ITSY: Initial Trigger-Based PFC Deadlock
Detection in the Data Plane

Xinyu Crystal Wu
Department of Computer Science
Rice University

Abstract—Lossless networks are increasingly popular for high-
performance applications in data centers and cloud environments.
To realize a lossless network in Ethernet, the Priority-based Flow
Control (PFC) protocol is adopted to guarantee zero packet loss.
PFC, however, can induce in-network deadlocks and in severe
cases cause the entire network to be blocked. Existing solutions
have focused on deadlock avoidance strategies; unfortunately,
they are not foolproof. Therefore, deadlock detection is a neces-
sity. In this paper, we propose ITSY, a novel system that correctly
detects and solves deadlocks entirely in the data plane. It does
not require any assumptions on network topologies and routing
algorithms. Unique to ITSY is the use of deadlock initial triggers,
which contributes to efficient deadlock detection and deadlock
recurrence prevention. We implement ITSY for programmable
switches in the P4 language. Preliminary evaluations demonstrate
that ITSY can detect deadlocks rapidly with minimal overheads
and mitigate the recurrence of the same deadlocks effectively.

Index Terms—PFC, Deadlock, RDMA, Programmable Switch

I. INTRODUCTION

Driven by demand for ultra-low latency, high throughput
network applications with low CPU overhead, lossless net-
works are widely deployed in modern data centers and cloud
environments [51], [52]. One typical implementation of such
networks is lossless Ethernet, an attractive option to public
cloud providers for supporting Remote Direct Memory Access
(RDMA). For example, Microsoft Azure [33] and Alibaba
Cloud [2] have adopted RDMA over Converged Ethernet on
a large scale in their data centers to speed up the performance
of processing large amounts of data and achieve minimal
CPU overhead. Emerging distributed computing platforms
and technologies such as FaRM [14], TensorFlow [1], and
CNTK [34] also exploit RDMA to enhance communication in
public clouds.

Lossless Ethernet relies on hop-by-hop Priority-based Flow
Control (PFC) to prevent buffer overflow [24]. With the
PFC mechanism, packet loss can be avoided by pausing the
immediate upstream switch. Once the queue length exceeds a
pre-defined threshold, the switch sends a PFC pause frame to
stop data transmission from the upstream switch. If the queue
length decreases below another preset threshold, the switch
sends a PFC resume frame to resume transmission. As long
as sufficient headroom buffers are reserved for in-flight packets
before pause frames take effect, no packet would be dropped.

Although effective at eliminating packet loss, PFC can in-
duce a problem: deadlocks caused by cyclic buffer dependency
(CBD), where no packets in the cycle can be propagated. Once
deadlocks occur, PFC pause frames could spread to significant

T. S. Eugene Ng
Department of Computer Science
Rice University

parts of the network fabric, causing a large percentage of flows
to stop transmission. In the worst case, all ports along all paths
could be paused and the whole network could be blocked.
Many large cloud providers have confirmed that deadlocks
are common in practice [20], [38], [45]. Deadlocks could
happen when routing rules form a loop [25], but it is not a
unique product of routing loops—recent work has shown that
even for tree-based topology with up-down loop-free routing,
deadlocks could still occur due to link failures [31], [46],
[50], complex network updates [17], [25], port flaps [29], and
misconfigurations [26], [52]. Furthermore, deadlocks do not
recover automatically even after the problems (e.g. transient
loop) that caused the deadlock formation have been fixed [22].
Approaches to combat deadlocks fall into two categories:
avoidance and detection/recovery. Most recent research efforts
focus on deadlock avoidance, but none of them is foolproof.
For example, some approaches require special buffer manage-
ment techniques to support multiple priority classes. However,
commodity switches in modern data centers can only support
two or three lossless priorities in practice [19], [23]. Some
schemes rely on limiting the rate of data transmission and thus
avoid reaching the threshold of generating pause frames [38].
However, precise and fine-grained control of the data rate may
not always be guaranteed by switch implementations. Since
no avoidance method can absolutely prevent deadlocks, an
efficient and accurate deadlock detection method is a necessity.
Unfortunately, existing methods for detecting deadlocks in
networks are insufficient to meet today’s stringent performance
requirements [3], [11], [41]. First, slow indirect inspection of
switch ports is adopted to find suspected paused ports that
might be deadlocked. Second, centralized controllers or switch
software control planes are responsible for deadlock detection;
however, both are inherently too slow to combat deadlocks
effectively. Third, without finding the root cause of a deadlock,
even if the current deadlock is resolved, there is no guarantee
that the same deadlock will not immediately reoccur again.
In this paper, we propose ITSY—a novel deadlock detection
mechanism entirely performed in the data plane. ITSY reacts
quickly after the deadlock formation and provides the root
cause information for resolving the deadlock, regardless of net-
work topologies and routing protocols. Rather than continually
monitor the throughput and queue occupancy of each switch
port which incurs unnecessary overhead, ITSY only triggers
the detection process when pause events happen. Instead
of recording information for each switch in the traversed
network path, ITSY only stores a small set of information,

