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Abstract

We present a novel mirror segmentation method that
leverages depth estimates from ToF-based cameras as an
additional cue to disambiguate challenging cases where the
contrast or relation in RGB colors between the mirror re-
flection and the surrounding scene is subtle. A key observa-
tion is that ToF depth estimates do not report the true depth
of the mirror surface, but instead return the total length of
the reflected light paths, thereby creating obvious depth dis-
continuities at the mirror boundaries. To exploit depth in-
formation in mirror segmentation, we first construct a large-
scale RGB-D mirror segmentation dataset, which we subse-
quently employ to train a novel depth-aware mirror segmen-
tation framework. Our mirror segmentation framework first
locates the mirrors based on color and depth discontinuities
and correlations. Next, our model further refines the mirror
boundaries through contextual contrast taking into account
both color and depth information. We extensively validate
our depth-aware mirror segmentation method and demon-
strate that our model outperforms state-of-the-art RGB and
RGB-D based methods for mirror segmentation. Experi-
mental results also show that depth is a powerful cue for
mirror segmentation.

1. Introduction
Mirrors are commonly present in human-made scenes,

e.g., as personal grooming aids, to create the illusion of
enlarged room size, or to enhance safety to enable look-
ing around corners or behind the viewer. Yet, mirrors con-
fuse many vision systems as they are unable to distinguish
real from reflected scenes. Hence, the ability to segment
mirrors is essential for better scene understanding and to
improve practical applications. Automatic mirror segmen-
tation is a challenging task as mirrors do not exhibit rel-
atively fixed patterns or salient features, making it funda-
mentally different from other objects/saliency based seg-
mentation/detection problems [18, 37, 59, 64]. Early mir-
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Figure 1. Existing mirror segmentation methods such as Mirror-
Net [55] and PMD [25] often fail when there is a large variation
in contextual contrast/correlation inside the mirror (1st row, blue
arrow), large variation outside the mirror in a mirror-like region
(2nd row, red arrow), or when the differences are too subtle (3rd
row). In contrast, our depth-aware solution is able to accurately
segment the mirrors.

ror segmentation solutions relied on user interaction [2] or
specialized hardware [50]. Recently, Yang et al. [55] in-
troduced MirrorNet, a convolutional neural network, that
leverages contextual contrasted features to detect content
discontinuities inside and outside the mirror. Lin et al. [25]
further boost performance by looking at relation and edge
cues. However, these learning based methods often fail
when the mirror or mirror-like regions exhibit large vari-
ations or when the contextual contrast and correlations are
too subtle (Figure 1).

Just as 3D perception plays an important role in scene
understanding in the human visual system [7], so can depth
information help in computer vision for mirror segmenta-
tion. A key observation is that mirrors yield an appar-
ent depth that is inconsistent with their true depth and the
depth of the surrounding environment; the observed appar-
ent depth is the depth of the reflected scene. As a result,
this creates obvious depth discontinuities at mirror bound-
aries (e.g., Figure 1, 2nd column), providing a strong cue
for delineating mirrors.

To leverage depth information for mirror segmentation
and to stimulate further research in depth-aware mirror seg-
mentation, we present the first RGB-D mirror segmentation
dataset of 3, 049 exemplars. To promote diversity and qual-
ity, we curate our RGB-D mirror segmentation dataset from
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four widely used publicly available datasets, labeled and
segmented by professional annotators. In addition, to ef-
ficiently leveraging depth information for mirror segmenta-
tion, we design a novel positioning and delineating network
(PDNet). As the name suggests, PDNet consists of two key
modules: (i) a positioning module (PM) that detects and
locates the mirror by exploring global and local discontinu-
ity and correlation cues in both RGB and depth, and (ii) a
delineating module (DM) that captures localized disconti-
nuities by performing a local contextual contrast, again in
both RGB and depth, for refining the mirror boundaries.
We introduce a novel dynamic weighting scheme to fuse the
RGB and depth correlations in the PM to address variability
in measurement noise and depth ranges.

