemma 7 LetQ be the samples used by MEANEST(i, ε, δ).
There exists a constant c > 0 such that

(a) Q 6 c
ε2 ln δ−1;

(b) for integers j > 3, we have
Pr
[
Q 6 c

(
jσ2
i

ε2 + 1
ε

)
ln δ−1

]
> 1 − δ · 2−20j .

3 WARM-UP: NAÏVE VARIANCE-
DEPENDENT BEST-ARM IDENTIFICA-
TION

In this section, we present a straightforward way (Algo-
rithm NAIVEBESTARM) of using the variance-dependent
procedure MEANEST to iteratively reject non-optimal arms
and finally identify the best arm. The analysis adopts the
union bound on all arms and therefore introduces an extra
ln |S| (where S is the input candidate arms) factor in the
sample complexity. In particular, we show the following
theorem. The algorithm and missing proofs in this section
are deferred to Appendix E.

Theorem 8 With probability at least 1 − δ, the
NAIVEBESTARM(S, δ) algorithm outputs the
best arm in S and the sample complexity is
O
(∑

i∈S

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i + ln |S|)
)

.

It is also straightforward to get the following PAC-style
statement where an ε-optimal arm denotes an arm whose
mean reward is ε-close to that of the best arm in S.

Corollary 9 There exists an algorithm that with proba-
bility at least 1−δ, finds an ε-optimal arm in S using at most
O
(∑

i∈S

(
σ2
i

(∆ε
i)

2 + 1
∆ε
i

)
(ln δ−1 + ln ln(∆ε

i)
−1 + ln |S|)

)



samples, where ∆ε
i = max{∆i, ε}. We use

NAIVEBESTARMEST(S, ε, δ) to denote this algorithm.

4 FIND AN ε-OPTIMAL ARM

Now we start to develop our main algorithm. We use S[i] to
denote the index of the i-th best arm in S. When there is a
tie, we break it arbitrarily. In this section, we design a pro-
cedure BESTARMEST(S, ε, δ) (described in Algorithm 4)
which returns an ε-optimal arm. In particular, we prove the
following theorem. All missing proofs in this section are
deferred to Appendix F.

Theorem 10 With probability at least 1 − δ,
BESTARMEST(S, ε, δ) outputs an arm (denoted
by a) satisfying |θa − θS[1]

| 6 ε and uses

O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
samples.

Algorithm 4: Best Arm Estimation,
BESTARMEST(S, ε, δ)

1 Input: A set of arms S, accuracy ε, and confidence
level δ

2 S1 ← ITERELIM(S, ε/3, δ/3)
3 if ε−1 6 ln |S| then S2 ← S1 else

S2 ← ITERELIM(S1, ε/3, δ/3)
4 a← NAIVEBESTARMEST(S2, ε/3, δ/3)
5 Output: Arm a

BESTARMEST can be viewed as an extension of the Me-
dian Elimination algorithm. The number of samples used
by neither of them depend on the reward gaps. However,
our BESTARMEST algorithm explores the variance infor-
mation and adapts its strategy accordingly. This procedure
is the most technical part of our main algorithm. It employs
two subroutines ITERELIM and GROUPELIM described in
Algorithms 5 and 6.

Algorithm 5: Iterative Elimination,
ITERELIM(S, ε, δ)

1 Input: Arm set S, accuracy ε, and confidence level δ
2 Let β ←

√
255/16 · e.001, εr ← βr(1− β)ε, and

δr ← e−.1r(1− e−.1)δ for r > 0
3 T0 ← S, R0 ← ∅, r ← 0
4 while |Tr| > 10 do
5 〈Tr+1, R

r+1〉 ← GROUPELIM(Tr, εr, δr)
6 Rr+1 ← Rr ∪Rr+1

7 r ← r + 1

8 Output: T ← Tr ∪Rr

Comparing our algorithm with the Median Elimination al-
gorithm in Even-Dar et al. [2002], we note that the major

Algorithm 6: Grouped Median Elimination,
GROUPELIM(S, ε, δ)

1 Input: Arm set S, accuracy ε, and confidence level δ
2 Let N ← dlog2(2/ε)e be the number of buckets
3 for i ∈ S do σ̂2

i ← VAREST(i, δ/(2N2), ε)

4 Define bucket B̂j ← {i ∈ S|2−j < σ̂2
i 6 2−j+1}

for j = [N ], and let T ← ∅
5 for j ← 1 to N do
6 if |B̂j | > 2 then
7 Let θ̂i ← MEANEST(i, ε/2, δ/(9N)) for all

i ∈ B̂j
8 Let m̂j be the median of the empirical means

of the arms in B̂j
9 Tj ← B̂j\{i ∈ B̂j |θ̂i < m̂j}

10 T ← T ∪ Tj
11 else
12 Put arm in B̂j into the recycle bin R

13 Output: T and R

difference is that we use the grouped median elimination
(GROUPELIM) instead. If, in each iteration, we simply elim-
inate a constant fraction of the arms according to their em-
pirical means, we cannot guarantee that the samples needed
in each iteration reduces at an exponential rate and the total
work converges, which is the case in Median Elimination.
This is because in our algorithm, the sample complexity re-
lates to the total reward variances of the active arms, rather
than the number of active arms. This non-uniformity among
the arms may admit the scenario where the eliminated arms
have small reward variances and the elimination process
does not reduce the total variances by a constant fraction
after each iteration.

To solve this problem, our GROUPELIM procedure parti-
tions the arms into buckets according to their empirical
reward variances, so that the arms in the same bucket have
similar variances of rewards (up to a multiplicative constant
factor). If the partition is perfect (i.e., the empirical esti-
mation matches with the true variances and every arm is
assigned to the correct bucket), performing median elimina-
tion within each group would successfully reduce the total
variances by a constant fraction.

To deal with variance estimation noise and imperfect parti-
tion, we make considerable effort to upper bound the frac-
tion of arms put in wrong buckets, where the bound is very
refined and depends on the distance between the desired and
empirical buckets. Another consequence of the noise is that,
besides the active arm set T returned by GROUPELIM, we
have to introduce a recycle set R of arms. The arms in R do
not participate in future rounds of elimination in ITERELIM.
However, they appear as the returned arms of ITERELIM.
Indeed, the procedure ITERELIM returns a small set of arms



instead of the optimal arm. Finally, we use BESTARMEST
to examine this small set again to identify the best arm.

We start the sketch of the analysis of our algorithms by
presenting the following statement for GROUPELIM.

Theorem 11 With probability at least 1 − δ,
GROUPELIM(S, ε, δ) outputs two sets T and R of
arms and has the following four guarantees:

(a) |R| = O(ln ε−1);
(b)

∑
a∈T (σ2

a + ε) 6 255
256 ·

∑
a∈S(σ2

a + ε);
(c) |θ(T∪R)[1] − θS[1]

| 6 ε;

(d) uses O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
sam-

ples.

The proof of Theorem 11 is split into three subsections.
The first claim is easy to verify and shown in the form of
the short Lemma 15. In Section 4.1, we define an event E
(Equation (5)) concerning about the fraction of the arms put
in wrong buckets, and use Lemma 16 to show that E holds
with high probability 1 − δ/3. In Section 4.2, we prove
Lemma 22, i.e., E implies the second claim of the theorem.
In Appendix F.10, we prove Lemmas F.4 and F.6, showing
that both the probabilities that the third and the fourth claims
of the theorem hold are at least 1− δ/3. Finally the theorem
is proved by a straightforward union bound.

The following theorem shows the guarantee of ITERELIM,
and will be proved in Appendix F.11.

Theorem 12 With probability at least 1 − δ,
ITERELIM(S, ε, δ) outputs an arm set T and has the
following three guarantees,

(a) |T | = O((ln |S|)2 ln ε−1);
(b) |θT[1]

− θS[1]
| 6 ε;

(c) uses O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
sam-

ples.

Finally, with the help of Theorems 11 and 12, we prove the
main theorem on BESTARMEST in Section 4.3.

4.1 Upper Bounds on Fraction of Arms in
Wrong Buckets

For notational convenience, for each B̂j (j = 1, 2, . . . , N ),
we set l(B̂j) = 2−j and u(B̂j) = 2−j+1 as the lower and
upper bounds on the estimated reward variances of the arms
in B̂j . We also introduce the “ideal” partition Bj = {i ∈
S | 2−j < σ2

i 6 2−j+1} for j = 1, 2, . . . , N − 1 and
BN = {i ∈ S | 0 6 σ2

i 6 2−N+1}. Similarly, we set
l(Bj) = 2−j for j = 1, 2, . . . N − 1 and u(Bj) = 2−j+1

for j = 1, 2, . . . , N , with the exception that l(BN ) = 0.

Now we list the following simple facts about the procedure
GROUPELIM.

Lemma 13 {B̂1, B̂2, . . . , B̂N} is a partition of S.

Lemma 14 If |B̂j | > 2, there is |Tj | 6 2
3 |B̂j |.

Lemma 15 |R| = O(ln ε−1).

We define E to be the event{
|Bi ∩ B̂j |

< |Bi| · 2−10|i−j| ·N−1 for ∀|i− j| > 3
}
. (5)

In words, it means that the fraction of the arms that are
empirically put in a wrong bucket becomes exponentially
small as the error distance increases. We now show such
an event happens with high probability, which is the main
statement of this subsection.

Lemma 16 Pr[E ] > 1− δ/3.

4.2 Procedure GROUPELIM: Multiplicative
Reduction of the Total Variances

We say that Bi pollutes B̂j (or B̂j is polluted by Bi) if and
only if |Bi ∩ B̂j | > |B̂j | · 2−5|i−j|. Intuitively, this means
that too many arms (those are supposed to be in Bi) are
incorrectly put in B̂j . Note that the definition of “too many”
is in terms of the fraction compared to |B̂j | rather than |Bi|
as defined in the event E . If B̂j is polluted by someBi where
|i− j| > 3, we say that B̂j is bad. Otherwise, we say that
B̂j is good.

The following lemma shows that for a good bucket B̂j , as
long as it is not the last three buckets, the arms discarded
from the bucket aggregate a constant fraction of variances.

Lemma 17 Given that j 6 N − 3, if |B̂j | > 2 and B̂j is
good, there is

∑
a∈Tj σ

2
a 6 127

128 ·
∑
a∈B̂j σ

2
a.