guaranteeing the overhead is independent of the path length.
ITSY provides a basis to analyze the initial trigger of the
current deadlock, which helps to address deadlock recurrence.
We have implemented ITSY for programmable switches in
the P4 language [9]. Our preliminary results show that ITSY
can detect deadlocks accurately with low latency and minimal
switch memory consumption (less than 1KB per switch in a
10,000 switch network). Furthermore, resolving the initial trig-
ger can effectively prevent the same deadlock from recurring.

II. MOTIVATION
A. Deadlock Avoidance - Not Foolproof

Restricted routing. The most common solutions for dead-
lock avoidance are to restrict routing paths and avoid the
formulation of CBD [13], [40], [43], [49]. However, routing
restrictions not only waste link bandwidth and reduce through-
put [22], but also are incompatible with some topologies [11],
[37] and routing protocols such as OSPF and BGP [44], [45].
Furthermore, when some links are down, rerouting could still
create CBD and lead to deadlocks [29], [50].

Buffer management. Another method is to assign packets
different priorities hop-by-hop and put packets into different
buffers accordingly [27], [47]. The required number of prior-
ities is determined by the longest path in the network, which
increases with the network scale. However, today’s commodity
switches can only support two to three lossless priorities in
practice [19], [23], which is insufficient.

PFC pause frame restrictions. Recent proposed congestion
control protocols [10], [18], [28], [35], [51] can reduce the
possibility of pause. Also, operators can limit pause frame
propagation by assigning different PFC thresholds to ports
and switches based on their positions in the topology [22].
Although these methods can reduce the possibility of a dead-
lock, they cannot absolutely prevent deadlocks.

TTL-based mitigation. Under specific fat-tree topologies,
it is possible to assign an appropriately small TTL value
that allows packets to traverse the network while guaran-
teeing no packets can traverse a routing loop before getting
dropped [22]. Although this method could eliminate packets
traversing routing loops, one of the root causes for deadlocks,
it only works for particular topologies and cannot prevent
deadlocks formed by other root causes like link failures.

Pre-configured transmission. Deadlock avoidance can also
rely on configuring the network in advance and adjusting
the configuration dynamically on the fly. For example, Tag-
ger [23] pre-defines expected lossless paths and configures
pre-generated match-action rules to avoid deadlock. However,
it involves human intervention and complex network configu-
ration that is pointed out to be error-prone [7], [8], [16].

Rate limiting. Rate limiting is used to break the necessary
condition—hold and wait—for the deadlock [38]. Nonethe-
less, in order to limit the port rate to specific values and
to periodically adjust the port rate according to the queue
length, highly precise control are required. However, precise
and fine-grained control of the sending rate may not be always
guaranteed by switch implementations.

Summary. Existing deadlock avoidance approaches address
the problem to some extent, but they are not foolproof. Thus,
deadlock detection is an important and necessary fail-safe.

B. Existing Detection Solutions Fall Short

Existing deadlock detection solutions rely on a centralized
controller or switch local control planes [3], [11], [30], [32],
[41] to query port states and detect deadlocks. After detecting
deadlocks, the control plane computes and installs rerouting or
draining strategies to switches. The programmability of central
controllers or local control planes enables flexible detection
and recovery policies. However, inherent delays between data
planes and control planes together with the software delays
of control plane applications make these solutions unable to
response to deadlocks fast enough.

In addition, existing solutions detect deadlocks by proac-
tively monitoring for blocked ports. Concretely, if the through-
put of a port is zero while the corresponding queue length is
non-zero, the port is regarded as a suspected port that can form
deadlocks. However, the overhead of proactive monitoring is
very high as it requires the periodic inspection of all ports of
all switches in a network. In a normal network, most of time,
the inspection will find nothing wrong.

Furthermore, current deadlock detection solutions are un-
able to eliminate the root cause of the detected deadlock.
Therefore, even if the deadlock can be broken and the traffic
flow can recover temporarily, none of them is able to prevent
the same deadlock from reappearing again.

C. New Opportunity for Deadlock Detection

For each shortcoming of existing solutions, we propose a
new alternative design strategy in ITSY.

Detecting deadlocks in the data plane. A current
trend in network data centers and cloud environments is
that the networking hardware is becoming increasingly pro-
grammable [48]. Recent proposed programmable data plane
designed with a set of new features provides a new opportunity
for deadlock detection [4], [S], [21]. First, programmable
parsers and deparsers enable us to customize packet headers
and protocols. Metadata for deadlock detection can thus be
piggybacked onto pause frames. Second, the provided stateful
memory and ALUs make it possible to maintain state informa-
tion directly in the data plane. A deadlock detection algorithm
performed entirely in the data plane reduces the high over-
head introduced by interacting with the switch control plane.
Finally, once compiled, data plane programs are guaranteed to
run at line speed, which allows us to react quickly when the
deadlock is formed.

