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settings.

Designing better freeze algorithm: Our proposed algo-

rithm is simple, yet it proves to be effective on various

tasks. However, we believe that further developments to

the freeze algorithm may lead to better generalization and

obtain higher accuracy.

Versatility: PipeTransformer training system can also

be used on other algorithms that run progressive training

(Gong et al., 2019) or gradually fix portions of neural net-

work. For example, cross-silo federated learning, layer-by-

layer neural architecture search, and pruning large DNNs

are all potential use cases of our training system. We will

explore the training acceleration for these scenarios in our

future works.

7. Conclusion

This paper proposes PipeTransformer, a holistic so-

lution that combines elastic pipeline-parallel and data-

parallel for distributed training. More specifically,

PipeTransformer incrementally freezes layers in the

pipeline, packs remaining active layers into fewer GPUs,

and forks more pipeline replicas to increase the data-parallel

width. Evaluations on ViT and BERT models show that com-

pared to the state-of-the-art baseline, PipeTransformer

attains up to 2.83× speedups without accuracy loss.
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to partition k. The parameter number of this intermediate

tensor depends on the batch size and the Transformer model

architecture. In BERTbase, the intermediate tensor width

and height is the hidden feature size and sequence length,

respectively (i.e., 1024, 512). If we use a batch size 300 in

a pipeline, the total parameter number is 1024× 512× 300.

If we store it using float32, the memory cost is 0.63 GB.

The GPU-to-GPU communication bandwidth is 15.754 GB

(PCI 3.0, 16 lanes). Then one cross-GPU communication

costs 40 ms. In practice, the time cost will be higher than

this value. Therefore, two cross-GPU communications cost

around 100 ms. To compare with the computation cost,

we quantify the time cost for the forward propagation of

a Transformer layer (12 million parameters), the time cost

is around 35 ms, meaning that the communication cost for

skip connection is far more than a specific layer’s compu-

tation cost. Compared to a slightly unbalanced partition

in parameter number wise, 100 ms is non-trivial. If we do

not break the skip connection, the parameter number gap

between different partitions is far less than 12 million (e.g.,

4M or even less than 1 M). Therefore, this analysis explains

partitioning without breaking the skip connection is a rea-

sonable design choice. We also find that when the GPU

device number in a machine is fixed (e.g., 8), the larger the

model size is, the smaller the partition gap, which further

indicates that our design’s rationality.

Understanding Bubble in Pipeline. In the main text, Fig-

ure 6 depicts an example of running 4 micro-batches through

a 4-device pipeline. Time flows from left to right, and each

row denotes workload on one GPU device. F and B squares

with the same color represent the forward and the backward

pass time blocks of the same micro-batch. U represents the

time block for updating parameters. Empty time blocks

are bubbles. Assume that the load of the pipeline is evenly

distributed amongst all devices. Consequently, all the time

blocks during the forward pass are roughly in the same size,

and similarly for backward time blocks. Note that the sizes

of the forward time blocks can still differ from the back-

ward ones. Based on these assumptions, we can estimate

the per-iteration bubble size by simply counting the number

of empty blocks during the forward and backward passes,

respectively. In both the forward and backward pass, each

device idles for (K − 1) time blocks. Therefore, the total

bubble size is (K − 1) times per micro-batch forward and

backward delay, which clearly decreases with fewer pipeline

devices.

Relationship Between Number of Micro-batches per

Mini-batch (M ) and DDP. To understand the reason why

M and DDP have mutual impacts, a thorough understand-

ing of Section A.5 is needed first. In essence, DDP and

pipelining has opposite requirement for M : DDP requires

a relatively larger chunk of the bucket (smaller M ) to over-

lap the communication (introduced in Section A.4), while

pipelining requires a larger M to avoid bubble overhead

(introduced in Section A.3). To further clarify, we must first

remember that DDP must wait for the last micro-batch to fin-

ish its backward computation on a parameter before launch-

ing its gradient synchronization, then imagine two extreme

cases. One case is that M = 1, meaning the communication

can be fully overlapped with computation using buckets.

However, setting M = 1 leads to a performance downgrade

of pipelining (overhead of bubbles). Another extreme case

is a very large M , then the communication time (labeled as

green “AR” in Figure A.5) may be higher than the computa-

tion time for a micro-batch (note that the width of a block

in Figure A.5 represents the wall clock time). With these

two extreme cases, we can see that there must be an optimal

value of M in a dynamical environment (K and parameter

number of active layers) of PipeTransformer, indicat-

ing that it is sub-optimal to fix M during training. This

explains the need for a dynamic M for elastic pipelining.

D. More details of AutoDP

D.1. Data Redistributing

In standard data parallel-based distributed training, PyTorch

uses DistributedSampler to make sure each worker in

DP only load a subset of the original dataset that is exclusive

to each other. The example code is as follows:

self.train_sampler =

DistributedSampler(self.train_dataset,

num_replicas=num_replicas,

rank=local_rank)

Compared to this standard strategy, we made the following

optimizations:

1. dynamic partition: the number of DP workers is in-

creased when new pipelines have participated in DP. In

order to guarantee that the data partition is evenly assigned

after adding new pipes, the training dataset is repartitioned

by rebuilding the DistributedSampler and setting new

num_replicas and rank as arguments.

2. to reuse the computation of FP for frozen layers, we

cached the hidden states in host memory and disk memory

as well. Since the training requires to shuffle each epoch,

the cache order of hidden features with respect to the order

of original samples is different across different epochs. In

order to identify which data point a hidden feature belongs

to, we build a sample unique ID by returning index in the

get_item() function of Dataset class. With this unique

ID, we can find a sample’s hidden feature with O(1) time

complexity during training.

3. when data is shuffled in each epoch, a data sample trained

in the previous epoch may be moved to another machine