Corollary 18 Given that j 6 N − 3, if |B̂j | > 2 and B̂j is
good, there is

∑
a∈Tj (σ

2
a + ε) 6 127

128 ·
∑
a∈B̂j (σ

2
a + ε).

We now prove a similar statement as Corollary 18, but for
the last three buckets.

Lemma 19 Given that j > N − 2, if |B̂j | > 2 and B̂j is
good, there is

∑
a∈Tj (σ

2
a + ε) 6 127

128 ·
∑
a∈B̂j (σ

2
a + ε).



The following two lemmas control the total reward variances
of the arms in a polluted bucket.

Lemma 20 Conditioning on E , if B̂j is polluted by some
Bi where i 6 N −1 and |i− j| > 3, we have

∑
a∈B̂j σ

2
a 6

N−1 ·
∑
a∈S σ

2
a · 1

256 .

Lemma 21 Conditioning on E , if B̂j is only polluted by
BN where |N − j| > 3, we have

∑
a∈B̂j σ

2
a 6 N−1 ·∑

a∈S(σ2
a + ε) · 1

1024 .

Now, we show that with high probability the total reward
variances of the active arms reduce by a constant fraction
after the procedure GROUPELIM. In particular, we prove
the following lemma.

Lemma 22 Conditioning on event E , we have
∑
a∈T (σ2

a +
ε) 6 255

256

∑
a∈S(σ2

a + ε).

Proof According to Lemma 20 and Lemma 21, if B̂j
is polluted by some Bi where |i − j| > 3, there is∑
a∈B̂j σ

2
a 6 N−1 ·

∑
a∈S(σ2

a + ε) · 1
256 which implies∑

j,B̂j is good

∑
a∈B̂j σ

2
a > 255

256

∑
a∈S(σ2

a+ ε). Hence there
is ∑

a∈S(σ2
a + ε)−

∑
a∈T (σ2

a + ε)∑
a∈S(σ2

a + ε)

>

∑
j,B̂j is good

∑
a∈B̂j\Tj σ

2
a

256
255 ·

∑
j,B̂j is good

∑
a∈B̂j σ

2
a

>
255

256
· min
j,B̂j is good

∑
a∈B̂j\Tj σ

2
a∑

a∈B̂j σ
2
a

. (6)

When |B̂j | = 1, Tj = ∅ which implies
∑
a∈(B̂j−Tj)

σ2
a∑

a∈B̂j
σ2
a

= 1.

When B̂j is good and |B̂j | > 2, according to Corollary 18

and Lemma 19, there is
∑
a∈(B̂j−Tj)

σ2
a∑

a∈B̂j
σ2
a

> 1
128 . Therefore,

we have (6) > 255
256 ·

1
128 > 1

256 , which concludes the proof
of this lemma.

4.3 Analysis of the BESTARMEST algorithm

Now we are ready to analyze the BESTARMEST algorithm
and prove the main theorem (Theorem 10) of this subsection.

First, we define the following three events about the
BESTARMEST procedure. Let c be the hidden constant in
Corollary 9 and Theorem 12.

• Let E1 denote the event |S1| 6 c(ln |S|)2 ln ε−1,
|θ(S1)[1] − θS[1]

| 6 ε/3, and the sample complex-

ity of Line 2 is at most c
∑
i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 +

ln ln ε−1).

• Let E2 denote the event |S2| = c(ln |S1|)2 ln ε−1,
|θ(S2)[1] − θ(S1)[1] | 6 ε/3, and the sample complex-

ity of Line 3 is at most c
∑
i∈S1

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 +

ln ln ε−1).

• Let E3 denote the event |θa − θ(S2)[1] | 6 ε/3
and the sample complexity of Line 4 is at most
c
∑
i∈S2

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1 + ln |S2|).

Proof of Theorem 10 By Theorem 12, we have Pr[E1] >
1 − δ/3 and Pr[E2] > 1 − δ/3. By Corollary 9, we have
Pr[E3] > 1−δ/3. Conditioning on event E1∧E2∧E3 which
happens with probability 1− δ, we will show both claims
of Theorem 10 hold.

The first claim is because of |θa − θS[1]
| 6 |θa − θ(S2)[1] |+

|θ(S2)[1] − θ(S1)[1] |+ |θ(S1)[1] − θS[1]
| 6 ε.

Now we focus on the second claim (about the sample com-
plexity). It suffices to show that the sample complexity of
Line 4 of Algorithm 4 meets the desired asymptotic upper
bound. We discuss the following two cases.

Case 1: ε−1 6 ln |S|. Note that S2 = S1 and
O
(∑

i∈S2

(
σ2
i

ε2 + 1
ε

)
ln |S2|

)
= O

(
|S1| ln |S1|

ε2

)
=

O
(

ln |S||S1| ln |S1|
ε

)
= O

(
|S|
ε

)
, where the last equality

is due to |S1| = O((ln |S|)2 ln ε−1). Hence, the sample
complexity of Line 4 is

O

(∑
i∈S2

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1 + ln |S2|)

)

= O

(∑
i∈S2

(
σ2
i

ε2
+

1

ε

)
(ln δ−1

+ ln ln ε−1)

)
+O

(∑
i∈S2

(
σ2
i

ε2
+

1

ε

)
ln |S2|

)

= O
(∑
i∈S

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1)

)
+O

(
|S|
ε

)

= O

(∑
i∈S

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1)

)
.

Case 2: ε−1 > ln |S|. Note that ln |S2| = O(ln ln |S1| +
ln ln ε−1) = O(ln ln ln |S| + ln ln ε−1) = O(ln ln ε−1),
where the first and second equalities are due to |S2| =
O((ln |S1|)2 ln ε−1) and |S1| = O((ln |S|)2 ln ε−1) re-
spectively. Hence, the sample complexity of Line 4 is
O
(∑

i∈S2

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1 + ln |S2|)

)
=

O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
.

In both cases, the sample complexity of Line 4 is
O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
. Therefore, the



sample complexity of the whole procedure also meets the
desired upper bound.

5 THE MAIN VARIANCE-DEPENDENT
ALGORITHM

Now we are ready to present the main variance-dependent
best arm identification algorithm VD-BESTARMID(n, δ)
with the help of MEANEST and BESTARMEST developed
in previous sections. All missing proofs in this section are
deferred to Appendix G.

Theorem 23 With probability at least 1 − δ,
VD-BESTARMID(n, δ) outputs the best
arm and the number of samples used is
O
(∑n

i=1

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)

.

Algorithm 7: Variance-Dependent Best Arm Identifi-
cation, VD-BESTARMID(n, δ)

1 Input: Arm set S = [n] and confidence level δ
2 S1 ← S, r ← 1
3 while |Sr| > 1 do
4 Set εr ← 1/2r+2 and δr ← 1/(2r2) · δ
5 for i ∈ Sr do θ̂ri← MEANEST(i, εr2 ,

δr
18 )

6 ar ← BESTARMEST(Sr,
εr
2 ,

δr
18 )

7 a∗r ← BESTARMEST(Sr\{ar}, εr2 ,
δr
18 )

8 if |θ̂rar − θ̂
r
a∗r
| > 2εr then Output: ar

9 Sr+1 ← Sr\{i ∈ Sr|θ̂ri < θ̂rar − εr}
10 r ← r + 1

11 Output: The remaining arm in Sr

We present the details of VD-BESTARMID(n, δ) in Algo-
rithm 7. It has a similar structure to that of the Exponential
Gap Elimination algorithm in Karnin et al. [2013] as our
algorithm also keeps a confidence interval εr which halves
after each round. Within a round, we estimate the mean
reward of each arm up to confidence interval εr and an arm
will be discarded if its estimation is εr below that of the
best arm. However, due to non-uniformity of the reward
variances of the arms, we cannot repeat this process until
there is only one arm left (as is done in the Exponential
Gap Elimination algorithm), otherwise the sample complex-
ity would not satisfy the desired upper bound. Instead, we
design a new stopping condition (Line 8) which may be
triggered earlier.

The proof of Theorem 23 is split into two parts: correctness
(the best arm is identified with high probability proved by
Lemma 26 in Section 5.1) and sample complexity (proved
by Lemma 32 in Section 5.2). We finally obtain Theorem 23
by combining these two lemmas with a union bound.

The rest of this section is devoted to the proof of Theo-
rem 23.

5.1 Correctness

We use M1 to denote the event θ̂rS[1]
> θ̂rar − εr for

every round r, and use M2 to denote the event that
VD-BESTARMID(n, δ) terminates with r = O(ln ∆−1

2 )
and returns the best arm. We have the following two lem-
mas.

Lemma 24 Pr[M1] > 1− δ/9.

Lemma 25 Pr [M2|M1] > 1− 2δ/9.

We now show the correctness lemma as follows.

Lemma 26 With probability at least 1 − δ/3,
VD-BESTARMID(n, δ) terminates with r = O(ln ∆−1

2 )
and returns the best arm.

Proof It suffices to prove Pr[M2] > 1−δ/3. By Lemma 24
and 25, we have Pr[M2] > Pr[M2|M1] Pr[M1] > 1 −
δ/3.

5.2 Sample Complexity

For each 1 6 s 6 dlog2(1/∆) + 1e, we define the set
As = {i ∈ S | 2−s < ∆i 6 2−s+1}, and let ns = |As|.
Also, we denote the set of arms from As surviving after
round r by Sr,s = Sr ∩As.

We will show that from round s onwards, every sub-optimal
arm in As is eliminated with high probability. Specifically,
we show the following lemma.

Lemma 27 Conditioning onM1, with probability at least
1 − δr/4, we have θ̂ri < θ̂rar − εr for any arm i ∈ Sr−1,s

and round r > s.

Let Iri denote the random variable 1{i ∈ Sr}. We also

define T ri =
(
σ2
i

ε2r
+ 1

εr

)
(ln δ−1

r + ln ln ε−1
r ).

In the desired event (which is explicitly defined by event
M3 and analyzed in Lemma 31 soon afterwards), we may
bound the number of pulls to arm i in round r by Iri T

r
i . In

light of this, the following two lemmas help to upper-bound
the number of pulls to the sub-optimal arms where c is a
constant.

Lemma 28 Conditioning on M1, we have that
with probability at least 1 −

(
δ
8

)j
,
∑+∞
r=1 I

r
i T

r
i 6

c4j
(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i ) for i 6= S[1].