Detecting deadlocks reactively. Rather than periodically
check the status of switch ports, ITSY triggers the deadlock
detection process only when an initial pause event happens.
This has several advantages. First, the detecting process fol-
lows the direction of pause frame propagation, which greatly
reduces the network overhead and switch memory consump-
tion. Second, being triggered by the initial pause event, ITSY
can detect deadlocks almost immediately once formed.

Preventing recurrence of the same deadlock. Breaking
the deadlock by adjusting a switch on the CBD might be
insufficient, as a chain of similar pause events could be
generated along switches on the path again and cause the same
deadlock. Experimental observations from existing work [38]
show that frequent pause on upstream ports is the root cause of
hold and wait, which then forms deadlocks. Therefore, figuring
out the origin of frequent pause and mitigating the following
pause events help to resolve deadlocks. The Ethernet node that
initially sends the pause frame and leads to the deadlock can
be regarded as the initial trigger. Identifying and dealing with
the initial trigger can prevent the repeated formulations of the
same deadlock.

III. SYSTEM DESIGN

ITSY leverages the programmable data plane to detect dead-
locks and identify initial trigger nodes. Detection processes are
based on different locations of the initial trigger - on the loop
or out of the loop, respectively. A port-based data structure
is used to keep track of causal relationships between pause
events generated at different switches. ITSY attaches metadata
for deadlock detection to pause frames or synthesized packets.
Once a deadlock is detected, the initial trigger provides clues
to mitigate potential pause events later and hence prevent the
same deadlock from recurring.

ITSY focuses on two main principles—1) spatial: a chain
of pause events triggered hop by hop (causality-chain) forms
a loop (causality-loop) 2) temporal: all nodes on the causality-
loop are paused simultaneously, indicating a real deadlock
rather than just a CBD scenario. ITSY makes no assumptions
about the topologies and routing algorithms in use.

A. Identifying the Initial Trigger

The initial trigger, which can be a server or a switch, is at the
beginning position of the causality chain. A server generating
a pause frame is immediately identified as an initial trigger
since it is the destination of flows in the network. A switch is
identified as an initial trigger if it has not received any pause
frame from the corresponding downstream when generating
its own pause frame.

When a pause frame is triggered at a switch port, it might be
caused by previously received pause frames at other ports. It
is because some of the traffic from one switch port is destined
to other ports that have already been paused. Therefore, when
an ingress port generates a pause frame due to the congestion
at a corresponding egress port, it checks whether the egress
port is paused or not. An initial trigger is identified when the
egress port is not paused.

B. General Primitives for Deadlock Detection

Before discussing deadlock detection based on the location
of initial triggers, we present primitives for solving two basic
aspects of deadlock detection. Such primitives can then be
applied to cover different scenarios, including the initial trigger
on the deadlock loop or out of the deadlock loop. A port-
based causality data structure is maintained in the data plane

Symbol Meaning

Siri Node ID of the initial trigger
Piri Port ID of the initial trigger that sends pause frame

gen—ini Node ID of the generic initiator
Pyen—ini Port ID of the generic initiator that sends pause frame
Seqiaq Sequence number of checking message sent by Sgen—ini
Scur Switch ID of the current switch
&p Set of causal ports sending traffic to port p at current switch
Op Set of ports that pause the upstream and be causal with port p
Tp RESUME tag for port p of the current switch

TABLE I: Meaning of symbols used in this paper.

to determine how the metadata for deadlock detection is
forwarded. The symbols used in the following are displayed
in Table L.

Port-based causality data structure: The port-based
causality data structure maintains the causality relationship
between different switch ports, as shown in Figure 1. For a
switch with N ports, each port maintains a bit-map of size
N to track all the relevant ports that send traffic to its egress
queue, which we call a traffic mapping. Each bit indicates
whether there are active packets transmitting from a certain
ingress port to a certain egress port. In the above example,
the egress queue of port E'4 is occupied by packets of flow
f1 from ingress port I1, making the corresponding position
in the traffic mapping be set to 1. It will be cleared to 0 when
no active packet is in the egress queue. Similarly, for port E'5,
the bits for /2 and I3 are set to 1.

Each port also maintains a bit that represents whether the
corresponding port currently pause the upstream switch. In the
example, port /2 and I3 have already sent pause frames, the
corresponding values are set to 1. When receiving a new pause
frame, the switch would query the traffic mapping as well as
the port state to determine the subsequent forwarding groups
for the metadata used for deadlock detection. Notice that the
direction of pause frames is from downstream to upstream,
opposite to normal traffic flow. If E5 receives a pause frame,
the switch will traverse the bit-map for E'5 and the port states
of all ports. Since I2 and I3 both have causality with E5
and currently pause the upstream, the metadata for deadlock
detection is forwarded to /2 and I3.

