Approximate ideal structures and K-theory

Rufus Willett

ABSTRACT. We introduce a notion of approximate ideal structure for a C*-
algebra, and use it as a tool to study K-theory groups. The notion is motivated
by the classical Mayer-Vietoris sequence, by the theory of nuclear dimension
as introduced by Winter and Zacharias, and by the theory of dynamical com-
plexity introduced by Guentner, Yu, and the author. A major inspiration for
our methods comes from recent work of Oyono-Oyono and Yu in the setting
of controlled K-theory of filtered C*-algebras; we do not, however, use that
language in this paper.

We give two main applications. The first is a vanishing result for K-theory
that is relevant to the Baum-Connes conjecture. The second is a permanence
result for the Kiinneth formula in C*-algebra K-theory: roughly, this says
that if A can be decomposed into a pair of subalgebras (C, D) such that C, D,
and C' n D all satisfy the Kiinneth formula, then A itself satisfies the Kiinneth

formula.
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1. Introduction

Approximate ideal structures and long exact sequences
Let C and D be C*-subalgebras of a C*-algebra A. There is a natural sequence
of maps

L o a L
(1) Kl(C (@) D) i Kl(C) @Kl(D) - Kl(A) - Ko(C N D) i Ko(C) @Ko(D)
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of K-theory groups where the solid arrows labeled ¢ and ¢ are defined respectively
by (k) := (k,—k) and o(k, ) := k£ + A. The dashed arrow labeled ¢ does not
exist in general, but in the very special case that C' and D are ideals in A such
that A = C + D, one can canonically fill it in. Indeed, the dashed arrow is then a
boundary map in a six-term exact sequence

Kl(C (@) D) ;> K0(0> (—B Ko(D) —U> KQ(A)

/| |

K1(A) Ki1(C)@ Ky (D) =— K1 (C n D)

This is the C*-algebraic analogue of the classical Mayer-Vietoris sequence associ-
ated to a cover of a topological space by two open sets.

The main technical tools developed in this paper are partial exactness results
for the sequence in line (1) that hold under less rigid assumptions than C and D
being ideals. These tools have interesting consequences even for many simple C*-
algebras, where there are no non-trivial ideals. Looking at the diagram in line (1)
in more detail,

(2) Kl(C’ M D) N Kl(C) @Kl(D) N Kl(A) —?-> KQ(C N D) N Ko(C) @KQ(D)
[ S — — —_——
(I11) (I1) (I

we establish partial exactness results at each of the three places marked (I), (I1),
and (IIT), under progressively more stringent assumptions. Exactness at point (I)
is the easiest to prove, and is automatic: if (k) = 0 for some k € Ko(C n D), one
can always canonically construct a class in K7 (A) that is the ‘reason’ for its being
zero in some sense.

For exactness in the positions marked (II) and (III) in line (2), we need more
assumptions. Here are the technical definitions.

Definition 1.1. Let A be a C*-algebra, and let C be a set of pairs (C, D) of C*-
subalgebras of A. Then A admits an approximate ideal structure over C if for any
6 > 0 and any finite subset F of A there exists a positive contraction h in the
multiplier algebra of A and a pair (C, D) € C such that:

(1) [k, a]| < 0 for all a € F;
(i) d(ha,C) < § and d((1 — h)a, D) < ¢ for all a € F;
(iii) d((1 — h)ha,C n D) < 6 and d((1 — h)h?a,C n D) < § for all a € F.

The pair {h,1 — h} should be thought of as a ‘partition of unity’ on A, splitting
it into two ‘parts’ C' and D that are simpler than the original. We discuss examples
below, but keep the discussion on an abstract level for now.

These conditions allow us to prove a version of exactness at position (II) in
line (2): roughly this says that if A admits an approximate ideal structure over C,
then for any class [u] in K;(A) one can find a pair (C, D) € C and build a class
d(u) € Ko(C n D) such that if d(u) = 0, then [u] is in the image of o.

The first of our main results is as follows.

Theorem 1.2. Say that A admits an approzimate ideal structure over a set C such
that for all (C,D) € C, the C*-algebras C, D, and C n D have trivial K -theory.
Then A has trivial K-theory.
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This result is already quite powerful: for example, it allows one to reprove the
main theorem on the Baum-Connes conjecture of Guentner, Yu, and the author
from [16] without the need for the controlled K-theory methods used there.

In order to get our results on the Kiinneth formula, we need an exactness property
at position (III) in line (2); unfortunately, this needs the stronger assumption on A
defined below.

Definition 1.3. Let A be a C*-algebra and C a set of pairs (C, D) of C*-subalgebras
of A. Then A admits a uniform approximate ideal structure over C if it admits an
approximate ideal structure over C, and if in addition the following property holds.
For all € > 0 there exists § > 0 such that for any C*-algebra B, if c € C' ® B and
d € D ® B satisfy ||c — d|| < §, then there exists z € (C n D) ® B with |z —¢| <€
and ||z —d| <e.

The above definition is satisfied, for example, if all the pairs (C, D) € C are pairs
of ideals. However, this is too much to ask if one wants applications that go beyond
well-understood cases. There are non-trivial examples, but we will not discuss these
until later.

Here is our second main theorem.

Theorem 1.4. Let A be a C*-algebra. Assume that A admits a uniform approxi-
mate ideal structure over C, and that for each (C;D) e C, C, D, and C n D satisfy
the Kiinneth formula. Then A satisfies the Kinneth formula.

Before moving on to examples, let us digress slightly to give background on the
Kiinneth formula for readers unfamiliar with this.

The Kiinneth formula
One of the main results in this paper is about the Kiinneth formula, which
concerns the external product map

X : Ky(A® B) > K4 (A) ® Ky(B)

in C*-algebra K-theory. This product is as a special case of the very general Kas-
parov product, but can also be defined in an elementary way: see for example [19,
Section 4.7]. A C*-algebra A is said to satisfy the Kinneth formula if for any C*-
algebra B with free abelian K-groups, the product map above is an isomorphism.

Study of the Kiinneth formula seems to have been initiated by Atiyah [1] in
the commutative case, and in general by Schochet [30]. In particular, these authors
showed (in the relevant contexts) that A satisfies the Kiinneth formula in the above
sense if and only if for any B there is a canonical short exact sequence

0 — Ky(A) @ K4(B) 5> Ky (A® B) — Tor(K4(A), K4«(B)) — 0.