Lemma 29 Conditioning on M1, we have that with
probability at least 1 − δ

18 ,
∑
i6=S[1]

∑+∞
r=1 I

r
i T

r
i 6

O
(∑

i6=S[1]

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)

.

The following lemma helps to upper-bound the number of
the pulls to the best arm.

Lemma 30 When M2 happens,
we have

∑+∞
r=1 I

r
S[1]

T rS[1]
=

O
((

σ2
1

∆2
1

+ 1
∆1

)
(ln δ−1 + ln ln ∆−1

1 )
)
.

We useM3 to denote the event that, for each r, the number
of samples used in round r is

∑n
i=1O(Iri T

r
i ). The following

lemma shows thatM3 happens with high probability.

Lemma 31 Pr[M3] > 1− δ/6 .

We are now ready to prove the following lemma on the
sample complexity of VD-BESTARMID.

Lemma 32 With probability at least 1− 2δ/3, the sample
complexity of VD-BESTARMID(n, δ) is

O

(
n∑
i=1

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i )

)
.

Proof Note that Pr[M1] > 1− δ/9 by Lemma 24. Further
by Lemma 29, with probability at least (1 − δ/9)(1 −
δ/18) > 1 − δ/6, we have

∑
i6=S[1]

∑+∞
r=1 I

r
i T

r
i =

O
(∑

i6=S[1]

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)

.
Note that Pr[M2] > 1 − δ/3 by Lemma 26.
Further by Lemma 30, with probability at
least 1 − δ/3, it holds that

∑+∞
r=1 I

r
S[1]

T rS[1]
=

O
((

σ2
1

∆2
1

+ 1
∆1

)
(ln δ−1 + ln ln ∆−1

1 )
)

. Via a union
bound, with probability at least 1− δ/2,

n∑
i=1

+∞∑
r=1

Iri T
r
i

= O

(
n∑
i=1

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i )

)
. (7)

Note that Pr[M3] > δ/6 by Lemma 31. Condition-
ing on (7) and event M3 which happens with prob-
ability at least 1 − 2δ/3 (via a union bound), the
sample complexity of algorithm VD-BESTARMID(n, δ)

is
∑+∞
r=1

∑n
i=1O(Iri T

r
i ) = O

(∑n
i=1

∑+∞
r=1 I

r
i T

r
i

)
=

O
(∑n

i=1

(
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 + ln ln ∆−1

i )
)
.

6 CONCLUSION AND FUTURE WORKS

In this paper, we present a variance-dependent best arm
identification algorithm and the nearly matching sample
complexity lower bound.

While our algorithm almost achieves theoretical optimality,
its empirical performance suffers from the large constant
factors introduced by multiple subroutines. It is worthwhile
to design algorithms with better empirical performance and
the same sample complexity bound. The UCB-style algo-
rithms (e.g. lil’UCB in Jamieson et al. [2014]) are a very
promising direction towards this end.

On the theoretical side, we believe that it is promising to
combine our approach with the ideas in Chen et al. [2017]
and improve the doubly-logarithmic terms in our sample
complexity bound. It is very interesting to investigate the
ultimate sample complexity of the problem.

7 ACKNOWLEDGEMENTS

We want to thank Yuan Zhou for providing valu-
able ideas and many helpful discussions. Pinyan Lu
is supported by Science and Technology Innovation
2030 –“New Generation of Artificial Intelligence” Major
Project No.(2018AAA0100903), NSFC grant 61922052 and
61932002, Innovation Program of Shanghai Municipal Edu-
cation Commission, Program for Innovative Research Team
of Shanghai University of Finance and Economics, and the
Fundamental Research Funds for the Central Universities.
Chao Tao is supported in part by NSF IIS-1633215, NSF
CCF-1844234, and NSF CCF-2006591.

References

Jean-Yves Audibert and Sébastien Bubeck. Best arm identi-
fication in multi-armed bandits. In COLT, 2010.

Chun-hung Chen and Loo Hay Lee. Stochastic simulation
optimization: an optimal computing budget allocation,
volume 1. 2011.

Lijie Chen and Jian Li. On the optimal sample com-
plexity for best arm identification. arXiv preprint
arXiv:1511.03774, 2015.

Lijie Chen, Jian Li, and Mingda Qiao. Towards instance
optimal bounds for best arm identification. In COLT,
2017.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac
bounds for multi-armed bandit and markov decision pro-
cesses. In COLT, 2002.

Roger H Farrell. Asymptotic behavior of expected sample
size in certain one sided tests. The Annals of Mathemati-
cal Statistics, pages 36–72, 1964.



Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro
Lazaric. Best arm identification: A unified approach to
fixed budget and fixed confidence. In NIPS, 2012.

Aurélien Garivier and Olivier Cappé. The KL-UCB algo-
rithm for bounded stochastic bandits and beyond. In
COLT, 2011.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and
Sébastien Bubeck. lil’ucb: An optimal exploration al-
gorithm for multi-armed bandits. In COLT, 2014.

Zohar Shay Karnin, Tomer Koren, and Oren Somekh. Al-
most optimal exploration in multi-armed bandits. In
ICML, 2013.

Emilie Kaufmann and Shivaram Kalyanakrishnan. Infor-
mation complexity in bandit subset selection. In Shai
Shalev-Shwartz and Ingo Steinwart, editors, COLT, 2013.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
the complexity of best arm identification in multi-armed
bandit models. Journal of Machine Learning Research,
17(1):1–42, 2016.

Pushmeet Kohli, Mahyar Salek, and Greg Stoddard. A
fast bandit algorithm for recommendation to users with
heterogenous tastes. In AAAI, 2013.

Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz.
A finite-time analysis of multi-armed bandits problems
with kullback-leibler divergences. In COLT, 2011.

Shie Mannor and John N Tsitsiklis. The sample complexity
of exploration in the multi-armed bandit problem. Journal
of Machine Learning Research, 5(Jun):623–648, 2004.

Herbert Robbins. Some aspects of the sequential design
of experiments. Bulletin of the American Mathematical
Society, 58(5):527–535, 1952.

Ervin Tanczos, Robert Nowak, and Bob Mankoff. A KL-
LUCB algorithm for large-scale crowdsourcing. In NIPS,
2017.

Yuan Zhou, Xi Chen, and Jian Li. Optimal pac multiple
arm identification with applications to crowdsourcing. In
ICML, 2014.



Variance-Dependent Best Arm Identification (Supplementary Material)

Pinyan Lu1 Chao Tao2 Xiaojin Zhang3

1ITCS, Shanghai University of Finance and Economics
2Department of Computer Science, Indiana University Bloomington

3Department of Computer Science and Engineering, The Chinese University of Hong Kong

A CONCENTRATION INEQUALITIES

Proposition A.1 (Multiplicative Chernoff Bound) Let Xi (1 6 i 6 n) be i.i.d. random variables supported on [0, 1]. Let
X = 1

n

∑n
i=1Xi and EX1 = µ. We have that

Pr[X < (1− ε)µ] <

(
e−ε

(1− ε)(1−ε)

)nµ
, ∀ε ∈ (0, 1), and

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)(1+ε)

)nµ
, ∀ε > 0.

Proposition A.2 (Bernstein Inequality) Let Xi (1 6 i 6 n) be i.i.d. random variables. Suppose |Xi| 6M holds almost
surely, for any i. Let X = 1

n

∑n
i=1Xi, E[X1] = µ and VarX1 = σ2. Then, for all positive t, it holds that

Pr[|X − µ| > t] 6 2 exp

(
− nt2/2

σ2 + 1
3Mt

)
.

B PROOF OF THEOREM 2

Let Ai denote the algorithm VD-BESTARMID(n, δ/2i). Algorithm VD-BESTARMID*(n, δ) is constructed as follows. It
is easy to verify that after the finish of round r, Ai makes br/2ic samples. Therefore, after round r, the total number of
samples made is at most

∑blog2 rc
i=1 br/2ic 6 r.

Before proceeding, let us define some symbols. For simplicity, we define Φ :=
∑n
i=1

(
σ2
i

∆2
i

+ 1
∆i

)
and Ψ :=∑n

i=1

(
σ2
i

∆2
i

+ 1
∆i

)
ln ln ∆−1

i . Let c be a constant hidden in the big-O notation of Theorem 2 and Gi denote the event

that Ai outputs the best arm and the sample complexity is c(Φ ln(2i/δ) + Ψ).

We first prove the δ-correctness of Algorithm VD-BESTARMID*(n, δ). By Theorem 2, we have Pr[Gi] > 1− δ/2i. Let G
denote the event

∧+∞
i=1 Gi. Via a union bound, we have Pr[G] > 1 −

∑+∞
i=1 Pr[Gi] = 1 − δ

∑+∞
i=1 2−i > 1 − δ. We now

condition on the event G until the end of this paragraph. Note that during the first r rounds of VD-BESTARMID*, A1 makes
at least br/2c samples. Hence, VD-BESTARMID* must stop with r 6 2c(Φ ln(2/δ) + Ψ) + 2. Since every Ai outputs the
best arm, so does VD-BESTARMID*. Therefore, the first part of Theorem 2 is proved.

Next, we focus on proving the upper bound of the expected sample complexity of VD-BESTARMID*. LetHi denote the
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Algorithm 8: VD-BESTARMID*(n, δ)

1 Input: Number of arms n and confidence level δ
2 for r ← 1 to +∞ do
3 for i← 1 to blog2 rc do
4 if 2i|r then
5 Run Ai until one of the following two conditions is satisfied:
6 i) Ai needs to sample some arm, or
7 ii) Ai terminates with an output arm a
8 if i) is satisfied then Sample the arm for one time and feed the observation to Ai
9 else Output: Arm a

event Gc1 ∧ Gc2 ∧ · · · ∧ Gci−1 ∧ Gi. Since samples are independently made, we have

Pr[Hi] = Pr[Gc1] · · ·Pr[Gci−1] Pr[Gi] 6
i−1∏
j=1

(δ/2j) 6 δi−1. (8)

We claim that the set {Hi}+∞i=1 is almost a partition of the whole probability space Ω i.e., it satisfies the following two
properties:

i) Hi ∩Hj = ∅, for any i < j, and

ii) Pr
[⋃+∞

i=1 Hi
]

= 1.