Causality-loop primitive: The causality-loop can be deter-
mined when the causality chain of pause frames has visited the
same port of the same switch twice. To detect the causality-
loop with minimal memory overhead, ITSY uses the switch
suspecting a causality-loop could be formed, which we called
a generic initiator. Messages used for tracing the causality-
chains are called checking messages. The packet header of
a checking message is extended to record the unique ID
{Sgen—ini» Pgen—ini} of the generic initiator, as well as the
Seq;q sent by the generic initiator. The Segq;q represents
a unique episode of causality-loop detection. It is used to
decompose different causality-chains from the same generic
initiator when resume and pause frames alternate.

Given a generic initiator for the causality-loop detection, the
following steps are followed:

o When the generic initiator sends out a checking message,

it attaches its own {Sgen—ini» Pgen—ini> S€giq} to the
packet header. The selection of the generic initiator

Unrelated

PF TrafficMap| InPort1 | InPort2 | InPort3 | ... |InPortN
f I H‘ OutPort1 0 0 0 "
For g
OutPort2 0 0 group for

Pause

ot -
2 PF

Pause

upstrea Port 5:
) =]ﬂ

OutPort5
Fig. 1: Port-based causality data structure

OutPortN

o| |o|olo|=|o
- |lo|lo|eolo|o|o
| lo|lo+|o|o|o
o| |o|olo|o|o

3 [PauseUp |] i i i

and when checking messages are sent are different for
different use cases based on the location of the initial
trigger (details in sections III-C and III-D).

e« When receiving a checking message, non-generic ini-
tiator switches parse and store the received {ng_imv,
Pyen—ini, Seq;q} in the data plane at the receive port,
which are then used for generating the next checking
message. The Seq;q is updated when receiving a new
checking message from the generic initiator. The stored
generic initiator info at a port is removed after receiving
a resume frame.

o When port p receives a checking message, non-generic
initiator switches query the port-based causality data
structure to obtain corresponding ports §, that currently
pause the upstream and have causality with port p. If
dp =0, the switch will drop the current checking message
and wait for the generation of the next checking message
(see next bullet). Otherwise, the switch will forward the
checking message to all ports in dy,.

« A non-generic initiator switch generates a new checking
message when a pause frame is triggered by congestion
on an egress port p. This new checking message will carry
the corresponding {Sgen—inis Pgen—ini» S€giqa} stored at
port p.

e When a switch S, receives a checking message from
port p whose Sgen—ini 1S Scur, S€giq is the latest, and
Pyen—ini belongs to &, the causality-chain has passed
the same port of the same switch again. A causality-loop
is determined and a deadlock is potentially formed.

Lemma 1: If deadlock exists and Sgen—ins is on the CBD,
the causality-loop must be detected by Sgen—ini, When the
received Sgen—ini = Scurs Pgen—ini € §p Where p is the port
receiving the checking message, and Seg;q indicates the same
episode.

Proof 1: For any given deadlock, a causality-loop must be
implied. The checking message spreads with the causality-
chain must also follow the causality-loop and return back to
Sgen—ini. At this moment, Scyr = dSgen—ini. The next step
is to make sure that the checking message received at port
p has causalities with ports in £, connected to the upstream
switches. If any port in &, is equal to the received Pyen—ing,
S must have already sent out the checking message with the
same Py, _ipn;. It indicates there must be a repetitive ID and
the causality-chain comes back to the beginning position of
the causality-loop. If the recently sent Pyey_;n; has the same
Seg;q as the received Pyer—ini, the causality-chain must have
traversed one port of one switch twice in the same episode,
which verifies the causality-loop.

Temporal consistency primitive: The temporal consis-
tency primitive is triggered after the causality-loop of pause
behaviors is detected by the above mechanism. Notice that
the paused ports on the causality-chain might be resumed
during the process of causality-loop detection. Therefore, even
if a causality-loop is detected, deadlock may not actually
exist. Without this primitive, a deadlock could be declared
mistakenly.

We leverage a strategy that checks if every node of the
causality-loop is still paused ever since the initial pause event
has been triggered. Each episode is determined by the Seg;q
of the generic initiator. Once a pause event occurs, it will
hold until a resume frame is received. Each port on the
switch maintains a RESUME tag 1, representing whether
the pause is resumed during the current detection process.
It is set to zero in each episode when the corresponding
port is paused, and updated to 1 when receiving a resume
frame. A synthesized temporary consistency check packet
carrying {Sgen—ini>» Pgen—ini> S€gia} is sent passing through
the causality-loop, which is obtained by querying the traf-
fic mapping data structure and comparing the corresponding
generic initiator ID. The synthesized packet is forwarded to
ports that belong to the causal ports &, and have sent PFC
packets with the same {Sgen—ini, Pgen—ini}. Each switch
port that receives the temporal consistency check packet would
check the corresponding RESUME tag and the stored Seg;q.
A deadlock is determined if all switches on the causality-
loop maintain false RESUME tags and the same Seg;q as that
during causality-loop detection.