This short exact sequence is a useful computational tool, so it is desirable to know
for which C*-algebras the Kiinneth formula holds. One can see the Kiinneth for-
mula as a sort of ‘dual form’ of the universal coefficient theorem (UCT). Thus
another motivation for studying the Kiinneth formula is as it forms a simpler proxy
for the UCT.

The class of C*-algebras known to satisfy the Kiinneth formula is large. Atiyah
[1] essentially showed that commutative C*-algebras satisfy the Kiinneth formula.
It follows that any C*-algebra! that is K K-equivalent to a commutative C*-algebra

LFor this and the next paragraph, all C*-algebras are separable.
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satisfies the Kiinneth formula. The class of such C*-algebras is exactly the class
satisfying the UCT?. Hence the UCT is implies the Kiinneth formula.

The UCT is in fact strictly stronger than the Kiinneth formula: this follows from
combining work of Chabert, Echterhoff, and Oyono-Oyono [7], of Lafforgue [21], and
of Skandalis [31]. Indeed, it follows from the ‘going down functor’ machinery of [7]
that if G is any group that satisfies the Baum-Connes conjecture with coefficients,
then C*(@G) satisfies the Kiinneth formula. Thanks to [21], this applies in particular
when G is a hyperbolic group. On the other hand, results of [31] imply® that if G is
an infinite, hyperbolic, property (T) group, then C}*(G) does not satisfy the UCT.

Other results extending the range of validity of the Kiinneth formula include
work of Bonicke and Dell’Aiera [4], which extends the results of [7] from groups
to groupoids; and work of Oyono-Oyono and Yu [25] which uses the methods of
controlled K-theory developed by those authors [24], and based on older ideas of
Yu [36]. The work of Oyono-Oyono and Yu was the main technical inspiration for
this paper, and we say more on this below.

Despite all these positive results, there are known to be C*-algebras that do not
satisfy the Kiinneth formula. The only way we know to produce such examples is
based on the existence of non K-exact C*-algebras: see the discussion in [7, Re-
mark 4.3 (1)]. We do not know of an exact C*-algebra that does not satisfy the
Kinneth formula.

Examples
Our definitions were motivated partly by the theory of nuclear dimension. In-
deed, we can weaken Definition 1.1 as follows.

Definition 1.5. A C*-algebra A admits a weak approzimate ideal structure over C
if the conditions from Definition 1.1 are satisfied, with condition (iii) on intersections
omitted.

In Appendix A, we show? that if A is a (separable) C*-algebra of nuclear dimension
one, then A admits a weak approximate ideal structure over a class of pairs of sub-
homogeneous C*-subalgebras with very simple structure. This result is not enough
to deduce K-theoretic consequences with our current techniques; nonetheless, it
provides evidence that our conditions are natural from the point of view of general
C*-algebra structure theory.

In Appendix B, we discuss examples coming from groupoids. In joint work with
Guentner and Yu [16, Appendix A], we introduced a notion of a decomposition of
an étale groupoid. In Appendix B, we show that such decompositions naturally
give rise to approximate ideal structures of the associated reduced groupoid C*-
algebras, and moreover that we get uniform approximate ideal structures in this
way if the groupoids involved are ample. We use this to show that a large class of

2This is implicit in the original work of Rosenberg and Schochet [29], and was made explicit
by Skandalis in [31, Proposition 5.3].

3The result as stated here is not exactly in Skandalis’s paper [31], but it follows from Skandalis’s
ideas, plus more recent advances in geometric group theory: see [18, Theorem 6.2.1] for a discussion
of the version stated.

4This result was pointed out to us by Wilhelm Winter.
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reduced groupoid C*-algebras satisfy the Kiinneth formula®.

Inspiration and motivation

This paper was inspired by the work of Oyono-Oyono and Yu in [25] on the
Kiinneth formula in controlled K-theory. It owes a great deal to their work, both
conceptually and in some technical details: in particular, the key idea to use a sort
of approximate Mayer-Vietoris sequence comes directly from [25], and the difficult
proof of Proposition 5.7 is based closely on their work. A major difference of our
work from [25] in that we do not use controlled K-theory, only usual K-theory
groups. We do not use filtrations on our C*-algebras, and we do not need (nor do
we get results on) a ‘controlled’ version of the Kiinneth formula. It is not clear to
us what the difference is between the range of validity of our results and those of
[25]; we suspect that there is a large overlap.

We were motivated largely by the theory of nuclear dimension [35]: we wanted
to narrow the gap between the sort of structural results that one can use to deduce
K-theoretic consequences, and the sort of structural results that are known for C*-
algebras of finite nuclear dimension.

Outline of the paper

Section 2 introduces a general notion of ‘boundary classes’, and shows that
such classes have good properties with respect to the sequence of maps in line
(2): roughly, we prove a weak form of exactness at position (II) in line (2). The
discussion in Section 2 does not give a construction of boundary classes: this is
done in Section 3 using approximate ideal structures. We then prove Theorem 1.2,
our first main goal of the paper.

In Section 4, we prove exactness at position (I) in line (2); this is simpler than
exactness at position (II), but is postponed until later as it is not needed for the
proof of Theorem 1.2. We also collect together some other technical results on
the boundary map that are needed later. Exactness at position (III) in line (2) is
handled in Section 5: this is the most difficult of our exactness properties, both to
prove and to use.

Section 6 recalls some facts about the product in K-theory, and proves that the
products maps interact well with our boundary classes. Section 7 recalls material
about the inverse Bott map that we need for the technical proofs. We prove The-
orem 1.4 in Sections 8 and 9, which handle the surjectivity and injectivity halves
respectively.

Finally, there are two appendices that discuss examples. The first of these,
Appendix A shows that C*-algebras of nuclear dimension one have weak approxi-
mate ideal structures. Appendix B gives examples of (uniformly) approximate ideal
structures coming from groupoid theory, and briefly discusses consequences for the
Baum-Connes conjecture and Kiinneth formula.

