PipeTransformer: Automated Elastic Pipelining for
Distributed Training of Large-scale Models

Chaoyang He' Shen Li> Mahdi Soltanolkotabi' Salman Avestimehr '

Abstract

The size of Transformer models is growing at an
unprecedented rate. It has taken less than one
year to reach trillion-level parameters since the
release of GPT-3 (175B). Training such models
requires both substantial engineering efforts and
enormous computing resources, which are luxu-
ries most research teams cannot afford. In this
paper, we propose PipeTransformer, which
leverages automated elastic pipelining for effi-
cient distributed training of Transformer models.
InPipeTransformer, we design an adaptive
on the fly freeze algorithm that can identify and
freeze some layers gradually during training, and
an elastic pipelining system that can dynamically
allocate resources to train the remaining active
layers. More specifically, PipeTransformer
automatically excludes frozen layers from the
pipeline, packs active layers into fewer GPUs,
and forks more replicas to increase data-parallel
width. We evaluate PipeTransformer us-
ing Vision Transformer (ViT) on ImageNet and
BERT on SQuAD and GLUE datasets. Our results
show that compared to the state-of-the-art base-
line, PipeTransformer attains up to 2.83-
fold speedup without losing accuracy. We also
provide various performance analyses for a more
comprehensive understanding of our algorithmic
and system-wise design. Finally, we have mod-
ularized our training system with flexible APIs
and made the source code publicly available at
https://DistML.ai.

1. Introduction

Large Transformer models (Brown et al., 2020; Lepikhin
et al., 2020) have powered accuracy breakthroughs in both
natural language processing and computer vision. GPT-3 hit
a new record high accuracy for nearly all NLP tasks. Vision

"University of Southern California “Facebook AI Research.

Correspondence to: Chaoyang He <chaoyang.he @usc.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Transformer (ViT) (Dosovitskiy et al., 2020) also achieved
89% top-1 accuracy in ImageNet, outperforming state-of-
the-art convolutional networks ResNet-152 (He et al., 2016)
and EfficientNet (Tan & Le, 2019). To tackle the growth in
model sizes, researchers have proposed various distributed
training techniques, including parameter servers (Li et al.,
2014; Jiang et al., 2020; Kim et al., 2019), pipeline paral-
lel (Huang et al., 2019; Park et al., 2020; Narayanan et al.,
2019), intra-layer parallel (Lepikhin et al., 2020; Shazeer
et al., 2018; Shoeybi et al., 2019), and zero redundancy data
parallel (Rajbhandari et al., 2019).

TO (0% trained)

T1 (35% trained) T2 (75% trained) T3 (100% trained)

Layer (during training)

il R
Layer (end of training) Layer (end of training)
Similarity score

i
Layer (end of training)

Figure 1. Interpretable Freeze Training: DNNs converge bottom
up (Results on CIFAR10 using ResNet). Each pane shows layer-
by-layer similarity using SVCCA (Raghu et al., 2017).

Existing distributed training solutions, however, only study
scenarios where all model weights are required to be opti-
mized throughout the training (i.e., computation and com-
munication overhead remains relatively static over different
iterations). Recent works on freeze training (Raghu et al.,
2017; Morcos et al., 2018; Shen et al., 2020) suggest that
parameters in neural networks usually converge from the
bottom-up (i.e., not all layers need to be trained all the
way through training). Figure 1 shows an example of how
weights gradually stabilize during training in this approach.
This observation motivates us to utilize freeze training for
distributed training of Transformer models to accelerate
training by dynamically allocating resources to focus on a
shrinking set of active layers. Such a layer freezing strategy
is especially pertinent to pipeline parallelism, as exclud-
ing consecutive bottom layers from the pipeline can reduce
computation, memory, and communication overhead.

In this paper, we propose PipeTransformer, an elastic
pipelining training acceleration framework that automati-
cally reacts to frozen layers by dynamically transforming
the scope of the pipelined model and the number of pipeline
replicas. To the best of our knowledge, this is the first paper

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

“Hi, PipeTransformer,
What does your name mean?”

T0 T1 - 1. Freeze Algorithm

) Pipeline O (server 0))
EErEEsEEEE, e
i 0.BP1 2. .34 5 6 7: 0.1

——[“Pipeline Transformation for Transformer Models”]

4. AutoCache: Cross-process caching

f-_Cache -

T3

DP Pipeline 1 (server 1) DP [DP)
et EEE / EEEnE . e
i 8BPg 101112 .13 .14 15} i 8 9 10 11: 12 18 14 15

2. AutoPipe: Elastic pipelining

Figure 2. The process of PipeTransformer’s automated and elastic pipelining to accelerate distributed training of Transformer models

that studies layer freezing in the context of both pipeline and
data-parallel training. Figure 2 demonstrates the benefits
of such a combination. First, by excluding frozen layers
from the pipeline, the same model can be packed into fewer
GPUgs, leading to both fewer cross-GPU communications
and smaller pipeline bubbles. Second, after packing the
model into fewer GPUs, the same cluster can accommodate
more pipeline replicas, increasing the width of data paral-
lelism. More importantly, the speedups acquired from these
two benefits are multiplicative rather than additive, further
accelerating the training.

The design of PipeTransformer faces four major chal-
lenges. First, the freeze algorithm must make on the fly and
adaptive freezing decisions; however, existing work (Raghu
et al., 2017) only provides a posterior analysis tool. Sec-
ond, the efficiency of pipeline re-partitioning results is
influenced by multiple factors, including partition gran-
ularity, cross-partition activation size, and the chunking
(the number of micro-batches) in mini-batches, which re-
quire reasoning and searching in a large solution space.
Third, to dynamically introduce additional pipeline repli-
cas, PipeTransformer must overcome the static nature of
collective communications and avoid potentially complex
cross-process messaging protocols when onboarding new
processes (one pipeline is handled by one process). Finally,
caching can save time for repeated forward propagation
of frozen layers, but it must be shared between existing
pipelines and newly added ones, as the system cannot afford
to create and warm up a dedicated cache for each replica.

PipeTransformer is designed with four core building
blocks to address the aforementioned challenges. First, we
design a tunable and adaptive algorithm to generate signals
that guide the selection of layers to freeze over different
iterations (Section 3.1). Once triggered by these signals, our
elastic pipelining module Aut oPipe, then packs the remain-
ing active layers into fewer GPUs by taking both activation
sizes and variances of workloads across heterogeneous par-
titions (frozen layers and active layers) into account. It then
splits a mini-batch into an optimal number of micro-batches
based on prior profiling results for different pipeline lengths
(Section 3.2). Our next module, AutoDP, spawns additional
pipeline replicas to occupy freed-up GPUs and maintains hi-
erarchical communication process groups to attain dynamic

membership for collective communications (Section 3.3).
Our final module, AutoCache, efficiently shares activations
across existing and new data-parallel processes and auto-
matically replaces stale caches during transitions (Section
3.4).

Overall, PipeTransformer combines the Freeze
Algorithm, AutoPipe, AutoDP and AutoCache mod-
ules to provide a significant training speedup. We eval-
uate PipeTransformer using Vision Transformer (ViT)
on ImageNet and BERT on GLUE and SQuAD datasets.
Our results show that PipeTransformer attains up to
2.83-fold speedup without losing accuracy. We also provide
various performance analyses for a more comprehensive
understanding of our algorithmic and system-wise design.
Finally, we have also developed open-source flexible APIs
for PipeTransformer which offer a clean separation
among the freeze algorithm, model definitions, and train-
ing accelerations, allowing for transferability to other algo-
rithms that require similar freezing strategies. The source
code is made publicly available.

2. Overview
2.1. Background and Problem Setting

Suppose we aim to train a massive model in a distributed
training system where the hybrid of pipelined model paral-
lelism and data parallelism is used to target scenarios where
either the memory of a single GPU device cannot hold the
model, or if loaded, the batch size is small enough to avoid
running out of memory. More specifically, we define our
settings as follows:

Training task and model definition. We train Transformer
models (e.g., Vision Transformer (Dosovitskiy et al., 2020),
BERT (Devlin et al., 2018)) on large-scale image or text
datasets. The Transformer model F has L layers, in which
the th layer is composed of a forward computation function
fi and a corresponding set of parameters, w;. With this defi-
nition, the overall model is F = fo(wg)o...ofr_1(Wr_1).
The model size is S, and the batch size is set to Np.