Lemma 2: A deadlock is determined if and only if for each
switch and each port p along the causality-loop, r, = 0 and
Seq;q is the same as the one used to determine the causality-
loop.

Proof 2: 1) If r, = 0 holds in the whole episode represented
by the same Seq;q: no resume frame is transmitted during
the current detecting episode. All ports of the causality-
loop is paused through the entire duration and a deadlock is
determined. 2) If r, = 1 at some switch: port p is resumed and
the status is not changed in the current episode. At least one
of the nodes on the causality-loop is resumed so that pause
events are unable to form a deadlock. 3) If Seq;q is changed
at some switch, there must be a new pause frame following
a resume frame. However, this must start a new independent
episode of detection, which means r, = 1 followed by r, =
0 cannot happen in the same episode. Therefore, even if r,
= 0 holds for all switches on the loop, they are involved in
different episodes so that the deadlock is not determined in
the current episode. It is the job of the new detection episode
to determine whether a deadlock is formed.

C. Initial Trigger on Loop

When the initial trigger switch is part of the deadlock
CBD loop, the deadlock can be detected from the loop itself.
Figure 2 shows an example of this case in the Clos network
topology. The principle for deadlock detection is identical to
the general primitives previously described in Section III-B.

=@
Deadlock CBD: S2 - >S4 - > S1 - > S5
Pause Loop: S2->S5->S1->854

Fig. 2: Example of deadlock in the Clos network topology
when initial trigger is on the loop

Generic initiator selection: In this case, the initial trigger
node is regarded as the generic initiator since it is at the
beginning of the causality-chain and the causality-chain itself
forms the CBD cycle.

Checking message propagation: Whether it is the initial
trigger or non-initial trigger switch sending out a PFC pause
frame, the current checking message {Sy-i, Piri» Seqia} is
piggybacked onto the PFC pause frames. When a non-initial
trigger switch detects that the next hop of the causality-
chain has already been paused, no new pause frame can be
generated. The checking message {Stri, Piri, Seqiq} is then
forwarded with a different priority. Based on the causality-
loop primitive, if a deadlock exists, the causality-loop must
be detected by Sy,;.

Temporal consistency guarantee: The temporal consis-
tency primitive can take effect in this case by choosing
the initial trigger as the start of the temporal consistency
check. Deadlock is determined when the temporal consistency
primitive holds.

D. Initial Trigger out of Loop

Some practical deadlock scenarios are affected by pause
events sent from switches out of the loop. As shown in
Figure 3, malicious flow f5 with constant high sending rate
causes a pause frame initially to be sent from S10, leading to
the final deadlock loop between S2, S5, S1 and S4. Even if
the deadlock can be broken from one of the switches on the
loop, without solving continuous pause events from the initial
trigger switch S10, S6 and S2 can be paused again and finally
lead to a repeated formation of the same deadlock.

We observe that a signal of this case is that a middle switch
receives multiple pause frames with the same {S;, Piri}
from different ports. The Seq;; does not need to be the same
as the initial trigger may alternately send pause and resume
frames, which update the Segq;q received from outside the
loop. However, the detection of this case only cares about
the same Seq;q; on the causality-loop. Therefore, even if the
two pause frames with the same {St.;, Pi-;} received from
different ports have different Seq;q, the detection process can
still be triggered. In the example of Figure 3, this phenomenon
is detected at S2 when it receives two pause frames with the
same {Si, Piri} from S6 and S4.

Lemma 3: If deadlock exists and S;,; is out of the causality
loop, one switch (called the middle switch) must receive

Deadlock CBD: S2 - >S4 -> 81 -> S5
Pause Propagation: S10-> S6 - > S2
->85->81->84->82

Fig. 3: Example of deadlock when initial trigger is out of loop

at least two pause frames with the same {Sy.;, Py} from
different ports.

Proof 3: Once the causality-loop is formed and S;,.; is out
of the loop, there must be a switch at the junction between the
inside and outside of the loop. This switch has received pause
frames from at least two directions. One is from the outside
downstream switch, the other one is from the switch on the
causality-loop. As both pause frames can be traced back to the
Stri, the received {Stri, Piri } from different ports must be the
same. Notice that since pause and resume frames are possibly
alternating continuously, the same {Sy.;, P;} received from
the same port are not considered.