Notation and conventions N
Throughout, if A is a C*-algebra (or more generally, Banach algebra), then A
denotes A itself if A is unital, and denotes the unitization of A if it is not unital.

5Similar results have been proved recently (and earlier than the current work) by Oyono-Oyono
using the methods of controlled K-theory.
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If X is a subspace of a C*-algebra A, then X is the subspace of A spanned by
X and the unit. There is an ambiguity here about what happens when C is a
C*-subalgebra of A, and C has its own unit which is not the unit of A: we adopt
the convention that in this case, C means the C*-subalgebra of A generated by C
and the unit of A. This convention will always, and only, apply to C*-subalgebras
called C', D and C' n D (plus suspensions and matrix algebras of these), so we hope
it causes no confusion. N

We use 1, and 0,, to denote the unit and zero element of M, (A) when it seems
helpful to avoid ambiguity, but drop the subscripts whenever things seem more
readable without. We use the usual ‘top-left corner’ identification of M, (A) with
M, (A) for n < m, usually without comment. We also use the usual ‘block sum’
convention that if a € M,,(A4), and b € M,,(A), then

a®b:= (g 2) € My om(A).

The symbol ® as applied to C*-algebras always denotes the spatial tensor prod-
uct. If X is a closed subspace of a C*-algebra A, and B is a C*-algebra, then
X ® B denotes the closure of the algebraic tensor product X ® B inside A ® B.
For a C*-algebra A, SA := Cy(R) ® A is its suspension, S?A := S(SA) its double
suspension, and for a closed subspace X of A, SX := Cy(R)®X. We always denote
the compact operators on £2(N) by K, so in particular A® K is the stabilisation of
K.

It is typical in C*-algebra K-theory to treat the Ky and K; groups as generated
by equivalence classes of projections and unitaries respectively. However, we will
need to work more generally with equivalence classes of idempotents and invertibles.
This is because one typically has more concrete formulas available in the latter
context. Readers unfamiliar with this approach can find the necessary background
in [2, Chapters II, IIT and IV], for example.

We have attempted to keep the paper self-contained and elementary, not as-
suming much any background beyond basic C*-algebra K-theory®. Although using
only elementary language is often desirable in its own right, we must admit that we
were also forced into it: indeed, we tried and failed to find ‘softer’, more conceptual,
arguments, and would be interested in seeing progress in that direction.
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2. Boundary classes

In this section, we work in the context of general Banach algebras. This is not
needed for our applications, but we hope it clarifies what goes into the results; it
also makes no difference to the proofs.

Definition 2.1. Let A be a Banach algebra, and let C' and D be Banach subalge-
bras. We define maps on K-theory by

t: Ke(CnD)—> Ky (CY®Ky(D), K (k,—K).

and
0: Ki(C)®Ky(D) »> Ki(A), (K,A)—r+ A\

With notation as above, assume for a moment that C' and D are (closed, two-
sided) ideals in A such that A = C'+ D. Then there is a Mayer-Vietoris boundary
map 0 : K1(A) — Ko(C n D) that fits into a long exact sequence

4 K (C) @ Ky (D) 5 Ki(A) S Ko(C A D) 5 Ko(C) @ Ko(D) % -+ - .

Our aim in this section is to get analogous results for more general Banach subalge-
bras C and D: for at least some classes [u] € K1(A), we want to (non-canonically)
construct a ‘boundary class’ d(u) € Ko(C n D) that has similar exactness properties
with respect to ¢ and o.

The next two lemmas concern ‘almost idempotents’. We would guess results
like these are well-known to experts, but could not find what we needed in the
literature.

Lemma 2.2. For any €,c > 0 there exists § € (0,1/16) with the following property.
Let A be a Banach algebra and e € A satisfy |e* —e| < § and |e|| < c. Let
X be the characteristic function of {z € C | Re(z) > 1/2}. Then x(e) (defined
via the holomorphic functional calculus) is a well-defined idempotent, and satisfies

Ix(e) —el <e.

Proof. First note that if § € (0,1/16) and if z € C satisfies |22 — 2| < §, then
|z||z — 1| < &, and so either |z| < +/§, or |z — 1| < v/5. Hence by the polynomial
spectral mapping theorem, if [e? — e| < &, then the spectrum of e is contained
in the union of the balls of radius v/§ and centered at 0 and 1 respectively. As
V8 < 1/2, it follows that x is holomorphic on the spectrum of e. Hence y(e) makes
sense under the assumptions, and is an idempotent by the functional calculus.

Let now r = 2¢/8 < 1/2, and let o and ; be positively oriented circles centered
on 0 and 1 respectively, and of radius r. Then by the above remarks, if |e? —e| < §
we have that vy U 1 is a positively oriented contour on which y is holomorphic,
and that has winding number one around each point of the spectrum of e. Hence
by definition of the holomorphic functional calculus

x(e) — e = (x(2) = 2)(z — &) 1dz.

2mi YoYUl

Estimating the norm of this using that |x(z) — z| = r for z € v U 11 gives

(3) Ix(e) — el < % r(z = e) 7 |ldzl.

YoYUyl
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Let us estimate the term ||(z — €)™ for 2 € 70 U y1. Set w = 1 — 2. Then we
have that w — e is also invertible, and

Iz = )7 = (w—e)(w—e)7 (z — )7}
< (e+ [w)[[((z* = 2) = (e —e) 7|
(4) < (e+2)[1((z* = 2) = (> =€)l

Now, we have that for z € vg U 71,
1
|22 — 2| = |2]|z — 1] Zir:\fé>6> le? —e.

Hence using the Neumann series inverse formula
2

e (e B =

24—z e =z

we get the estimate
1 1 1
—zl— ez — ¢ < ir—20 Vo4
Combining this with line (4), we see that for z € vy U 71,
c+2
Vo—6
To complete the proof, substituting the above estiumate into line (3) gives that
r(c+ 2)
VE—3

[((z* = 2) = (> —e)) '] <

|22

[z —e) <

1 r(c+2) 1
e)—el| < — dz| = — (Length + Length
bie) el < g | TRl = o (Lenathioo) + Lengthion)

Substituting in Length(yp) = Length(v;) = 277 and 7 = 2v/6 we get

4N/3(c +2)
Ix(e) —el < IV

which is enough to complete the proof. [

Definition 2.3. Let A be a Banach algebra, let X be a subset of A, let a € A,
and let € > 0. The element a is e-in X, denoted a €. X, if there exists x € X with
la -z <e

Lemma 2.4. Let A be a Banach algebra and B a Banach subalgebra. Then for all
¢>0 and all e € (0, ﬁ) there exists & > 0 with the following property.