We perform extensive validation experiments to demon-
strate the efficacy of our approach and demonstrate that
depth provides a powerful and complimenting cue for mir-
ror segmentation. In summary, our contributions are:

1. the first solution to consider both RGB and depth for
mirror segmentation;

2. a new RGB-D mirror segmentation dataset to stimulate
research using depth in mirror segmentation;

3. a novel depth-aware mirror segmentation network that
leverages both RGB and depth discontinuities and cor-
relations inside and outside the mirror; and

4. a novel dynamic weighting scheme to fuse RGB and
depth correlations.

2. Related Work
Semantic Segmentation classifies and assigns a seman-

tic label to each pixel in an image. Recent semantic seg-
mentation methods [3, 14, 18, 54, 56, 57, 64, 65] rely on
fully convolutional networks (FCNs) [30] to model the con-
textual information. In addition to contextual information, a
number of recent methods have leveraged depth information
to complement the RGB semantic segmentation by treating
depth as an additional input source to recalibrate, explicitly
or implicitly, RGB features [5, 6, 24, 42] or by regarding the
depth data as an additional supervised signal in multi-task
learning [52, 62]. However, treating mirrors as an additional
semantic category fails to produce satisfactory results as the
visible mirror content is further semantically classified [55].
In this paper, we also leverage depth and contextual infor-
mation, but employ a novel model specially designed for
accurate mirror segmentation.

Salient Object Detection (SOD) identifies the most vi-
sually distinctive objects/regions in an image of a scene.
Current state-of-the-art solutions employ convolutional
neural networks (CNNs) to exploit different RGB cues
and strategies such as multi-level feature aggregation [22,
17, 60, 67, 37, 33], recurrent and iterative learning strate-
gies [61, 10, 47, 49], attention mechanisms [27, 4, 51], and
edge/boundary cues [43, 26, 66]. Despite great progress,

these RGB-based SOD methods are less effective in sce-
narios with cluttered backgrounds, low-intensity environ-
ments, or varying lighting conditions. In these situations,
depth cues can provide complementary spatially rich infor-
mation [39]. CNN-based RGB-D SOD approaches can be
categorized into early fusion methods that regard depth as
an additional channel of input [44], late fusion methods that
process RGB and depth by two separate backbone networks
before fusing for final prediction [12], and the recently pop-
ular middle fusion methods that fuse intermediate depth
and RGB features [40, 59, 58, 36, 13, 28]. Our approach
falls in this last category. SOD methods cannot directly ad-
dress mirror segmentation due to a lack of salient features.
More importantly, depth features can significantly differ in-
side a mirror region while conversely those of salient ob-
ject regions are typically the same. Consequently, leverag-
ing RGB-D information for mirror segmentation requires a
carefully designed solution to fully take advantage of both
RGB and depth cues.

Mirror Segmentation detects and segments mirror re-
gions in an image of a scene. Early work relied on user
interaction [2] or specialized hardware [50]. Recently,
Yang et al. [55] introduced MirrorNet, a CNN-based solu-
tion that leverages contextual contrast cues in an RGB im-
age to segment mirrors. Lin et al. [25] further exploit rela-
tion and edge cues to improve mirror segmentation. How-
ever, for certain view angles, contextual contrast and cor-
relation inside and outside the mirror regions become too
subtle, resulting in a significant degradation in accuracy. In-
stead of further optimizing segmentation using only RGB
cues, our approach leverages an additional depth modality
to better identify contextual discontinuities and correlations.

3. RGB-D Mirror Segmentation Dataset
Our first contribution is the introduction of a new RGB-D

mirror segmentation dataset, named RGBD-Mirror, which
contains 3, 049 RGB images and corresponding depth
maps. Instead of capturing the RGB-D images ourselves,
we compose the RGBD-Mirror from selected exemplars
from four popular datasets (i.e., Matterport3D [2], SUN-
RGBD [45], ScanNet [8], and 2D3DS [1]) to ensure a wide
diversity and broad coverage; see Table 1 for a summary and
Figure 2(a) for representative examples. Each selected im-
age contains at least one mirror region, and the pixel-level
accurate reference mirror-masks are created by professional
annotators. To the best of our knowledge, RGBD-Mirror is
the first RGB-D mirror segmentation dataset.