This condition could also be met even if there is no dead-
lock, as shown in Figure 4. S7 receives two pause frames with
the same ID of S1 respectively from S5 and S6. However,
no deadlock is formed. ITSY can deal with the non-deadlock
cases normally as well as the deadlock cases. The correctness
of deadlock detection is guaranteed by the general primitives
in Section III-B.

Generic initiator selection: The middle switch receiving
the same {Si;, P} from different ports is selected as the
generic initiator to start a new process of deadlock detection.
This process works in parallel with the previous process using
the initial trigger as the generic initiator.

Checking message propagation: As the middle switch
is selected as the generic initiator, the {Sgen—ini, Pyen—ini}
used for checking message in this case is the SwitchID and
PortID of the middle switch, which we called .S,,;q4e and
Pidaie- When the causality-loop detection is triggered, the
middle switch has received two Seq;q from different ports.
The one received from the port that has not stored the Seq;q
is selected for the subsequent deadlock detection. The middle
switch generates a synthesized packet to carry the checking
message {Smiddie> Prmiddles S€qid}, which is forwarded along
the causality-chain.

Temporal consistency guarantee: Temporal consistency
primitive is invoked by choosing the middle switch as the
start of the temporal consistency check.

Compared with the scenario that the initial trigger is on the
loop, this case needs at most one additional round to detect
the deadlock, which adds a small overhead.

IV. HANDLING DEADLOCK BASED ON INITIAL TRIGGERS

Upon detection of a deadlock, actions must be taken to
break the deadlock and prevent future recurrence of the dead-

Pause Frame
Direction

{Stri, Pui} /
\
{Stri, Py}
@7

Fig. 4: A switch receives two pause frames with the same Sy,
from different ports, but no deadlock exists

Initial
Trigger

lock. Below we discuss several research directions. Details are
left to future work.

Breaking the deadlock: Packet dropping or temporary
rerouting are common methods used to break a deadlock [30],
[32], [41]. However, rerouting is not always viable if not
all flows have multiple paths. In addition, rerouting may
create other deadlocks. Breaking a deadlock by dropping
packets is more practical and several fast synchronous draining
approaches have been proposed [39]. The packet loss rate that
can be tolerated by protocols like RoCEv2 is about 0.0001
[51]. To break a deadlock, only a part of the buffered traffic
needs to be dropped, thus the actual performance impact may
be tolerable.

Initial trigger handling: In addition to breaking the dead-
lock, further operations are needed to handle the initial trigger
in order to prevent the deadlock from forming again. If the
initial trigger is a switch, a crucial step is to identify the heavy
hitters which send a large amount of traffic and thus cause the
congestion. Recent proposals for heavy hitter detection can
be leveraged [12], [42]. Once identified, further steps can be
taken to limit the heavy hitters.

The initial trigger may also be a server when there is a flow
control issue or a malfunctioning NIC. Due to limited memory
resources in the NIC, a flow control issue may cause thousands
of PFC pause frames to be sent per second from a server [19].
In addition, bugs in the receiving pipeline of the NIC can
cause the server to be unable to handle the received packets
and continually send pause frames [19], [51]. One approach
for handling such an initial trigger server is to prevent the
NIC from generating pause frames and disable lossless mode
at the switch port. Alternatively, the connected switch can
make use of dynamic buffer sharing, which improves the
utilization of available buffer space and reduces PFC pause
frame propagation.

V. PRELIMINARY RESULTS

We prototype ITSY in the P4 language with BMv2 software
switches [36] in the MiniNet environment for validation. The
experiments are performed in the CloudLab platform [15],
each node has 4 cores and 32GB of RAM. We evaluate ITSY
for scenarios that the initial trigger is on the loop and out of
the loop, using a k = 4 fat-tree topology.

Memory overhead: The memory overhead of ITSY mainly
comes from the port-based causality data structure and the
maintained information of checking message. Both of them
are determined by the number of ports in the network. In our
experiments, each switch has 4 ports and the memory overhead
in this case is less than 10~ 'KB. If we deploy ITSY in a large-
scale network with 10,000 64-port switches, 14-bit SwitchID

Normalized Throughput

100%

®
2
X

60%

40%

20%

:
X

a-aemk Ao -+
Cr e

Round 1

P

L
+ ou.‘..i

S Ea

3
i

Round 2 %

i
-
- 3

+obdoa—a

0

5 10 15 20 25 30 35 40
Time/seconds

Normalized Throughput

=
o
o
X

®
I
X

60%

40%

20%

:
X

IR
P
s .,.l

0

5 10 15 20 25 30 35 40
Time/seconds

(a) W/O resolving initial trigger (b) Resolving initial trigger

Fig. 5: Benefits of resolving initial trigger out of the loop

and 6-bit PortID are required to support the uniqueness re-
quirement. The corresponding memory overhead is less than
1KB per switch. Overall, the total memory requirement of
ITSY is quite small and it can be easily deployed in today’s
programmable data planes that usually have tens of MB of
memory [6].

