
















PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

settings.

Designing better freeze algorithm: Our proposed algo-

rithm is simple, yet it proves to be effective on various

tasks. However, we believe that further developments to

the freeze algorithm may lead to better generalization and

obtain higher accuracy.

Versatility: PipeTransformer training system can also

be used on other algorithms that run progressive training

(Gong et al., 2019) or gradually fix portions of neural net-

work. For example, cross-silo federated learning, layer-by-

layer neural architecture search, and pruning large DNNs

are all potential use cases of our training system. We will

explore the training acceleration for these scenarios in our

future works.

7. Conclusion

This paper proposes PipeTransformer, a holistic so-

lution that combines elastic pipeline-parallel and data-

parallel for distributed training. More specifically,

PipeTransformer incrementally freezes layers in the

pipeline, packs remaining active layers into fewer GPUs,

and forks more pipeline replicas to increase the data-parallel

width. Evaluations on ViT and BERT models show that com-

pared to the state-of-the-art baseline, PipeTransformer

attains up to 2.83× speedups without accuracy loss.

Acknowledgments

This material is based upon work supported by Defense

Advanced Research Projects Agency (DARPA) under FAST-

NICS program Contract Number HR001120C0088. Mahdi

Soltanolkotabi is additionally supported by the Packard Fel-

lowship in Science and Engineering, a Sloan Research Fel-

lowship in Mathematics, an NSF-CAREER under award

#1846369, DARPA Learning with Less Labels (LwLL) pro-

gram, and NSF-CIF awards #1813877 and #2008443. The

views, opinions, and/or findings expressed are those of the

author(s) and should not be interpreted as representing the

official views or policies of the Department of Defense or

the U.S. Government.

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

arXiv preprint arXiv:2005.14165, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

Gong, L., He, D., Li, Z., Qin, T., Wang, L., and Liu, T.

Efficient training of bert by progressively stacking. In

International Conference on Machine Learning, pp. 2337–

2346. PMLR, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,

Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al.

Gpipe: Efficient training of giant neural networks using

pipeline parallelism. arXiv preprint arXiv:1811.06965,

2018.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,

M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,

z. Gpipe: Efficient training of giant neural networks

using pipeline parallelism. In Wallach, H., Larochelle, H.,

Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

R. (eds.), Advances in Neural Information Processing

Systems, volume 32, pp. 103–112. Curran Associates,

Inc., 2019.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo,

C. A unified architecture for accelerating distributed

DNN training in heterogeneous gpu/cpu clusters. In

14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20), pp. 463–479. USENIX

Association, November 2020. ISBN 978-1-939133-19-

9. URL https://www.usenix.org/confere

nce/osdi20/presentation/jiang.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, I.,

Lim, S., and Kim, S. torchgpipe: On-the-fly pipeline

parallelism for training giant models. arXiv preprint

arXiv:2004.09910, 2020.

Kim, S., Yu, G.-I., Park, H., Cho, S., Jeong, E., Ha, H.,

Lee, S., Jeong, J. S., and Chun, B.-G. Parallax: Sparsity-

aware data parallel training of deep neural networks. In

Proceedings of the Fourteenth EuroSys Conference 2019,

pp. 1–15, 2019.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,

Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling

giant models with conditional computation and automatic

sharding. arXiv preprint arXiv:2006.16668, 2020.



PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,

A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.

Scaling distributed machine learning with the parameter

server. In 11th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 14), pp.

583–598, 2014.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,

T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al.

Pytorch distributed: Experiences on accelerating data

parallel training. Proceedings of the VLDB Endowment,

13(12), 2020.

Morcos, A., Raghu, M., and Bengio, S. Insights on repre-

sentational similarity in neural networks with canonical

correlation. In Bengio, S., Wallach, H., Larochelle, H.,

Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),

Advances in Neural Information Processing Systems 31,

pp. 5732–5741. Curran Associates, Inc., 2018. URL

http://papers.nips.cc/paper/7815-ins

ights-on-representational-similarit

y-in-neural-networks-with-canonical

-correlation.pdf.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,

Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-

haria, M. Pipedream: Generalized pipeline parallelism

for dnn training. In Proceedings of the 27th ACM Sym-

posium on Operating Systems Principles, SOSP ’19,

pp. 1–15, New York, NY, USA, 2019. Association for

Computing Machinery. ISBN 9781450368735. doi:

10.1145/3341301.3359646.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-

wary, M., Korthikanti, V. A., Vainbrand, D., Kashinkunti,

P., Bernauer, J., Catanzaro, B., et al. Efficient large-scale

language model training on gpu clusters. In Thirty-eighth

International Conference on Machine Learning, 2021.

Park, J. H., Yun, G., Yi, C. M., Nguyen, N. T., Lee, S.,

Choi, J., Noh, S. H., and ri Choi, Y. Hetpipe: Enabling

large DNN training on (whimpy) heterogeneous GPU

clusters through integration of pipelined model paral-

lelism and data parallelism. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pp. 307–321.

USENIX Association, July 2020. ISBN 978-1-939133-

14-4. URL https://www.usenix.org/confe

rence/atc20/presentation/park.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., et al. Pytorch: An imperative style, high-performance

deep learning library. arXiv preprint arXiv:1912.01703,

2019.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.

Svcca: Singular vector canonical correlation analysis for

deep learning dynamics and interpretability. In NIPS,

2017.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:

Memory optimization towards training a trillion parame-

ter models. arXiv preprint arXiv:1910.02054, 2019.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,

Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,

C., Sepassi, R., and Hechtman, B. Mesh-tensorflow:

Deep learning for supercomputers. In Bengio, S., Wal-

lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,

and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, volume 31, pp. 10414–10423. Cur-

ran Associates, Inc., 2018.