Mirror Location Statistics: a wide distribution of mir-
ror locations and sizes in the dataset is necessary to avoid
memorization of the mirror-location instead of learning mir-
ror segmentation. Figure 2(b) plots the probability that a
pixel is inside a mirror region. As can be seen, the spatial
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Figure 2. RGBD-Mirror dataset examples and statistics.

Dataset Images Train Test Scenes
Matterport3D [2] 1,789 1,153 636 78
SUNRGBD [45] 576 291 285 17

ScanNet [8] 593 484 109 102
2D3DS [1] 91 72 19 5

Total 3,049 2,000 1,049 202
Table 1. Composition of the RGBD-Mirror dataset.

distribution is not center-biased, and the distributions are
consistent between testing and training subsets as well as
with the whole dataset.

Color Contrast Statistics: Ideally, color contrast be-
tween regions inside and outside the mirror should be small,
otherwise salient color features can bias the mirror segmen-
tation. Figure 2(c) shows the color contrast distributions,
measured as a χ2 distance between the RGB histograms
inside and outside the mirror regions [23, 11, 55], for our
RGBD-Mirror dataset and other selected datasets (i.e., the
shadow detection dataset SBU [46], the saliency detec-
tion dataset DUT-OMRON [53], the glass detection dataset
GDD [34], and the mirror segmentation datasets MSD [55]
and PMD [25]). From this, we can see that our RGBD-
Mirror has the lowest color contrast of these datasets.

4. Methodology

Our approach builds on two key observations of mir-
rors. First, mirrors introduce a discontinuity in semantics
and in depth. The former can be detected in the RGB do-
main and has been exploited by prior mirror segmentation
work [25, 55]. The latter, depth discontinuity, is a result
of depth sensors reporting the depth of the reflected scene
rather than the physical depth of the mirror surface. Second,
mirrors also induce a correlation between inside and out-
side the mirror regions. Besides semantic correlation that
can be efficiently detected in the RGB domain, there is also
a depth correlation since the apparent depth of the reflected
scene is typically deeper than the true depth of the mirror
and its surroundings. We design our Positioning and Delin-
eating Network (PDNet) to exploit discontinuity and corre-
lation in both RGB and depth to efficiently segment mir-
rors. PDNet (illustrated in Figure 3(a)) feeds an RGB-D
image through two different multi-level feature extractors

to obtain RGB and depth features. Depth features are ex-
tracted by 5 cascaded 3×3 convolutional blocks (with 8-16-
32-64-128 channel configuration) followed by max pooling.
We choose ResNet-50 [16] for extracting the RGB features.
For computational efficiency, the extracted RGB features
are passed through an additional channel reduction convolu-
tion, before feeding them, together with the depth features,
into either a positioning module (b) or a delineating module
(c). The positioning module (PM) estimates the mirror’s
initial location using both global and local features in both
RGB and depth. The delineating module (DM) refines the
mirror boundary based on local discontinuity and the fea-
tures from the previous level. The prediction from the last
DM is used as the final mirror segmentation.

4.1. Positioning Module

Given the highest level RGB and depth features, the PM
estimates the initial mirror location, as well as correspond-
ing features for guiding the subsequent DM modules, based
on global and local discontinuity and correlation cues in
both RGB and depth. Training of the PM is supervised by
ground truth mirror masks. Our PM module (Figure 3(b))
consists of two subbranches: a Discontinuity Perception
Branch (DPB) and a Correlation Perception Branch (CPB).

The Discontinuity Perception Branch extracts and
fuses discontinuity features for RGB (Dr), depth (Dd), and
RGB+depth (Drd). Each of these features (we will drop the
r, d, and rd superscript for clarity) is extracted by a com-
mon discontinuity block, and is the element-wise addition
of local and global discontinuity features, Dl and Dg , re-
spectively (i.e. D = Dl ⊕Dg). Given a feature F , the local
discontinuity featureDl is defined as the difference between
a local region and its surroundings:

Dl = R(N (fl(F,Θl)− fs(F,Θs))), (1)

where fl, with corresponding parameters Θl, extracts fea-
tures from a local area using a convolution with a kernel size
of 3 and a dilation rate of 1, followed by a Batch Normal-
ization (BN) and a ReLU activation function. fs, with cor-
responding parameters Θs, extracts features from the sur-
roundings using a convolution with kernel size 5 and a di-
lation rate of 2, followed by BN and ReLU. While the local
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Figure 3. (a) Overview of our positioning and delineating network (PDNet) and its two main building blocks: (b) a positioning module
(PM) and (c) a delineating module (DM).

discontinuity feature captures the differences between local
regions and their surroundings, under certain viewpoints,
the reflected mirror image has little overlap with its sur-
roundings. This case is represented by the global discon-
tinuity feature:

Dg = R(N (fl(F,Θl)− fg(G(F ),Θg))), (2)

where G is a global average pooling operation, and fg (with
corresponding parameters Θg) is a 1 × 1 convolution fol-
lowed by BN and ReLU. The discontinuity block is applied
to RGB, depth, and RGB+depth, and the resulting features
Dr, Dd andDrd are fused to produce the final output of the
DPB:

DDPB = R(N (ψ3×3([D
r, Dd, Drd]))), (3)

where [·] denotes the concatenation operation over the chan-
nel dimension, and ψt×t represents a convolution with a
kernel size of t.

The Correlation Perception Branch models correla-
tions inside and outside the mirror. The CPB is inspired by
the non-local self-attention model [48] augmented with a
dynamic weighting to robustly fuse the RGB and depth cor-
relations. The regular non-local self-attention model [48] is
defined as:

Y = g(F )κ(F ), (4)

where κ(F ) = softmax(θ(F )Tϕ(F )). g, θ, and ϕ are learn-
able linear embedding functions, and F is the feature ex-
tracted from some input domain. In our case, both RGB
and depth can provide such features that yield non-local
self-attention cues. Simply combining the RGB and depth
features, ignores cases where one of the domains does not
exhibit meaningful correlations. For example, the RGB fea-
tures do not provide meaningful information if there is little
or no overlap between the reflected image and the mirror’s
surroundings, whereas the depth information might still ex-
hibit strong cues. Similarly, the depth information captured
by a depth sensor may be noisier than the RGB informa-
tion, degrading the relative quality of potential depth cor-
relations. To resolve this issue, we introduce a dynamic
weighting that adjusts the importance of an input domain
during fusion based on its quality:

Y = g(F rd)(ακ(F r) + βκ(F d)), (5)

F rd = R(N (ψ3×3(F
r©F d))), (6)

g(F ) = ψ1×1(F ), (7)
θ(F ) = ψ1×1(F ), ϕ(F ) = ψ1×1(F ), (8)

α =
eµ(F

r)

eµ(F r) + eµ(Fd)
, β = 1− α, (9)

µ(F ) = ψ1×1(R(N (ψ1×1(G(F ))))), (10)

where F r and F d are the input RGB and depth features, and



© is the channel-wise concatenation operator. Finally, to
enhance fault tolerance, we use a residual connection with
a learnable scale parameter γ: CCPB = γY ⊕ F rd.

4.2. Delineating Module

Given high-level mirror detection features, either from
the PM or the previous level’s DM, the DM refines the
mirror boundaries (Figure 3(c)). The core of the DM is a
delineating block that takes advantage of local discontinu-
ities in both RGB and depth to delineate the mirror bound-
aries. Since such refinements should only occur in the re-
gion around the mirror, we leverage higher-level features
from the previous module (either PM or DM) as a guide to
narrow down the potential refinement areas. Given a feature
F and corresponding higher-level feature Fh, we compute
a feature T as:

T = R(N (fl(F ⊕ Fhg,Θl)− fs(F ⊕ Fhg,Θs))), (11)

Fhg = U2(R(N (ψ3×3(F
h)))), (12)

where U2 is a bilinear upscaling (by a factor 2). Similar
as before, we apply the delineating block to RGB, depth,
and RGB+depth, and fuse the features similar as in Eq. 3 to
obtain the final output feature TDM .