Training infrastructure. Assume the training infrastruc-
ture contains a GPU cluster that has N GPU servers (i.e.
nodes). Each node has I GPUs. Our cluster is homoge-

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

neous, meaning that each GPU and server have the same
hardware configuration. Each GPU’s memory capacity is
Mgpy. Servers are connected by a high bandwidth network
interface such as InfiniBand interconnect.

Pipeline parallelism. In each machine, we load a model
F into a pipeline P which has K partitions (KX also rep-
resents the pipeline length). The kth partition p;, consists
of consecutive layers p, = f;(w;) o ... o f;j(w;), and
P =ppo...opg_1. We assume each partition is handled
by a single GPU device. 1 < K < I, meaning that we
can build multiple pipelines for multiple model replicas in a
single machine. We assume all GPU devices in a pipeline
belong to the same machine. Our pipeline is a synchronous
pipeline, which does not involve stale gradients, and the
number of micro-batches is M. In the Linux OS, each
pipeline is handled by a single process. We refer the reader
to GPipe (Huang et al., 2019) for more details.

Data parallelism. DDP (Li et al., 2020) is a cross-machine
distributed data parallel process group within R parallel
workers. Each worker is a pipeline replica (a single process).
The rth worker’s index (ID) is rank r. For any two pipelines
P(i) and P("3) in DDP, r; and 7; can belong to either the
same GPU server or different GPU servers, and they can
exchange gradients with the A11Reduce algorithm.

Under these settings, our goal is to accelerate training by
leveraging freeze training, which does not require all lay-
ers to be trained throughout the duration of the training.
Additionally, it may help save computation, communica-
tion, memory cost, and potentially prevent overfitting by
consecutively freezing layers. However, these benefits can
only be achieved by overcoming the four challenges of de-
signing an adaptive freezing algorithm, dynamical pipeline
re-partitioning, efficient resource reallocation, and cross-
process caching, as discussed in the introduction. We next
describe our overall design, named PipeTransformer,
which can address these challenges.

2.2. Overall Design

PipeTransformer co-designs an on the fly freeze algo-
rithm and an automated elastic pipelining training system
that can dynamically transform the scope of the pipelined
model and the number of pipeline replicas. The overall
system architecture is illustrated in Figure 3. To support
PipeTransformer’s elastic pipelining, we maintain a
customized version of PyTorch Pipe (Kim et al., 2020).
For data parallelism, we use PyTorch DDP (Li et al., 2020)
as a baseline. Other libraries are standard mechanisms of
an operating system (e.g., multi-processing) and thus
avoid specialized software or hardware customization re-
quirements. To ensure the generality of our framework, we
have decoupled the training system into four core compo-
nents: freeze algorithm, AutoPipe, AutoDP, and

Pipeline 1 at timestep 1

pipeline 0 at timestep 1

Redistribute
dataset

AutoCache
AutoDP
(cross process)
Sample training Transform
information as indicator # of frozen layer Pipéline length

(Progress, gradient, etc) has’been changed?

changed?
Freeze

notify
Algorithm

AutoPipe ‘

Shared Memory
(Cross process)

Multi Processing

Figure 3. Overview of PipeTransformer Training System

| Data Distributed Parallel || Pipeline Parallel |

| Deep Learning Training Engine (PyTorch) |
[CUDA [NccL/GLoO |

AutoCache. The freeze algorithm (grey) samples indica-
tors from the training loop and makes layer-wise freezing
decisions, which will be shared with AutoPipe (green).
AutoPipe is an elastic pipeline module that speeds up
training by excluding frozen layers from the pipeline and
packing the active layers into fewer GPUs (pink), leading to
both fewer cross-GPU communications and smaller pipeline
bubbles. Subsequently, Aut oPipe passes pipeline length
information to Aut oDP (purple), which then spawns more
pipeline replicas to increase data-parallel width, if possible.
The illustration also includes an example in which AutoDP
introduces a new replica (purple). AutoCache (orange
edges) is a cross-pipeline caching module, as illustrated by
connections between pipelines. The source code architec-
ture is aligned with Figure 3 for readability and generality.

3. Algorithm and System Design

This section elaborates on the four main algorithmic and
system-wise design components of PipeTransformer.

3.1. Freeze Algorithm

The freeze algorithm must be lightweight and able to make
decisions on the fly. This excludes existing layer-wise train-
ing approaches such as SVCCA (Raghu et al., 2017) which
require full training states and heavy posterior measure-
ments. We propose an adaptive on the fly freeze algorithm

to define ng)en at timestep 1" as follows:

frozen frozen

min (L(T_1> + a(L — L(T_l)), argmin HgéT) H)
ec{L{T-Y 1}

=0,and @ € (0,1)
(1

where T' > 1, L(O)

frozen

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

where gf’)

T
Jo:"|

the min function is that the layer with the smallest gradient
norm converges first. To stabilize training, we enforce an
upper bound ng_ej)+ a(L — ng_ei)) for the number of
frozen layers, which is a geometric sequence containing a
hyper-parameter a. This essentially freezes an « fraction
of the remaining active layers. To illustrate the impact of
foren = (1= @) +
Z?:z %] (see Appendix for the derivation), and draw
the curve of this function in Figure 4. As we can see, a
larger «v leads to a more aggressive layer freezing. Therefore,
Equation 1 calculates the number of frozen layers at timestep
T using both the gradient norm and a tunable argument c.

is the gradient for layer ¢ at iteration 7', and

‘ is its norm. The intuition behind the second term in

a, we rewrite the equation as: L

Freeze algorithm

N
g

N
5]

—
]

o
5

alpha=0.1
alpha=0.2
alpha=0.3
alpha=0.5

Frozen Layer Number
&

o

0 2 6 8

4
Epoch

Figure 4. Freeze Algorithm Using Different o

The o parameter controls the trade-off between accuracy
and training speed. This algorithm is also analogous to
learning rate (LR) decay. Both algorithms use a scheduler
function during training, and take the progress of training
as an indicator. The difference is that the above freeze
algorithm also takes gradient norm into account, making the
algorithm simple and effective.

Remark: Our system design idea can be generalized to
many other progressive training algorithms. See Section 6
for more discussions.

3.2. AutoPipe: Elastic Pipelining

Triggered by the freeze algorithm, Aut oPipe can accelerate
training by excluding frozen layers from the pipeline and
packing the active layers into fewer GPUs. This section
elaborates on the key components of AutoPipe that dynam-
ically partition pipelines, minimize the number of pipeline
devices and optimize mini-batch chunk size accordingly.
Algorithm 1 presents the pseudo-code.

3.2.1. BALANCED PIPELINE PARTITIONING

! Intermediate output |

partition k-2 y panitian k-1 partition k
»G [addition }»{ Cayer Norm

- addition |—>
[Multi-Head
| | Attention

Figure 5. Partition boundary is in the middle of a skip connection

Balancing computation time across partitions is critical to
pipeline training speed, as skewed workload distributions
across stages can lead to stragglers, forcing devices with
lighter workloads to wait (demonstrated by Section 4.3.1).
However, maintaining optimally balanced partitions does
not guarantee the fastest training speed because other factors
also play a crucial role:

1. Cross-partition communication overhead. Placing a par-
tition boundary in the middle of a skip connection leads to
additional communications since tensors in the skip connec-
tion must now be copied to a different GPU. For example,
with BERT partitions in figure 5, partition k£ must take inter-
mediate outputs from both partition k£ — 2 and partition k£ — 1.
In contrast, if the boundary is placed after the addition
layer, the communication overhead between partition k — 1
and k is visibly smaller. Our measurements show that hav-
ing cross-device communication is more expensive than
having slightly imbalanced partitions (see the Appendix).
Therefore, we do not consider breaking skip connections
(highlighted separately as an entire attention layer farr; and
MLP layer fyrp; in green at line 7 in Algorithm 1).

