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In this report, we discuss five forms of reasoning about multiple quantities that sixth-grade students 

exhibited as they examined mathematical relationships within the context of science. Specifically, 

students exhibited forms of sequential, transitive, dependent, and independent multivariational 

reasoning as well as relational reasoning. We use data from whole-class design experiments with 

students to illustrate examples of each of these forms of reasoning. 
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Variation, Covariation, and Multivariation 

Reasoning about variation and covariation has been studied extensively in mathematics education as 

a way of supporting students’ mathematics learning (e.g., Confrey & Smith, 1995; Carlson et al., 

2002). More recently, we found that the use of variation and covariational reasoning also supported 

students’ learning of science phenomena, such as the learning of gravity and the greenhouse effect 

(e.g. Author, 2019; Author, 2020). Science phenomena involve a complex interaction of variables 

and this provided a constructive space for students to reason about covariation in more complex 

ways. In these studies, we found that by manipulating the quantities involved in those phenomena 

using interactive simulations and studying what quantities are changing and how they are changing, 

sixth grade students exhibited some sophisticated forms of covariational reasoning. Specifically, 

students coordinated the direction of change of one quantity with the change in another quantity and 

also identified the bi-direction of change of some of those quantities. Students even discussed inverse 

relationships, such that as one quantity increases, the other quantity decreases, and predicted the 

change of one quantity if another is varied multiplicatively. While analyzing our data, we found that 

students also reasoned about more than two quantities changing simultaneously. Prior research on 

multivariational reasoning only focused on undergraduate mathematics education (Kuster & Jones, 

2019). Therefore, this provided an opportunity to examine students’ emerging forms of 

multivariational reasoning in earlier grades. This effort could eventually respond to Thompson and 

Carlson’s (2017) call for more contributions on defining the covariation construct. Specifically, we 

aimed to explore: How do sixth-grade students reason about multiple quantities as they explore 

complex quantitative relationships in scientific phenomena? 

Theoretical Framework 

We use a quantitative reasoning lens (Thompson, 1994) to discuss students’ forms of reasoning 

about multiple quantities in the context of science. We use the term quantity as one’s conceived 

attribute of an object or phenomenon that is measurable, whether they have carried out that 

measurement or not (Thompson, 1993; 1994). In this manner, numeric or not, reasoning 

quantitatively involves analyzing a situation into “a network of quantities and quantitative 

relationships” (Thompson, 1993, p.1). Accordingly, Kuster and Jones (2019) defined multivariation 

as a situation with more than two quantities that change in relation to each other. They used this 

definition to discuss three forms of multivariational reasoning that students exhibited as they 

explored differential equations: dependent, nested, and independent multivariation. Specifically, they 

defined dependent multivariation as involving at least three quantities that are interdependent with 

each other, in which a variation in one quantity simultaneously influences the change in other 

interdependent quantities. They gave the example of reasoning that since P is a function of time, P’ is 
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also a function of time. They defined nested multivariation as involving a network of quantities, 

where the first quantity is embedded in the second quantity and the change in the second quantity 

influences the change in the third quantity. For instance, when the differential equation P’ = 2P+2t 

was presented, a student used nested multivariation to explain that a change in t influenced the 

change in 2t, then variation in 2t changed P’. Finally, they defined independent multivariation as 

involving at least two quantities that are independent to each other and affect the change in another 

quantity. They gave the example of reasoning that the solution function P(t) is dependent on t, but the 

rate of change, P’, is not influenced by t. Although two independent quantities (t and P’) are 

presented, we would argue that the example does not clearly show independent multivariation 

because the student does not clearly state that P’ influences the function P(t). However, we consider 

the types that Kuster and Jones presented to be foundational for initiating the discussion around the 

different forms of multivariational reasoning in the earlier grades.  

Forms of Multivariational Reasoning 

In this paper, we report on the data from whole-class design experiments (DEs) (Cobb et al., 2003) 

conducted in three different sixth-grade classrooms, each examining a specific scientific 

phenomenon: the sea level rise, the water cycle, and the rock cycle. We designed a simulation to 

dynamically model and study each scientific phenomenon. For example, in the rock cycle simulation 

students could manipulate a rock’s depth and study the changes in its temperature and pressure. We 

accompanied the simulation exploration with questions that prompted them to reason about those 

quantitative relationships, such as “How would you describe the relationship between the 

quantities?” and “How does the change in one quantity affect other quantities?” In the following 

paragraphs, we discuss five forms of multivariational reasoning that students exhibited (Figure 1) by 

providing examples of students’ episodes from all three DEs. 

 

 
Figure 1: Forms of reasoning about multiple quantities. 

 

Sequential Multivariational Reasoning 

In students’ articulations, we observed a form of multivariational reasoning that was not discussed 

in the Kuster and Jones’ (2019) study. We refer to sequential multivariational reasoning (Figure 1a) 

as illustrating sequential changes in quantities, where a change in the first quantity (a) influences a 

change of the second quantity (b), and a change in the second quantity (b) affects a change in the 

third quantity (c). While exploring a simulation about sea level rise, students discussed the 

relationship between the global temperature rise, the height of future sea level, and the total land 

area. For instance, Myra explained that “The higher the global temperature, the higher the height of 
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the future sea level, and the less the total land area.” We interpret her reasoning to illustrate a 

sequential image of change: that the change in global temperature rise (quantity a) impacts the height 

of future sea level (quantity b), and that the change in height of sea level (quantity b) affects the 

change in total land area (quantity c).  