(i) Say n = 1 and say e € M, (A) is an idempotent which is 6-in M, (B) and
such that |le|| < c. Then there is an idempotent f € M, (B) with |e — f| <.
Moreover, the class [f] € Ko(B) does not depend on the choice of €, §, or f.

(i) Assume moreover that A is unital, and that B contains the unit. Say u €
M, (A) is an invertible which is 6-in M, (B) and such that |u=!| < c. Then
there exists an invertible v € M, (B) with |u—v| < €, and the class [v] € K1(B)
does not depend on the choice of €, §, or v.

Proof. Let § > 0, to be chosen depending on ¢ and € in a moment, and assume
that e is d-in M, (B) so there is b € M,,(B) with |b — e < §. Then

[6* — bl < [lelllo — el + [b][[b — e]| + b — €] < (2¢ +6 +1)s.
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Let x be the characteristic function of the half-plane {z € C | Re(z) > 1/2}. Then
for suitably small § (depending only on ¢ and €), we may apply Lemma 2.2 to get
that |b— x(b)|| < €/2. Setting f = x(b) and assuming also that § < ¢/2 we get that

le=fl<le=bl+lo—fl<e

as desired.

To see that [f] € Ko(B) does not depend on the choice of f, let f' € M, (B)
be another idempotent with e — f/| < e. Then |f — f/|| < 2¢ < 1/(2¢ + 3). As
£l < ¢+ 1, we see that

1 1
< ;
2¢c+3 " |2f =1

If =71l <

whence [2, Proposition 4.3.2] implies that f and f’ are similar, and so in particular
define the same K-theory class.

For part (ii), let ¢g = i, let € € (0,€], and let § = e. Choose any v € M, (B)
with [|u — v|| < ¢. Then

11— u™] = Ju™ (u = )| < o u— o] < cd =1/4.

Hence v~ 'v is invertible, and so v is invertible too. Moreover, estimating the norm

of (u™'v)~! using the series expression (u~!v)~! = Y (1 — u~lv)" gives that
[v~tu| < 2, whence v~ = v~ tuut|| < 2c. On the other hand, if v’ also satisfies
|u—v'| < €, then |Jv — v'| < 2€p, and so

11— o= ' < o~ o — '] < 4eeo = 1.

Hence v=1v' = ¢* for some z € M,(B) (see for example [3, I.1.5.3]), and so
{ve'*}ie[0,1] is a homotopy between v and v passing through invertibles in M, (B),
giving that [v] = [v] in K;(B). O

Definition 2.5. Let ¢ > 0, let € € (0, ﬁ), and let 6 > 0 be as in Lemma 2.4. Let
A be a Banach algebra, and B be a Banach subalgebra of A.
(1) Say e € M, (A) is an idempotent that is 6-in M,,(B). Then we write {e}p €
Ky(B) for the class of any idempotent f € M, (B) with |e — f|| <e.
(2) Say ue M,(A) is an invertible that is §-in M,,(B). Then we write {u}p €
K1 (B) for the class of any invertible v € M,,(B) with ||u — v| <e.
The next definition is the key technical point that we need to construct our
boundary classes.

Definition 2.6. Let ¢ > 0, let € € (0, ﬁ), and let 6 > 0 be as in Lemma 2.4. Let
A be a Banach algebra, let C' and D be Banach subalgebras of A, let u € M, (A)
be an invertible element for some n. An element v € My, (A) is a (6, ¢, C, D)-lift of
w if it satisfies the following conditions:

() o] < cand o7 < ¢

(ii) v s Man(D);

-1 ~
(iii) v uO u) €5 Ma, (C);

(iv) v (é 8) v €5 Moy (C A D);
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(v) with notation as in Definition 2.5, the K-theory class

1 0 —1 1 O Dl
{“(0 0)“ }c?fa_[o O]GKO(C“m
is actually in the subgroup Ko(C n D).

We may now use such lifts to construct ‘boundary classes’.

Proposition 2.7. Let ¢ > 0, let € € (0, ﬁ). Then there is & > 0 satisfying the
conclusion of Lemma 2.4, and with the following properties. Let A be a Banach
algebra, and let uw € M, (A) be an invertible with |u|| < ¢ and |u™Y| < c. Assume
there exist Banach subalgebras C' and D of A and a (,¢,C, D)-lift v of u. Then
the K -theory class

duu = {v (é 8) o - [(1) 8] € Ko(C D)

has the following properties.
(i) If v is as in Definition 2.1, then 1(0,u) = 0 in Ko(C) ® Ko(D).

(it) If dyu = 0, then there is | € N and an invertible = €. M, (D) such that
(u@® 1))x~! €. Mo, (C). In particular, if o is as in Definition 2.1, then

oc({(u@ L)z e, {z}p) = [u] in Ki(A).

Proof. Let us first consider ¢(d,u). Note first that as v is §-in M, (D), there is
w € My, (D) such that |w — v| < 4. In particular, w is invertible for ¢ suitably
small. It follows by definition of the left hand side that

(b )t =o(h )

in Ko(D) for all suitably small 6. Hence as elements of Ky (D),
10\ iy 1 0] [ (t 0y 47 [1 0
{”<0 o)” }5 [0 o] [“’(0 o>w ] [0 o]'
However, as w is in Mo, (D), [w <1 O) w_l] = [1 O] in Ko(D), so the above is

0 0 0 0

the zero class in Ky(D), hence also in Ky(D).
-1

On the other hand, our assumption that v (uo

2) is 0-in My, (C) implies

similarly that for all § suitably small, we have
B 1 0\ _; 10
a““_{”<o 0)” }a_[o 0]
_ { u 0 o1y 10 o1y u™l 0 } [t 0
B 0 ut! 0 0 0 w/)Js |0 0|

which is zero as a class in Ko(C'). We have shown that the image of d,u in both
Ky(C) and Ky(D) is zero, whence ¢(0,u) = 0 as claimed.