Detection effectiveness: We evaluate the effectiveness of
ITSY by creating deadlocks in two different scenarios—the
initial trigger is on the loop and out of the loop respectively.
We introduced two failed links so rerouting could finally lead
to a deadlock loop. Traffic flows are generated across ToR
switches and the resulting congestion could spread to the
upstream switches and then to switches on the deadlock loop.
We repeat each scenario 10 times. The average detection time
for the on loop scenario is 0.8ms and 1.4ms for the out of
loop scenario. In cases without causality-loop, no deadlock is
declared by ITSY. In cases that a causality-loop is formed but
then one of the ports is immediately resumed, this situation is
detected by the temporal consistency check without declaring
any deadlock. There was no false positive or false negative.

Benefits of resolving the initial trigger: To validate the
benefits of resolving initial triggers, we simulate a misbehav-
ing server that continually pauses the connected edge switch
that leads to a deadlock. A baseline solution is to break the
deadlock without resolving the initial trigger. We measure
the normalized throughput of different flows and results are
shown in Figure 5. Although the baseline can recover from the
deadlock for a while, if the traffic pattern does not change, the
deadlock will reappear. In contrast, ITSY breaks the deadlock
and resolves the initial trigger simultaneously, which prevents
the recurrence of the deadlock.

VI. CONCLUSION

In this paper, we propose ITSY to detect and resolve
deadlocks in PFC networks. We identify the initial trigger to
mitigate the recurrence of the same deadlock. The deadlock
scenarios are analyzed and detected based on the location of
the initial trigger. ITSY can be implemented entirely in the
data plane, which achieves low overhead and reacts quickly
to deadlocks. For ongoing work, we plan to develop a fully
automatic deadlock resolution system and apply it to more
topologies as well as more complex deadlock scenarios.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback. This
research is sponsored by the NSF under CNS-1718980, CNS-
1801884, and CNS-1815525.

[1]

[3]

[4]

[5

=

[6

=

[7

—

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265-283, 2016.
Alibaba. Alibaba cloud - super computing cluster.
https://www.alibabacloud.com/product/scc.

K. Anjan and T. M. Pinkston. An efficient, fully adaptive deadlock re-
covery scheme: Disha. In Proceedings of the 22nd annual international
symposium on Computer architecture, pages 201-210, 1995.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
Snap: Stateful network-wide abstractions for packet processing. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages 29-43,
2016.

M. Bansal, J. Mehlman, S. Katti, and P. Levis. Openradio: a pro-
grammable wireless dataplane. In Proceedings of the first workshop
on Hot topics in software defined networks, pages 109-114, 2012.
Barefoot. Tofino: World’s fastest p4-programmable ethernet switch asics.
https://www.barefootnetworks.com/products/brief-tofino/.

R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 155—
168, 2017.

R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev. Con-
fig2spec: Mining network specifications from network configurations. In
Proceedings of 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20), 2020.

M. Budiu and C. Dodd. The p416 programming language. ACM SIGOPS
Operating Systems Review, 51(1):5-14, 2017.

W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren. Re-architecting con-
gestion management in lossless ethernet. In /7th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
19-36, 2020.

W. J. Dally and C. L. Seitz. Deadlock-free message routing in
multiprocessor interconnection networks. 1988.

A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact
of packet spraying in data center networks. In 2013 Proceedings IEEE
INFOCOM, pages 2130-2138. IEEE, 2013.

J. Domke, T. Hoefler, and W. E. Nagel. Deadlock-free oblivious
routing for arbitrary topologies. In 2011 IEEE International Parallel
& Distributed Processing Symposium, pages 616-627. IEEE, 2011.

A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast
remote memory. In /7/th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 401-414, 2014.

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra. The design and operation of cloudlab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1-14, 2019.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network con-
figuration analysis. In /2th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 469-483, 2015.

K.-T. Forster, R. Mahajan, and R. Wattenhofer. Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes. In 2016 IFIP Networking Conference (IFIP Networking)
and Workshops, pages 1-9. IEEE, 2016.

J. Geng, J. Yan, and Y. Zhang. P4qcn: Congestion control using p4-
capable device in data center networks. Electronics, 8(3):280, 2019.

C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.
Rdma over commodity ethernet at scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 202-215, 2016.

D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Aug-
menting data center networks with multi-gigabit wireless links. In
Proceedings of the ACM SIGCOMM 2011 conference, pages 38—49,
2011.

D. Hancock and J. Van der Merwe. Hyper4: Using p4 to virtualize
the programmable data plane. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
pages 35-49, 2016.

S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen.