2. Frozen layer memory footprint. During training,
AutoPipe must recompute partition boundaries several
times to balance two distinct types of layers: frozen lay-
ers and active layers. The frozen layer’s memory cost is a
fraction of that in active layers, given that the frozen layer
does not need backward activation maps, optimizer states,
and gradients. Instead of launching intrusive profilers to
obtain thorough metrics on memory and computational cost,
we define a tunable cost factor Afozen to estimate the mem-
ory footprint ratio of a frozen layer over the same active
layer. Based on empirical measurements in our experimental
hardware, we set Afrozen tO 3.

Based on the above two considerations, Aut oPipe balances
pipeline partitions based on parameter sizes. More specif-
ically, autoPipe uses a greedy algorithm to allocate all
frozen and active layers to evenly distribute partitioned sub-
layers into K GPU devices. Pseudo code is described as
the load_balance () function in Algorithm 1. The frozen
layers are extracted from the original model and kept in
a separate model instance Ffozen in the first device of a
pipeline. Note that the partition algorithm employed in this
paper is not the only option; PipeTransformer is modu-
larized to work with any alternatives.

3.2.2. PIPELINE COMPRESSION

Pipeline compression helps to free up GPUs to accommo-
date more pipeline replicas and reduce the number of cross-
device communications between partitions. To determine
the timing of compression, we can estimate the memory cost
of the largest partition after compression, and then compare
it with that of the largest partition of a pipeline at timestep

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Algorithm 1 Aut oPipe Algorithm

1: Input: model F, layer number L and Lrozen, pipeline length
K, frozen layer cost factor Afrozen

2: Return: model Fiyozen, model Fpipe, updated K;

3: def m_partition (F,L, L:rozen): //see3.2.1

4: Fiozen = Sequential () ; model size Sozen = 0

5: Fpipe = Sequential (); per-layer size Spipe = []

6: for layer index = Lirozen to L do

7 farrg, fmep; < fi

8: Fpipe-append(farr;); Spipe-append(m_size(farr;))
9 Fripe-append(furp;); Spipe-append(m_size(fuip;))
10: return]:l'rozcn9Sfruzcn,-Fpipc,Spipc
11: def load_balance(Fpipe, Spipe, K): //Section 3.2.1
12: Br=dict(), Bs=dict()/ balanced L and S
13: Lassigncd =0 Slolal = Sum(Spipc)
14: for partition index = k to K do
15: mean=Su/(K - k);
16: var=np.var(Spipec[Lassigned:1)/(K - k)
17: for sublayer index i = Lassignea t0 1en(Spipe) do

18: Sk = Spipc [1]

19: criterion=Bs[i]-Stozen(1.0- Afrozen)+Sk
20: if criterion < mean + var then

21: BS+=Sk; BL+=1; Lassigncd"':l; Slotal'zsk
22: else

23: break

24: return By, Bgs

25:]:frozcn,Sfrozcn,fpipc,spipc =m_partit iOl’l(]:,L, Lfrozcn)
26: while K > 2 do

27: B, Bs =1load_balance(Fpipe, Spipes K/2)

28: BS [0] -= Sfmzcn(l'o -)\frozcn);

29: MY, =max(Bs) //Equation 2

30: i MSPy < MSpy then

31: K=K/2
32: else
33: break

34: load Frrozen and Fpipe to K GPUs using Bs and By,

35: Pipe (Fpipe, chunks= get_optimal_chunks (K))

T = 0. To avoid extensive memory profiling, the compres-
sion algorithm uses the parameter size as a proxy for the
training memory footprint. Based on this simplification, the
criterion of pipeline compression is as follows:

compress the pipeline if My, < MY,
2
where]V[g];)U & max Sp,)

ke{0,-- , K—1}

Once the freeze notification is received, Aut oPipe will al-
ways attempt to divide the pipeline length K by 2 (e.g., from
8 to 4, then 2). By using % as the input, the compression
algorithm can verify if the result satisfies the criterion in
Equation (1). Pseudo code is shown in lines 25-33 in Algo-
rithm 1. Note that this compression makes the acceleration
ratio exponentially increase during training, meaning that if
a GPU server has a larger number of GPUs (e.g., more than
8), the acceleration ratio will be further amplified.

K-1 _.| K is pipeline length (devices) |-— K-1
GPU,3 Fao Faq Fao Fas Bgg Bay Bas Bsg Ug

~
GPU, " Foo Foq1 i Fop i Fog T Boo Baq Byo Bpg o Up

X
X
GPU1_L F10 i F11 { F12{ F1a 0 B | B1g | Bi2 i Byg J_U1

GPUy Foo For Foz Fos Boo Bo1 Boz Bos Uo
f—K-1 K-1——]

Figure 6. Pipeline Bubble: Fy;, Bap, and Uy denote forward,
backward, and the optimizer update of micro-batch b on device
d, respectively. The total bubble size in each iteration is (K — 1)
times per micro-batch forward and backward cost.

Additionally, such a technique can also speed up training by
shrinking the size of pipeline bubbles. To explain bubble
sizes in a pipeline, Figure 6 depicts how 4 micro-batches
run through a 4-device pipeline (K = 4). In general, the
total bubble size is (K — 1) times per micro-batch forward
and backward cost (for further explanation, please refer to
Appendix.

Therefore, it is clear that shorter pipelines have smaller
bubble sizes.

3.2.3. DYNAMIC NUMBER OF MICRO-BATCHES

Prior pipeline parallel systems use a fixed number of micro-
batches per mini-batch (M). GPipe suggests M > 4 x K,
where K is the number of partitions (pipeline length). How-
ever, given that that PipeTransformer dynamically con-
figures K, we find it to be sub-optimal to maintain a static
M during training. Moreover, when integrated with DDP,
the value of M also has an impact on the efficiency of DDP
gradient synchronizations. Since DDP must wait for the last
micro-batch to finish its backward computation on a pa-
rameter before launching its gradient synchronization, finer
micro-batches lead to a smaller overlap between compu-
tation and communication (see Appendix for illustration).
Hence, instead of using a static value, PipeTransformer
searches for optimal M on the fly in the hybrid of DDP envi-
ronment by enumerating M values ranging from K to 6.
For a specific training environment, the profiling needs only
to be done once (see Algorithm 1 line 35). Section 4 will
provide performance analyses of M selections.

3.3. AutoDP: Spawning More Pipeline Replicas

As AutoPipe compresses the same pipeline into fewer
GPUs, AutoDP can automatically spawn new pipeline repli-
cas to increase data-parallel width.

Despite the conceptual simplicity, subtle dependencies on
communications and states require careful design. The chal-
lenges are threefold: 1. bDP Communication: Collective
communications in PyTorch DDP requires static member-
ship, which prevents new pipelines from connecting with

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

existing ones; 2. State Synchronization: newly activated
processes must be consistent with existing pipelines in the
training progress (e.g., epoch number and learning rate),
weights and optimizer states, the boundary of frozen layers,
and pipeline GPU range; 3. Dataset Redistribution: the
dataset should be re-balanced to match a dynamic number
of pipelines. This not only avoids stragglers but also ensures
that gradients from all DDP processes are equally weighted.

| message between groups: :
1. progress of training H
. 2. Pipelining info

[active training process group
"1 message process group

ing between double process groups (Process 0-7 belong to machine
0, while process 8-15 belong to machine 1)

To tackle these challenges, we create double communica-
tion process groups for DDP. As in the example shown in
Figure 7, the message process group (purple) is responsi-
ble for light-weight control messages and covers all pro-
cesses, while the active training process group (yellow)
only contains active processes and serves as a vehicle for
heavy-weight tensor communications during training. The
message group remains static, whereas the training group is
dismantled and reconstructed to match active processes. In
TO, only process 0 and 8 are active. During the transition
to T1, process 0 activates processes 1 and 9 (newly added
pipeline replicas) and synchronizes necessary information
mentioned above using the message group. The four active
processes then form a new training group, allowing static
collective communications adaptive to dynamic member-
ships. To redistribute the dataset, we implement a variant
of DistributedSampler that can seamlessly adjust data
samples to match the number of active pipeline replicas.