4.3. Loss Function

The PM and three DMs (Figure 3(a)) are trained by su-
pervision. Specifically, we compute the loss between the
reference G and mirror segmentation map S predicted ac-
cording to each of the features generated by the four mod-
ules as: S = ψ3×3(X), where X is the output feature from
either the PM or DM:

L = wbℓbce(S,G) +wiℓiou(S,G) +weℓedge(S,G), (13)

where ℓbce is a binary cross-entropy (BCE) loss [9], ℓiou is a
map-level IoU loss [32], ℓedge is a patch-level edge preser-
vation loss [67], and wb = 1, wi = 1, and we = 10 are the
corresponding weights for each of the three loss terms.

The BCE loss is the most widely used loss in the
foreground-background segmentation tasks, which calcu-
lates the loss for each foreground and background pixel
equally and independently. In many cases, the number of
background pixels outnumbers the foreground pixels, re-
sulting in biased loss. To compensate for such cases, we
also include a map-level IoU loss. Additionally, we also use
a patch-level edge preservation loss to assign more attention
to the foreground boundary.

The final loss function is then defined as:

Loverall = Lpm + 2Ldm3 + 3Ldm2 + 4Ldm1. (14)

5. Experiments

5.1. Experimental Setup

We implemented PDNet in PyTorch [38] and use the
stochastic gradient descent (SGD) optimizer for training
with momentum set to 0.9, weight decay equal to 5× 10−4,
batch size of 18, and using the poly strategy [29] (basic
learning rate of 0.001 and power equals 0.9). Training takes
around 12 hours for 600 epochs on an 8-core i7-9700K 3.6
GHZ CPU, 64 GB RAM, and an NVIDIA GeForce RTX
2080 Ti GPU; the same configuration is used to execute all
experiments in this paper. We use the RGBD-Mirror dataset
for training augmented with random horizontal flipping and
multi-scale resizing. Input images are resized to 416× 416
before inference, and the resulting mirror segmentation is
resized back to the original size of the input image; we use
bilinear interpolation for both resizing operations.

5.2. Comparison to Prior Work

To demonstrate the effectiveness of PDNet, we exten-
sively compare our method against 27 related SOTA ap-
proaches (Table 2): 7 semantic segmentation methods, 10
salient object detection methods, 8 RGB-D saliency detec-
tion methods, and 2 RGB mirror segmentation methods.
All methods are retrained and tested on our RGBD-Mirror
dataset. We quantitatively validate each method using 4 dif-
ferent metrics: intersection over union (IoU ), weighted F-
measure (Fw

β ) [31], mean absolute error (MAE), and bal-
ance error rate (BER) [35]. Note that for IoU and Fw

β

higher is better. In contrast, for MAE and BER lower is
better. From the results in Table 2, we can see that PDNet
outperforms all competing SOTA methods by a large mar-
gin on all evaluation metrics.

Figure 4 qualitatively compares PDNet with two prior
mirror segmentation methods (i.e., MirrorNet [55] and
PMD [25]) as well as the best approach from each of the
three other categories (i.e., semantic segmentation method
CCNet [18], salient object detection method F3Net [49],
and RGB-D saliency detection method BBS-Net [13]). The
first three rows show segmentation examples of small mir-
rors. In the first two examples, only PDNet accurately seg-
ments the mirror regions behind the lamp. In the third ex-
ample, all other methods (except BBS-Net [13]) are con-
fused by the painting in the top-left. Thanks to the depth
correlation cues, only PDNet succeeds in a pixel-accurate
segmentation of the mirror. PDNet can also correctly han-
dle large mirrors (row 4-6) and multiple mirrors (row 7-9)
by virtue of taking both global discontinuity and correlation
relations inside and outside the mirror regions into account.
The examples in the 10th and 11th rows show challenging
cases with similar boundaries and similar appearance, re-
spectively. While the regions are similar in RGB, PDNet
benefits from the additional depth cue to correctly disam-