The first property can be easily verified sinceHi ⊂ Gi andHj ⊂ Gci . For the second property, since the partial sum
⋃j
i=1Hi is

equal to Ω\(Gc1∧Gc2∧· · ·∧Gcj ). Hence Pr
[⋃+∞

i=1 Hi
]

= limi→+∞(1−Pr[Gc1∧Gc2∧· · ·∧Gci ]) > 1−limi→+∞
∏i
j=1 δ/2

j =

1. Therefore this claim is proved.

Let T and Ti be the random variables representing the sample complexities of VD-BESTARMID* and Ai respectively. Note
that during the first r rounds of VD-BESTARMID*, Ai makes br/2ic samples. Hence we have T 6 2i(Ti + 1). Further by
the law of total expectation, there is

E[T ] =
+∞∑
i=1

Pr[Hi]E[T |Hi]

6
+∞∑
i=1

δi−12i(Φ ln(2i/δ) + Ψ + 1)

= O

(
+∞∑
i=1

i(0.2)i−1Φ

)
+O

(
+∞∑
i=1

(0.2)i−1(Φ ln δ−1 + Ψ + 1)

)
= O(Φ ln δ−1 + Ψ),

where the inequality is due to (8) and the second equality is due to δ 6 0.1, which concludes the proof of the second part of
Theorem 2.

C CALCULATION FOR EXAMPLE 1

We first calculate the expected sample complexity of VD-BESTARMID*(S, δ) upon the input described in Example 1. By
Theorem 2, the number of samples used is upper bounded by

O

(
n∑
i=1

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln(e+ ln ∆−1

i ))

)
. (9)



Note that 1) θi = 1− i
n and for Bernoulli arms we have σ2

i = θi(1−θi) 6 1−θi for all i = 1, 2, . . . , n; 2) σ2
1∆−2

1 +∆−1
1 =

O(σ2
2∆−2

2 + ∆−1
2 ). Therefore,

(9) = O

(
n∑
i=2

(
i/n

((i− 1)/n)2
+

1

(i− 1)/n

)(
ln δ−1 + ln

(
e+ ln

n

i− 1

)))

= O

(
n∑
i=2

n(2i− 1)

(i− 1)2

(
ln δ−1 + ln

(
e+ ln

n

i− 1

)))

= O

(
n∑
i=2

n

i

(
ln δ−1 + ln ln

15n

i

))
.

Note that
∑n
i=2

n
i 6

∫ n
1
n
xdx and

∑n
i=2

n
i ln ln 15n

i 6
∫ n

1
n
x ln ln 15n

x dx. We further have

(9) 6 O

(∫ n

1

n

x
dx · ln δ−1 +

∫ n

1

n

x
ln ln

15n

x
dx

)
= O

(
n lnn(ln δ−1 + ln lnn)

)
.

In contrast, the expressions in the big-O notation in both (1) and (2) are lower bounded by

Ω

(
n∑
i=2

∆−2
i ln δ−1

)
= Ω

(
n∑
i=2

n2

(i− 1)2
ln δ−1

)
= Ω(n2 ln δ−1).

D MISSING PROOFS IN SECTION 2

D.1 Proof of Lemma 4

Let Xr be the random variable representing the r-th sample and Yr = (Xr−Xr+T )2

2 . Note that EYr = σ2
i and Yr’s are i.i.d..

If σ2
i > 2τ , we have

Pr[σ̂2
i 6 τ ] = Pr

[
σ̂2
i 6

(
1− σ2

i − τ
σ2
i

)
σ2
i

]
<

 e
−σ

2
i−τ
σ2
i(

τ
σ2
i

)( τ

σ2
i

)

Tσ2

i

6 δ
c(σ2i−τ)

τ ·
(
τ

σ2
i

)c ln δ−1

6 δ ·
(
τ

σ2
i

)c
,

where the second inequality is due to Proposition A.1 and the last inequality is due to δ 6 e−1. Condition on event σ̂2
i > τ

which happens with probability at least 1− δ ·
(
τ
σ2
i

)c
, algorithm VARTEST(i, τ, δ, c) outputs true.

If σ2
i 6 τ/2, we have

Pr[σ̂2
i > τ ] = Pr

[
σ̂2
i >

(
1 +

τ − σ2
i

σ2
i

)
σ2
i

]
<

 e
τ−σ2i
σ2
i(

τ
σ2
i

)( τ

σ2
i

)

Tσ2

i

6 δ
cτ

τ−σ2
i ·
(
σ2
i

τ

)c ln δ−1

6 δ ·
(
σ2
i

τ

)c
,

where the second inequality is due to Proposition A.1 and the last inequality is due to δ 6 e−1. Condition on event σ̂2
i 6 τ

which happens with probability at least 1− δ ·
(
σ2
i

τ

)c
, algorithm VARTEST(i, τ, δ, c) outputs false.

Finally, it is straightforward to verify that the sample complexity is 2c
τ ln δ−1. This concludes the proof of the lemma.



D.2 Proof of Lemma 5

Suppose algorithm VAREST(i, δ, `) terminates with r = r0.

Consider the first claim. It is the easy to check that τr0 > `/2. By Lemma 4, VARTEST(i, τr, δ/e, 80) uses O( 1
τr

ln δ−1)
samples. Hence, total samples is bounded by

r0∑
r=1

O

(
1

τr
ln δ−1

)
= O

(
1

τr0
ln δ−1

)
= O

(
1

`
ln δ−1

)
,

where the last equality holds since τr0 > `/2 concluding the proof of the first claim.

Let t be the smallest index such that σ2
i > τt. Hence, σ2

i ∈ (τt, 2τt]. It is straightforward to verify the following facts: 1)
for r = 1, . . . , (t− 2), we have σ2

i 6 2τt 6 τr/2; 2) for r > t+ 1, we have σ2
i > τt > 2τr. Let E denote the event when

r = 1, . . . , (t− 2), VARTEST(i, τr, δ/e, 80) outputs false, and when r > t+ 1, VARTEST(i, τr, δ/e, 80) outputs true. By
Lemma 4 and a union bound, we have

Pr[E ] > 1− δ

e

t−2∑
r=1

σ2
i

τr
− δ

e

+∞∑
r=t+1

τr
σ2
i

> 1− δ

e

t−2∑
r=1

(
1

2

)r
− δ

e

+∞∑
r=t+1

(
1

2

)r−t
> 1− δ.

Now consider the second claim. Recall that σ2
i ∈ (τt, 2τt]. Given that σ2

i ∈ (`, 1], we have τt > `/2. Condition on event
E which happens with probability at least 1 − δ. VAREST(i, δ, `) stops with r = t − 1, t or t + 1. Therefore, we have
σ2
i ∈ (τt, 2τt] ⊂ (τr0/2, 4τr0 ], which means τ = τr0 ∈ [σ2

i /4, 2σ
2
i ). Moreover, the sample complexity is bounded by

t+1∑
r=1

O

(
1

τr
ln δ−1

)
= O

(
1

τt+1
ln δ−1

)
= O

(
1

σ2
i

ln δ−1

)
,

where the last equality is due to σ2
i = Θ(τt+1).

Suppose VAREST(i, δ, `) terminates with τr0 > 2σ2
i which means VARTEST(i, τr, δ/e, 80) outputs true when r = r0.

Recall that σ2
i 6 τr0/2. By Lemma 4, the probability that this event happens is no greater than

δ ·
(
σ2
i

τr0

)80

= δ · 2
−80 log2

(
τr0
σ2
i

)
6 δ · 2−40rm ,

where the last inequality is due to rm =
⌈
log2

(
τr0
σ2
i

)⌉
6 2 log2

(
τr0
σ2
i

)
when τr0

σ2
i

> 2. On the other hand, suppose

VAREST(i, δ, `) terminates with τr0 < σ2
i /4 which means VARTEST(i, τr, δ/e, 80) outputs false when r = r0 − 1. Since

σ2
i > 2τr0−1, by Lemma 4, the probability that this event happens is bounded by

δ ·
(
τr0−1

σ2
i

)80

= δ · 2
−80

(
log2

(
σ2i
τr0

)
−1

)
6 δ · 2−20rm ,

where the last inequality is due to rm =
⌈
log2

(
σ2
i

τr0

)⌉
6 4

(
log2

(
σ2
i

τr0

)
− 1
)

when σ2
i

τr0
> 4 concluding the proof of the

second claim.

For the last claim, recall that τ = τr0 > 2` > `, which means VARTEST(i, τr, δ/e, 80) outputs true when r = r0. Also, we
have τ = τr0 > 2σ2

i . Using the same way as that in the proof of the second claim, this claim can also be proved.

D.3 Proof of Lemma 6

Let E1 be the event that σ̂2
i > σ2

i /4. According to Lemma 5(b), we have Pr[E1|σ2
i ∈ (`, 1]] > 1− δ/2. Also note that when

σ2
i 6 `, there is σ̂2

i > `/2 > σ2
i /4. Hence, it holds that Pr[E1] > 1− δ/2.

Condition on event E1 which happens with probability at least 1 − δ/2. Let E2 be the event that |θ̂i − θi| 6 ε and the
number of samples used at Line 3 of MEANEST(i, ε, δ) is bounded by O

((
σ2
i

ε2 + 1
ε

)
ln δ−1

)
. According to event E1 and



Proposition A.2, it holds that with probability at least 1 − δ/2, event E2 happens, which means Pr[E2|E1] > 1 − δ/2.
Therefore,

Pr[E2] > Pr[E1 ∧ E2] = Pr[E2|E1] · Pr[E1] = (1− δ/2) · (1− δ/2) > 1− δ.

Conditioning on event E2 which happens with probability at least 1− δ, we have |θ̂i − θi| 6 ε and the number of samples
used at Line 3 of MEANEST(i, ε, δ) is O

((
σ2
i

ε2 + 1
ε

)
ln δ−1

)
. Also note that the number of samples used at Line 2 of

MEANEST(i, ε, δ) is always bounded by O( 1
ε ln δ−1) by Lemma 5(a). Therefore, this lemma is proved.

D.4 Proof of Lemma 7

According to Lemma 5(a), Line 2 of MEANEST(i, ε, δ) uses at most O
(

1
ε ln δ−1

)
samples. We bound the number of

samples used at Line 3 by observing σ̂2
i 6 1. Hence, the first claim of the lemma is proved.