The above design also naturally helps to reduce DDP com-
munication overhead. More specifically, when transitioning
from TO to T1, processes 0 and 1 destroy the existing DDP
instances, and active processes construct a new DDP train-
ing group using Fpipe (AutoPipe stores Fiozen and Fpipe
separately, introduced in Section 3.2.1). Discussion of com-
munication cost can be found in Appendix.

3.4. AutoCache: Cross-pipeline Caching

Caching activation maps from frozen layers can help further
speed up training. This idea appears to be straightforward,
but several caveats must be carefully addressed.

Cross-process caching. The cache must be shared across
processes in real time, as creating and warming up a dedi-
cated cache for each model replica slow down the training.
This is achieved by spawning a dedicated daemon process
to hold cache in shared memory that all training processes

Caching Daemon

®automating ' (@ Cross process
the timing of caching u caching sharing

T pipeline 0
process Q

Figure 8. AutoCache

can access in real time. Figure 8 shows an example of the
transition from T1 to T2, assuming T1 freezes 3 layers, T2
freezes 4 layers, and 5 layers remain active in T2. Imme-
diately after the transition by AutoDP, the cache still holds
cached activations from layer 3, which must be replaced by
activations from layer 7. Therefore, all processes read their
corresponding activations from the cache, feed them to the
next 4 layers to compute activations for layer 7, then replace
the existing cache with new activations for their samples
accordingly. In this way, AutoCache can gradually update
cached activations without running any sample through any
frozen layers twice.

When the activations are too large to reside on CPU memory,
AutoCache will also swap them to the disk and perform pre-
fetching automatically. More details on the cross-process
cache design can be found in the Appendix.

Timing of cache is also important, as the cache can be
slower than running the real forward propagation, especially
if frozen layers are few and activations are large. To ensure
that our training system can adapt to different hardware,
model architecture, and batch size settings, AutoCache
also contains a profiler that helps evaluate the appropriate
transition to enable caching, and it only employs cached
activations when the profiler suggests caching can speed
up the forward pass. Performance analysis is provided at
Section 4.3.5.

4. Experiments

This section first summarizes experiment setups and then
evaluates PipeTransformer using computer vision and
natural language processing tasks. More comprehensive
results can be found in the Appendix.

4.1. Setup

Hardware. Experiments were conducted on 2 identical
machines connected by InfiniBand CX353A (5GB/s), where
each machine is equipped with 8 NVIDIA Quadro RTX
5000 (16GB GPU memory). GPU-to-GPU bandwidth
within a machine (PCI 3.0, 16 lanes) is 15.754GB/s.

Implementation. We used PyTorch Pipe as a building
block, which has not yet been officially released at the time

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

of writing of this paper. Hence, we used the developer ver-
sion 1.8.0.dev20201219. The BERT model definition,
configuration, and related tokenizer are from HuggingFace
3.5.0. We implemented Vision Transformer using PyTorch
by following its TensorFlow implementation. More details
can be found in our source code.

Models and Datasets. Experiments employ two represen-
tative Transformers in CV and NLP: Vision Transformer
(ViT) and BERT. ViT was run on an image classification
task, initialized with pre-trained weights on ImageNet21K
and fine-tuned on ImageNet and CIFAR-100. BERT was run
on two tasks, text classification on the SST-2 dataset from
the General Language Understanding Evaluation (GLUE)
benchmark, and question answering on the SQuAD vl.1
Dataset (Stanford Question Answering) which is a collec-
tion of 100k crowdsourced question/answer pairs.

Training Schemes. Given that large models normally
would require thousands of GPU-days (e.g., GPT-3) if
trained from scratch, fine-tuning downstream tasks using
pre-trained models has become a trend in CV and NLP
communities. Moreover, PipeTransformer is a com-
plex training system that involves multiple core compo-
nents. Thus, for the first version of PipeTransformer
system development and algorithmic research, it is not cost-
efficient to develop and evaluate from scratch using large-
scale pretraining. Therefore, experiments presented in this
section focuses on pre-trained models. Note that since the
model architectures in pre-training and fine-tuning are the
same, PipeTransformer can serve both. We discussed
pre-training results in the Appendix.

Baseline. Experiments in this section compares
PipeTransformer to the state-of-the-art framework, a hy-
brid scheme of PyTorch Pipe (PyTorch’s implementation
of GPipe (Huang et al., 2019)) and PyTorch DDP. Since
this is the first paper that studies accelerating distributed
training by freezing layers, there are no perfectly aligned
counterpart solutions yet.

Hyper-parameters. Experiments use ViT-B/16 (12 trans-
former layers, 16 x 16 input patch size) for ImageNet and
CIFAR-100, BERT-large-uncased (24 layers) for SQuAD
1.1, and BERT-base-uncased (12 layers) for SST-2. With
PipeTransformer, ViT and BERT training can set the
per-pipeline batch size to around 400 and 64 respectively.
Other hyperparameters (e.g., epoch, learning rate) for all
experiments are presented in Appendix.

4.2. Overall Training Acceleration

We summarize the overall experimental results in Table 1.
Note that the speedup we report is based on a conservative
a (%) value that can obtain comparable or even higher ac-
curacy. A more aggressive a (£, 1) can obtain a higher
speedup but may lead to a slight loss in accuracy (See sec-

tion 4.3.3). Note that the model size of BERT (24 layers) is
larger than ViT-B/16 (12 layers), thus it takes more time for
communication (see Section 4.3.2 for details).

Table 1. Speedup for ViT and BERT Training

Baseline PipeTransformer
Dataset Accuracy Trgmmg Accuracy Trgmmg Training
time time Speedup
ImageNet 80.83+0.05 26h30m 82.184+0.32 9h2Im 2.83 x
CIFAR-100 9121 £0.07 35m6s 91.33£0.05 12m23s 244 x
SQuAD I.1 90.71 £0.18 5h7m 90.69 £0.23 2h26m 2.10 x

*Note: 1. the accuracy is the mean and variance of three
independent runs with the same random seed; 2. the training
time among different runs are relatively stable (the gap is less
than 1 minute); 3. GLUE (SST-2)’s training time is relatively
small, thus we mainly used it for debugging without reporting
a few minutes result. 4. accuracy metric: ImageNet/CIFAR-
100: top-1 accuracy; SQuAD: F1 score.

4.3. Performance Analysis

This section presents evaluation results and analyzes the per-
formance of different components in PipeTransformer.
More experimental results can be found in the Appendix.

4.3.1. SPEEDUP BREAKDOWN
— Freeze + AutoPipe + AutoDP + AutoCache — Freeze + AutoPipe + AutoDP

— Freeze + AutoPipe + AutoCache — No Freeze (baseline)

Throughput (samples/second)
6000

4000/

1.26x
1.0x 0.95x

2000 —

0 2 4 3 g¥Poh

(a) Sample Throughput (b) Speedup Ratio Comparison

Figure 9. Speedup Breakdown (ViT on ImageNet)

To understand the efficacy of all four components and their
impacts on training speed, we experimented with different
combinations and used their training sample throughput
(samples/second) and speedup ratio as metrics. Results are
illustrated in Figure 9. Key takeaways from these exper-
imental results are: 1. the main speedup is the result of
elastic pipelining which is achieved through the joint use
of AutoPipe and AutoDP; 2. AutoCache’s contribution
is amplified by AutoDP; 3. freeze training alone without
system-wise adjustment even downgrades the training speed
(discussed in Section 3.2). We provide additional explana-
tions of these results in the Appendix.