Throughout the rest of the proof, whenever we write ‘6,,’, it is implicit that this
is a positive number, depending only on ¢ and §, and that tends to zero when o
tends to zero as long as c¢ stays in a bounded set.
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Now let us assume that d,u = 0. This implies that there exists [ € N and an
invertible element w of Ma,;(C n D) such that

o3 e (3 2o <o

for some 67 > 0. Write v = Ui 12 , and let
Va1 V22

V11 0 V12 0

o o1 0 o0 N
VIS 0w 0|0 My yi4n11(D)
0 0 0 1

(writing the matrix size as n+ [ +n + [ is meant to help understand the size of the
various blocks) and if

wil Wiz W13 o
w=[wa wep ws|eM,ni(CnD)
w31 W3z W33

let
wir 0w wis
0 1; 0 0 —
wy = e M, Cn D).
1 W Way W ntlnti( )

w31 0 w3z ws3

Then in M, 11)1(n41)(C) we have

1 0) 10
furen (0 o> 1 wl_(o 0> | <2

for some do. This implies that for ¢ suitably small there exist invertible z,y €

o= (5 )] <5

M, +1(D) and 3 such that
w0 ~
U( 0 u) €5 Mgn(c>

~

Write uq :=u@®1; € My 4;(A). Then

urt 0 ~
Ul(é u ) € M40y +(ns1y (O).

and thus as wy is in My(,4)(C), we have that

Now, by assumption

—1
U 0
w1v1 < 6 Ul) €54 M2(n+l)(c)

for some d4. Hence in particular, :cul_l is invertible for ¢ suitably small, is d4-in

~

M, +1(C), and has norm bounded above by some absolute constant depending only

on c. We now have that for § suitably small (depending only on € and ¢), uyz =" is

~ ~

e-in M, 4(C) and that z is e-in M,,1;(D), completing the proof. O
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Definition 2.8. With notation as in Proposition 2.7, we call d,(u) € Ko(C n D)
the boundary class associated to the data (u,v,C, D).

3. Approximate ideal structures and the vanishing theorem

Our main goal in this section is to show that approximate ideal structures in
Definition 1.1 can be used to build lifts as in Definition 2.6, and thus allow us to
build boundary classes.

It would be possible to get analogous results for general Banach algebras, but it
would make the statements and proofs more technical. As our applications are all
to the K-theory of C*-algebras, at this stage we therefore specialise to that case.

First, it will be convenient to give a technical variation of Definition 1.1.

Definition 3.1. Let A be a C*-algebra, let X < A be a subspace, and let § > 0.
Then a §-ideal structure for X is a triple

(h,C,D)

consisting of a positive contraction h in the multiplier algebra of A, and C*-
subalgebras C' and D of A such that
(1) [k, z]|| < 0||z| for all x € X;
(ii) hx and (1 — h)z are d||z|-in C' and D respectively for all z € X;
(iii) h(1 — h)z and h%(1 — h)x are §|z|-in C D for all z € X.
We say that A has an approzimate ideal structure over a class C of pairs of C*-

subalgebras if for any ¢ > 0 and finite dimensional subspace X of A there exists a
d-ideal structure (h,C, D) of X with (C, D) in C.

Remark 3.2. The conditions on multiplying into the intersection in (iii) from Defi-
nition 3.1 might look odd for two reasons. First, they are asymmetric in h and 1—h:
this is a red herring, however, as it would be essentially the same to require that
h(1—h)z and h(1— h)2x are both §|x|-in C' n D. Second, there are two conditions
for C n D, and only one each for C' and D. This seems ultimately attributable to
the fact that one needs two polynomials to generate Cy(0, 1) as a C*-algebra, but
only one each for Cy(0, 1] and Cy[0, 1).

We need to show that admitting an approximate ideal structure bootstraps up
to a stronger version of itself (following a suggestion of Aaron Tikuisis and Wilhelm
Winter).

Lemma 3.3. Say A is a C*-algebra, Xq is a finite-dimensional subspace of A, and
N = 2. Then there exists a finite-dimensional subspace X of A containing Xq, such
that for any 6 > 0 there exists &' > 0 such that if (h,C, D) is a §'-ideal structure
for X, then (h,C, D) also satisfies the following properties:
(i) Ilh, ]|l < 6]z for all x € Xo;
(ii) for alln e {1,..., N}, h™z (respectively, h"(1—h)xz, and h™(1—h)x) is §||z|-in
C' (respectively D, and C n D) for all x € Xy.

Proof. Take a basis of X consisting of contractions, and write each of these as
a sum of four positive contractions. Let X; be the space of spanned by all these
positive contractions, say {ai, ..., a,}. Let X be spanned by all m*™® roots of all of
ay,...,an for m € {1,..., N + 1}. Clearly if ' < 4, then as X contains X, we have
the almost commutation property in the statement.
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Let us now look at A"z for x € Xy. It suffices to look at h™a for some a €
{ai,...,an}. Then using the almost commutation property, we have that h"a is
close to (ha'/™)™, so for ¢’ suitably small we get what we want. Similarly, if a €
{a1,...,an}, if we write g = h — 1, then

-1 =+ 9" ga=- 3 (})o e

k=0

and again using the almost commutation property, this is close to

o n
Z (k) (gal/(lﬂ—l))k-&-l’
k=0

so we get the right property for ¢’ suitably small. The corresponding property for
the intersection is similar, once we realise that for all n > 1, h"(1 — h) can be
written as a polynomial in k(1 — k) and h*(1 — h) (proof by induction on n, for
example): we leave the details of this to the reader. O

The next lemma discusses how approximate ideal structures behave under tensor
products. If X is a subspace of a C*-algebra A, recall that we write X ® B for the
norm closure of the subspace of A ® B generated by elementary tensors x ® b with
re X and be B.

Lemma 3.4. Say A is a C*-algebra, and X is a finite-dimensional subspace of A.
Then there exists a constant Mx > 0 depending only on X such that if (h,C, D) is
a d-ideal structure for X, and if B is any C*-algebra, then (h®1,C® B,D ® B)
is an Mxd-ideal structure for X ® B.