For the second claim, according to Lemma 5(b) and 5(c), there is Pr[σ̂2
a = 2−k] 6 δ · 2−20rm for 2−k > max{3σ2

i , 2ε}.
Via a union bound, with probability at least 1−

∑
k>j δ · 2−20k > 1− δ · 2−20j , it holds that σ̂2

i 6 jσ2
i 6 max{jσ2

i , 2ε}

for j > max{3, 2ε
σ2
i
}. Note that when 3 6 j < 2ε

σ2
i

, σ̂2
i 6 max{jσ2

i , 2ε} holds with probability at least 1 − δ · 2
−20 2ε

σ2
i >

1− δ · 2−20j . Hence, Line 3 of MEANEST(i, ε, δ) uses O
((

max{jσ2
i ,2ε}

ε2 + 1
ε

)
ln δ−1

)
= O

((
jσ2
i

ε2 + 1
ε

)
ln δ−1

)
samples

with probability at least 1 − δ · 2−20j for j > 3. Therefore, for j > 3, with probability at least 1 − δ · 2−20j , we have
Q 6 O

((
jσ2
i

ε2 + 1
ε

)
ln δ−1

)
+ O

(
1
ε ln δ−1

)
= O

((
jσ2
i

ε2 + 1
ε

)
ln δ−1

)
concluding the proof of the second claim of this

lemma.

E MISSING MATERIALS IN SECTION 3

E.1 Algorithm NAIVEBESTARM

Algorithm 9: Naive Best Arm Identification, NAIVEBESTARM(S, δ)

1 Input: Arm set S and confidence level δ
2 S1 ← S, r ← 1
3 while |Sr| > 1 do
4 Set εr ← 1/2r and δr ← 1/(2r2) · δ
5 for i ∈ Sr do θ̂ri ← MEANEST(i, εr/2, δr/|Sr|)
6 Let ar = argmaxi∈Sr θ̂

r
i

7 Sr+1 ← Sr\{i ∈ Sr|θ̂ri < θ̂rar − εr}
8 r ← r + 1

9 Output: The remaining arm in Sr

E.2 Proof of Theorem 8

Let Eri denote the event that |θ̂ri − θi| 6 εr/2 and the sample complexity of algorithm MEANEST(i, εr/2, δr/|Sr|) is

O
((

σ2
i

ε2r
+ 1

εr

)
ln |Sr|δr

)
. By Lemma 6, we have Pr[Eri ] > 1− δr/|Sr|. Let Er be the event

∧
i∈Sr E

r
i . Via a union bound,

we have Pr[Er] > 1− δr. Let E denote the event
∧+∞
r=1 Er. Again via a union bound, we can get Pr[E ] > 1−

∑+∞
r=1 δr =

1− δ ·
∑+∞
r=1 1/(2r2) > 1− δ.

Condition on event E which happens with probability at least 1− δ.



First, we claim that the best arm always survives i.e., S[1] ∈ Sr. Suppose arm S[1] survives after round r = k. In round
r = k + 1, we have θ̂rar 6 θar + εr/2 6 θS[1]

+ εr/2 6 θ̂rS[1]
+ εr, which means arm S[1] is not eliminated after round

r = k + 1. Note that S[1] ∈ S. Therefore, this claim is proved.

Let ti be the smallest index such that ∆i > εti . Define ε0 = 1. Hence ∆i ∈ (εti , εti−1]. Next, we claim that arm S[i], i 6= 1
is eliminated before round r = ti + 1 finishes. Suppose arm S[i] survives after round r = ti finishes. Consider round
r = ti + 1. According to the first claim, we know that S[1] ∈ Sti+1. Also, we can find that θ̂ti+1

i 6 θi + εti+1/2 <

θS[1]
− εti + εti+1/2 = (θS[1]

− εti+1/2)− εti+1 6 θ̂ti+1
S[1]
− εti+1 6 θ̂ti+1

ar − εti+1, which means after round r = ti + 1

finishes arm S[i], i 6= 1 must be eliminated. Therefore, this claim is also proved.

Above all, we have proved that St2+1 = {S[1]} and hence the best arm in S is output after round r = t2 + 1 finishes. Thus,
the first part of this lemma is proved.

By event Eri , the sample complexity of algorithm MEANEST(i, εr/2, δr/|Sr|) is O
((

σ2
i

ε2r
+ 1

εr

)
ln |Sr|δr

)
. Therefore, the

number of samples used for arm S[i] is bounded by

ti+1∑
r=1

O

((
σ2
i

ε2r
+

1

εr

)
ln
|Sr|
δr

)
=

ti+1∑
r=1

O

((
σ2
i

ε2r
+

1

εr

)
(ln δ−1 + ln r + ln |Sr|)

)
= O

((
σ2
i

ε2ti+1

+
1

εti+1

)
(ln δ−1 + ln(ti + 1) + ln |S|)

)
= O

((
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i + ln |S|)
)
,

where the last equality is due to εti+1 = Θ(∆i) and ti + 1 = Θ(ln ∆−1
i ). Finally, the total sample complexity equals to the

summation of those for every arm in S.

E.3 Proof of Corollary 9

The algorithm can be derived by running the while loop in algorithm NAIVEBESTARM(S, δ) for at most O(ln ε−1) rounds
and then randomly output an arm in Sr.

F MISSING PROOFS IN SECTION 4

F.1 Proof of Lemma 13

According to Lemma 5(a), we have that for any arm i ∈ S, σ̂2
i > ε/2. Also note that l(B̂N ) = 2−N ∈ (ε/4, ε/2]. Therefore,

every arm i belongs to one of the buckets {B̂j |j = 1, 2, . . . , N}.

F.2 Proof of Lemma 14

When |B̂j | is even, half of B̂j is deleted. Hence, we have |Tj | 6 1
2 |B̂j |. When |B̂j | is odd, suppose |B̂j | = 2k + 1 where

k > 1, k
2k+1 = 1

2 (1− 1
2k+1 ) > 1

3 of B̂j is deleted. Hence, we have |Tj | 6 2
3 |B̂j |.

F.3 Proof of Lemma 15

Just note that the number of non-empty buckets (i.e. B̂j’s) is no greater than N = O(ln ε−1).

F.4 Proof of Lemma 16

Let Zaij be the random variable 1{a ∈ Bi ∧ a ∈ B̂j}. We only consider those with |i− j| > 3.



When i 6 N − 2, we have σ2
a > l(BN−2) = 2−N+2 > ε, for any a ∈ Bi. What’s more, for any two arms a ∈ Bi and

b ∈ B̂j , it holds that max{σ2
a,σ̂

2
b}

min{σ2
a,σ̂

2
b}
> 4. By Lemma 5(b), we have

Pr[Zaij = 1] 6
δ

2N2
· 2−20rm 6

δ

N2
· 2−20|i−j|,

where the last inequality is due to rm = d| log2
σ2
a

2−j+1 |e > |i−j|−1. When i > N−1, we have σ2
a 6 u(BN−1) 6 2ε, a ∈ Bi.

What’s more, note that j 6 i− 3 6 N − 3. Hence σ̂2
a > 4σ2

a and σ̂2
a > l(B̂N−3) > 2ε. By Lemma 5(c) and using the same

argument, we can also get Pr[Zaij = 1] 6 δ
N2 · 2−20|i−j|. Above all, we obtain

E[Zaij ] 6 Pr[Zaij = 1] 6
δ

N2
· 2−20|i−j|. (10)

Note that |Bi ∩ B̂j | =
∑
a∈Bi Z

a
ij . By Markov’s Inequality, there is

Pr
[
|Bi ∩ B̂j | > |Bi| · 2−10|i−j| ·N−1

]
= Pr

[∑
a∈Bi

Zaij > |Bi| · 2−10|i−j| ·N−1

]

6
E
[∑

a∈Bi Z
a
ij

]
|Bi| · 2−10|i−j| ·N−1

=

∑
a∈Bi E[Zaij ]

|Bi| · 2−10|i−j| ·N−1
6

δ

N
· 2−10|i−j|,

where the last inequality is due to (10).

Therefore, via a union bound, we obtain

Pr[E ] 6
∑
j

∑
i,|i−j|>3

δ

N
· 2−10|i−j| =

∑
j

δ

N

∑
i,|i−j|>3

2−10|i−j| 6
∑
j

δ/3

N
6 δ/3,

where the last inequality is due to the number of buckets B̂j is no greater than N .

F.5 Proof of Lemma 17

Our goal is to give a constant upper bound on
∑
a∈Tj

σ2
a∑

a∈B̂j
σ2
a

.

Define o(B̂j) to be the set
⋃
i,|i−j|>3(Bi ∩ B̂j) and n(B̂j) to be the set

⋃
i,|i−j|62(Bi ∩ B̂j). It is straightforward to verify

that n(B̂j) ∩ o(B̂j) = ∅ and n(B̂j) ∪ o(B̂j) = B̂j , which means n(B̂j), o(B̂j) is a partition of set B̂j .

Note that

|o(B̂j)| =
∑

i,|i−j|>3

|Bi ∩ B̂j | 6 |B̂j | ·
∑

i,|i−j|>3

2−5|i−j| 6
|B̂j |
1024

, (11)

and |Tj | 6 2
3 |B̂j | by Lemma 14. We have that at least

(
1
3 −

1
1024

)
|B̂j | arms in n(B̂j) are discarded. Also since σ2

a >

maxa∈n(B̂j)
σ2
a · 2−5 for any arm a ∈ n(B̂j), we have

∑
a∈B̂j

σ2
a −

∑
a∈Tj

σ2
a >

(
1

3
− 1

1024

)
n(B̂j) · max

a∈n(B̂j)
σ2
a · 2−5 > 2−5

(
1

3
− 1

1024

)
·
∑

a∈n(B̂j)

σ2
a. (12)

Next, we would like to derive a lower bound on
∑
a∈n(B̂j)

σ2
a. Note that

∑
a∈o(B̂j)

σ2
a =

∑
i,|i−j|>3

∑
a∈Bi∩B̂j

σ2
a 6

∑
i,|i−j|>3

|Bi ∩ B̂j | · u(Bi)

6
∑

i,|i−j|>3

|B̂j | · 2−5|i−j| · u(Bi) = |B̂j | ·
∑

i,|i−j|>3

2−5|i−j| · 2−i+1,



and ∑
a∈n(B̂j)

σ2
a > |n(B̂j)| · l(B̂j+2) =

1023

1024
|B̂j | · 2−j−2,

where the first inequality is due to (11). Therefore, we can get∑
a∈o(B̂j) σ

2
a∑

a∈n(B̂j)
σ2
a

6
|B̂j |

∑
i,|i−j|>3 2−5|i−j| · 2−i+1

1023
1024 |B̂j | · 2−j−2

6 8 · 1024

1023

∑
i,|i−j|>3

2−4|i−j| 6
1

64
,

which leads to
∑
a∈n(B̂j)

σ2
a > 64

65

∑
a∈B̂j σ

2
a.