4.3.2. COMMUNICATION COST

We also analyzed how communication and computation con-
tribute to the overall training time. Since PyTorch DDP
overlaps communication with computation, the time dif-

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Accuracy Speedup ratio X

Throughput (samples/second) (When K=8)

Pipeline Length (K)

alpha=1/2 0:8984 3:86

alpha=2/5 0:908: R

alpha=1/3 0.90° -8

alpha=1/4 0911 A

alpha=1/5 0:9133 04

Baseline — 09121 F T

0.88 0.89 090 091 092 0093 1 2 3 4

(a) Tuning « in Freeze Algorithm

(b) Profiling Optimal Chunk Number

1000

o
o

Throughput (samples/second)

8001 - No AutoCache

o

- AutoCache (starting from epoch 0)

IS

600

Optimal Chunk Number (M)
~

400

(c) Timing of Caching

Figure 10. Some Results of Performance Analysis

ference between a local training iteration and distributed
training iteration does not faithfully represent the communi-
cation delay. Moreover, as DDP also organizes parameters
into buckets and launches an A11Reduce for each bucket,
recording the start and finish time of overall communica-
tions also falls short, as there can be time gaps between buck-
ets. To correctly measure DDP communication delay, we
combined the DDP communication hook with CUDAFuture
callback. More details of this measurement are documented
in the Appendix. Key takeaways: 1. larger model cost more
time on communication (BERT on SQuAD); 2. a higher
cross-machine bandwidth can further speedup the training,
especially for larger model.

Table 2. Communication Cost v.s. Computational Cost

Dataset Overall Communication Computation Communication
Cost Cost Cost Cost Ratio

ImageNet Sh21m 34m 8h 47m 59 %

SQuAD 2h 26m 16m 33s 2h 9m 8.8%

4.3.3. TUNING « IN FREEZING ALGORITHM

We ran experiments to show how the « in the freeze algo-
rithms influences training speed. The result clearly demon-
strates that a larger o (excessive freeze) leads to a greater
speedup but suffers from a slight performance degradation.
In the case shown in Figure 10(a), where o = 1/5, freeze
training outperforms normal training and obtains a 2.04-fold
speedup. We provide more results in the Appendix.

4.3.4. OPTIMAL CHUNKS IN ELASTIC PIPELINE

We profiled the optimal number of micro-batches M for
different pipeline lengths K. Results are summarized in
Figure 10(b). As we can see, different K values lead to dif-
ferent optimal M, and the throughput gaps across different
M values are large (as shown when K = 8), which confirms
the necessity of an anterior profiler in elastic pipelining.

4.3.5. UNDERSTANDING THE TIMING OF CACHING

To evaluate AutoCache, we compared the sample through-
put of training that activates AutoCache from epoch 0
(blue) with the training job without AutoCache (red). Fig-
ure 10(c) shows that enabling caching too early can slow
down training, as caching can be more expensive than for-
ward propagation on a small number of frozen layers. After

freezing more layers, caching activations clearly outper-
forms the corresponding forward propagation. As a result,
AutoCache uses a profiler to determine the proper timing to
enable caching. In our system, for ViT (12 layers), caching
starts from 3 frozen layers, while for BERT (24 layers),
caching starts from 5 frozen layers.

5. Related Works

PipeTransformer combines pipeline parallelism (Huang
et al., 2019; Narayanan et al., 2019; 2021; Park et al., 2020;
Yang et al., 2021) and data parallelism (Li et al., 2020).
Both techniques have been extensively studied in prior work.
GPipe (Huang et al., 2019) parallelizes micro-batches within
a mini-batch and enforces synchronizations between consec-
utive mini-batches. The synchronization barrier creates exe-
cution bubbles and it exacerbates if the model spans across
more devices. PipeDream (Narayanan et al., 2019; 2021),
Megatron-LM (Narayanan et al., 2021), HetPipe (Park et al.,
2020) and PipeMare (Yang et al., 2021) remove or mitigate
execution bubbles by allowing a configurable amount of
staleness. Although evaluations show that models can still
converge with high accuracy, it breaks the mathematical
equivalence to local training. PipeTransformer builds
on top of PyTorch pipeline parallel and distributed data-
parallel APIs (Li et al., 2020). Compared to prior solu-
tions, PipeTransformer reduces the size of bubbles dur-
ing training by dynamically packing the active layers into
fewer GPUs. Moreover, the communication overhead for
data-parallel training, which is the dominant source of delay,
also drops when the active model size shrinks.

6. Discussion

Pretraining v.s. Fine-tuning: Given that the model ar-
chitectures in pre-training and fine-tuning are the same,
we do not need to change the system design. Run-
ning larger Transformers (over 32 layers) is straightfor-
ward because almost all giant Transformer models are de-
signed by simply stacking more transformer encoder layers.
PipeTransformer can serve as a training system for
both pre-training and fine-tuning training. We plan to run
our training system on more models and datasets in both

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

settings.

Designing better freeze algorithm: Our proposed algo-
rithm is simple, yet it proves to be effective on various
tasks. However, we believe that further developments to
the freeze algorithm may lead to better generalization and
obtain higher accuracy.

Versatility: PipeTransformer training system can also
be used on other algorithms that run progressive training
(Gong et al., 2019) or gradually fix portions of neural net-
work. For example, cross-silo federated learning, layer-by-
layer neural architecture search, and pruning large DNNs
are all potential use cases of our training system. We will
explore the training acceleration for these scenarios in our
future works.

7. Conclusion

This paper proposes PipeTransformer, a holistic so-
lution that combines elastic pipeline-parallel and data-
parallel for distributed training. @ More specifically,
PipeTransformer incrementally freezes layers in the
pipeline, packs remaining active layers into fewer GPUs,
and forks more pipeline replicas to increase the data-parallel
width. Evaluations on ViT and BERT models show that com-
pared to the state-of-the-art baseline, PipeTransformer
attains up to 2.83x speedups without accuracy loss.

Acknowledgments

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under FAST-
NICS program Contract Number HR001120C0088. Mahdi
Soltanolkotabi is additionally supported by the Packard Fel-
lowship in Science and Engineering, a Sloan Research Fel-
lowship in Mathematics, an NSF-CAREER under award
#1846369, DARPA Learning with Less Labels (LwLL) pro-
gram, and NSF-CIF awards #1813877 and #2008443. The
views, opinions, and/or findings expressed are those of the
author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or
the U.S. Government.

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Gong, L., He, D, Li, Z., Qin, T., Wang, L., and Liu, T.
Efficient training of bert by progressively stacking. In
International Conference on Machine Learning, pp. 2337—
2346. PMLR, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al.
Gpipe: Efficient training of giant neural networks using
pipeline parallelism. arXiv preprint arXiv:1811.06965,
2018.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
z. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32, pp. 103—-112. Curran Associates,
Inc., 2019.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo,
C. A unified architecture for accelerating distributed
DNN training in heterogeneous gpu/cpu clusters. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pp. 463—-479. USENIX
Association, November 2020. ISBN 978-1-939133-19-
9. URL https://www.usenix.org/confere
nce/osdi20/presentation/jiang.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, 1.,
Lim, S., and Kim, S. torchgpipe: On-the-fly pipeline
parallelism for training giant models. arXiv preprint
arXiv:2004.09910, 2020.

Kim, S., Yu, G.-I,, Park, H., Cho, S., Jeong, E., Ha, H.,
Lee, S., Jeong, J. S., and Chun, B.-G. Parallax: Sparsity-
aware data parallel training of deep neural networks. In
Proceedings of the Fourteenth EuroSys Conference 2019,
pp. 1-15, 2019.

Lepikhin, D., Lee, H., Xu, Y., Chen, D, Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp.
583-598, 2014.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al.
Pytorch distributed: Experiences on accelerating data
parallel training. Proceedings of the VLDB Endowment,
13(12), 2020.

Morcos, A., Raghu, M., and Bengio, S. Insights on repre-
sentational similarity in neural networks with canonical
correlation. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 5732-5741. Curran Associates, Inc., 2018. URL

http://papers.nips.cc/paper/7815-1ins
ights-on-representational-similarit
y—in-neural-networks-with-canonical
—correlation.pdf.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: Generalized pipeline parallelism
for dnn training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 19,
pp.- 1-15, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450368735. doi:
10.1145/3341301.3359646.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,
P, Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters. In Thirty-eighth
International Conference on Machine Learning, 2021.