Transitive Multivariational Reasoning  

Our students also exhibited what we would define transitive multivariational reasoning (Figure 1b), 

a form of reasoning that supports that a change in the first quantity (a) leads to a change in the 

second quantity (b), and a change in the second quantity (b) in turn changes a third quantity (c), then 

a change in the first quantity (a) changes the third quantity (c). The difference between transitive 

reasoning and sequential reasoning is that the transitive reasoning involves the coordination of 

change in the first quantity (a) influencing a change in the third quantity (c), which is not illustrated 

in sequential reasoning. To illustrate this form of reasoning, we provide an example from the water 

cycle. The water cycle simulation presented a virtual ecosystem, in which students could manipulate 

the temperatures of air, mountain, land, and lake, and relative humidity and observe the change in the 

amount of water molecules in every phase of the water cycle. When asked to describe the 

relationship between evaporation and runoff, Ray stated, “If the rate of evaporation is higher, there 

could be higher rate of precipitation. If there’s a higher rate of precipitation, there could be more 

runoff. So, the higher rate of evaporation, there can be more runoff.” We consider Ray’s coordination 

of the change in three quantities to illustrate transitive multivariational reasoning. In particular, Ray 

first explained how the change in evaporation (quantity a) influences precipitation (quantity b), and 

how the change in precipitation (quantity b) influences runoff (quantity c). Then he used those two 

relationships to reason about how a change in evaporation (quantity a) causes a change in runoff 

(quantity c).  

Dependent Multivariational Reasoning 

Our students also illustrated reasoning that we would characterize as a subset of Kuster and Jones’ 

(2019) definition of dependent multivariational reasoning. In contrast to Kuster and Jones’ definition 

in which all three quantities involved are interdependent, the students in our study coordinated a 

change in an independent quantity a which simultaneously affected changes in two dependent 

quantities b and c, while quantities b and c were not related to each other (Figure 1c). For example, 

when Michael was prompted to describe what he noticed as he explored the rock cycle simulation he 

stated, “I would say that, the deeper, the deeper you get, the higher the temperature is, and the higher 

the pressure is.” We consider Michael’s reasoning about the relationship of depth with the 

temperature and pressure to be dependent multivariational reasoning. Michael’s language “the 

deeper” and “the higher” also shows an understanding of simultaneous change between the two 

dependent quantities (temperature and pressure) as influenced by one independent quantity (depth).  

Independent Multivariational Reasoning 

Our students exhibited independent multivariational reasoning, (Figure 1d), similar to Kuster and 

Jones’ (2019) definition of coordinating a change in two independent quantities (quantities a and b) 

influencing the same dependent quantity (quantity c). For example, when Chloe and Justin were 

asked to use the water cycle simulation to release snow by manipulating only the air temperature and 

the land temperature, they reasoned that “We need both of them to be cold.” Chloe explained that “if 

you just move for air temperature, it only snows a little bit, but if you put it with a land temperature, 

it starts to accumulate in the ground and it produces more.” Chloe illustrated an example of 

independent multivariational reasoning as she coordinated the change of land temperature and air 

temperature as unrelated independent quantities with the change in snow as the dependent quantity. 
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Relational Reasoning 

In addition to the above four types of multivariational reasoning, we also noticed instances where 

students related their explorations with quantities that were not part of the specific study. We refer to 

relational reasoning (Figure 1e) as the form of reasoning that connects the relationship of two 

quantities with a third quantity that students bring in from their prior experiences (what we refer to as 

an alien quantity). Relational reasoning can be expressed together with other forms, such as 

sequential multivariational reasoning. For instance, while exploring the water cycle simulation, we 

asked students to explain the model. Lorna connected the relationship between the amount of 

precipitation, runoff, and infiltration with the quantity of water that would go into the aquifers, which 

was not identified in the simulation or module. Lorna reasoned that “the more rain there is, there’s 

more runoff. And the more runoff, the more water is going to go into the aquifers.” Lorna first 

reasoned about the change in the quantity of rain with change the quantity of runoff. Then she 

coordinated the change in runoff with the amount of infiltrated water in the aquifer, an alien quantity 

to the simulation.  

Conclusions 

In 2017, Thompson and Carlson argued that while there are a wealth of studies employing variation 

and covariation as a framework for their investigations, these “do not contribute directly to defining 

the construct” (p. 427). Investigating how students may reason about more than two quantities makes 

a contribution to this call. The Kuster and Jones’ (2019) study initiated a discussion about how we 

can define students’ forms of multivariational reasoning. Our study built on their work to examine 

how students as young as sixth grade could reason about multiple quantities. By exploring the 

sequential and simultaneous variation of quantities involved in the water cycle, rock cycle, and sea 

level rise phenomena, students exhibited five different forms of reasoning about multiple quantities, 

namely sequential, transitive, dependent, and independent multivariational reasoning as well as 

relational reasoning.  

The retrospective analysis showed that it was the students’ interaction with the simulations and the 

probing questioning that provided a constructive space for them to study the variation in multiple 

quantities and reason multivariationally. Our initial goal in the study was to engineer opportunities 

for students to reason covariationally, therefore our tasks and questioning were restricted to only a 

few prompts to connect multiple quantities. In the next iteration of our design, we plan to engineer 

more opportunities of this type of reasoning. Through this process, we can examine the progression 

from covariational to multivariational reasoning and the tasks, tools, and questioning that assist 

students in exhibiting each specific form of reasoning about multiple quantities. 
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