Plugging this relation between
∑
a∈n(B̂j)

σ2
a and

∑
a∈B̂j σ

2
a into (12), we have∑

a∈B̂j

σ2
a −

∑
a∈Cj

σ2
a > 2−5

(
1

3
− 1

1024

)
64

65

∑
a∈B̂j

σ2
a > 2−7

∑
a∈B̂j

σ2
a.

Therefore, ∑
a∈Tj σ

2
a∑

a∈B̂j σ
2
a

6 1− 2−7 =
127

128
.

F.6 Proof of Corollary 18

According to Lemma 14 and Lemma 17, we know that
∑
a∈Tj

σ2
a∑

a∈B̂j
σ2
a
6 127

128 and |Tj |
|B̂j |

6 2
3 . Hence,∑

a∈Tj (σ
2
a + ε)∑

a∈B̂j (σ
2
a + ε)

=

∑
a∈Tj σ

2
a + |Tj |ε∑

a∈B̂j σ
2
a + |B̂j |ε

6 max

{∑
a∈Tj σ

2
a∑

a∈B̂j σ
2
a

,
|Tj |
|B̂j |

}
6

127

128
,

which concludes the proof of this corollary.

F.7 Proof of Lemma 19

The key part is to prove
∑
a∈B̂j σ

2
a = O(|B̂j |ε). Note that

∑
a∈B̂j σ

2
a =

∑
a∈n(B̂j)

σ2
a +

∑
a∈o(B̂j) σ

2
a. We bound∑

a∈n(B̂j)
σ2
a and

∑
a∈o(B̂j) σ

2
a respectively.

It is easy to see ∑
a∈n(B̂j)

σ2
a 6 |B̂j | · u(Bj−2) = |B̂j | · 2−j+3 6 |B̂j | · 2−N+5 6 16|B̂j |ε. (13)

Also, we have∑
a∈o(B̂j)

σ2
a =

∑
i,i6j−3

∑
a∈Bi∩B̂j

σ2
a 6

∑
i,i6j−3

|Bi ∩ B̂j | · u(Bi)

6
∑

i,i6j−3

|B̂j | · 2−5|i−j| · u(Bi) = |B̂j | ·
∑

i,i6j−3

2−5(j−i) · 2−i+1

= |B̂j | · 2−j+1 ·
∑

i,i6j−3

2−4(j−i) 6 |B̂j | · 2−N+3 ·
∑

i,i6j−3

2−4(j−i) 6
|B̂j |ε
128

. (14)

Hence, by (13) and (14), we have
∑
a∈B̂j σ

2
a 6 17|B̂j |ε.

Therefore, ∑
a∈Tj (σ

2
a + ε)∑

a∈B̂j (σ
2
a + ε)

6

∑
a∈B̂j σ

2
a + |Tj |ε∑

a∈B̂j σ
2
a + |B̂j |ε

6
17|B̂j |ε+ |Tj |ε
17|B̂j |ε+ |B̂j |ε

6
127

128
,

where the second last inequality is due to |Tj | 6 |B̂j | and the last inequality is due to |Tj | 6 2
3 |B̂j | by Lemma 14.



F.8 Proof of Lemma 20

Note that
∑
a∈B̂j σ

2
a =

∑
a∈n(B̂j)

σ2
a +

∑
a∈o(B̂j) σ

2
a.

First, we give an upper bound on
∑
a∈n(B̂j)

σ2
a. Let i∗ be the smallest index such that Bi∗ pollutes B̂j . Hence i∗ 6 N − 1.

Since B̂j is polluted by Bi∗ where |i − j| > 3, we have |Bi∗ ∩ B̂j | > |B̂j | · 2−5|i∗−j|. Also by event E , we have that
|Bi∗ ∩ B̂j | < |Bi∗ | · 2−10|i∗−j| ·N−1. Therefore, it holds that |B̂j | 6 |Bi∗ | · 2−5|i∗−j| ·N−1. Hence,∑

a∈n(B̂j)
σ2
a∑

a∈S σ
2
a

6
|B̂j | · u(Bj−2)∑

a∈Bi∗ σ
2
a

6
|Bi| · 2−5|i∗−j| ·N−1 · 2−j+3

|Bi| · l(Bi∗)
6 2−9 ·N−1. (15)

Then we give an upper bound on
∑
a∈o(B̂j) σ

2
a. For any |i− j| > 3, we have∑

a∈Bi∩B̂j σ
2
a∑

a∈Bi σ
2
a

6
|Bi ∩ B̂j | · u(Bi)

|Bi| · l(Bi)
6 2−10|i−j|+1 ·N−1 6 2−29 ·N−1.

Hence, we have ∑
a∈o(B̂j) σ

2
a∑

a∈S σ
2
a

6

∑
i,|i−j|>3

∑
a∈o(B̂j) σ

2
a∑

i,|i−j|>3

∑
a∈Bj σ

2
a

6 max
i,|i−j|>3

{∑
a∈Bi∩B̂j σ

2
a∑

a∈Bi σ
2
a

}
6 2−29 ·N−1. (16)

Combining (15) and (16), we prove this lemma.

F.9 Proof of Lemma 21

Recall that
∑
a∈B̂j σ

2
a =

∑
a∈n(B̂j)

σ2
a +

∑
a∈o(B̂j) σ

2
a.

For
∑
a∈n(B̂j)

σ2
a, we have

∑
a∈n(B̂j)

σ2
a 6 |B̂j | ·u(Bj−2) 6 |BN | ·2−5|N−j| ·N−1 ·2−j+3 6 |BN | ·2−4|N−j| ·N−1 ·2−N ·8 6 2−10 ·N−1 · |S|ε.

For
∑
a∈o(B̂j) σ

2
a, from the proof of Lemma 20, it holds that

∑
a∈o(B̂j)

σ2
a∑

a∈S σ
2
a

6 2−29 ·N−1. Hence,∑
a∈B̂j σ

2
a∑

a∈S(σ2
a + ε)

=

∑
a∈o(B̂j) σ

2
a +

∑
a∈n(B̂j)

σ2
a∑

a∈S σ
2
a + |S|ε

6 max

{∑
a∈o(B̂j) σ

2
a∑

a∈S σ
2
a

,

∑
a∈n(B̂j)

σ2
a

|S|ε

}
= 2−10 ·N−1.

F.10 Correctness and Sample Complexity of the Procedure GROUPELIM

In this subsection, we prove the second and the third items of Theorem 11. We first introduce a helper lemma as follows.

Lemma F.3 Given that |θ̂i − θi| 6 ∆ for every arm i ∈ S. Let θp1 > θp2 > · · · > θp|S| be the sorted sequence of θi’s.

Also, let θ̂q1 > θ̂q2 > · · · > θ̂q|S| be the sorted sequence of θ̂i’s. Then for every index t ∈ [|S|], we have |θ̂qt − θpt | 6 ∆.

Proof Suppose this lemma does not hold. Let t∗ be the smallest index such |θ̂qt∗ − θpt∗ | > ∆. If θ̂qt∗ < θpt∗ −∆, there
are at least t∗ arms with means in interval [0, θpt∗ ), which is a contradiction since there are only t∗ − 1 arms with means in
that interval. If θ̂qt∗ > θpt∗ + ∆, there are at least n− t∗ + 1 arms with means in interval (θpt∗ , 1], which is a contradiction
since there are only n− t∗ arms with means in that interval. Hence, the assumption is wrong, and this lemma is proved.

The following lemma proves the second item of Theorem 11.



Lemma F.4 With probability at least 1− δ/3, we have |θ(T∪R)[1] − θS[1]
| 6 ε.

Proof According to Lemma 6, with probability at least 1 − δ/(9N), it holds that |θ̂i − θi| 6 ε/2. By Lemma 1 from
Even-Dar et al. [2002], there is Pr[θ(Tj)[1] > θ(B̂j)[1]

− ε] > 1− δ/(3N). Next, via a union bound and Lemma F.3, with
probability at least 1− δ/3, we have

|θT[1]
− θ(

⋃
j,|B̂j |>2 B̂j)[1]

| 6 ε.

Note that S = T ∪R. Hence, this lemma is proved.

Lemma F.6 proves the third item of Theorem 11. Before proceeding to the lemma, we first introduce the following statement.

Lemma F.5 Let Zi denote the sample complexity for MEANEST(i, ε, δ). With probability at least 1 − δ/3,
∑
i∈S Zi is

bounded by O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
.

Proof Define Ti =
(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1). According to Lemma 6 and Lemma 7, we can find a constant c > 0

such that Pr[Zi 6 cTi] > 1− δ and Pr[Zi > jcTi] 6 δ · 2−20j for j > 3. Define Z̃i = (Zi− 3cTi) ·1{Zi > 3cTi}. Hence,
we have Z̃i > 0 and

E[Z̃i] 6
∑
j>1

Pr[Z̃i ∈ ((j − 1)cTi, jcTi]] · jcTi 6
∑
j>1

δ · 2−20j · jcTi =

∑
j>1

2−20j · j

 δcTi 6 δcTi.

Note that Z̃i > Zi − 3cTi. Therefore,
∑
i Z̃i >

∑
i Zi − 3c

∑
i Ti. Further by applying Markov’s Inequality, we can get

Pr

[∑
i

Zi > 6c
∑
i

Ti

]
6 Pr

[∑
i

Z̃i > 3c
∑
i

Ti

]
6

E
[∑

i Z̃i

]
3c
∑
i Ti

=

∑
i E[Z̃i]

3c
∑
i Ti

6
δc
∑
i Ti

3c
∑
i Ti

= δ/3,

which means with probability at least 1− δ/3,
∑
i∈S Zi is bounded by

O

(∑
i

Ti

)
= O

(∑
i∈S

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1)

)
.