Park, J. H., Yun, G., Yi, C. M., Nguyen, N. T., Lee, S.,
Choi, J., Noh, S. H., and ri Choi, Y. Hetpipe: Enabling
large DNN training on (whimpy) heterogeneous GPU
clusters through integration of pipelined model paral-
lelism and data parallelism. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 307-321.
USENIX Association, July 2020. ISBN 978-1-939133-
14-4. URL https://www.usenix.org/confe
rence/atc20/presentation/park.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
Sveca: Singular vector canonical correlation analysis for

deep learning dynamics and interpretability. In NIPS,
2017.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimization towards training a trillion parame-
ter models. arXiv preprint arXiv:1910.02054, 2019.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., Sepassi, R., and Hechtman, B. Mesh-tensorflow:
Deep learning for supercomputers. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31, pp. 10414-10423. Cur-
ran Associates, Inc., 2018.

Shen, S., Baevski, A., Morcos, A. S., Keutzer, K., Auli,
M., and Kiela, D. Reservoir transformer. arXiv preprint
arXiv:2012.15045, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105-6114. PMLR,
2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. arXiv preprint arXiv:1706.03762, 2017.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-

national Conference on Machine Learning, pp. 10524—
10533. PMLR, 2020.

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C., and De Sa, C.
Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems, 3, 2021.

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Appendix Outline

This Appendix provides background and preliminaries,
more details of four components, additional experimental
details and results, and discussions. The organization is as
follows:

Background and Preliminaries. Appendix A provides
the introduction for Transformer models, freeze training,
pipeline parallelism, data parallelism, and hybrid of pipeline
parallelism and data parallelism. This section serves as the
required knowledge to understand PipeTransformer.

More Details of Freeze Algorithm, AutoPipe,
AutoDP, AutoCache. Appendix B explains more details
of design motivation for freeze training algorithm and
shows details of the deviation; Appendix C provides more
analysis to understand the design choice of AutoPipe;
Appendix D contains more details of AutoDP, including
the dataset redistributing, and comparing another way to
skip frozen parameters; Appendix E introduces additional
details for AutoCache.

More Experimental Results and Details. In Appendix
F, we provide hyper-parameters and more experimental
results. Especially, we provide more details of speedup
breakdown in F.2.

Discussion. In Appendix 6, we will discuss pretraining
v.s. fine-tuning, designing better freeze algorithms, and the
versatility of our approach.

A. Background and Preliminaries

A.1. Transformer Models: ViT and BERT

2017.6 | Transformer

Use the attention mechanism to replace
the Recurrent Neural Networks (RNN)
architecture, the Transformer improves
performance on NLP tasks.

O () () >
N J o
2018.10 | BERT

Pretraining Transformer
models begin to dominate all
NLP tasks.

2020.10 | Vision Transformer (ViT)

Transformer has been applied to
computer vision tasks, obtaining higher
accuracy than EfficientNet and ResNet.

Figure 11. Evolution of Transformer Models.

Transformer. The Transformer model originates from the
Natural Language Processing (NLP) community. It replaces
the recurrent neural network (RNN) using a self-attention
mechanism which relates different positions of a single se-
quence in order to compute a representation of the sequence.
The transformer model has an encoder-decoder structure
which is a classical structure for sequence modeling. The

encoder maps an input sequence of symbol representations
(z1,...,2,) to a sequence of continuous representations
z = (#1,...,2yn). Given z, the decoder then generates an
output sequence (y1, . .., Ym) of symbols one element at a
time. As shown in Figure 12, the Transformer follows this
overall architecture using stacked self-attention and point-
wise, fully connected layers for both the encoder (left) and
decoder (right). To better understand this architecture, we

refer readers to the tutorial “The Annotated Transformer” .

Qutput
Probabilities

Add & Norm

Feed
Forward

Add & Norm

([Add & Norm]
Sl Multi-Head
Feed Attention
Forward t Nx
Add & Norm
(Add & Norm J
Add & Norm ‘Masked
Multi-Head Multi-Head
Attention Attention
1t -
—)
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 12. Transformer Model Architecture (Vaswani et al., 2017)

BERT (ViT). BERT (Devlin et al., 2018), which stands
for Bidirectional Encoder Representations from Transform-
ers, simply stacks multiple Transformer encoders (also
called the Transformer layer, Figure 12, left). BERT pasg

has 12 Transformer layers, and its total number of parame-
ters is 110M. BERT parge has 24 Transformer layers, and
its total number of parameters is 340M. BERT is pre-trained
using unsupervised tasks (masked language model, and next
sentence prediction) and then fine-tuned to various NLP
tasks such as text classification and question answering.

Vision Transformer (ViT). ViT (Dosovitskiy et al., 2020)
attains excellent results compared to state-of-the-art convo-
lutional networks. Its architecture is shown in Figure 13. It
splits an image into fixed-size patches, linearly embeds each
of them, adds position embeddings, and feeds the resulting
sequence of vectors to a Transformer encoder. Similar to
BERT, the Transformer encode repeats multiple layers.

Model Architecture Comparison. Note that ViT and
BERT’s Transformer encoder places layer normalization

" http://nlp.seas.harvard.edu/2018/04/03/
attention.html

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Vision Transformer (ViT)

Transformer Encoder ’

\

Extra learnable
[class] embedding Lmear PI‘()JCL[IOn of Fldllened Pdtches

SEE
mmm—»&ll%@%!@ﬁﬂ
O

Figure 13. Vision Transformer (Dosovitskiy et al., 2020)

Multi-Head

Attention

BERT i

VIiT x addition Li+1

Attention
Figure 14. Comparison of Transform in BERT and ViT

in different locations. To understand the differences be-
tween these two architectures, please refer to the analysis
in (Xiong et al., 2020). Due to this slight difference, our
PipeTransformer source code implements the model
partition of these two architectures separately.

A.2. Freeze Training.

The concept of freeze training is first proposed by (Raghu
et al., 2017), which provides a posterior algorithm, named
SVCCA (Singular Vector Canonical Correlation Analysis),
to compare two representations. SVCCA can compare the
representation at a layer at different points during training
to its final representation and find that lower layers tend to
converge faster than higher layers. This means that not all
layers need to be trained through training. We can save com-
putation and prevent overfitting by consecutively freezing
layers. However, SVCCA has to take the entire dataset as its
input, which does not fit an on-the-fly analysis. This draw-
back motivates us to design an adaptive on the fly freeze
algorithm.

A.3. Pipeline Parallelism

InPipeTransformer, we reuse GPipe as the baseline.
GPipe is a pipeline parallelism library that can divide differ-
ent sub-sequences of layers to separate accelerators, which
provides the flexibility of scaling a variety of different net-

L F. B. Upssie
0SS
F B. vpaste
— ~
Device 3 Fs B. F. B. u
i T T Time B lom
Device 2 F.—B:
t + (b)
Device 1 F B. Fao | Fas | Foa [Fos| Bss | Bsz | Bas | Buo Upase
f ; Foo| Far | Foz| Fas B B Bu B Updte
Device 0 Fo B, | i L | Il {
Fio|Fus | Fiz | Fis Biz | B Bio Update
\ ,/ Foo | Fos | Foz | Fas Bubble Bos | Boz | Bor | Boo | Upa
Gradients
(a) (©)

Figure 15. GPipe (Huang et al., 2018)

works to gigantic sizes efficiently. The key design in GPipe
is that it splits the mini-batch into M micro-batches, which
can train faster than naive model parallelism (as shown in
Figure 15(b). However, as illustrated in Figure 15(c), micro-
batches still cannot thoroughly avoid bubble overhead (some
idle time per accelerator). GP ipe empirically demonstrates
that the bubble overhead is negligible when M > 4 x K.
Different from GPipe, PipeTransformer has an elas-
tic pipelining parallelism in which K and pipeline number
are dynamic during the training.