Methods Pub. Year IoU↑ Fw
β ↑ MAE↓ BER↓

Statistics - 19.25 0.190 0.538 37.85
ICNet◦ [63] ECCV’18 37.43 0.464 0.122 28.59
PSPNet◦ [64] CVPR’17 61.83 0.686 0.056 17.42
DenseASPP◦ [54] CVPR’18 63.50 0.700 0.050 16.27
BiSeNet◦ [56] ECCV’18 62.36 0.694 0.062 15.90
PSANet◦ [65] ECCV’18 56.98 0.643 0.057 20.72
DANet◦ [14] CVPR’19 63.81 0.708 0.057 16.48
CCNet◦ [18] ICCV’19 65.09 0.715 0.055 14.92
DSS△ [17] TPAMI’19 57.58 0.614 0.087 18.60
PiCANet△ [27] CVPR’18 64.80 0.682 0.064 14.99
RAS△ [4] ECCV’18 57.96 0.650 0.080 18.23
R3Net△† [10] IJCAI’18 53.09 0.584 0.073 21.96
CPD△ [51] CVPR’19 60.41 0.639 0.080 17.61
PoolNet△ [26] CVPR’19 62.99 0.677 0.074 15.13
BASNet△ [43] CVPR’19 64.01 0.689 0.072 15.77
EGNet△ [66] ICCV’19 60.11 0.657 0.077 16.38
F3Net△ [49] AAAI’20 65.15 0.707 0.069 14.25
MINet-R△ [37] CVPR’20 60.25 0.669 0.077 16.63
S2MA▽ [28] CVPR’20 63.66 0.677 0.071 15.09
SSF▽ [59] CVPR’20 52.83 0.599 0.097 19.54
A2dele▽ [41] CVPR’20 53.61 0.614 0.087 19.64
CoNet▽ [19] ECCV’20 50.96 0.576 0.120 17.23
JL-DCF▽ [15] CVPR’20 68.21 0.727 0.065 13.52
HDFNet▽ [36] ECCV’20 47.48 0.549 0.095 24.70
ATSA▽ [58] ECCV’20 60.03 0.664 0.090 14.79
BBS-Net▽ [13] ECCV’20 71.22 0.736 0.059 11.77
MirrorNet⋆† [55] ICCV’19 68.37 0.723 0.062 8.66
PMD⋆† [25] CVPR’20 72.27 0.775 0.054 10.71
PDNet w/o D⋆ Ours 73.57 0.783 0.053 9.26
PDNet⋆ Ours 77.77 0.825 0.042 7.77

Table 2. Quantitative performance of state-of-the-art semantic
segmentation methods (marked by the ◦ symbol), salient object de-
tection methods (△), RGB-D saliency detection methods (▽), and
RGB mirror segmentation methods (⋆) retrained on the RGBD-
Mirror training set and compared over the RGBD-Mirror testing
set. Methods that require an additional CRF [20] post-processing
step are marked with the † symbol. We also include a threshold
method based on the location statistics of the mirror masks in the
training set. The first, second, and third best results are highlighted
in red, green, and blue, respectively. Our method achieves the
best performance over all four evaluation metrics.

biguate mirror from non-mirror regions.

5.3. Ablation Study

We conduct an extensive ablation study to validate the
effectiveness of each key component in PDNet. Table 3 and
Figure 5 summarize our findings.
Impact of Different Feature Extractors. PDNet uses rel-
atively simple backbone feature extractors (i.e., ResNet-50
[16] for RGB and cascading 3 × 3 convolutional layers for
depth). In the first ablation study, we investigate the per-
formance of more advanced feature extractors. From Ta-
ble 3(A-E ), we observe that: (i) more advanced backbone
structures for RGB does not boost performance (i.e., B is
lower than O); and (ii) stronger depth feature extractors can
further boost the performance (i.e., D and E are higher than
O), indicating that depth information is essential for achiev-
ing high quality results. Furthermore, taking computational

Networks RGBD-Mirror Testing Set
IoU↑ Fw

β ↑ MAE↓ BER↓
MirrorNet⋆† [55] 68.37 0.723 0.062 8.66
PMD⋆† [25] 72.27 0.775 0.054 10.71