Lemma F.6 With probability at least 1− δ/3, the sample complexity of GROUPELIM(S, ε, δ) is

O
(∑

i∈S

(
σ2
i

ε2 + 1
ε

)
(ln δ−1 + ln ln ε−1)

)
.

Proof According to Lemma 5(a), the sample complexity of VAREST(i, δ/(2N2), ε) is bounded by
O( 1

ε ln(δ/(2N2))) = O( 1
ε (ln δ−1 + ln ln ε−1)). Hence, the number of samples used at Line 3 is

O

(
|S|
ε

(ln δ−1 + ln ln ε−1)

)
. (17)

According to Lemma F.5, with probability at least 1− δ/27 > 1− δ/3, the number of samples used at Line 7 is

O

(∑
i∈S

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1)

)
. (18)

Combining (17) and (18), we prove this lemma.



F.11 Analysis of the Procedure ITERELIM

In this subsection, we prove Theorem 12 as follows.

Proof of Theorem 12 Let Fr denote the event that the claim in Theorem 11 holds for GROUPELIM(Tr, εr, δr). Hence,
Pr[Fr] > 1− δr. Let F =

∧+∞
r=1 Fr. Via a union bound, we can see Pr[F ] > 1−

∑+∞
r=1 δr > 1− δ.

Conditioning on event F which happens with probability at least 1− δ, we will show all three items in the theorem statement
hold.

For the first item, note that |Tr+1| 6 2
3 |Tr| by Lemma 14. Hence, there are at most O(ln |T0|) = O(ln |S|) rounds. Suppose

when algorithm ITERELIM(S, ε, δ) terminates, r = r0. Also note that |Rr+1| = O(ln ε−1
r ) by Theorem 11(a). Therefore,

|Rr0 | = O(ln |S| ln ε−1
r0−1) = O((ln |S|)2 ln ε−1). Together with |Tr0 | 6 10, the first item is proved.

For the second item, for each round, we have |θ(Tr+1∪Rr+1)[1] − θ(Tr)[1] | 6 εr by F . Since Rr+1 = Rr ∪ Rr+1, we get
|θ(Tr+1∪Rr+1)[1] − θ(Tr∪Rr)[1] | 6 εr. Therefore, we obtain

|θT[1]
−θS[1]

| = |θ(Tr0∪Rr0 )[1]−θ(T0∪R0)[1] | 6
r0−1∑
r=0

|θ(Tr+1∪Rr+1)[1]−θ(Tr∪Rr)[1] | =
r0−1∑
r=0

εr = ε(1−β)

r0−1∑
r=0

βr 6 ε,

which concludes the proof of the second item.

Now we come to the third item. By F , we have
∑
i∈Tr+1

(σ2
i + εr+1) 6 255

256

∑
i∈Tr (σ

2
i + εr) for r = 0, 1, . . . , r0 − 1.

Therefore, the sample complexity is

r0−1∑
r=0

O

(∑
i∈Tr (σ

2
i + εr)

ε2r
(ln δ−1

r + ln ln ε−1
r )

)

=

r0−1∑
r=0

O

(∑
i∈T0

(σ2
i + ε)

ε2

(
255/256

β2

)r
(ln δ−1

r + ln ln ε−1
r )

)

= O

(∑
i∈S

(
σ2
i

ε2
+

1

ε

)
(ln δ−1 + ln ln ε−1)

)
,

which concludes the proof of the third item.

G MISSING PROOFS IN SECTION 5

G.1 Proof of Lemma 24

Assume the best arm is not eliminated before round r > 1 begins i.e., S[1] ∈ Sr. According to Lemma 6, with probability at
least 1− δr/18, there is

|θ̂ri − θi| 6 εr/2 (19)

for every arm i. Via a union bound, with probability at least 1− δr/9, it holds that

θ̂rar 6 θar + εr/2 6 θS[1]
+ εr/2 6 θ̂rS[1]

+ εr,

where both the first and last inequalities are due to (19), which means the best arm S[1] will not be eliminated during round
r.

Since S[1] ∈ S1, we obtain with probability at least
∏+∞
r=1(1−δr/9) > 1−

∑+∞
r=1 δr/9 = 1−δ/9

∑+∞
r=1 1/(2r2) > 1−δ/9,

M1 holds concluding the proof of this lemma.

G.2 Proof of Lemma 25

Throughout this proof we condition on the eventM1.



ByM1, we know that the best arm is never eliminated. Hence, there is |Sr| > 1 when r 6
⌈
log2 ∆−1

2

⌉
+ 1.

By Lemma 6, with probability at least 1− δr/18, there is

|θ̂rar − θ
r
ar | 6 εr/2 (20)

and with probability at least 1− δr/18, there is

|θ̂ra∗r − θa∗r | 6 εr/2. (21)

By Theorem 10, with probability at least 1− δr/18, there is

|θar − θ(Sr)[1] | 6 εr/2, (22)

and with probability at least 1− δr/18, there is

|θa∗r − θ(Sr\{ar})[1] | 6 εr/2. (23)

Let M′2 denote the event that (20), (21), (22) and (23) hold for all round r. By a union bound, we have Pr[M′2] >
1−

∑+∞
r=1 2δr/9 = 1− 2δ/9

∑+∞
r=1 1/(2r2) > 1− 2δ/9.

Conditioning on eventM′2 which happens with probability at least 1− 2δ/9, we will show thatM2 holds.

First we claim that the algorithm must terminate at round r where r 6 r0 =
⌈
log2 ∆−1

2

⌉
+ 1. Note that when r = r0, we

have εr = εr0 6 ∆2/8. Also byM1, we have (Sr)[1] = S[1]. Then according to (22), we can get θar > θS[1]
− εr/2 > θS[2]

,
which means ar = S[1]. Further by (23), we can also get θa∗r 6 θS[2]

+ εr/2. Hence, when r = r0, it holds that

|θ̂ar − θ̂a∗r | > θ̂ar − θ̂a∗r > θar − θa∗r − εr > θS[1]
− θa∗r − 3/2εr > θS[1]

− θS[2]
− 2εr = ∆2 − 2εr > 2εr,

where the second inequality is due to (20) and (21). This means that the algorithm must terminate when r = r0. Hence, this
claim is proved.

Next we claim that when the algorithm terminates, it holds that ar = S[1]. Suppose not, by (23), we have |θa∗r−θS[1]
| 6 εr/2.

Hence,
|θ̂ar − θ̂a∗r | 6 |θ̂

r
ar − θ

r
ar |+ |θ

r
ar − θS[1]

|+ |θS[1]
− θa∗r |+ |θa∗r − θ̂a∗r | 6 2εr,

which is a contradiction since the only termination criteria is |θ̂ar − θ̂a∗r | > 2εr.

G.3 Proof of Lemma 27

Note that ∆i > 2−s > 2r = 4εr when i ∈ Sr−1,s and r > s.

By Lemma 6, with probability at least 1− δr/18, we have

|θ̂ri − θi| 6 εr/2 (24)

and with probability at least 1− δr/18, we have

|θ̂rar − θar | 6 εr/2. (25)

By Theorem 10, with probability at least 1− δr/18, we have

|θar − θS[1]
| 6 εr/2. (26)

Via a union bound, we can get with probability at least 1− δr/4, it holds that

θ̂ri 6 θi + εr/2 = θ1 −∆i + εr/2 6 θar + εr/2−∆i + εr/2 6 θ̂rar + 3/2εr −∆i < θ̂rar − εr,

where the first inequality is due to (24), the third inequality is due to (26) and the second last inequality is due to (25).



G.4 Proof of Lemma 28

By Lemma 27, the probability that arm i ∈ As is eliminated at round r > s+ 1 is at most

r−1∏
i=s

δi/4 6 (δ1/4)r−s−1 = (δ/8)r−s−1.

Hence, with probability at least 1− (δ/8)r−s−1,
∑+∞
r=1 I

r
i T

r
i is bounded by

r∑
t=1

T ti =
r∑
t=1

O

((
σ2
i

ε2t
+

1

εt

)
(ln δ−1 + ln ln ε−1 + ln r)

)
= O

((
σ2
i

ε2r
+

1

εr

)
(ln δ−1 + ln ln ε−1 + ln r)

)
= O

(
4r−s−1

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i )

)
,

where the last inequality is due to ∆i = Θ(εs).

G.5 Proof of Lemma 29

Let Zi =
∑+∞
r=1 I

r
i T

r
i . Here, we only consider the arms indexed with i 6= S[1]. Define Ti =

((
σ2
i

∆2
i

+ 1
∆i

)
(ln δ−1 +

ln ln ∆−1
i )
)

. According to Lemma 28, we can find a constant c > 0 such that Pr[Zi 6 4jcTi] > 1 − (δ/8)j . Define

Z̃i = (Zi − 4cTi) · 1{Zi > 4cTi}. Hence, we have Z̃i > 0 and

E[Z̃i] 6
∑
j>1

Pr[Z̃i ∈ (4j−1cTi, 4
jcTi]] · 4jcTi 6

∑
j>1

(δ/8)j · 4jcTi =

∑
j>1

(δ/2)j

 cTi 6 δcTi.

Note that Z̃i > Zi − 4cTi which implies
∑
i Z̃i >

∑
i Zi − 4c

∑
i Ti. Applying Markov’s Inequality, we obtain

Pr

[∑
i

Zi > 22c
∑
i

Ti

]
6 Pr

[∑
i

Z̃i > 18c
∑
i

Ti

]
6

E
[∑

i Z̃i

]
18c

∑
i Ti

=

∑
i E[Z̃i]

18c
∑
i Ti

6
δc
∑
i Ti

18c
∑
i Ti

= δ/18.

Therefore, with probability at least 1− δ/18,
∑
i6=S[1]

Zi is bounded by

O

 ∑
i6=S[1]

Ti

 = O

 ∑
i6=S[1]

(
σ2
i

∆2
i

+
1

∆i

)
(ln δ−1 + ln ln ∆−1

i )

 .