Proof. Let z1,...,x, be a basis for X consisting of unit vectors, and let ¢1, ..., ¢, €
A* be linear functionals dual to this basis, so ¢;(xz;) = d;; (here ;5 is the Kronecker
§ function). Let M = max?_, |¢:]|. We claim that Mx := nM has the property
required by the lemma. Note first that any a € X ® B can be written

n
a = Z €T, ® bi
i=1
for some unique by, ..., b, € B, and that we have for each i

165 = 1l(¢s ®1d)(a)[ < [ @i]llal < Mal.
To see property (i), note that for any a = Y | z; ® b; € X ® B we have

Ih®Lall < ) Ilhzd @bil < 3 )zl |bill < dnM]jal.
i=1 =1

To see properties (i) and (iii), let us look at ha for some a € X ® B; the cases
of (1 — h)a, h(1 — h)a, and h?(1 — h)a are similar. For each i € {1,...,n} choose
¢; € C with |haz; —¢f| < 6. Thenifa =Y |2, ®b; € X ® B is as above and if
c=>",¢®b €C® B we have

[(h®@1)a —c| < ZH hai —ci) @bl < Z5llbll onM|al,

i=1

which completes the proof. O
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Corollary 3.5. Say A and B are C*-algebras and X is a finite-dimensional sub-
space of A® B. Then for any § > 0 there exists a finite-dimensional subspace
Y of A and & > 0 such that if (h,C,D) is a ¢§-ideal structure for Y, then
(h®1p,C® B,D® B) is a 0-ideal structure for X.

Proof. As the unit sphere of X is compact, there is a finite dimensional subspace
Y of A such that for any z in the unit sphere of X there exists y in the unit
sphere of Y ® B such that ||y — z| < §/2. Let My be as in Lemma 3.4, and let
§' = §/(2My). Lemma 3.4 implies that if (h, C, D) is a ¢’-ideal structure for Y then
(h®1,C® B,D ® B) is a d-ideal structure for X. O

For the remainder of this section, we will apply Lemma 3.4 to tensor products
M,(A) = A® M,(C) without further comment. We will also abuse notation,
writing things like ‘hu’ for an element u € M, (A), when we really mean ‘(h®1,,)u’.

The next proposition is the key technical result of this section. It says that we
can use approximate ideal structures to build boundary classes as in Definition 2.8.
For the statement, recall the notion of a (e, ¢, C, D)-lift from Definition 2.6 above.

Proposition 3.6. Let A be a C*-algebra and let k € K1(A) be a Ki-class. Then

there exist n and an invertible element u € M, (A), ¢ > 0, and a finite-dimensional
subspace X of A such that for any e > 0 there exists § > 0 such that the following
hold.

(i) The class [u] equals k.
(ii) If (h,C,D) is a 0-ideal structure of X, and if a = h+ (1 — h)u and b =
h+u=t(1—h) then

(1 a\ (1 0\[(1 a\ [0 -1
o 1)\= 1)\o 1)W1 o
is an (e, ¢, C, D)-lift for u.

First we have an ancillary lemma.

Lemma 3.7. Let A be a C*-algebra and let u be an invertible element ofﬁ such
that w = 1 +y and u=! = 1+ z with y, z elements of A with norms bounded by
some ¢ > 0. Let 6 > 0 and let h be a positive contraction in M(A) such that
I[h, z]|| < 6|z for all x € {y, z}. Define

a:=h+1—=hu and b:=h+u"(1—-h).
Then ba — 1 and ab — 1 are both within 2(c® + ¢)§ of (y + z)h(1 — h).
Proof. Using that y and z commute, we have that
[a,b] = (1= R)y=(1 — h) — (1 — h)%y
= [(1 =), zJy(1 = h) + 2(1 = B)[y, (1 = h)]
= [z, hly(1 = h) + 2(1 = h)[h, y],

whence |[[a,b]|| < 2¢5. Hence it suffices to show that ab — 1 is within 2¢§ of
h(1 —h)(y + z). Using that yz = —y — z, we see that

ab—1=(1—h)yh+hz(1—h)
and using that |[y, k]| < d|y| and ||[z, k]| < d|z|, we are done. O
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Proof of Proposition 3.6. Let u € Mn(/T) be any invertible element such that
[u] = k. Using that GL,(C) is connected, up to a homotopy we may assume that
u and u~! are of the form 1 + y and 1 + 2z respectively with y,z € M, (A). Let
Xo be the subspace of A spanned by all matrix entries of all monomials of degree
between one and three with entries from {y, z}. Let X be as in Lemma 3.3 for this
Xo and N = 4. Let then € > 0 be given, and let § > 0 be fixed, to be determined
by the rest of the proof. Let (h,C, D) be an d-ideal structure for X.

Throughout the proof, anything called ‘4, is a constant depending on X, ¢
and max{|yll, ||}, and with the property that J, tends to zero as ¢ tends to zero
(assuming the other inputs are held constant). Note that Lemma 3.4 implies that
there is d; such that (h, M,,(C), M, (D)) is a d;-ideal structure of M, (A) for all n.
We check the properties from Definition 2.6. Property (i) is clear from the formula
for v (which implies a similar formula for v—1).

For property (ii), one computes

(5) v <a(12_ bbaa) abb 1> _ (8 2) N (a(ll_ bl;a) abO 1)'

Asa =1+ (1—h)yand b =1+ 2z(1—h), we have that a and b are both 5-in M,, (D)
8 2) is d9-in My, (5) On the other hand, Lemmas 3.7
and 3.3 and the choice of X imply that 1 — ba and 1 — ab are d3-in My, (D) for

some 03. It follows from this and that a is o-in M, (D) that (a(ll_—b(;a) abo— 1)

for some d5. Hence also (

is d4-in Mgn(ﬁ) for some d4.

For part (iii), we compute
w0 au=! 0 a(l —ba)u=t (ab—1)u
(6) v< 0 u1> B ( 0 bu) + ((1 —ba)u~! 0 ’
We have that au™' = 1 + hz and that |[bu — (1 + yh)| < J5 for some J5. Hence

the first term in line (6) is dg-in Ma, (C) for some Jg. For the second term, using
Lemma 3.7 we have that up to some d7, (1 — ba)u~! and (ab — 1)u equal

(y+2)h(1—=h)(1+2) and (y+ 2)h(1—h)(1+y).