Shen, S., Baevski, A., Morcos, A. S., Keutzer, K., Auli,

M., and Kiela, D. Reservoir transformer. arXiv preprint

arXiv:2012.15045, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,

J., and Catanzaro, B. Megatron-lm: Training multi-

billion parameter language models using model paral-

lelism. arXiv preprint arXiv:1909.08053, 2019.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling

for convolutional neural networks. In International Con-

ference on Machine Learning, pp. 6105–6114. PMLR,

2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention

is all you need. arXiv preprint arXiv:1706.03762, 2017.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,

C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer

normalization in the transformer architecture. In Inter-

national Conference on Machine Learning, pp. 10524–

10533. PMLR, 2020.

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C., and De Sa, C.

Pipemare: Asynchronous pipeline parallel dnn training.

Proceedings of Machine Learning and Systems, 3, 2021.









PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

to partition k. The parameter number of this intermediate

tensor depends on the batch size and the Transformer model

architecture. In BERTbase, the intermediate tensor width

and height is the hidden feature size and sequence length,

respectively (i.e., 1024, 512). If we use a batch size 300 in

a pipeline, the total parameter number is 1024× 512× 300.

If we store it using float32, the memory cost is 0.63 GB.

The GPU-to-GPU communication bandwidth is 15.754 GB

(PCI 3.0, 16 lanes). Then one cross-GPU communication

costs 40 ms. In practice, the time cost will be higher than

this value. Therefore, two cross-GPU communications cost

around 100 ms. To compare with the computation cost,

we quantify the time cost for the forward propagation of

a Transformer layer (12 million parameters), the time cost

is around 35 ms, meaning that the communication cost for

skip connection is far more than a specific layer’s compu-

tation cost. Compared to a slightly unbalanced partition

in parameter number wise, 100 ms is non-trivial. If we do

not break the skip connection, the parameter number gap

between different partitions is far less than 12 million (e.g.,

4M or even less than 1 M). Therefore, this analysis explains

partitioning without breaking the skip connection is a rea-

sonable design choice. We also find that when the GPU

device number in a machine is fixed (e.g., 8), the larger the

model size is, the smaller the partition gap, which further

indicates that our design’s rationality.

Understanding Bubble in Pipeline. In the main text, Fig-

ure 6 depicts an example of running 4 micro-batches through

a 4-device pipeline. Time flows from left to right, and each

row denotes workload on one GPU device. F and B squares

with the same color represent the forward and the backward

pass time blocks of the same micro-batch. U represents the

time block for updating parameters. Empty time blocks

are bubbles. Assume that the load of the pipeline is evenly

distributed amongst all devices. Consequently, all the time

blocks during the forward pass are roughly in the same size,

and similarly for backward time blocks. Note that the sizes

of the forward time blocks can still differ from the back-

ward ones. Based on these assumptions, we can estimate

the per-iteration bubble size by simply counting the number

of empty blocks during the forward and backward passes,

respectively. In both the forward and backward pass, each

device idles for (K − 1) time blocks. Therefore, the total

bubble size is (K − 1) times per micro-batch forward and

backward delay, which clearly decreases with fewer pipeline

devices.

Relationship Between Number of Micro-batches per

Mini-batch (M ) and DDP. To understand the reason why

M and DDP have mutual impacts, a thorough understand-

ing of Section A.5 is needed first. In essence, DDP and

pipelining has opposite requirement for M : DDP requires

a relatively larger chunk of the bucket (smaller M ) to over-

lap the communication (introduced in Section A.4), while

pipelining requires a larger M to avoid bubble overhead

(introduced in Section A.3). To further clarify, we must first

remember that DDP must wait for the last micro-batch to fin-

ish its backward computation on a parameter before launch-

ing its gradient synchronization, then imagine two extreme

cases. One case is that M = 1, meaning the communication

can be fully overlapped with computation using buckets.

However, setting M = 1 leads to a performance downgrade

of pipelining (overhead of bubbles). Another extreme case

is a very large M , then the communication time (labeled as

green “AR” in Figure A.5) may be higher than the computa-

tion time for a micro-batch (note that the width of a block

in Figure A.5 represents the wall clock time). With these

two extreme cases, we can see that there must be an optimal

value of M in a dynamical environment (K and parameter

number of active layers) of PipeTransformer, indicat-

ing that it is sub-optimal to fix M during training. This

explains the need for a dynamic M for elastic pipelining.

D. More details of AutoDP

D.1. Data Redistributing

In standard data parallel-based distributed training, PyTorch

uses DistributedSampler to make sure each worker in

DP only load a subset of the original dataset that is exclusive

to each other. The example code is as follows:

self.train_sampler =

DistributedSampler(self.train_dataset,

num_replicas=num_replicas,

rank=local_rank)

Compared to this standard strategy, we made the following

optimizations:

1. dynamic partition: the number of DP workers is in-

creased when new pipelines have participated in DP. In

order to guarantee that the data partition is evenly assigned

after adding new pipes, the training dataset is repartitioned

by rebuilding the DistributedSampler and setting new

num_replicas and rank as arguments.

2. to reuse the computation of FP for frozen layers, we

cached the hidden states in host memory and disk memory

as well. Since the training requires to shuffle each epoch,

the cache order of hidden features with respect to the order

of original samples is different across different epochs. In

order to identify which data point a hidden feature belongs

to, we build a sample unique ID by returning index in the

get_item() function of Dataset class. With this unique

ID, we can find a sample’s hidden feature with O(1) time

complexity during training.

3. when data is shuffled in each epoch, a data sample trained

in the previous epoch may be moved to another machine






