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Abstract
Incorporating graph side information into recom-
mender systems has been widely used to better
predict ratings, but relatively few works have fo-
cused on theoretical guarantees. Ahn et al. (2018)
firstly characterized the optimal sample complex-
ity in the presence of graph side information, but
the results are limited due to strict, unrealistic as-
sumptions made on the unknown latent preference
matrix and the structure of user clusters. In this
work, we propose a new model in which 1) the
unknown latent preference matrix can have any
discrete values, and 2) users can be clustered into
multiple clusters, thereby relaxing the assump-
tions made in prior work. Under this new model,
we fully characterize the optimal sample com-
plexity and develop a computationally-efficient
algorithm that matches the optimal sample com-
plexity. Our algorithm is robust to model errors
and outperforms the existing algorithms in terms
of prediction performance on both synthetic and
real data.

1. Introduction
Recommender systems provide suggestions for items based
on users’ decisions such as ratings given to those items.
Collaborative filtering is a popular approach to designing
recommender systems (Herlocker et al., 1999; Sarwar et al.,
2001; Linden et al., 2003; Rennie & Srebro, 2005; Salakhut-
dinov & Mnih, 2007; 2008; Agarwal & Chen, 2010; Dav-
enport et al., 2014). However, collaborative filtering suffers
from the well-known cold start problem since it relies only
on past interactions between users and items. With the ex-
ponential growth of social media, recommender systems
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have started to use a social graph to resolve the cold start
problem. For instance, Jamali & Ester (2010) provide an
algorithm that handles the cold start problem by exploiting
social graph information.

While a lot of works have improved the performance of
algorithms by incorporating graph side information into rec-
ommender systems (Jamali & Ester, 2009a;b; 2010; Cai
et al., 2011; Ma et al., 2011; Yang et al., 2012; 2013b; Kalo-
folias et al., 2014), relatively few works have focused on
justifying theoretical guarantees of the performance (Chi-
ang et al., 2015; Rao et al., 2015; Ahn et al., 2018). One
notable exception is the recent work of Ahn et al. (2018),
which finds the minimum number of observed ratings for
reliable recovery of the latent preference matrix with so-
cial graph information and partial observation of the rating
matrix. They also provide an efficient algorithm with low
computational complexity. However, the assumptions made
in this work are too strong to reflect the real-world data. In
specific, they assume that each user rates each item either
+1 (like) or −1 (dislike), and that the observations are noisy
so that they can be flipped with probability θ ∈ (0, 1

2 ). This
assumption can be interpreted as each user rates each item
+1 with probability 1 − θ or θ. Note that this parametric
model is very limited, so the discrepancy between the model
and the real world occurs; if a user likes item a, b and c
with probability 1/4, 1/3 and 3/4 respectively, then the model
cannot represent this case well (see Rmk. 3 for a detailed
description).

This motivates us to propose a general model that better rep-
resents real data. Specifically, we assume that user i likes
item j with probability Rij , which we call user i’s latent
preference level on item j, and Rij belongs to the discrete
set {p1, . . . , pd} where d ≥ 1 and 0 < p1 < · · · < pd < 1.
As d can be any positive integer, our generalized model
can reflect various preference levels on different items. In
addition to that, we assume that the social graph informa-
tion follows the Stochastic Block Model (SBM) (Holland
et al., 1983), and the social graph is correlated with the
latent preference matrix R in a specific way, which we will
detail in Sec. 3. Under this highly generalized model, we
fully characterize the optimal sample complexity required
for estimating the latent preference matrix R. To the best of



Discrete-valued Latent Preference Matrix Estimation with Graph Side Information

0.10 0.15 0.20
p

0.0

0.1

0.2

0.3
||R̂

−
R
|| m

ax

Ours
Ahn’s

(a) Synthetic NΩ + synthetic G

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
p

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
A
E

Ours
Ahn’s
ItemAvg
UserAvg

User k-NN
Item k-NN
BiasedMF
SoReg

TrustSVD
SoRec
SocialMF

(b) Synthetic NΩ + real G (Traud et al., 2012)

Figure 1. Performance comparison of various algorithms for latent preference estimation with graph side information. The x-axis is the
probability of observing each rating (p), and the y-axis is the estimation error measured in ‖ · ‖max or the mean absolute error (MAE). (a)
Our algorithm vs (Ahn et al., 2018) where d = 2, p1 = 0.3, p2 = 0.62. (Ahn et al., 2018) performs badly due to the asymmetry of latent
preference levels. (b) Our algorithm vs various algorithms proposed in the literature on real graph data and synthetic ratings. Observe that
ours strictly outperforms all the existing algorithms for almost all tested values of p.

Table 1. MAE comparison with other algorithms on real NΩ + real G (Massa & Avesani, 2007; Massa et al., 2008)

ITEMAVG USERAVG USER K-NN ITEM K-NN BIASEDMF SOCIALMF SOREC SOREG TRUSTSVD AHN’S OURS

0.547 0.731 0.614 0.664 0.592 0.591 0.592 0.576 0.567 0.567 0.540

our knowledge, this work is the first theoretical work that
shows the optimal sample complexity of latent preference es-
timation with graph side information without making strict
assumptions on the rating generation model, made in all the
prior work (Ahn et al., 2018; Yoon et al., 2018; Elmahdy
et al., 2020; Zhang et al., 2021). We also develop an algo-
rithm with low computational complexity, and our algorithm
is shown to consistently outperform all the proposed algo-
rithms in the literature including those of (Ahn et al., 2018)
on synthetic/real data.

To further highlight the limitation of the proposed algo-
rithms developed under the strict assumptions used in the
literature, we present various experimental results in Fig. 1.
(We will revisit the experimental setting in Sec. 6.) In
Fig. 1a, we compare our algorithm with that of (Ahn et al.,
2018) on synthetic rating NΩ and synthetic graph G. Here,
we set d = 2, p1 = 0.3, p2 = 0.62, i.e., the symmetry as-
sumption p1 + p2 = 1 does not hold anymore. We can see
that our algorithm significantly outperforms the algorithm
of (Ahn et al., 2018) in terms of the estimation error for all
tested values of p, where p denotes the probability of ob-
serving each rating. This clearly shows that their algorithm
quickly breaks down even when the modeling assumption
is just slightly off. Shown in Fig. 1b is the performance
of various algorithms on synthetic rating/real graph, and
we observe that the estimation error of (Ahn et al., 2018)
increases as the observation rate p increases unlike all the

other algorithms. (We discuss why this unexpected phe-
nomenon happens in more details in Sec. 6.) On the other
hand, our algorithm outperforms all the existing baseline
algorithms for almost all tested values of p and does not ex-
hibit any unexpected phenomenon. In Table 1, we observe
that our algorithm outperforms all the other algorithms even
on real rating/real graph data, although the improvement is
not significant than the one for synthetic rating/real graph
data. These results demonstrate the practicality of our new
algorithm, which is developed under a more realistic model
without limiting assumptions.

This paper is organized as follows. Related works are given
in Sec. 2. We propose a generalized problem formulation
for a recommender system with social graph information in
Sec. 3. Sec. 4 characterizes the optimal sample complexity
with main theorems. In Sec. 5, we propose an algorithm
with low time complexity and provide a theoretical perfor-
mance guarantee. In Sec. 6, experiments are conducted on
synthetic and real data to compare the performance between
our algorithm and existing algorithms in the literature. Fi-
nally, we discuss our results in Sec. 7. All the proofs and
experimental details are given in the appendix.

1.1. Notation

Let [n] = {1, 2, . . . , n} where n is a positive integer, and
let 1(·) be the indicator function. An undirected graph G
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is a pair (V,E) where V is a set of vertices and E is a set
of edges. For two subsets X and Y of the vertex set V ,
e(X,Y ) denotes the number of edges between X and Y .

2. Related Work
Collaborative filtering has been widely used to design recom-
mender systems. There are two types of methods commonly
used in collaborative filtering; neighborhood-based method
and matrix factorization-based method. The neighborhood-
based approach predicts users’ ratings by finding similarity
between users (Herlocker et al., 1999), or by finding sim-
ilarity between items (Sarwar et al., 2001; Linden et al.,
2003). In the matrix factorization-based approach, it as-
sumes users’ latent preference matrix is of a certain struc-
ture, e.g., low rank, so the latent preference matrix can be
decomposed into two matrices of low dimension (Rennie
& Srebro, 2005; Salakhutdinov & Mnih, 2007; 2008; Agar-
wal & Chen, 2010). In particular, Davenport et al. (2014)
consider binary (1-bit) matrix completion and show that
the maximum likelihood estimate is accurate under suitable
conditions.

Since collaborative filtering relies solely on past interac-
tions between users and items, it suffers from the cold start
problem; collaborative filtering cannot provide a recom-
mendation for new users since the system does not have
enough information. A lot of works have been done to re-
solve this issue by incorporating social graph information
into recommender systems. In specific, the social graph
helps neighborhood-based method to find better neighbor-
hood (Jamali & Ester, 2009a;b; Yang et al., 2012; 2013b).
Some works add social regularization terms to the matrix
factorization method to improve the performance (Cai et al.,
2011; Jamali & Ester, 2010; Ma et al., 2011; Kalofolias
et al., 2014).

Few works have been conducted to provide theoretical guar-
antees of their models that consider graph side information.
Chiang et al. (2015) consider a model that incorporates gen-
eral side information into matrix completion, and provide
statistical guarantees. Rao et al. (2015) derive consistency
guarantees for graph regularized matrix completion.

Recently, several works have studied the binary rating es-
timation problem with the aid of social graph informa-
tion (Ahn et al., 2018; Yoon et al., 2018; Zhang et al., 2020;
Elmahdy et al., 2020; Zhang et al., 2021). These works
characterize the optimal sample complexity as the mini-
mum number of observed ratings for reliable recovery of
a latent preference matrix under various settings, and find
how much the social graph information reduces the optimal
sample complexity. In specific, Ahn et al. (2018) study the
case where users are clustered in two equal-sized groups,
and Yoon et al. (2018) generalize the results of (Ahn et al.,

2018) to the multi-cluster case. Zhang et al. (2020; 2021)
study the problem where both user-to-user and item-to-item
similarity graphs are available. Lastly, Elmahdy et al. (2020)
adopt the hierarchical stochastic block model to handle the
case where each cluster can be grouped into sub-clusters.
However, all of these works require strict assumptions on
the rating generation model, which is too limited to well
capture the real-world data.

Our problem can also be viewed as “node label inference on
SBM,” where nodes are users, edges are for social connec-
tions, node labels are m-dimensional rating vectors (consist-
ing of −1, 0, 1), and node label distributions are determined
by the latent preference matrix. Various works have stud-
ied recovery of clusters in SBM in the presence of node
labels (Yang et al., 2013a; Saad & Nosratinia, 2018) or edge
labels (Heimlicher et al., 2012; Jog & Loh, 2015; Yun &
Proutiere, 2016). While their goal is recovery of clusters,
Xu et al. (2014) study “edge label inference on SBM” whose
goal is to recover edge label distributions as well as clusters.

Remark 1. While our problem shares high similarities with
“edge label” inference on SBM, studied in (Xu et al., 2014),
there exist some critical differences. To see the difference,
consider a very sparse graph where many nodes are isolated.
Edge label inference is impossible in this regime since there
is no observed information about those isolated nodes (see
Thm. 2 in (Xu et al., 2014) for more details). On the other
hand, in node labelled cases, we still observe information
about isolated nodes from their node labels, so it is possi-
ble to infer node label distributions as long as we observe
enough number of node labels.

3. Problem Formulation
Let [n] be the set of users, and let [m] be the set of items
where m can scale with n. For i ∈ [n] and j ∈ [m], Rij de-
notes user i’s latent preference level on item j, that is, user
i’s rating on item j is +1 (like) with probability Rij or −1
(dislike) with probability 1−Rij . We assume that latent pref-
erence levels take values in the discrete set {p1, p2, . . . , pd}
where d ≥ 1 and 0 < p1 < · · · < pd < 1. The latent
preference matrix R is the n × m matrix whose (i, j)-th
entry is Rij . The latent preference vector of user i is the
i-th row of R.

We further assume that n users are clustered into K clus-
ters, and the users in the same cluster have the same latent
preference vector. More precisely, let C : [n] → [K] be
the cluster assignment function where C(i) = k if user i
belongs to the k-th cluster. The inverse image C−1({k})
is the set of users whose cluster assignment is k, so the
users in C−1({k}) have the same latent preference vector
by the assumption. We denote the latent preference vector
of the users in C−1({k}) by uk for k ∈ [K]. Note that
the latent preference matrix R can be completely recovered
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with the cluster assignment function C : [n]→ [K] and the
corresponding preference vectors u1, . . . , uK .

As the latent preference vector and the cluster assignment
function are generally unknown in the real world, we es-
timate them with observed ratings on items and the social
graph.

Observed rating matrixNΩ We assume that we observe
binary ratings of users independently with probability p
where p ∈ [0, 1]. We denote a set of observed entries by
Ω which is a subset of [n] × [m]. Then, the (i, j)-th entry
of the observed rating matrix NΩ is defined by user i’s
rating on item j if (i, j) ∈ Ω and 0 otherwise. That is,
(NΩ)ij

iid∼ Bern(p) · (2Bern(Rij)− 1).

Observed social graph G We observe the social graph
G = ([n], E) on n users, and we further assume that
the graph is generated as per the stochastic block model
(SBM) (Holland et al., 1983). Specifically, we consider the
symmetric SBM. If two users i and j are from the same
cluster, an edge between them is placed with probability α,
independently of the others. If they are from the different
clusters, the probability of having an edge between them is
β, where α ≥ β.

Fig. 2 provides a toy example that visualizes how our obser-
vation model is realized by the latent preference matrix and
the cluster assignment. Given this observation model, the
goal of latent preference estimation with graph side infor-
mation is to find an estimator ψ(NΩ, G) that estimates the
latent preference matrix R.

Remark 2 (Why binary rating?). Binary rating has its
critical applications such as click/impression-based adver-
tisement recommendation, in which only −1 (shown, not
clicked), 0 (not shown), 1 (shown, clicked) information is
available. Moreover, binary rating is gaining increasing in-
terests in the industry due to its simplicity and robustness.
This is precisely why Youtube and Netflix, two of the largest
media recommendation systems, have discarded their “star
rating systems” and employed binary ratings in 2009 (Gru-
ber, 2017) and in 2017 (Center, 2017), respectively.

Remark 3. Ahn et al. (2018) assume that each user rates
each item either +1 (like) or−1 (dislike), and that the obser-
vations are noisy so that they can be flipped with probability
θ ∈ (0, 1

2 ). This assumption can be interpreted as each
user rates each item +1 with probability 1 − θ (when the
user’s true rating is +1) or θ (when the user’s true rating is
−1). Therefore, our model reduces to the model of (Ahn
et al., 2018) by setting d = 2, p1 = θ, p2 = 1 − θ,K =
2, |C−1({1})| = |C−1({2})| = n

2 . As mentioned in Sec. 1,
the parametric model used in (Ahn et al., 2018) is very
limited. For example, consider the following two latent

preference matrices R1 =

[
1/4 1/4 3/4 3/4
1/4 1/4 1/4 1/4

]
, R2 =[

1/3 1/4 3/4 3/4
1/3 1/4 1/4 1/4

]
where n = 2,m = 4. Then R1 can

be represented by the model used in [Ahn et al., 2018] with
θ = 1

4 , but R2 cannot be handled by their model with any
choice of θ since there are more than two latent preference
levels in R2.
Remark 4. Without graph observation, our observation
model reduces to a special case of the observation model
for the binary (1-bit) matrix completion shown in Sec. 2.1.
of (Davenport et al., 2014).

4. Fundamental Limit on Sample Complexity
We now characterize the fundamental limit on the sample
complexity. We first focus on the two equal-sized clusters
case (i.e., K = 2, |C−1({1})| = |C−1({2})| = n

2 ) and
will extend the results to the multi-cluster case. We use AR
and BR for the ground-truth clusters and uR and vR for the
corresponding latent preference vectors, respectively. We
define the worst-case error probability as follows.
Definition 1 (Worst-case probability of error for two
equal-sized clusters). Let γ be a fixed number in (0, 1)
and ψ be an estimator that outputs a latent pref-
erence matrix in {p1, p2, . . . , pd}n×m based on NΩ

and G. We define the worst-case probability of er-
ror P γe (ψ) := max

{
Pr(ψ(NΩ, G) 6= R) : R ∈

{p1, p2, . . . , pd}n×m, ‖uR − vR‖0 = dγme
}

where ‖ · ‖0
is the hamming distance.

A latent preference level pi ∈ [p1, . . . , pd] implies that
the probability of choosing (+1,−1) is (pi, 1 − pi) re-
spectively, so it corresponds to a discrete probability dis-
tribution (pi, 1 − pi). For two latent preference levels
pi, pj ∈ [p1, . . . , pd], the Hellinger distance between two
discrete probability distributions (pi, 1−pi) and (pj , 1−pj),
denoted dH(pi, pj), is

1√
2

√
(
√
pi −

√
pj)2 + (

√
1− pi −

√
1− pj)2.

Then, the minimum Hellinger distance of the set of discrete-
valued latent preference levels {p1, . . . , pd}, denoted dmin

H ,
is

min{dH(pi, pj) : i 6= j ∈ [d]}.
Below is our main theorem that characterizes a sharp thresh-
old of p, the probability of observing each rating of users,
for reliable recovery as a function of n,m, γ, α, β, dmin

H .
Theorem 1. Let K = 2, |C−1({1})| = |C−1({2})| =
n
2 , γ ∈ (0, 1), m = ω(log n), logm = o(n), Is1 :=
−2 log

(
1− d2

H(α, β)
)
. Then, the following holds for arbi-

trary ε > 0.

1Ahn et al. (2018) made implicit assumptions that α, β → 0
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Figure 2. A toy example of our model where n = 12,m = 8, d = 3, p1 = 0.1, p2 = 1
3
, p3 = 3

4
,K = 3, C−1({1}) =

{1, 2, 3}, C−1({2}) = {4, 5, 6}, C−1({3}) = {7, 8, 9, 10, 11, 12}, p = 0.5, α = 0.6, β = 0.1.

(I) if p ≥ 1
(dmin

H )2 max
{

(1+ε) log n−n
2 Is

γm , (1+ε)2 logm
n

}
, then

there exists an estimator ψ that outputs a latent preference
matrix in {p1, p2, . . . , pd}n×m based on NΩ and G such
that P γe (ψ)→ 0 as n→∞.

(II) if p ≤ 1
(dmin

H )2 max
{

(1−ε) log n−n
2 Is

γm , (1−ε)2 logm
n

}
and

α = O( logn
n ), then P γe (ψ) 9 0 as n→∞ for any ψ.

Remark 5. We note that our technical contributions lie in
the proof of Thm. 1. In specific, we find the upper bound
of the probability of error in Lem. 3 by using the results of
Lem. 1, 2, and we made nontrivial technical contributions
as we need to handle a significantly larger set of candidate
latent preference matrices.

Theorem 1 shows that 1
(dmin

H )2 max
{

logn−n
2 Is

γm , 2 logm
n

}
can be used as a sharp threshold for reliable recovery of the
latent preference matrix. As nmp is the expected number of
observed entries, we define the optimal sample complexity
for two-cluster cases as follows.

Definition 2. p∗(γ) := 1
(dmin

H )2 max
{

logn−n
2 Is

γm , 2 logm
n

}
denotes the optimal observation rate. Then nmp∗(γ) =

1
(dmin

H )2 max
{

1
γ (n log n− 1

2n
2Is), 2m logm

}
denotes the

optimal sample complexity for two-cluster cases.

The optimal sample complexity for two-cluster cases is
written as a function of p1, ..., pd, so the dependency on d
is implicit. To see the dependency clearly, we can set pi =

and α
β
→ 1 as n → ∞. These assumptions are used when

they approximate −2 log(1 − d2
H(α, β)) = (1 + o(1))(

√
α −√

β)2. The approximation does not hold without above as-
sumptions, in explicit, −2 log(1 − d2

H(α, β)) = (
√
α −

√
β)2

{
(
√
α+
√
β)2

4β(1−β)
+ o(1)

}
(see the appendix for the derivation).

The MLE achievability part of our theorem does not make any
implicit assumptions, and the results hold for any α and β with
our modified definition of Is := −2 log(1− d2

H(α, β)).

i
d+1 . This gives us p∗(γ) ≈ 2d2 max

{
logn−n

2 Is
γm , 2 logm

n

}
,

and p∗(γ) increases as a quadratic function of d.

Remark 6 (How does the graph information reduce the
optimal sample complexity?). One can observe that Is de-
creases as α and β get closer to each other, and Is = 0 when
α = β. Hence Is measures the quality of the graph informa-
tion. If we consider the case that does not employ the graph
information, it is equivalent to the case of α = β (Is = 0) in
our model, thereby getting the optimal sample complexity
of 1

(dmin
H )2 max

{
1
γn log n, 2m logm

}
. Therefore, exploit-

ing the graph information results in the reduction of the
optimal sample complexity by 1

(dmin
H )2

1
2γn

2Is provided that
1
γn log n > 2m logm. Note that the optimal sample com-
plexity stops decreasing when Is is larger than a certain
threshold which implies the gain is saturated.

Remark 7. If we set d = 2, p1 = θ, p2 = 1 − θ,
then (dmin

H )2 = 1 − 2
√
θ(1− θ) = (

√
1− θ −

√
θ)2.

Plugging this into the result of Theorem 1, we get
p∗(γ) = 1

(
√

1−θ−
√
θ)2

max
{

logn−n
2 Is

γm , 2 logm
n

}
, recovering

the main theorem of (Ahn et al., 2018) as a special case of
our result.

Our results can be extended to the case of multiple (pos-
sibly unequal-sized) clusters by combining the technique
developed in Theorem 1 and the technique of (Yoon
et al., 2018). Suppose dH(pi, pj) achieves the minimum
Hellinger distance when pi = pd0

, pj = pd0+1. Define
p : {p1, . . . , pd}m → {pd0 , pd0+1}m that maps a latent
preference vector to a latent preference vector consisting of
latent preference levels {pd0

, pd0+1}. In explicit, p sends
each coordinate xi of a latent preference vector to pd0

if
xi ≤ pd0

; pd0+1 if xi ≥ pd0+1. We now present the ex-
tended result below, while deferring the the proof to the
appendix.

Theorem 2. Let m = ω(log n), logm = o(n), ck =
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|C−1({k})|, ci,j =
ci+cj

2 , lim inf
n→∞

ck
n > 0 for all k ∈ [K],

lim inf
m→∞

‖p(ui)−p(uj)‖0
m > 0 for all i 6= j ∈ [K]. Then, the

following holds for arbitrary ε > 0.

(I) (achievability) If p ≥
1

(dmin
H )2 max

{
max

i6=j∈[K]

{
(1+ε) log n−ci,jIs
‖p(ui)−p(uj)‖0

}
, max
k∈[K]

{
(1+ε) logm

ck

}}
,

then there exists an estimator ψ such that
Pr(ψ(NΩ, G) 6= R)→ 0 as n→∞.

(II) (impossibility)
Suppose R ∈ {pd0 , pd0+1}n×m, α = O( logn

n ). If p ≤
1

(dmin
H )2 max

{
max

i6=j∈[K]

{
(1−ε) log n−ci,jIs
‖p(ui)−p(uj)‖0

}
, max
k∈[K]

{
(1−ε) logm

ck

}}
,

then Pr(ψ(NΩ, G) 6= R) 9 0 as n→∞ for any ψ.

Remark 8. One can observe that Theorem 1 is a spe-
cial case of Theorem 2 by setting K = 2, c1 = c2 =
n
2 , ‖p(u1)− p(u2)‖0 = dγme.
Remark 9. In light of Theorem 14 in (Abbe, 2018), we con-
jecture that our results can be extended to asymmetric SBMs
with a new definition of Is involving Chernoff-Hellinger
divergence.

5. Our Proposed Algorithm
In this section, we develop a computationally efficient
algorithm that can recover the latent preference ma-
trix R without knowing the latent preference levels
{p1, . . . , pd}. We then provide a theoretical guarantee
that if p ≥ 1

(dmin
H )2 max

{
(1+ε) log n−n

2 Is
γm , (1+ε)2 logm

n

}
for

some ε > 0, then the proposed algorithm recovers the latent
preference matrix with high probability. Now we provide a
high-level description of our algorithm while deferring the
pseudocode to the appendix.

Algorithm description

Input: NΩ ∈ {−1, 0,+1}n×m, G = ([n], E), K, d, `max

Output: Clusters of usersA(`max)
1 , . . . , A

(`max)
K , latent pref-

erence vectors û1
(`max), . . . , ûK

(`max)

Stage 1. Partial recovery of clusters We run a spectral
method (Gao et al., 2017) on G to get an initial cluster-
ing result A(0)

1 , . . . , A
(0)
K . Unless α is too close to β, this

stage will give us a reasonable clustering result, with which
we can kick-start the entire estimation procedure. Other
clustering algorithms (Abbe & Sandon, 2015; Chin et al.,
2015; Krzakala et al., 2013; Lei & Rinaldo, 2015) can also
be used for this stage.

Stage 2 We iterate Stage 2-(i) and Stage 2-(ii) for ` =
1, . . . , `max.

Stage 2-(i). Recovery of latent preference vectors In the
`-th iteration step, this stage takes the clustering result
A

(`−1)
1 , . . . , A

(`−1)
K and rating dataNΩ as input and outputs

the estimation of latent preference vectors û1
(`), . . . , ûK

(`).

First, for each cluster A(`−1)
k , we estimate the latent pref-

erence levels for ddlogme randomly chosen items with
replacement. The estimation of a latent preference level can
be easily done by computing the ratio of “the number of +1
ratings” to “the number of observed ratings (i.e., nonzero rat-
ings)” for each item within the clusterA(`−1)

k . Now we have
Kddlogme number of estimations, and these estimations
will be highly concentrated around the latent preference
levels p1, . . . , pd under our modeling assumptions (see the
appendix for the mathematical justifications). After running
a distance-based clustering algorithm (see the pseudocode
for details), we take the average within each cluster to get
the estimations p̂1

(`), . . . , p̂d
(`).

Given the estimations p̂1
(`), . . . , p̂d

(`) and the clustering
result A(`−1)

1 , . . . , A
(`−1)
K , we estimate latent preference

vectors û1
(`), . . . , ûK

(`) by maximizing the likelihood of
the observed rating matrixNΩ and the observed social graph
G = ([n], E). In specific, the j-th coordinate of ûk(`) can
be obtained by finding arg min

p̂h(`):h∈[d]

L̂(p̂h
(`);A

(`−1)
k , j) where

L̂(p̂h
(`);A

(`−1)
k , j) :=

∑
i∈A(`−1)

k

{
1(NΩ

ij = 1)(− log p̂h
(`))

+1(NΩ
ij = −1)(− log(1− p̂h(`)))

}
.

Stage 2-(ii). Refinement of clusters In the `-th it-
eration step, this stage takes the clustering result
A

(`−1)
1 , . . . , A

(`−1)
K , the estimation of latent preference

vectors û1
(`), . . . , ûK

(`), rating data NΩ, graph data
G as input and outputs the refined clustering result
A

(`)
1 , . . . , A

(`)
K .

We first compute α̂, β̂ that estimate α, β based on the clus-
tering result A(`−1)

1 , . . . , A
(`−1)
K and the number of edges

within a cluster and across clusters. Let A(`−1,0)
k := A

(`−1)
k

for k ∈ [K]. Then A
(`−1,0)
k ’s are iteratively refined by

T = dlog2 ne times of refinement steps as follows.

Suppose we have a clustering result A
(`−1,t−1)
k ’s

from the (t − 1)-th refinement step where t =

1, . . . , T . Given the estimations α̂, β̂, the esti-
mated latent preference vectors û1

(`), . . . , ûK
(`), and

the clustering result A(`−1,t−1)
1 , . . . , A

(`−1,t−1)
K , we find

the refined clustering result A
(`−1,t)
1 , . . . , A

(`−1,t)
K by

updating each user’s affiliation. Specifically, for
each user i, we put user i to A

(`−1,t)
k∗ where

k∗ := argmin
k∈[K]

L̂(A
(`−1,t−1)
k ; i) and L̂(A

(`−1,t−1)
k ; i) :=

− log(α̂)e({i}, A(t−1)
k ) − log(1 − α̂)

{
|A(`−1,t−1)
k | −
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e({i}, A(`−1,t−1)
k )

}
+
∑
k′ 6=k

{
− log(β̂)e({i}, A(`−1,t−1)

k′ )−

log(1 − β̂)
{
|A(`−1,t−1)
k′ | − e({i}, A(`−1,t−1)

k′ )
}}

+
{
−∑

j:NΩ
ij=1

log(ûk
(`))j −

∑
j:NΩ

ij=−1

log(1− (ûk
(`))j)

}
.

((ûk(`))j denotes the j-th coordinate of ûk(`).) In each
refinement step, the number of mis-clustered users will
decrease provided that estimations ûk(`)’s, α̂, β̂ are close
enough to their true values (see the appendix for the mathe-
matical justifications).

After T times of refinement steps, we let A(`)
k := A

(`−1,T )
k

for k ∈ [K]. Finally, this stage outputs the refined clustering
result A(`)

1 , . . . , A
(`)
K .

Remark 10. The computational complexity of our algo-
rithm can be computed as follows; O(|E| log n) for Stage
1 via the power method (Boutsidis et al., 2015), O(|Ω|)
for Stage 2-(i), O((|Ω| + |E|) log n) for Stage 2-(ii). As
`max is constant, the linear factor of `max is omitted in
the computational complexity of Stage 2-(i),(ii). Over-
all, our algorithm has low computational complexity of
O((|Ω|+ |E|) log n).

Remark 11. We note that our technical contributions lie in
the analysis of Stage 2-(i) while the analysis of Stage 1 and
Stage 2-(ii) is similar to those in (Ahn et al., 2018; Yoon
et al., 2018). In specific, we sample O(dlogme) number of
items in Stage 2-(i) to get estimations of the latent prefer-
ence levels and Lem. 8 ensures that those estimations are
located in the o(1)-radius neighborhoods of ground-truth
latent preference levels with high probability. Then Lem. 9
ensures that estimations of latent preference vectors con-
verges to ground-truth latent preference vectors with high
probability.

For the two equal-sized clusters case, the following theorem
asserts that our algorithm will successfully estimate the
latent preference matrix with high probability as long as the
sampling probability is slightly above the optimal threshold.
We defer the proof to the appendix.

Theorem 3. Let `max = 1,K = 2, |C−1({1})| =
|C−1({2})| = n

2 , γ ∈ (0, 1), m = ω(log n), logm =
o(n), (

√
α − √β)2 = ω( 1

n ), m = O(n), and α =

O( logn
n ). Let φj be the ratio of the number of pj’s

among (uR)1, . . . , (uR)m, (vR)1, . . . , (vR)m to 2m for
j = 1, . . . , d, and assume that φj 9 0 as n→∞. If

p ≥ 1

(dmin
H )2

max

{
(1 + ε) log n− n

2 Is

γm
,

2(1 + ε) logm

n

}
for some ε > 0, then our algorithm outputs R̂ where the
following holds with probability approaching to 1 as n goes
to∞ : ‖R̂−R‖max := max

(i,j)∈[n]×[m]
|R̂ij −Rij | = o(1).

Remark 12. As our algorithm makes use of only graph data
at Stage 1, the initial clustering result highly depends on the
quality of graph data Is. In the extreme cases where only
rating data are available, Stage 1 will output a meaningless
clustering result. As the performance of Stage 2 depends
on the success of Stage 1, our algorithm may not work
well even if the observation rate p is above the optimal
rate. In Sec. E, we suggest an alternative algorithm, which
utilizes both rating and graph data at Stage 1. Analyzing the
performance of this new algorithm is an interesting open
problem.

6. Experimental Results
In this section, we run several experiments to evaluate the
performance of our proposed algorithm. Denoting by R̂ the
output of an estimator, the estimation quality is measured
by the max norm of the error matrix, i.e., ‖R̂−R‖max :=

max
(i,j)∈[n]×[m]

|R̂ij − Rij |. For each observation rate p, we

generate synthetic data (NΩ, G) 100 times at random and
then report the average errors.

6.1. Non-asymptotic Performance of Our Algorithm

Shown in Fig. 3a is the probability of error
Pr(ψ1(NΩ, G) 6= R) of our algorithm for
(n,m,K, d) = (10000, 5000, 2, 3) and various com-
binations of (Is, p). To measure Pr(ψ1(NΩ, G) 6= R), we
allow our algorithm to have access to the latent preference
levels (p1, p2, p3) = (0.2, 0.5, 0.7) in Stage 2. We draw
p∗γ as a red line. While the theoretical guarantee of our
algorithm is valid when n,m go to∞, Fig. 3a shows that
Theorem 1 predicts the optimal observation rate p∗γ with
small error for sufficiently large n,m. One can observe a
sharp phase transition around p∗γ .

6.2. Limitation of the Symmetric Latent Preference
Levels

As described in Sec. 1, the latent preference matrix model
studied in (Ahn et al., 2018) assumes that the latent prefer-
ence level must be either θ or 1−θ for some θ, which is fully
symmetric. In this section, we show that this model cannot
be applied unless the symmetry assumption perfectly holds.
Let (K, d, n,m, γ, α, β) = (2, 2, 2000, 1000, 1

4 , 0.7, 0.3).
Shown in Fig. 3b, Fig. 1a, Fig. 3c are the estimation errors
of our algorithm and that of the algorithm proposed in (Ahn
et al., 2018) for various pairs of (p1, p2). (1) Fig. 3b shows
the result for (p1, p2) = (0.3, 0.7) where the latent prefer-
ence levels are perfectly symmetric, and the two algorithms
perform exactly the same. (2) Fig. 1a shows the result for
(p1, p2) = (0.3, 0.62) where the latent preference levels
are slightly asymmetric. The estimation error of the algo-
rithm of (Ahn et al., 2018) is much larger than ours for all
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Figure 3. (a) Non-asymptotic performance of our algorithm. One can observe a sharp phase transition around p∗γ (b), (c) Limitation of the
symmetric level model. (b) When the latent preference levels are symmetric (p1 = 0.3 and p2 = 0.7), our algorithm and the algorithm
proposed in (Ahn et al., 2018) achieve the same estimation errors. (c) When the latent preference levels are not symmetric (p1 = 0.3
and p2 = 0.55), our algorithm significantly outperforms the one proposed in (Ahn et al., 2018). (d) Estimation error as a function of
observation rate p when graph data is generated as per noisy stochastic block models. Observe that our algorithm is robust to model errors.

tested values of p. (3) Shown in Fig. 3c are the experimental
results with (p1, p2) = (0.3, 0.55). Observe that the gap
between these two algorithms becomes even larger, and the
algorithm of (Ahn et al., 2018) seems not able to output a
reliable estimation of the latent preference matrix due to its
limited modeling assumption.

6.3. Robustness to Model Errors

We show that while the theoretical guarantee of our
algorithm holds only for a certain data generation model,
our algorithm is indeed robust to model errors and can
be applied to a wider range of data generation models.
Specifically, we add noise to the stochastic block model
as follows. If two users i and j are from the same
cluster, we place an edge with probability α + qij ,

independently of other edges, where qij
i.i.d.∼ U [−θ, θ]

for some constant θ. Similarly, if they are from the
two different clusters, the probability of having an edge
between them is β + qij . Under this noisy stochastic
block model, we generate data and measure the esti-
mation errors with (K, d, p1, p2, p3, n,m, γ, α, β) =
(2, 3, 0.2, 0.5, 0.7, 2000, 1000, 1

4 , 0.7, 0.3), θ =
0, 0.15, 0.3. Fig. 3d shows that the performance of
our algorithm is not affected by the model noise, implying
the model robustness of our algorithm. The result for
θ = 0.3 is even more interesting since the level of noise is
so large that α+ qij can become even lower than β + qi′j′
for some (i, j) and (i′, j′). However, even under this
extreme condition, our algorithm successfully recovers the
latent preference matrix.

6.4. Real-World Data Experiments

The experimental result given in Sec. 6.3 motivated us to
evaluate the performance of our algorithm when real-world
graph data is given as graph side information. First, we take
Facebook graph data (Traud et al., 2012) as graph side infor-
mation (which has a 3-cluster structure) and generate binary

ratings as per our discrete-valued latent preference model
( (p1, p2, p3) = (0.05, 0.5, 0.95) ). We use 80% (randomly
sampled) of Ω as a training set (Ωtr) and the remaining
20% of Ω as a test set (Ωt). We use mean absolute error
(MAE) 1

|Ωt|
∑

(i,j)∈Ωt
‖NΩ

ij − (2R̂ij − 1)‖ for the perfor-
mance metric.2 Then we compare the performance of our
algorithm with other algorithms in the literature.3 Fig. 1b
shows that our algorithm outperforms other baseline algo-
rithms for almost all tested values of p. The red dotted line
is the expected value of MAE of the optimal estimator (see
the appendix for a detailed explanation) which means our
algorithm shows near-optimal performance. Unlike other
algorithms, MAE of (Ahn et al., 2018) increases as p in-
creases. One explanation is that the algorithm of (Ahn et al.,
2018) cannot properly handle d ≥ 3 cases due to its limited
modeling assumption.

Remark 13. While our algorithm shows near-optimal per-
formance with `max = 1 for synthetic data, Fig. 4a shows
that our algorithm does not work well with `max = 1 for
real-world data. This phenomenon can be explained as fol-
lows. If `max = 1, the estimations of latent preference
vectors are only based on the result of the Stage 1. For
real-world graph data, the clustering result of the Stage 1
may not be close to the ground-truth clusters, thereby result-
ing in bad estimations of latent preference vectors in Stage
2-(i). Surprisingly, our algorithm shows near-optimal per-
formance with `max = 2 even for real-world graph data (see
Fig. 1b). Unlike ours, the algorithm of (Ahn et al., 2018)
shows no difference between `max = 1 and `max = 2.

Furthermore, we evaluate the performance of our algorithm

2We compute the difference between NΩ
ij and 2R̂ij − 1 for fair

comparison since NΩ
ij ∈ {±1}, R̂ij ∈ [0, 1].

3We compare our algorithm with the algorithm of (Ahn et al.,
2018), item average, user average, user k-NN (nearest neighbors),
item k-NN, BiasedMF (Koren, 2008), SocialMF (Jamali & Ester,
2010), SoRec (Ma et al., 2008), SoReg (Ma et al., 2011), Trust
SVD (Guo et al., 2015b). Except for ours and that of (Ahn et al.,
2018), we adopt implementations from LibRec (Guo et al., 2015a).
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Figure 4. (a) Estimation error as a function of observation rate p for the Facebook graph data (Traud et al., 2012) with different values of
`max. (b), (c) Estimation error as a function of observation probability p with different values of γ and α. The x-axis is the probability of
observing each rating (p), and the y-axis is the estimation error measured in ‖ · ‖max.

on a real rating/real graph dataset called Epinions (Massa
& Avesani, 2007; Massa et al., 2008). We use 5-fold cross-
validation to determine hyperparameters. Then we compute
MAE for a randomly sampled test set (with 500 iterations).
Shown in Table 1 are MAE’s for various algorithms. Al-
though the improvement is not significant than the one for
synthetic rating/real graph data, our algorithm outperforms
all the other algorithms. Note that all the experimental re-
sults presented in the prior work are based on synthetic
rating (Ahn et al., 2018; Yoon et al., 2018; Zhang et al.,
2021), and this is the first real rating/real graph experiment
that shows the practicality of binary rating estimation with
graph side information.

6.5. Estimation Error with Different Values of γ and Is

We corroborate Theorem 3. More specifically, we observe
how the estimation error behaves as a function of p when
γ and (α, β) varies. Let d = 3, p1 = 0.2, p2 = 0.5, p3 =
0.7, n = 10000,m = 5000. We first compare cases for
(α, β, γ) = (0.26, 0.23, 0.5) and (0.26, 0.23, 0.25). Shown
in Fig. 4b is the estimation error as a function of p. We
draw p∗γ as dotted vertical lines. One can see from the figure
that the estimation error for (α, β, γ) = (0.26, 0.23, 0.5)
is lower than that for (α, β, γ) = (0.26, 0.23, 0.25) for all
tested values of p. This can be explained by the fact that
p∗γ decreases as γ increases, as stated in Theorem 3. We
also compare cases for (α, β, γ) = (0.26, 0.23, 0.25) and
(0.27, 0.23, 0.25). Note that the only difference between
these cases is the value of α. By Theorem 3, we have p∗γ =
0.118 for the former case, and p∗γ = 0.081 for the latter
case. That is, a larger value of α implies a higher quality of
graph side information, i.e., the graph side information is
more useful for predicting the latent preference matrix R.
Fig. 4c shows the estimation error as a function of p, and
we can see that even a small increase in the quality of the
graph can result in a significant decrease in p∗γ .

7. Conclusion
We studied the problem of estimating the latent preference
matrix whose entries are discrete-valued given a partially
observed binary rating matrix and graph side information.
We first showed that the latent preference matrix model
adopted in existing works is highly limited, and proposed
a generalized data generation model. We characterized the
optimal sample complexity that guarantees perfect recovery
of latent preference matrix, and showed that this optimal
complexity also serves as a tight lower bound, i.e., no es-
timation algorithm can achieve perfect recovery below the
optimal sample complexity. We also proposed a computa-
tionally efficient estimation algorithm. Our analysis showed
that our proposed algorithm can perfectly estimate the latent
preference matrix if the sample complexity is above the
optimal sample complexity. We provided experimental re-
sults that corroborate our theoretical findings, highlight the
importance of our relaxed modeling assumptions, imply the
robustness of our algorithm to model errors, and compare
our algorithm with other algorithms on real-world data.
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