On the other hand |a(1 —ba)u=! — (1 4+ hz)(y + 2)h(1 — h)| < Js for some Jg. The
claim follows from all of this and the choice of X.
For parts (iv) and (v), note that

66 D6
- <abb1 a(12_bl?a)>
- <8 2) * (abo— 1 a(ll_—bbaa)>'

Using this and the formula in line (5) we have that v (é 8) vl — <(1) 8) equals

o (o) (R 9 (60t ().
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Now, using Lemma 3.7 and the fact that h almost commutes with y and z, every
term appearing is within some dg of something of the form (1 — h)hpc(h)qe(y, 2),
where p¢ is a polynomial of degree at most 3 in h (possibly with a constant term),
qc is a noncommutative polynomial of degree at most 3 with no constant term, and
moreover the coefficients in pc and ¢p are universally bounded. Hence by choice of
X, all the terms are d19-in M,,(C n D), for some d19. This completes the proof. O

We are now ready for the proof of Theorem 1.2 from the introduction.

Theorem 3.8. Say that A admits an approzimate ideal structure over a set C such
that for all (C,D) € C, the C*-algebras C, D, and C n D have trivial K -theory.
Then A has trivial K-theory.

Proof. It suffices to show that K;(A) = K1(SA) = 0. For K;(A), let a € K1(A)
be an arbitrary class. Then using Proposition 3.6 we may build a boundary class
Oy(u) € Ko(C n D). As Ko(C n D) = 0, this class d,(u) is zero. Hence by
Proposition 2.7 it is in the image of o : K;(C) @ K1(D) — Ki(A). However,
K;1(C) = K1(D) = 0 by assumption, so we are done with this case.

The case of K;(SA) is almost the same. Indeed, Corollary 3.5 implies that SA
admits an approximate ideal structure over the set {(SC,SD) | (C,D) € C}, and
we have that SC, SD, and SC n SD = S(C n D) all have trivial K-theory. O

We remark that Theorem 1.2 can be used to simplify the proof of the main
theorem of [16], in particular obviating the need for filtrations and controlled K-
theory in the proof, and replacing the material of [16, Section 7] entirely.

4. More on boundary classes

In this section we collect together some technical results on boundary classes that
are needed for the proof of Theorem 1.4 on the Kiinneth formula. We state results
for Banach algebras when it makes no difference to the proof, and C*-algebras
when the proof is simpler in that case.

The first result corresponds to exactness at position (I) in line (2) from the in-
troduction. For the statement, recall the notion of a (9, ¢, C, D)-lift from Definition
2.6, and the map ¢ : Ko(C n D) — Ko(C) @ Ko(D) from Definition 2.1.

Proposition 4.1. Let A be a Banach algebra and let C' and D be Banach subal-
gebras of A. Assume that p,q € M,(C ~ D) are idempotents such that [p] — [q] €
Ko(C n D), and so that ¢([p] — [¢]) = 0.

Then there exist k € N, an invertible element u of Mn+k(g), an invertible el-
ement v of MQ(nJrk)(g), and ¢ > 0 such that for any 6 > 0, v and v~' are
(8,¢,C, D)-lifts of u and u™' respectively, and such that d,u = [p] — [q] and
dp=1(u™) = [q] = [p]-

Proof. As([p]—[q]) = 0, there exist natural numbers ! < k and invertible elements
uc € Mn+k(6'), up € Mn+k(ﬁ) such that

uc(p@L)ug' = ¢® 1 = up(p® L)up,'

Define
u=(_1-p® 1l)u51 +(p® 1l)u51 € My4x(A).
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Direct checks that we leave to the reader show that u is invertible with inverse
ul=uc(l—p®1) +up(p®1;). Define now

_ (®L)up’ p@L -1 N
v._<1_Q®1l uD(p@ll) €M2(n+k)(D)~

Note that v is invertible: indeed, direct computations show that
ol up(p®1;) 1-q@Y
T \l-p@®lL, (p®L)up')”
We also compute that

S(e 0 P@L (1-p®L)ug!
0 u uc(l—p®1,) ASRY ’

~

which is an element of My, 1) (C'), so at this point we have properties (i), (ii), and
(iii) from Definition 2.6.
To complete the proof, we compute using the formulas above for v and v~ that

10\ ., (pal 0
”(0 o)“ ( 0 1—q@1z>’

which is in My, 41 (m) Moreover, as a class in KO(C'/FYD)7

1 0\ ;7 [1 0]
[U(O 0)” ]_|:0 O:| —[p]_[Q],
so in particular this class is in Ky(C' n D), completing the proof that v satisfies the
conditions from Definition 2.6, and that 0, (u) = [p] — [¢]-
The computations with v~! and u~! replacing v and u are similar: we leave
them to the reader. ([l

The proof of the next lemma consists entirely of direct checks; we leave these to
the reader.

Lemma 4.2. Let A be a Banach algebra, let ¢ > 0, and let € € (0, ﬁ). Let§ >0
satisfy the conclusion of Proposition 2.7. Assume that for i € {1,...,m}, there is
an invertible element u; € M, (A) such that |u;| < ¢ and |u; '] < ¢, and let C
and D be Banach subalgebras of A such that for each i there is a (0, ¢, C, D)-lift v;
of ui. Let s € My, y...1n,,) be the self-inverse permutation matriz defined by the
following diagram in the sizes of the matrixz blocks

ni n no N9 cee e N, N,

ni RQW e Nm
and define

Vi Hom =501 @ Dum)s
Then v:=viH- - By is a (0,¢,C, D)-lift of u:=u; @+ D up,, and

n

dvu = Y 0, (us)

i=1
in Ko(C n D).
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We conclude this section with a technical result on inverses that we will need
later.

Lemma 4.3. Assume that the assumptions of Proposition 3.6 are satisfied. Then
on shrinking &, we may assume that v=' is also an (e,c,C, D)-lift of u™', and
moreover that

Oy (u) = —0p-1(u™")
as elements of Ko(C' n D).

Proof. Checking that

1 (0 =1\ (1 —a\ (1 0\ (/1 —a
VAUV AV VAU
satisfies the properties from Definition 2.6 with respect to v ! is essentially the same
as checking the corresponding properties for v and v in the proof of Proposition
3.6. We leave the details to the reader.