Deadlocks in datacenter networks: why do they form, and how to avoid
them. In Proceedings of the 15th ACM Workshop on Hot Topics in

Networks, pages 92-98, 2016.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

(32]

[33]
[34]

[35]

[36]

(371

[40]

[41]

[42]

[43]

[44]

S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen.
Tagger: Practical pfc deadlock prevention in data center networks. In
Proceedings of the 13th International Conference on emerging Network-
ing EXperiments and Technologies, pages 451-463, 2017.
IEEE. Ieee 802.1 gbb - priority-based flow
https://1.ieee802.org/dcb/802-1gbb/, 2010.

X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network updates.
ACM SIGCOMM Computer Communication Review, 44(4):539-550,
2014.

S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman, T. Millstein,
Y. Tamir, and G. Varghese. Finding network misconfigurations by
automatic template inference. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 999-1013, 2020.
D. Lee, S. J. Golestani, and M. J. Karol. Prevention of deadlocks and
livelocks in lossless, backpressured packet networks, Feb. 22 2005. US
Patent 6,859,435.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, et al. Hpcc: high precision congestion
control. In Proceedings of the ACM Special Interest Group on Data
Communication, pages 44-58. 2019.

V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-
tolerant engineered network. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pages 399-412, 2013.

P. Lopez, J. M. Martinez, and J. Duato. A very efficient distributed
deadlock detection mechanism for wormhole networks. In Proceedings
1998 Fourth International Symposium on High-Performance Computer
Architecture, pages 57-66. IEEE, 1998.

C. Lou, P. Huang, and S. Smith. Understanding, detecting and localizing
partial failures in large system software. In /7th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
559-574, 2020.

J. M. Martinez, P. Lopez, J. Duato, and T. M. Pinkston. Software-based
deadlock recovery technique for true fully adaptive routing in wormhole
networks. In Proceedings of the 1997 International Conference on
Parallel Processing, pages 182-189. IEEE, 1997.

Microsoft. Availability of linux rdma on microsoft azure.
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available/.
Microsoft. The microsoft cognitive toolkit.
https://docs.microsoft.com/en-us/cognitive-toolkit/.

R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. Timely: Rtt-based
congestion control for the datacenter. ACM SIGCOMM Computer
Communication Review, 45(4):537-550, 2015.

P4lang. P4 behavioral model. https://github.com/p4lang/behavioral-
model.

H. Park and D. P. Agrawal. Generic methodologies for deadlock-
free routing. In Proceedings of International Conference on Parallel
Processing, pages 638-643. IEEE, 1996.

K. Qian, W. Cheng, T. Zhang, and F. Ren. Gentle flow control: avoiding
deadlock in lossless networks. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 75-89. 2019.

A. Ramrakhyani, P. V. Gratz, and T. Krishna. Synchronized progress in
interconnection networks (spin): A new theory for deadlock freedom.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 699-711. IEEE, 2018.

J. C. Sancho, A. Robles, and J. Duato. An effective methodology to
improve the performance of the up*/down* routing algorithm. [EEE
Transactions on Parallel and Distributed Systems, 15(8):740-754, 2004.
A. Shpiner, E. Zahavi, V. Zdornov, T. Anker, and M. Kadosh. Unlocking
credit loop deadlocks. In Proceedings of the 15th ACM Workshop on
Hot Topics in Networks, pages 85-91, 2016.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In
Proceedings of the Symposium on SDN Research, pages 164-176, 2017.
T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (lash) routing
in irregular system area networks. In Proceedings 16th International
Parallel and Distributed Processing Symposium. IPDPS 2002, pages 8—
pp. Citeseer, 2002.

B. Stephens and A. L. Cox. Deadlock-free local fast failover for arbitrary
data center networks. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1-9.
IEEE, 2016.

control.

[45]

[46]

[47]

[48]

B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter.
Practical dcb for improved data center networks. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications, pages 1824—
1832. IEEE, 2014.

C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang.
Netbouncer: active device and link failure localization in data center
networks. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 599-614, 2019.

K. D. Underwood and E. Borch. A unified algorithm for both ran-
domized deterministic and adaptive routing in torus networks. In 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pages 723-732. IEEE, 2011.

T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. Ports, and
A. Panda. Multitenancy for fast and programmable networks in the
cloud. In 72th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[49]

[50]

(51]

[52]

J. Wu. A fault-tolerant and deadlock-free routing protocol in 2d meshes
based on odd-even turn model. [EEE Transactions on Computers,
52(9):1154-1169, 2003.

X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and
M. Zhang. Netpilot: automating datacenter network failure mitigation.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication,
pages 419-430, 2012.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion control for large-
scale rdma deployments. ACM SIGCOMM Computer Communication
Review, 45(4):523-536, 2015.

Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, et al. Packet-level telemetry in large
datacenter networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 479-491, 2015.