G.6 Proof of Lemma 30

ByM2, the algorithm terminates with r = O(ln ∆−1
2 ) = O(ln ∆−1

1 ). Hence,
∑+∞
r=1 I

r
S[1]

T rS[1]
is bounded by

r∑
t=1

O

((
σ2
i

ε2t
+

1

εt

)
(ln δ−1 + ln ln ε−1 + ln r)

)
= O

((
σ2
i

ε2r
+

1

εr

)
(ln δ−1 + ln ln ε−1 + ln r)

)
= O

((
σ2
i

∆2
1

+
1

∆1

)
(ln δ−1 + ln ln ∆−1

1 )

)
,

where the last inequality is due to ∆1 = O(εr).



G.7 Proof of Lemma 31

We analyze the sample complexity in round r as follows. According to Lemma F.5, with probability at least 1 − δr/54,
Line 5 of Algorithm 7 uses O(

∑
i∈Sr (

σ2
i

ε2r
+ 1

εr
)(ln δ−1

r + ln ln ε−1
r )) samples. By Theorem 10 and a union bound, with

probability at least 1− δr/9, Line 6 and Line 7 use O(
∑
i∈Sr (

σ2
i

ε2r
+ 1

εr
)(ln δ−1

r + ln ln ε−1
r )) samples. Via a union bound,

we obtain that with probability at least 1− δr/54− δr/9 > 1− δr/6, the sample complexity of round r is

O

(∑
i∈Sr

(
σ2
i

ε2r
+

1

εr

)
(ln δ−1

r + ln ln ε−1
r )

)
=
∑
i∈S

O(Iri T
r
i ).

Applying a union bound over all rounds, we have that with probability at least 1−
∑+∞
r=1 δr/6 = 1− δ/6

∑+∞
r=1 1/(2r2) >

1− δ/6, for each r, the sample complexity of round r is
∑
i∈S O(Iri T

r
i ).

H THE LOWER BOUND

Before presenting the lower bound, we would like to introduce some notations. Let I = {X1, . . . , Xn} denote the input
instance where Xi represents the random reward when arm i is sampled. With a little abuse of notations, we let I[i] to be the
index of the i-th best arm in I . For any best arm identification algorithm A, and any input instance I , let TA(I) and TA

i (I)
be the random variables denoting the numbers of samples made by A on input I and arm i respectively. When it is clear
from the context, we usually omit the superscript. Let us denote by Iσ2

1 ,...,σ
2
n,∆2,...,∆n

the set of instances where the i-th
best arm has variance σ2

i and for i > 2, the gap between the i-th best arm and the best arm is ∆i. Our goal of this section is
to prove the following theorem.

Theorem H.7 For any σ2
i < 0.1, i ∈ [n] and 0 < ∆i < 0.1, i = 2, . . . , n, there exists an instance I ∈ Iσ2

1 ,...,σ
2
n,∆2,...,∆n

such that for any δ-correct best arm identification algorithm Aδ (δ < 0.1), there is

E[T (I)]∑n
i=1

(
σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

>
1

80
,

where T (I) = TAδ(I) is the number of samples used by Aδ .

To prove the theorem, given {σi}i∈[n] and {∆i}i=2,...,n, we create an instance I ∈ Iσ2
1 ,...,σ

2
n,∆2,...,∆n

. Note that E[T (I)] =∑n
i=1 E[Ti(I)] where Ti(I) = TAδ

i (I) is the number of samples used by Aδ on arm i. We utilize the Change of Distribution
lemma (Lemma I.10) to bound every E[Ti(I)] separately. In order to bound E[T1(I)], we create new instances similar to I
where the best arm in I becomes the second best. To deal with the upper bound of E[Ti(I)] for i > 2, we create different
new instances where the i-th best arm in I becomes the best arm.

More specifically, for any fixed σ2
i < 0.1, i ∈ [n] and 0 < ∆i < 0.1, i = 2, . . . , n, we consider the following instance

I = {X1, . . . , Xn} where

X1 =

{
0.5 + σ1, w.p. 0.5
0.5− σ1, w.p. 0.5

and

Xi =

{
0.5−∆i + σi, w.p. 0.5
0.5−∆i − σi, w.p. 0.5

for i > 2.

It can be easily verified that I ∈ Iσ2
1 ,...,σ

2
n,∆2,...,∆n

. For this instance, we have the following two lemmas (Lemma H.8 and
Lemma H.9), among which Lemma H.8 gives a lower bound on E[T1[I]] and Lemma H.9 gives a lower bound on E[Ti[I]]
for i > 2. We defer the proof of these two lemmas to Section H.1 and Section H.2 respectively.

Lemma H.8
E[T1(I)](

σ2
1

∆2
2

+ 1
∆2

)
ln δ−1

>
1

80
.



Lemma H.9 For any i > 2, it holds that
E[Ti(I)](

σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

>
1

30
.

With these two lemmas, we are ready to prove Theorem H.7.

Proof of Theorem H.7 By Lemma H.8, Lemma H.9, and noting that ∆1 = ∆2, we have

E[T (I)]∑n
i=1

(
σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

> min
i∈[n]

 E[Ti(I)](
σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

 >
1

80
.

H.1 Proof of Lemma H.8

We prove the lemma under two different scenarios.

Case 1: σ2
1 > 5∆2. Since σ1 6 1, we have σ1 > 5∆2, Consider the following instance I ′1 = {X ′1, . . . , X ′n} where

X ′1 =

{
0.5 + σ1, w.p. 0.5−∆2/σ1

0.5− σ1, w.p. 0.5 + ∆2/σ1

and X ′i = Xi for i > 2. Since I[1] = 1 6= 2 = (I ′1)[1], applying Lemma I.10, we have

E[T1[I]] >
1

KL(X1, X ′1)
ln

1

2.4δ

=
2

ln(1− 4∆2
2/σ

2
1)−1

ln
1

2.4δ

>
1− 4∆2

2/σ
2
1

2∆2
2/σ

2
1

ln
1

eδ

>
1

5
· σ

2
1

∆2
2

ln δ−1,

where the second last inequality is due to ln(1 + x) 6 x for x > −1 and the last inequality is due to ∆2/σ1 6 0.2 and
δ < 0.1. Hence, there is

E[T1[I]](
σ2
1

∆2
2

+ 1
∆2

)
ln δ−1

>
E[T1[I]]

6
5 ·

σ2
1

∆2
2

ln δ−1
>

1
5 ·

σ2
1

∆2
2

ln δ−1

6
5 ·

σ2
1

∆2
2

ln δ−1
=

1

6
, (27)

where the first inequality is due to σ2
1 > 5∆2.

Case 2: σ2
1 < 5∆2. Consider the following instance I ′′1 = {X ′′1 , . . . , X ′′n} where

X ′′1 =

 0.5 + σ1, w.p. 0.5− 2∆2

0.5− σ1, w.p. 0.5− 2∆2

0, w.p. 4∆2

,

and X ′′i = Xi for i > 2. Since I[1] = 1 6= 2 = (I ′′1 )[1], applying Lemma I.10, we have

E[T1[I]] >
1

KL(X1, X ′′1 )
ln

1

2.4δ

=
1

ln(1− 4∆2)−1
ln

1

2.4δ

>
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4∆2
ln

1

eδ

>
3

40
· 1

∆2
ln δ−1,



where the second last inequality is due to ln(1 + x) 6 x for x > −1 and the last inequality is due to ∆2 6 0.1 and δ < 0.1.
Hence, there is

E[T1[I]](
σ2
1

∆2
2

+ 1
∆2

)
ln δ−1

>
E[T1[I]]

6 · 1
∆2

ln δ−1
>

3
40 ·

1
∆2

ln δ−1

6 · 1
∆2

ln δ−1
=

1

80
, (28)

where the first inequality is due to σ2
1 < 5∆2.

Combining (27) and (28), we prove this lemma.

H.2 Proof of Lemma H.9

The idea is the same as that used for bounding E[T1[I]]. However, we need to construct slightly different instances.

Let i be any fixed integer satisfying 2 6 i 6 n. Similarly, we prove the lemma under two different scenarios.

Case 1: σ2
i > 5∆i. Since σi 6 1, we have σi > 5∆i. Consider the following instance I ′i = {X ′1, . . . , X ′n} where

X ′i =

{
0.5−∆i + σi, w.p. 0.5 + ∆i/σi
0.5−∆i − σi, w.p. 0.5−∆i/σi

and X ′j = Xj for j 6= i. Since I[1] = 1 6= i = (I ′i)[1], applying Lemma I.10, we get

E[Ti[I]] >
1

KL(Xi, X ′i)
ln
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ln δ−1,

where the second last inequality is due to ln(1 + x) 6 x for x > −1 and the last inequality is due to ∆i/σi 6 0.2 and
δ < 0.1. Hence, there is

E[Ti[I]](
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∆2
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)
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>
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6
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, (29)

where the first inequality is due to σ2
i > 5∆i.

Case 2: σ2
i < 5∆i. Consider the following instance I ′′i = {X ′′1 , . . . , X ′′n} where

X ′′i =

 1, w.p. 2∆i

0.5−∆i + σi, w.p. 0.5−∆i

0.5−∆i − σi, w.p. 0.5−∆i

and X ′′j = Xj for j 6= i. Since I[1] = 1 6= i = (I ′′i )[1], applying Lemma I.10, we have

E[Ti(I)] >
1

KL(Xi, X ′′i )
ln

1

2.4δ

=
1
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ln
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>
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where the second last inequality is due to ln(1 + x) 6 x for x > −1 and the last inequality is due to ∆i 6 0.1 and δ < 0.1.
Hence, there is

E[Ti(I)](
σ2
i

∆2
i

+ 1
∆i

)
ln δ−1

>
E[Ti(I)]

6 · 1
∆i

ln δ−1
>

1
5 ·

1
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ln δ−1

6 · 1
∆i

ln δ−1
=

1

30
, (30)

where the first inequality is due to σ2
i < 5∆i.

Combining (29) and (30), we prove this lemma.

I CHANGE OF DISTRIBUTION LEMMA

Lemma I.10 (A special case of Lemma 1 in Kaufmann et al. [2016]) Given two multi-armed bandit instances I =
{X1, . . . , Xn} and I ′ = {X ′1, . . . , X ′n} such that I[1] 6= I ′[1], for any δ-correct algorithm A, it holds that

n∑
i=1

E[TA
i (I)]KL(Xi, X

′
i) > ln

1

2.4δ
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