It remains to establish the formula 0, (u) = —d,-1(u~1). For t € [0, 1], define

(1 ta 1 0\ /(1 ta) /0 -1
=0 1)\=w 1)\ 1)1 o)
Analogous computations to those we used to establish to property (iii) in the proof

of Proposition 3.6 show that v, Ly is in My (C' A D) up to an error

10
vl o)
we can make as small as we like depending on § (with ¢ and X fixed), and that the

difference
vt 10 v o — oyt 10 v
t 00 % \o o)t

is in M5, (C n D), again up to an error that we can make as small as we like by
making § small (and keeping ¢ and X fixed). Hence for all t € [0, 1] we get that the

classes
(6 0) e = £ (0 0) e

of Ko(C' n D) are well-defined. They are moreover all the same, as the elements
defining them are homotopic. However, the above equals 4, (u) when ¢t = 0, and
equals —d,-1(u~') when t = 1, so we are done. O

5. Approximate ideal structures and the summation map

In this section, we prove a technical result, based very closely on [25, Lemma 2.9],
and corresponding to exactness at position (III) in line (2) from the introduction.

The precise statement is a little involved, but roughly it says that given a finite-
dimensional subspace X of A there is 6 > 0 such that if (h,C,D) is a J-ideal
structure for X as in Definition 3.1, then the maps ¢ and ¢ from Definition 2.1 have
the following exactness property: if (k,\) € Ko(C)@® Ko (D) is such that o(k, ) =0
and the subspace X contains a ‘reason’ for this element being zero, then (k, A) is in
the image of .

This result is weak: it seems the quantifiers are in the wrong order for it to be
useful, meaning that one would like to be able to choose X based on C and D,
but the statement of the result is the other way around. Nonetheless, the result is
useful, and plays a crucial role in the proof of the injectivity half of theorem 1.4.
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For the proof of the result, we need a condition that is closely related to the so-
called ‘CIA property’ as used in the definition of ‘nuclear Mayer-Vietoris pairs’ in
[25, Definition 4.8]. For the statement, let us say that a function f : (0,00) — (0, 0)
is a decay function if f(t) — 0 as t — 0. The following definition is a somewhat
more quantitative variant of Definition 1.3 from the introduction.

Definition 5.1. Let (C, D) be a pair of C*-subalgebras of a C*-algebra A, and let
f be a decay function. Then (C, D) is f-uniform if for all C*-algebras B and § > 0,
if ce C®B and de€ D ® B satisty |¢c — d|| < 6, then there exists x € (C n D) ® B
with |z —¢| < f(9) and ||z — d|| < f(9).

Let A be a C*-algebra and C a set of pairs (C, D) of C*-subalgebras of A. Then
A admits a uniform approximate ideal structure over C if it admits an approximate
ideal structure over C, and if in addition there is a decay function f such that all
pairs in C are f-uniform.

The following example and non-example might help illuminate the definition.
We give some more interesting examples in Appendix B.

Example 5.2. If (C, D) is a pair of C*-ideals in A, then (C, D) is f-uniform where
f(t) = 3t. To see this, say that ce C ® B and d € D ® B satisfy |c —d| < . Let
(h;) be an approximate unit for C.

Let 15 denote the unit of B. We claim first that for each i, (h; ® 1p)d is in
(C nD)® B. Indeed, let € > 0, and let d’ be an element of the algebraic tensor
product D ® B such that |d' — d|| < e. Then ||(h; ® 15)d — (h; ® 15)d'|| < €, and
(h; ®1p)d € (C n D)® B. As € was arbitrary, (h; ® 1g)d is in (C n D) ® B.

Choose 7 large enough so that |(h;®1p)c—c| < §, and set z = (h;®1p)d. Then
x is in (C' n D) ® B by the claim, and

|z —cl < [[(hi ®1p)d = (hi ® 1B)c| + |[(hi ® 1)c — c| < 26
and
|z —d| < |[(hi ® 1p)d — (hi @ 1)c| + [lc = (hi @ 15)c| + ¢ — d]| < 34,
completing the argument that (C, D) is f-uniform.

On the other hand, the following non-example shows that f-uniformity is quite
a strong condition: while it is automatic for ideals by the above, it can fail badly
for very simple examples of hereditary subalgebras.

Example 5.3. Let A = K be the compact operators on H = ¢?(N). Choose
projections p and ¢ on H whose ranges have trivial intersection, but such that there
are sequences (z,,) and (y,) of unit vectors in the ranges of p and ¢ respectively with
|Zn—yn| — O (it is not too difficult to see that such projections exist). Let C' = pKp
and D = gKq, so C and D are hereditary subalgebras of K. Asrange(p) nrange(q) =
{0}, we have that C' n D = {0}: indeed, any self-adjoint element of C' n D is a self-
adjoint compact operator with all its eigenvectors contained in range(p) N range(q).
On the other hand, if p, and g, are the rank-one projections onto the spans of x,,
and y,, respectively, then p,, € C' and ¢, € D for all n, and |p,, — gn| — 0. It follows
that the pair (C, D) is not f-uniform for any decay function f.

The following lemma is immediate from the associativity of the minimal C*-
algebra tensor product.
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Lemma 5.4. Say A and B are C*-algebras and f is a decay function. If (C, D) is
an f-uniform pair for A, then (C® B, D® B) is an f-uniform pair for AQ B. O

We need two preliminary lemmas before we get to the main result. Recall first
that if w is an invertible element of a unital ring, then we have the ‘Whitehead
formula’

S R [ I I}

This implies that invertible elements of the form are equal to zero in

u 0
0 ut
K-theory for purely ‘algebraic’ reasons (compare [22, Lemma 2.5 and Lemma 3.1)).
The following lemma can thus be thought of as saying that any invertible element
u of a C*-algebra that is zero in K; for ‘topological reasons’ (i.e. is homotopic to
the identity) is also zero in K; for ‘algebraic’ reasons, up to an arbitrarily good
approximation”.

For the statement of the lemma, recall the notion of being §-in a subspace of a

C*-algebra from Definition 2.3.
Lemma 5.5. Let ