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Abstract—Recently we have seen many works that leverage Machine
Learning (ML) techniques in optimizing Electronic Design Automation
(EDA) process. However, the uses of ML techniques are limited to learning
forecasting models of existing EDA algorithms, instead of developing
novel algorithms. In this work, we focus on designing an novel cut-
based technology mapping algorithms assisted by ML techniques, which
matches results of exhaustive cut exploration but preserving a small
footprint of utilized cuts. The proposed approach has been demonstrated
with a wide range of benchmarks with 24% reductions in number
of cuts utilized compared to the state-of-the-art, while improving the
circuit delay, and Area-Delay-Product (ADP), by average about 10%,
7%, respectively, with a 2% area penalty. Compared to the exhaustive
approach, i.e., considering all the cuts, we achieve similar or better results
while saving over than 2x the number of considered cuts (runtime) on
average. Finally, we provide a comprehensive explanation of heuristics
learned by the ML model by feature ranking.

Index Terms—Cut-pruning, Technology Mapping, ASIC design, Ma-
chine Learning

I. INTRODUCTION

Recent years have seen increasing employment of Machine Learn-
ing (ML) techniques in EDA, which aims to reduce the manual efforts
and boost the design closure process in modern tool flows [1]-[9]. For
example, various of ML-based approaches have been developed to
automatically optimizing tool-flow configurations for modern FPGA
and ASIC design [1]-[4], fast and accurate design space exploration
and Pareto-optimal analysis [S]-[8]. While these approaches have
shown promising improvements compared to conventional EDA
methodologies, ML techniques are limited to learning forecasting
models of existing EDA algorithms and tools to tune the flow instead
of producing novel algorithms. Moreover, although most of the ML
models used previously demonstrate promising improvements, the
explainability of the learned heuristics or models is rarely addressed.

Structural cut-based techniques play a major role in logic syn-
thesis for (i) logic optimization in both academic and industrial
environments [10]-[13], (ii) FPGA technology-mapping [14], [15]
and (iii) ASIC technology mapping [16]. The main reason why cut-
based algorithms have been widely used is because with carefully
developed domain-specific heuristics, e.g., cut sorting and filtering,
such approaches can effectively achieve good Quality-of-Results
(QoRs) with small run-time and memory usage. However, given that
the number of cuts available per node is an exponential relation
between the graph size and the number of the cut leaves [17],
heuristics need to be applied to prune the search space in these
algorithms [11], [14]-[16]. In technology mapping algorithms, these
heuristics are mostly handcrafted through experimental analysis and
based on domain-specific knowledge, being implemented based on
static attributes of the cut/node, e.g., number of leaves, cut level,
number of nodes covered by a cut [11], [16], etc. In practice, the run-
time efficiency can be estimated based on the number of cuts explored
during the technology mapping, which leads to a trade-off between
the number of explored cuts and QoR. However, a comprehensive
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and accurate understanding between the cut-pruning heuristics and
QoRs remains unclear.

In this context, we revisit the sorting and filtering heuristics, show-
ing their impact on ASIC designs’ technology mapping. Alternatively,
the technology mapping algorithm can be executed without heuristics,
i.e., exploring all possible cuts, which is believed to offer better
QoRs with significant memory overhead. Specifically, we observe an
average improvement in delay and area up to 20% across 14 designs
while exploring all the cuts. However, it considers 56% more cuts
on average, bringing a significant memory footprint. Note that the
goal is to develop effective cut-based heuristics and achieve very
similar results to the exhaustive approach while preserving a small
number of utilized cuts. Then, we introduce the following research
question: Can we learn a better cut filtering policy that achieves close
to the exhaustive approach with a small footprint in the number of
considered cuts?

To this end, we propose SLAP, a novel technology mapping
framework, where the mapping algorithm is guided by ML-based cut
sorting and filtering heuristics. To show our approach’s implications,
we benchmark it against ABC technology mapping, the state-of-
the-art open-source ASIC mapper. Against the traditional heuristic
implemented in vanilla ABC, we observe an average improvement
in delay by 10% (up to 18%), with a small area penalty of 2% on
average (but being improved up to 18%). Area-delay product (ADP)
is improved on average by 7% (up to 22%), and the number of
considered cuts is reduced by 24%. Compared to ABC considering all
the cuts exhaustively, we still observe about 6% delay improvements
in average and reduce the number of considered cuts by over than
2x, with a 3% area increase. While we limit our scope to ASIC
tech-mapping, the findings of this work can be extended to benefit
FPGA-mapping and cut-based technology-optimization [14], [15], as
the nature of the problem is the same. The contributions of this
paper are summarized as follows: (i) We present a methodology
to explore the design-space in the cut selection for ASIC mapping,
and illustrate it on a 128-bit Advanced Encryption Standard (AES)
core, presenting the challenges and QoRs variations of cut-based
heuristics. (ii) A ML-based approach is presented, which formulates
the cut sorting heuristic as a multi-class classification problem. (iii)
The proposed framework has been fully implemented with state-
of-the-art open-source synthesis tool ABC and is publicly available
! (iv) Evaluations are conducted by comparing to state-of-the-art
technology mapping algorithms implemented in ABC [16] with
cut sorting and filtering heuristics, and mapping with exhaustive
cut exploration over 14 arithmetic-heavy designs. (v) Finally, we
demonstrate the ML explainability of the proposed approach. With
comprehensive feature analysis, we have explained what heuristics
have been newly learned by the proposed ML-based approach, in
contrast to the state-of-the-art algorithms. Such explanations from
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the proposed ML system feature an ultimate picture of implementing
new cut-based algorithms in other future applications.

The remaining of this paper is organized as follows: Section II
presents the necessary background and related works. Section III
shows the problem definition, and formulates the hypothesis of this
work. Section IV discusses the proposed approach to cast cut pruning
into a multi-class classification problem. Section V presents the
results achieved by employing our method with the ABC mapper.
Finally, Section VI concludes this work.

II. BACKGROUND AND RELATED WORKS
A. Boolean Networks and Cut-based Technology Mapping

A Boolean network is a directed acyclic graph (DAG), denoted as

G = (N, E), where each node n € N has either no incoming (fanin)
edges, or incoming edges. Nodes with no fanin are the Primary
inputs (PIs), and nodes with incoming edges implement a Boolean
function. An outgoing edge of a node n is the node’s fanout. Let inv
be a function from E to {0,1}, an edge e is said to be inverted if
tnv(e) = 1. We refer to the number of fanouts in a node as FO(n).
The level of a node n is given by the longest structural path from
any PI to the node, inclusive, and we refer to it as [vl(n). Besides,
we refer to the reverse level of a node n - rLvl(n) - as being the
longest structural path from the node to any PO. Common types of
DAGs for logic manipulation include And-Inverter Graphs (AIGs)
and Majority-Inverter Graphs (MIGs) [18].
Cuts: a cut c of a root node n is a pair (n, L), where L is the set of
cut’s leaves, such that any path from a PI to n passes through at least
one leaf. A rrivial cut of n is composed of n itself. Thus, PIs have
only trivial cuts, and every logical node has at least one trivial cut.
Non-trivial cuts, on the other hand, cover all the nodes found on the
paths from the root to the leaves, including the root and excluding
the leaves. The number of nodes covered by a cut c is said to be its
volume, and we refer to it as vol(c). A cut is k-feasible if it has up
to k leaves. If a cut is contained, set-wise, in another cut for the same
root node, the cut is dominated and usually discarded by a filtering
procedure. Thus, starting from the trivial cuts in the Pls, and given
an internal node n with fanins a,b € N, the set of cuts for n, ®(n),
can be obtained through the set Union of the set of cuts for a and b
as follows [15]:

O(n) ={{n}}U{uUvju € ®(a),v € (), |luUv| <k} (1)

Technology mapping: in our context, technology mapping consists
of binding gates available in the standard cell library to cuts. Here,
we briefly describe the steps performed by the ABC mapper [16],
the state-of-the-art open-source ASIC mapper. The first step consists
in computing k-feasible cuts for each node n € N, where k is
usually = 5. Since each node may have in the worst case O(n*)
cuts [17], pruning heuristics are applied. The cuts are first sorted by
their number of leaves, and then filtered by dominance. Each node
stores up to 250 cuts. Next, the cuts truth table is computed to be used
for standard cell binding. Then, Boolean matching takes place. For
each node, for each cut, one gate is assigned to cover this cut, if one
exists. In the following, starting from the PIs, the best arrival time
is updated for each node according to the found matches. Finally, a
cover that minimizes delay is chosen. After that, global and exact
area recovery iterations take place.

B. Related Works

Cut pruning heuristics are widely adopted for technology-mapping
[14]-[16] and logic-optimization [11], [12]. Usually, these heuristics
rely on a single cut attribute, which depends upon the application.
Common metrics to sort cuts are the number of leaves, the number

of nodes in the cover of the cut, or the number of levels in the
cut [11]. Possible heuristics to cut-ranking and pruning targeting
FGPA mapping are presented and discussed in [17]. Also, for FPGA
mapping, in [14] the authors prioritize the cuts by the number of
levels in the cut, then by the number of inputs, and then by the
area estimation, in order to reduce the delay. Still, there is no
comprehensive analysis of how these heuristics compare to other
possible variations.

Works targeting ASIC tech-mapping focus on discussing the struc-
tural bias problem and do not thoroughly discuss the cut-ranking
heuristics applied [16], [19]. In [19] the authors propose an approach
to construct the subject graph by combining the result of different
mappings heuristics, and do not discuss cut ranking. In [16], which
presents the algorithm implemented in the state-of-the-art open-
source mapper implemented in ABC [20], the authors extend the
ideas presented in [19], where intermediate networks are generated by
different optimization scripts and are seen as choices by the mapper.
Furthermore, they introduce the concept of supergates, which consists
of combining gates from the standard-cell library to build new
single-output functions. The mapper sees the supergates as regular
gates. These concepts make the matching process less susceptible
to the subject graph structure. However, cut-sorting heuristics are
not discussed, and sorting by the number of leaves is used in the
implementation. Thus, in this work, we give a focus on how to have
good cut-sorting and filtering heuristics for ASIC mapping. We show
that current solutions let much room for improvement and propose
an ML-based model that enables less-local choices. Our contributions
are orthogonal to previous works and can be combined with previous

techniques.
III. EXPLORING THE DESIGN SPACE OF CUT-BASED ASIC

TECH-MAPPING

To evaluate and show the impacts of cut-sorting and filtering
heuristics, we propose modifying such a heuristic during the tech-
mapping flow and keeping all the remaining steps untouched. To do
so, we have relied on the state-of-the-art open-source ASIC mapper
available in ABC. By default, after computing all the cuts for each
node, ABC sorts on each node the list of cuts by their number of
leaves and rules out dominated-cuts. Then, only the top 250 cuts for
each node are exposed to the Boolean matching step. Experimentally,
we evaluated sorting the cuts on each node by a different attributes
other than the number of leaves. Still, there is not a single one
that has consistently shown benefits to be adopted. That leads us to
the following observation: depending upon each node’s context, the
sorting policy might be different. Also, different structural features
from the cut should be considered simultaneously while evaluating
good cuts.

Based on that, we explored the design-space by randomly shuffling
the cut list on each node. Also, we have disabled the filtering of
dominated cuts to expose all the possibilities for the mapper. We have
then generated 10,000 maps with our random sampling strategy, using
the open-source ASAP 7nm PDK [21]. The results of each mapping
for an Advanced Encryption Standard (AES) core are presented in
Fig. 1. The z axis presents the delay variation, whereas the y axis
presents the area variation. Each data point presents the result from
one mapping, and the black-start shows the result while using the
default heuristic in ABC, i.e., the number of leaves in the cut. Note
that the initial subject graph has not gone through any optimization
before mapping. The timing information is obtained with a Static
Timing Analysis (STA). We can see that even though the ABC default
result falls in the high-probability region, the filtering techniques have
a huge impact on the QoR of the mapped netlist.



AES 2-D QoR Distribution

17400

W

17300

17200

17100

Area (um?)

17000

16900

10°

n
580 600 620 640 660 680 700
Delay (ps)

Fig. 1. 2-D QoR Distribution for an AES. Each data-point indicates the QoR
of one mapping-solution by randomly shuffling the list of cuts for each node.
The black star indicates the default ABC mapping result.

In this context, generating a good heuristic based on a single
attribute for sorting good cuts for all the nodes is difficult, as it is
local and does not give a good feeling about the context upon which
the node is inserted. Also, since the subject graph is technology-
independent, there is no precise information about cuts-timing and
-area. In this context, we formulate the following hypothesis: The
cut carries enough information about the graph structure that can
be combined in a non-trivial way to enable less-local choices.

IV. APPROACH — SLAP

To validate the hypothesis, we propose SLAP — a Supervised
Learning Approach for Priority-cuts technology mapping, an ML
model to co-relate multiple structural features of cuts and serve as
a replacement for pruning heuristics. The used features are chosen
to capture a sense of the graph structure on which the cut appears.
Using an ML model, we also use timing information during training,
making it possible to learn filtering policies targeting the circuit delay
optimization. We focus on delay as standard ABC mapper has as the
goal minimizing delay as much as possible, and then recover the area.
However, other metrics can equally be used. Finally, while the ML
community has been applying ML to learn and replace core heuristics
in other domains [22], works applying ML in logic synthesis have
not yet used it to learn a new heuristic as a replacement of a core
algorithm.

A. Node Embedding and Cut Embedding

We start by discussing how we embed nodes into tensors, given a
circuit structurally represented as a DAG. First, to capture the node
structural information, we consider features from the node itself and
from its children. Here, we limit our scope to AIGs. Let ey be an
outgoing edge from a node n, while e; and e2 are two edges such that
e1 = (cl,n) and ez = (¢2,n). The node embedding encompasses
the features from the node itself and from its two children nodes,
denoted as ¢l and ¢2 in Table I, according to the notations defined
in Section II.

TABLE I
NODE EMBEDDING FEATURES ACCORDING TO THE NOTATION DEFINED
IN SECTION II

Node Features Child 1 Features Child 2 Features
inv(eg) inv(ey) inv(eg)
1vl(n) 1vl(cl) 1vl(c2)
FO (n) FO(cl) FO(c2)
rLvl (n) - -

These features present important information about the node struc-
ture and functionality (as the node Boolean function is a 2-input
AND, polarities of the edges are the only information that might alter
that). In this context, features are appended together into a R'**0

tensor. First comes the node features, followed by the features from
cl and c2. For instance, let us consider the node 13 in the AIG graph
in Fig. 2, where the blue box by the node 13 represents its embedding,
which is defined according to the features presented in Table I,
being as follows: nodeEmbedding=[[1,3,1,0,1,2,2,1,2,1]]. The
tensors are stored in a hash-table, where the uniqueNodeID is used
as the key for look-up. The node features are used to derive the cuts-
embedding.

The first step to generate the cuts-embedding is to traverse the
graph from the PIs to the POs and compute all the k-feasible cuts,
for kK = 5. We use 5-inputs cuts to allow a fair comparison with
the mapper in ABC. Thus, we collect structural features for each
cut. We have defined 9 features as follows: (i) a flag indicating if
given a root node has an outgoing edge e such that inv(e) = 1; (ii)
the number of leaves in the cut; (iii) the number of nodes covered
by the cut, i.e, vol(c); (iv) the minimum level for the cut leaves;
(v) the maximum level for the cut leaves; (vi) the sum of levels for
all the leaves; (vii) the minimum fanout number for the cut leaves;
(viii) the maximum fanout number for the cut leaves; (ix) the sum of
fanout for all the leaves. These features are some of the cuts attributes
that could be used as a sorting parameter, along with features that
give a feeling in which context the cut appears, such as the leaves
level and fanout. These features are combined with the cut root node
embedding and the embedding for the nodes in the set { L} of the cut
leaves. The node embeddings are retrieved by looking-up the hash
table that stores the unique tensors representing each node.

Therefore, the cut embedding has R**? dimensions, where j is
equal to 10 and matches the number of features representing a single
node, and ¢ = 15. For a cut with fewer than & (5) inputs, the invalid
inputs are padded to the embedding matrix as a row of zeroes. This
padding dissolves the effect of such nonexistent connections. Fig. 2
presents the node and cut embedding for a cut rooted at node 13,
with leaves 10 and 12. In this case, children 3 to 5 embedding are
padded with zeroes.

j=10
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Fig. 2. The left-hand DAG represents an AIG, where each colored box
represents the node embeddings. These node embeddings along with the cut
features collected are used to derive the cut embedding. The first 5-rows
represent the node embeddings from the root node and the cut leaves, followed
by the cut features.

B. On the Training Approach and the Proposed Model

To generate the data for training, we propose to create distinct
maps for a given circuit, with a wide range of QoR, where the
different maps are generated by changing only the cut-sorting and
filtering heuristics. Thus, we use our modified version of ABC, which
randomly shuffles the cut list on each node. For each generated map,
we hash the final QoR by its area and delay, to have a variety of
mappings to learn from. Once the mapping is done, we dump the node
embedding for each node and the feature of cuts used to deliver the



mapping. As our target is to map for performance, i.e., low delay,
each cut has as label the normalized circuit timing, given by the ABC
stime command, which invokes the ABC STA tool. Thus, let S be
the set of all the unique solutions possible for mapping one circuit.
Let m € S be one valid mapping for the circuit, and C' be the set of
cuts used to implement m. Then, each ¢ € C has as label the timing
information of the implementation m normalized to the largest delay
available at S. Therefore, each cut is a training data-point. Without
losing generality, other metrics such as area, Area Delay Product
(ADP), or even post-Placement and Rounting (PnR) could be used
as a label. As we model this problem as a multi-class classification
problem, the labels are in a range of 10 distinct QoR classes, where
class O represents cuts that will minimize delay and class 9 cuts that
degrade circuit performance.

Once the training set is properly generated and labeled, we train a
Convolutional Neural Network (CNN) classifier that predicts the QoR
class of cuts. Fig. 3 gives an overview of the model. The cut features
matrix first goes through a Convolution layer (Conv), composed of
128 filters with dimensions 15 X 1 and a stride of 1. The idea behind
using a convolutional layer is to correlate the node features with the
cut features. The choice for the filters’ dimensions is such that as the
filters slide to the right with the stride of 1, a different feature of the
nodes will be convolved with the features of the cut. The resultant
output of the Conv layer is 128 tensors with dimensions 1 X 10 and
passes through a flatten layer, generating a layer of 1280 neurons.
This layer is fully-connected to a dense layer of 10 neurons, which
go through a softmax function to predict the output class of a cut.
The employed loss function was the sparse categorical cross-entropy
due to our model’s multiclass nature. The Adam optimizer was used
for training. These cuts are then discarded or interfaced with ABC
for Boolean matching, as explained in the next Section.

Cut
Embedding |::> |::> |::>
Softmax
; -
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10 Convolutional Layers Output

Fig. 3. Overview of the proposed model.
C. Framework Overview

Now that we have discussed the node and cut embedding, the
training methodology, and the proposed model, we introduce how
we put the pieces together to evaluate our method’s impacts for
cut selection. We interface our model with ABC to evaluate the
benefits of the proposed technique for ASIC tech-mapping. To do
so, we create two custom commands inside ABC. The first is called
prepare_map, and is responsible for generating the internal AIG
node embedding, as well as computing the k-cuts for each node and
generating their initial features, which are used for the cut embedding
and are represented by the last ten rows in Fig. 2. Once the features
are generated, instead of applying the standard algorithm for sorting
and filtering in ABC, we process the cuts through our framework.
First, the nodes embedding are looked-up to finalize deriving the
cuts embedding. Each cut (n, L), for each node n € N, is stored as
an numpy array, and goes through inference in a pre-trained CNN
model. The model output is the QoR class the cut is predicted to
belong. The lower the class, the better (lower) is the predicted delay
to be. Here, we defined two threshold values to decide on whether a
cut will be exposed to the mapper or not. Through experimentation,
we divided the QoR space into three categories: the good cuts (classes

0 to 3), the average cuts (classes 4 to 6), and the bad cuts (classes
greater than 6). Therefore, cuts classified to be within a QoR class
< 3, are considered the top options. If there is any cut predicted to
be within this QoR range for a given node, use it as an option, and
discard all the options greater than 3. On the other hand, if there is
no cut to be within the top classes, but there are still cuts classified
within the range > 4 and < 6, we give them as options the mapper.
Otherwise, we do not pass any alternative to the mapper, and the only
cut available during map is the node’s trivial cut.

The model output is a list of cuts that should be considered by
the mapper for each node. Thus, we created a new command called
read_cuts inside ABC. This command takes the list of cuts to be
considered by the mapper and only consider them during Boolean
matching. Therefore, the only steps changed inside ABC are the cut
sorting and filtering heuristics. On the other hand, Boolean matching,
arrival timing update, and cover selection remain untouched. Fig. 4
presents the overall framework flow, which is interfaced with the
state-of-the-art open-source logic synthesis environment.
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Fig. 4. SLAP framework overview.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents and discusses the results of the proposed
method. We start by discussing the proposed methodology and the
benchmark selection. Then, we present the achieved accuracy for the
classification model. To evaluate the implications of our approach,
we interface it with ABC standard cell mapper and compare it with
vanilla ABC and ABC Unlimited. We denote as ABC Unlimited a
modified version of ABC that allows the mapper to try matching all
possible cuts for each node and therefore takes out the cut sorting
and filtering heuristics. For each scenario, e.g.,, ABC vanilla, ABC
unlimited, and our approach, we present results for area, delay, and
the number of cuts exposed to the mapper, representing the memory
footprint of each method. Besides, we discuss the explainability of
our proposed framework SLAP, showing that relying on simple cut
attributes is not sufficient, and many features must be combined to
evaluate cuts. That can be used in future works to help designing
new heuristics for cut-based techniques.

A. Methodology

To train and evaluate our approach, we focus on arithmetic
designs. First, we note that arithmetic circuits are essential blocks
to design complex System on Chip (SoCs). Also, while arithmetic
circuits are widely available and can easily be generated, there are
not many available control logic open-source designs. Indeed, for
the EPFL benchmark suite, most of the control designs are super
small. Generalizing to random logic is a step beyond of this work.
Furthermore, while AIGs are efficient in handling random and control
logic, they lack in efficiency to manipulate arithmetic designs [18].



TABLE 11
RESULTS COMPARING OUR APPROACH AGAINST STANDARD ABC AND Unlimited ABC. WE HIGHLIGHT OUR METHOD CAN BEATS THE STANDARD ABC
ALGORITHM IN DELAY FOR ALL THE TEST-CASES. COMPARED TO THE Unlimited ABC, WE IMPROVE 10 OUT OF 14 CASES. WE ALSO PRESENT RESULTS
FOR AREA (1#m?), AND NUMBER OF CUTS CONSIDERED.

Circuit ABC Original ABC Unlimited SLAP A SLAP/ABC A SLAP/ABC Unlimited
Area (um?) Delay (ps) Cuts Used | Area (um?) Delay (ps) Cuts Used | Area (um?) Delay (ps) Cuts Used | Area Delay Cuts | Area  Delay Cuts

adder 898.13 3,770.65 10,118 1,009.40 3,404.62 18,228 1,031.33 3,268.67 1,3522 | 1.15 087 134 | 1.02 0.96 0.74
bar 2,680.39 1,114.90 42,760 2,680.39 1,114.90 43,784 3,083.23 923.82 10,705 1.15 083 025 1.15 0.83 0.24
c6288 3,000.45 1,265.88 95,519 3,014.68 1,228.32 197,022 3,023.54 1,236.59 111,609 | 1.01 098  1.17 1.00 1.01 0.57
max 2,312.27 3,809.03 39,727 2,049.60 3,980.21 41,478 2,292.44 3,710.54 22,521 | 0.99 097  0.57 1.12 0.93 0.54
rc256b 1,794.39 7,388.03 22,387 2,482.33 6,861.76 40,978 2,428.21 6,807.02 30,476 1.35 092 136 | 098 0.99 0.74
rc64b 450.70 1,844.59 5,491 601.16 1,688.38 10,066 602.33 1,565.70 6,397 1.34 085 1.16 | 1.00 0.93 0.64
sin 5,207.04 3,955.57 191,131 5,073.14 3,737.30 290,664 5,087.6 3,584.79 141,788 | 0.98 091  0.74 1.00 0.96 0.49
c7552 2,045.40 817.46 52,150 1,905.90 828.46 93,745 2,002.01 800.09 30,933 | 0.98 098 059 | 1.05 0.97 0.33
mul32-booth 6,802.44 1,837.68 185,406 5,623.21 1,743.56 355,106 5,597.55 1,773.47 147,043 | 0.82 097 0.79 1.00 1.02 0.41
mul64-booth 25,717.95 3,583.35 733,156 20,797.85 3,743.95 1,394,922 21,984.07 3,280.47 601,889 | 0.85 092 0.82 | 1.06 0.88 0.43
square 15,744.07 3,680.87 541,321 14,107.84 2,970.49 919,522 15,789.09 3,023.01 380,787 1.00 0.82  0.70 1.12 1.02 0.41
AES 17,321.27 638.09 264,380 16,994.21 632.07 317,827 16,489.63 594.64 145,532 | 0.95 093 055 | 097 0.94 0.46
64b_mult 25,458.31 4,649.10 833,565 24,168.27 4,144.31 1,484,104 24,021.07 4,278.48 892,650 | 0.94 092 1.07 | 099 1.03 0.60
Pico RISCV 12,190.05 1,782.08 181,410 12,010.19 2,126.47 197,069 12,148.52 1,601.21 103,174 | 1.00 090 0.57 1.01 0.75 0.52
Geomean 4,637.80 2,297.91 96,321.81 4,610.87 2,222.85  150,657.67 4,760.47 2,090.01  73,739.02 1.03 090 0.77 1.03 0.94 0.49
Improvements 1.0 1.0 1.0 0.99 0.96 1.56 1.02 0.90 0.76 - - - - - -

Thus, it is essential to understand how AIGs can be more efficient
in handling arithmetic designs. Finally, we focus on learning a cut
sorting heuristics that minimize delay, as it is a hard optimization
metric, and is also the primary goal of ABC mapper, allowing us to
present a fair comparison. We chose two different 16 bits adders
architectures to train our model: a ripple-carry and a carry-look-
ahead.

B. Model Accuracy Results

We use ~ 100, 000 data-points for training, collected from random
maps from two distinct adders’ architectures. For each adder, we
generate around ~ 50, 000 data-points. The runtime to generate these
data-points and train the model for 50 epochs is < 1 hour. As for the
accuracy results, predicting the QoR class of a cut for 10 classes has
an accuracy of around 34.01% on the validation set. However, note
that we are not interested in predicting the exact QoR class one cut
belongs to. Indeed, we are interested in considering the cuts classified
to be in the top = QoR classes, wherein our case z = 6. Thus, when
we convert the problem to a binary-classifier, which classifies the
cuts that should be considered during tech-mapping and the cuts that
should not, the achieved accuracy is 93.4% on the validation set.
That supports our hypothesis that the cut has enough information
about the graph structure that can be combined to enable timing- and
graph-aware cut classification.

C. Technology Mapping QoR Results

We present the achieved QoR improvements compared to the state-
of-the-art open-source technology-mapping available in ABC [16].
Results are compared against two versions of ABC: vanilla ABC
and Unlimited ABC. The results presented in Table II are achieved
by running the following flows:

a) ABC: read the AIG circuit; read the ASAP 7nm technology
library; run technology mapping; run stime command to get area and
delay information;

b) SLAP: read the AIG circuit; read the ASAP 7nm technology
library; prepare tech-mapping; make inference; read list of cuts to be
used for each node; derive the mapped netlist; run stime command
to get area and delay information.

As for the circuit selection to evaluate our approach, we have
chosen heavily arithmetic blocks from ISCAS’85 [23] benchmark
suite, EPFL benchmark suite [24], and used the ABC gen command
to generate the ripple carry architectures. We also validate our method
over an AES core and a RISC-V architecture to see how it applies in
more complex designs. In total, we evaluated our approach over 14
designs. As for the EPFL benchmark suite, we note that the biggest
arithmetic blocks’ results are not present as the data-frame generation

with pandas takes too long. Indeed, for such huge designs, the pandas
data frame generation is a bottleneck that we plan to address in
a future work. Still, the inference time is very short. Also, as we
discuss in this Section, our method has a smaller complexity than the
default mapper, and a tight integration with ABC our any technology-
mapping tool in C code will likely improve/have no impact in the
runtime.

Results Discussion: Table II presents area, and delay, and number of
cuts used for each case. We compare both our method and Unlimited
ABC against vanilla ABC. We highlight in blue that we could
improve delay, which is our goal, in all the circuits compared to
vanilla ABC.

Comparison against vanilla ABC: Our work’s main objective is to
improve delay, which was achieved in all the cases compared to
standard ABC. In average, our approach could improve delay by 10%
(up to 18%). As for the area, we improved 8/14 blocks, achieving
up to 18% improvement. On average, we have an area penalty of
2%. Finally, our method improves Area-Delay Product (ADP) in
12/14 designs, with an average improvement of 7% over all the
cases (up to 22%). Also, we consider in average 24% fewer cuts
than the standard ABC. Therefore, we not only achieve significant
improvements in delay, but also reduce the problem complexity by
significantly decreasing the memory footprint.

Comparison against Unlimited ABC: Compared to Unlimited ABC,
we improve the delay in 10 out 14 cases. For the cases we do
not improve the delay, SLAP produces very similar results to the
exhaustive solutions. Delay is improved on average by 6% (up to
25%). The overall area increase is about 3%. ADP is improved in 8
out of 14 cases, with an average improvement of 3% (up to 24%).
However, SLAP considers less than 2 x the number of cuts compared
to this version in ABC, which significantly reduces the complexity of
the approach and memory footprint. The reason why we can improve
unlimited ABC is because its heuristic aims to reduce the arrival
time in the considered node. As technology-mapping is analogous
to the binate-covering problem, the choice of one cut implies other
cuts must be chosen, and might eliminate future options that would
contribute to the overall delay reduction. Finally, we recall the reader
to the QoR distribution presented in Fig. 1. As it can be seen, our
model achieves a delay of 594 ps, which falls in the low-end with
respect to the delay in the distribution. Thus, we have achieved our
goal, as one would not expect to learn the best data-point, but a good
one in the design-space. The same trend can be observed for other
designs. For the designs we do not improve compared to Unlimited
ABC, that is because Unlimited ABC is an isolated data-point with
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Fig. 5. Permutation test for feature importance.

very low delay for this kind of 2-D distribution.
D. Explainability of SLAP

Fig. 5 presents the feature importance evaluation results, which
presents the accuracy degradation when each of the features is
randomly permuted, showing the importance of each feature to select
the best cuts. In other words, a higher value in Fig. 5 indicates a
higher importance of a given feature. Permutation importance is a
model agnostic metric, and we permute each feature for 10 rounds
to evaluate how they affect our model’s accuracy. Indeed, the results
show that the model depends on different features, while the default
feature used to sort the cuts in vanilla ABC (numLeaves) seems
to do not have a huge impact on the quality of a cut. On the other
hand, features that provided an understanding of the cut location in
the graph and its surrounding structure seem to play a major role,
such as the the minimum and maximum level for the leaves, and the
embedding of the cut root node. Also, we observe that matching the
polarity of cuts is important. That is because by default, ABC mapper
takes inverters for free. However, the QoR results can be significantly
affected by inverters in the post-mapping stage. That may lead to
unnecessary inverters to adjust the polarity of nodes (impacting area)
and more levels of logic (impacting delay). Finally, we observe that
there is not a single feature that stands out and that many features
need to be taken into account to enable effective cut pruning.

VI. CONCLUSIONS

In this paper, we first discuss the impact of such heuristics in the
context of ASIC technology-mapping and made a hypothesis about
cuts carrying enough information about the graph structure to enable
sub-global choices. To validate our hypothesis, we proposed SLAP
which formulate priority-cuts pruning as multi-class classification
problem. SLAP quickly filters out candidate cuts that very likely
lead to worse QoRs for technology mapping and explore the best
possible cuts instead. We demonstrate substantial improvements in
delay and ADP, while reducing the number of considered cuts by
24% compared to vanilla ABC mapping algorithm, and by over than
2x compared to Unlimited ABC that considers all the cuts. With com-
prehensive feature analysis, we have provided a thorough explanation
of what heuristics have been newly learned by the proposed ML-
based approach, in contrast to the state-of-the-art algorithms. Such
explanations from the proposed ML system feature an ultimate picture
of implementing new cut-base algorithms in other applications in the
future. Future work will focus on exploring heuristics mining in end-

to-end FPGA and ASIC flows.
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