A RFE w/ VGG-16 75.31 0.805 0.052 9.01
B RFE w/ ResNeXt-101 77.25 0.817 0.045 7.80
C DFE w/ 64-64-64-64-64 76.00 0.809 0.049 7.95
D DFE w/ VGG-16 78.87 0.836 0.044 7.55
E DFE w/ ResNeXt-101 79.31 0.837 0.041 7.31
F PDNet w/o D 73.57 0.783 0.053 9.26
G PDNet w/ RGB+Gray 67.14 0.719 0.064 11.65
H PDNet w/ RGB+Black 65.98 0.724 0.059 15.60
I B 70.08 0.764 0.058 11.68
J B + DPB 73.81 0.794 0.052 9.91
K B + CPB 72.48 0.774 0.058 8.74
L B + PM 75.54 0.807 0.047 8.61
M B + DM 73.60 0.789 0.052 10.47
N PDNet w/o DW 76.74 0.816 0.047 8.48
O PDNet 77.77 0.825 0.042 7.77

Table 3. Quantitative ablation results indicate that each compo-
nent in PDNet contributes to the overall performance. ‘RFE’ and
‘DFE’ denote the feature extractor for the RGB and depth map
respectively. ‘B’ denotes our base network, ‘DPB’ and ‘CPB’
are the discontinuity and correlation perception block respectively,
‘PM’ and ‘DM’ represent the positioning and delineating module
respectively, and ‘DW’ is the dynamic weighting.

efficiency into account (Table 4), PDNet’s configuration of-
fers a good balance between effectiveness and efficiency.
Benefits of Depth Cues. To better understand the bene-
fit of including depth cues, we conduct the following three
experiments: (i) retrain PDNet without including the depth
branch from scratch and test without depth information (Ta-
ble 3 F and Figure 5 3rd column); (ii) employ the regular
depth-aware PDNet but at testing replace the depth with the
grayscale version of its corresponding RGB images (Table 3
G and Figure 5 4th column); and (iii) similar to the previous
experiment but replacing the depth map with a pure black
image (Table 3 H and Figure 5 5th column). Compared
to the original PDNet (Table 3 O and the penultimate col-
umn in Figure 5), none the variants achieves the same qual-
ity. Noteworthy is that the first variant outperforms (also
included in Table 2 as ‘PDNet w/o D’) both MirrorNet [55]
(except for BER) and PMD [25].
Effectiveness of the Positioning and Delineating Mod-
ules. We first define and train a base model ‘B’ which is
based on PDNet but without both the PM and DM. We re-
place the PM with a simple fusing scheme (Eq. 6). Similarly
for the DM, we fuse RGB and depth features (Eq. 6) and
element-wise add higher-level guidance features upsampled
according to Eq. 12. The performance of the base model
‘B’ is shown in Table 3 I . Noteworthy is that the base
model can achieve comparable results to MirrorNet [55];
again demonstrating the importance of depth information
for the mirror segmentation. Starting from the base model,
we gradually re-introduce the DPB, CPB, full PM, and full
DM (Table 3 J -M ). From this we can conclude that: (i)
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Figure 4. Visual comparison of PDNet against state-of-the-art segmentation methods retrained on the RGBD-Mirror dataset. PDNet
outperforms competing methods on scenes with small mirrors (rows 1-3), large mirrors (rows 4-6), and multiple mirrors (rows 7-9), and
challenging scenes with similar boundaries and/or appearance (rows 10-12).

DPB and CPB can boost performance, demonstrating the
effectiveness of the two blocks in the PM; (ii) adding DPB
improves results more than adding CPB, indicating that dis-
continuity plays a more important role than correlation for
locating a mirror; (iii) adding the full PM achieves better
results than both ‘B+DPB’ and ‘B+CPB’, indicating that
discontinuity and correlation cues complement each other
in locating a mirror; (iv) adding the PM on ‘B+DM’ (i.e.,
‘PDNet’) further improves performance, indicating the ef-
fectiveness of the PM; (v) introducing the DM further en-

hances mirror segmentation compared to the base model;
and (vi) adding the DM on ‘B+PM’ (i.e., ‘PDNet’) gains
a 2.23% and 1.80% performance improvement in IoU and
Fw
β , respectively. This shows that the DM indeed helps to

refine the mirror boundaries. This is further corroborated by
the qualitative comparison between ‘B+PM’ and ‘PDNet’ in
Figure 5 (top).

Effectiveness of Dynamic Weighting. A key contribution
of our approach is the dynamic weighting to fuse RGB
and depth correlations in the PM. To demonstrate its im-
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Figure 5. Visual ablation comparison of different PDNet variants.

Networks Input Size FLOPs (G) Params (M) Time (ms)
CCNet [18] 480 × 480 248.579 66.549 11.2
BASNet [43] 256 × 256 127.444 87.060 12.2
F3Net [49] 352 × 352 16.429 25.537 10.7
MINet-R [37] 320 × 320 87.032 162.378 12.7
S2MA [28] 256 × 256 141.064 86.645 13.4
HDFNet [36] 320 × 320 108.680 54.773 27.8
BBS-Net [13] 352 × 352 31.140 49.769 29.2
MirrorNet† [55] 384 × 384 77.656 121.767 32.1(+607.1)
PMD† [25] 384 × 384 101.459 147.661 62.7(+607.1)
DFE w/ VGG-16 416 × 416 188.710 216.403 12.9
DFE w/ ResNeXt-101 416 × 416 104.964 201.769 26.8
PDNet (Ours) 416 × 416 41.059 80.541 12.0

Table 4. Comparison of the computational efficiency of different
methods. For each method, we list FLOPs, number of parameters,
and inference time. For MirrorNet [55] and PDM [25], we report
the CRF [20] post-processing time in Cyan.

portance, we remove the dynamic weighting scheme and
retrain the modified model (Table 3 N ). Compared to
the original PDNet (i.e. row O), the modification degrades
performance. The two examples shown in Figure 5 have
β = 0.49 and β = 0.66 assigned by the dynamic weighting
respectively. Hence, in the first case, more weight is given
to the RGB correlations, whereas the second example puts
more weight on the depth correlations. Compared to the
equally assigned weight (i.e. ‘PDNet w/o DW’), dynamical
weighting improves performance dramatically.

5.4. Computational Cost

Our PDNet is an end-to-end process that does not need
any post-processing, unlike MirrorNet [55] and PMD [25]
which require post-processing by a computationally costly
fully connected conditional random field (CRF) [21]. Ta-
ble 4 compares the superior computational efficiency of
PDNet against MirrorNet [55] and PMD [25] in terms of
FLOPs (in G), model parameters (in M), and inference
time (in ms). Furthermore, the computational efficiency of
PDNet also performs similarly or better to other semantic
segmentation methods.

5.5. Limitations

PDNet is not without limitations. Doorways are some-
times incorrectly classified as mirror regions, as illustrated
in Figure 6 (top). In this case, the weight assigned to depth

β=0.53

β=0.65

RGB Image Depth Map MirrorNet PMD Ours GT

Figure 6. Examples of failure cases such as a doorway (top) and a
mirror that covers almost the entire image (bottom).

domain is β = 0.53. Hence, we think the reason is that the
depth cues from the arched doorway confuses our method
and mislead it to give more weight to depth cue. Based on
the estimated results from MirrorNet [55] and PMD [25],
we can see that it is also a hard case for RGB-based ap-
proaches. Another failure case is when the mirror covers
almost the entire image, as demonstrated in Figure 6 (bot-
tom). In this case, the discontinuities between inside and
outside the mirror are hard to quantify. More importantly,
without a global view of inside versus outside the mirror,
correlations between both become less meaningful. How-
ever, such a case would also be difficult for humans.

6. Conclusion
We present PDNet, a convolutional neural network based

depth-aware mirror segmentation method. Our solution is
the first to leverage discontinuities and correlations in both
RGB and depth to segment the mirror. PDNet builds on
two key components: a positioning module that locates the
mirror based on global and local discontinuities and corre-
lations in RGB and depth between the regions inside and
outside the mirror, and a delineating module that leverages
local contextual contrast in RGB and depth to refine the mir-
ror boundaries. We also introduce an RGB-D mirror seg-
mentation dataset to train PDNet and stimulate further re-
search in this area. We show that our approach outperforms
state-of-the-art mirror segmentation methods and demon-
strate that depth is a powerful cue for mirror segmentation.
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