A.4. Data Parallelism

Process 0 Process 1

allreduce

Leng e—,
neoNg e—

param1

B B
Aan

B
E
w
—e owonq

gaog

—e OWONq

allreduce

Figure 16. PyTorch DDP Bucket-based A11Reduce

In PyTorch DDP (Li et al., 2020), to improve communi-
cation efficiency, gradients are organized into buckets, and
AllReduce is operated on one bucket at a time. The map-
ping from parameter gradients to buckets is determined at
the construction time, based on the bucket size limit and pa-
rameter sizes. Model parameters are allocated into buckets
in (roughly) the reverse order of Model.parameters ()
from the given model. Reverse order is used because DDP
expects gradients to be ready during the backward pass
in approximately that order. Figure 16 shows an example.
Note that, grad0 and gradl are in bucketl, and the other two
gradients are in bucketO. With this bucket design, DDP can
overlap part of the communication time with the computa-
tion time of backward propagation.

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

A.5. Hybrid of Pipeline Parallelism and Data
Parallelism

To understand the hybrid of pipeline parallelism and data
parallelism, we illustrate the training process in Figure 17.
This example is hybrid two-way data parallelism and two-
stage pipeline parallelism: pipeline O has two partitions,
using GPU 1 and 3; pipeline 1 also has two partitions, using
GPU 0 and 2; two pipelines are synchronized by data par-
allelism. Each batch of training data is divided into micro-
batches that can be processed in parallel by the pipeline
partitions. Once a partition completes the forward pass for
a micro-batch, the activation memory is communicated to
the pipeline’s next partition. Similarly, as the next partition
completes its backward pass on a micro-batch, the gradient
with respect to the activation is communicated backward
through the pipeline. Each backward pass accumulates gra-
dients locally. Subsequently, all data parallel groups perform
AllReduce on gradients.

DDP Rank 0

)
GPU3 Fao Faq Fzp BggiBgy g
s

GPU;: Fyo Fyq Fip Bio o

DDP Rank 1

GPU, Foo Foq Fpq Byg By 3
| o

=

GPUq: Foo Fo1 | Fopo Boo -

Figure 17. Illustration for Hybrid of Pipeline-parallel and Data-
parallel

In this example, to simplify the figure, we assume that the
bucket size is large enough to fit all gradients on a single
device. That is to say, DDP uses one bucket per device,
resulting in two Al1Reduce operations. Note that, since
AllReduce can start as soon as gradients in corresponding
buckets become ready. In this example, DDP launches
AllReduce on GPU 1 and 3 immediately after B3 ; and
B 1, without waiting for the rest of backward computation.
Lastly, the optimizer updates the model weights.

B. More Details of Freeze Algorithm

Explanation of Equation 1. In numerical optimization,
the weight with the smallest gradient norm converges first.
With this assumption, we use the gradient norm as the indi-
cator to identify which layers can be frozen on the fly. To
verify this idea, we save the gradient norm for all layers
at different iterations (i.e., epoch). With this analysis, we
found that in the later phase of training, the pattern of gra-
dient norm in different layers matches the assumption, but
in the early phase, the pattern is random. Sometimes, we
can even see that the gradient norm of those layers close to
the output is the smallest. Figure 18 shows such an example.

A
gradient norm

I
upper bound of
frozen \aye}, number

the layer which has
the lowest gradient now

layer index

Figure 18. An example that the smallest gradient is not close to the
input layer.

If we freeze all layers preceding the blue dash line layer,
the freezing is too aggressive since some layers have not
converged yet. This motivates us further amend this naive
gradient norm indicator. To avoid the randomness of gra-
dient norm at the early phase of training, we use a tunable
bound to limit the maximum number of frozen layers. We
do not freeze all layers preceding the layer with the smallest
gradient norm for the case in the figure. Instead, we freeze
layers preceding the bound (the red color dash line).

The term Lg;enl) +a(L— i 1)) in Equation

Deviation. frozen

1 can be written as:

L & L
Lo, = (1-a)T[= +Z(1fa)t] 3)

The deviation is as follows:

Ligyen = oL 4)
2 1 1
Lf(‘m)zen = (L - Lf(:ro)zen)a + L’Ero)zen (5)
Lisen = (L = Ligggen)0+ Ligyen’ (6)
Ligen = L + (1= @) Liggze,))
T T—1
L groz)en _ 2 + L Erozen : (8)
I-a)f (- "1=a)TD
(T) T
Lfrozen al alL
G-ar ~O-a "Xy @
(10)

C. More Details of autoripe

Balanced Partition: Trade-off between Communication
and Computational Cost. Let us compute the communi-
cation cost in Figure 5. The intermediate tensor from parti-
tion k — 2 needs two cross-GPU communications to arrive

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

to partition k. The parameter number of this intermediate
tensor depends on the batch size and the Transformer model
architecture. In BERT},., the intermediate tensor width
and height is the hidden feature size and sequence length,
respectively (i.e., 1024, 512). If we use a batch size 300 in
a pipeline, the total parameter number is 1024 x 512 x 300.
If we store it using £f1loat 32, the memory cost is 0.63 GB.
The GPU-to-GPU communication bandwidth is 15.754 GB
(PCI 3.0, 16 lanes). Then one cross-GPU communication
costs 40 ms. In practice, the time cost will be higher than
this value. Therefore, two cross-GPU communications cost
around 100 ms. To compare with the computation cost,
we quantify the time cost for the forward propagation of
a Transformer layer (12 million parameters), the time cost
is around 35 ms, meaning that the communication cost for
skip connection is far more than a specific layer’s compu-
tation cost. Compared to a slightly unbalanced partition
in parameter number wise, 100 ms is non-trivial. If we do
not break the skip connection, the parameter number gap
between different partitions is far less than 12 million (e.g.,
4M or even less than 1 M). Therefore, this analysis explains
partitioning without breaking the skip connection is a rea-
sonable design choice. We also find that when the GPU
device number in a machine is fixed (e.g., 8), the larger the
model size is, the smaller the partition gap, which further
indicates that our design’s rationality.

Understanding Bubble in Pipeline. In the main text, Fig-
ure 6 depicts an example of running 4 micro-batches through
a 4-device pipeline. Time flows from left to right, and each
row denotes workload on one GPU device. F and B squares
with the same color represent the forward and the backward
pass time blocks of the same micro-batch. U represents the
time block for updating parameters. Empty time blocks
are bubbles. Assume that the load of the pipeline is evenly
distributed amongst all devices. Consequently, all the time
blocks during the forward pass are roughly in the same size,
and similarly for backward time blocks. Note that the sizes
of the forward time blocks can still differ from the back-
ward ones. Based on these assumptions, we can estimate
the per-iteration bubble size by simply counting the number
of empty blocks during the forward and backward passes,
respectively. In both the forward and backward pass, each
device idles for (K — 1) time blocks. Therefore, the total
bubble size is (K — 1) times per micro-batch forward and
backward delay, which clearly decreases with fewer pipeline
devices.

Relationship Between Number of Micro-batches per
Mini-batch (//) and DDP. To understand the reason why
M and DDP have mutual impacts, a thorough understand-
ing of Section A.5 is needed first. In essence, DDP and
pipelining has opposite requirement for M: DDP requires
a relatively larger chunk of the bucket (smaller M) to over-

lap the communication (introduced in Section A.4), while
pipelining requires a larger M to avoid bubble overhead
(introduced in Section A.3). To further clarify, we must first
remember that DDP must wait for the last micro-batch to fin-
ish its backward computation on a parameter before launch-
ing its gradient synchronization, then imagine two extreme
cases. One case is that M/ = 1, meaning the communication
can be fully overlapped with computation using buckets.
However, setting M = 1 leads to a performance downgrade
of pipelining (overhead of bubbles). Another extreme case
is a very large M, then the communication time (labeled as
green “AR” in Figure A.5) may be higher than the computa-
tion time for a micro-batch (note that the width of a block
in Figure A.5 represents the wall clock time). With these
two extreme cases, we can see that there must be an optimal
value of M in a dynamical environment (K and parameter
number of active layers) of PipeTransformer, indicat-
ing that it is sub-optimal to fix M during training. This
explains the need for a dynamic M for elastic pipelining.

D. More details of autopp
D.1. Data Redistributing

In standard data parallel-based distributed training, PyTorch
uses DistributedSampler to make sure each worker in
DP only load a subset of the original dataset that is exclusive
to each other. The example code is as follows:

self.train_sampler =
DistributedSampler (self.train_dataset,
num_replicas=num_replicas,
rank=local_rank)

Compared to this standard strategy, we made the following
optimizations:

1. dynamic partition: the number of DP workers is in-
creased when new pipelines have participated in DP. In
order to guarantee that the data partition is evenly assigned
after adding new pipes, the training dataset is repartitioned
by rebuilding the DistributedSampler and setting new
num_replicas and rank as arguments.

2. to reuse the computation of FP for frozen layers, we
cached the hidden states in host memory and disk memory
as well. Since the training requires to shuffle each epoch,
the cache order of hidden features with respect to the order
of original samples is different across different epochs. In
order to identify which data point a hidden feature belongs
to, we build a sample unique ID by returning index in the
get_item() function of Dataset class. With this unique
ID, we can find a sample’s hidden feature with O(1) time
complexity during training.

3. when data is shuffled in each epoch, a data sample trained
in the previous epoch may be moved to another machine

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

for training in the current epoch. This makes the cache
not reused across epochs. To address this issue, we fix a
subset of entire samples in a machine and only do shuffle
for this subset. This guarantees the shuffle during epochs is
only executed inside a machine, thus the hidden feature’s
cache can be reused deterministically. To achieve this, rather
than maintaining a global rank for DistributedSampler, we
introduce node_rank and local rank. node_rank is
used to identify which subset of samples a machine needs
to hold. local_rank is used by DistributedSampler
to identify which part of the shuffle subset that a worker
inside a machine should train. Note that this does not hurt
the algorithmic convergence property. Shuffling for mul-
tiple subsets obtains more randomness than randomness
obtained by a global shuffle, which further increases the
robustness of training. The only difference is that some
parallel processes in distributed training are fixed in part
of the shuffled datasets. If a training task does not need
to shuffle the dataset across epochs, the above-mentioned
optimization will not be activated.

D.2. Skip Frozen Parameters in AutoDP

To reduce communication cost, another method is to use
PyTorch DDP API 2. However, this API is temporally de-
signed for Facebook-internal usage, and we must carefully
calculate and synchronize the information regarding which
parameters should be skipped, making our system unstable
and difficult to be debugged. Our design avoids this issue
and simplifies the system design. Since AutoPipe stores
Firozen and Fpipe separately (introduced in Section 3.2.1), we
can naturally skip the frozen parameters because Aut oDP
only needs to initialize the data parallel worker with Fpipe.

E. More Details of autocache

Sliding Window

Disk Storage CPU Host Memory Disk Storage

batch_index

Caching Daemon

Figure 19. Hierarchical Caching

AutoCache supports hierarchical caching. Figure 19 shows
our design. We maintain a sliding window to represent the
maximum memory that the CPU host memory can hold,
then move the window to prefetch the caching that the train-

’See the internal API defined by PyTorch DDP:
https://github.com/pytorch/pytorch/blob/
master/torch/nn/parallel/distributed.py,
_set_params_and_buffers_to_ignore_for_model ().

ing requires and delete the caching that is consumed from
the CPU host memory. In our implementation, we define the
window size as the maximum batch number that the CPU
host memory can hold. To avoid frequent memory exchange
between disk storage and CPU host memory, we also define
the block size that every time we prefetch (as the grey and
green blocks are shown in the figure). In general, this hierar-
chical caching is useful when the training dataset is too large
and exceeds the CPU host memory limit. However, we have
to point out that this complex caching may not always be
the optimal choice in the training system since the caching
exchange itself may cost time. To this end, we suggest users
of PipeTransformer using a relatively larger CPU host
memory, which avoids activating the hierarchical caching
and obtains faster training.

F. More Experimental Results and Details

F.1. Hyper-Parameters Used in Experiments

Table 3. Hyperparameters used in Experiments

Dataset Model Hyperparameters Comments

batch size 64

max sequence length 512
SQUAD BERT learning rate {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}

epochs 3

gradient accumulation steps 1

batch size 400

image size 224

learning rate {0.1, 0.3, 0.01, 0.03}
ImageNet ViT weighs decay 0.3

decay type cosine

warmup steps 2

epochs 10

batch size 320

image size 224

learning rate {0.1, 0.3, 0.01, 0.03}
CIFAR-100 ViT weighs decay 0.3

decay type cosine

warmup steps 2

epochs 10

In Table 3, we follow the same hyper-parameters used in the
original ViT and BERT paper. Note that for ViT model, we
use image size 224 for fine-tuning training.

F.2. More Details of Speedup Breakdown

Understanding the speed downgrade of freeze only.
As shown in Figure 9, the Freeze Only strategy is
about 5% slower than the No Freeze baseline. After
the performance analysis, we found it is because Freeze
Only changes memory usage pattern and introduced ad-
ditional overhead in PyTorch’s CUDACachingAllocator
3. More specifically, to reduce the number of expen-
sive CUDA memory allocation operations, PyTorch main-

3To understand the design of this API, please refer to Section
5.3 in the original PyTorch paper (Paszke et al., 2019). The source
codeisat https://github.com/pytorch/pytorch/b
lob/master/cl0/cuda/CUDACachingAllocator.h

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

tains a CUDACachingAllocator that caches CUDA mem-
ory blocks to speed up future reuses. Without freezing,
the memory usage pattern in every iteration stays consis-
tent, and hence the cached memory blocks can be per-
fectly reused. After introducing layer freezing, although
it helps to reduce memory footprint, on the other hand,
it might also change the memory usage pattern, forcing
CUDACachingAllocator to split blocks or launch new
memory allocations, which slightly slows down the train-
ing. In essence, this underlying mechanism of PyTorch
is not tailored for freeze training. Customizing it for freeze
training requires additional engineering efforts.

F.3. Tuning « for ViT on ImageNet

Accuracy

Speedup ratio X

alpha=1/2

0:8089

alpha=2/5

0:8

alpha=1/3

0:8196

83

alpha=1/4

0:8107

44

alpha=1/5

0:8096

04

Baseline F 0-8013

Fll

0.800 0.805 0.810 0.815 0.820 0.825 0.830 1 2 3 4

Figure 20. Tuning o for ViT on ImageNet

F.4. The Method That Can Accurately Measure the
Communication Cost

Since PyTorch DDP overlaps communication with compu-
tation, the time difference between a local training iteration
and a distributed training iteration does not faithfully repre-
sent the communication delay. Moreover, as DDP also orga-
nizes parameters into buckets and launches an A11Reduce
for each bucket, recording the start and finish time of overall
communications is also insufficient. To correctly measure
DDP communication delay, we combined the DDP commu-
nication hook with CUDAFuture callback. We developed
a communication hook function that records a start CUDA
event immediately before launching A11Reduce. Then, in
the CUDAFuture returned by the A11Reduce function, we
install a callback that records a finish CUDA event immedi-
ately after the non-blocking CUDAFuture completes. The
difference between these two CUDA events represents the
AllReduce communication delay of one bucket. We col-
lected the events for all buckets and removed time gaps
between buckets if there were any. The remaining duration
in that time range accurately represents the overall DDP
communication delay.

Table 4. Overheads of pipe transformation (seconds)

Pipeline Transformation Overall Time Cost &
C P D
initialization (length = 8) 18.2 16.6 0.7 09
length is compressed from 8 to 4 10.2 83 13 06
length is compressed from 4 to 2 5.5 3.8 21 07
length is compressed from 2 to 1 9.5 23 6.1 1.0

*C - creating CUDA context; P - Pipeline Warmup; D - DDP.

F.5. Overheads of Pipe Transformation

We have verified the time cost of pipeline transformation.
The result in Table 4 shows that the overall cost of pipeline
transformation is very small (less than 1 minute), compared
to the overall training time. Therefore, we do not consider
further optimization.

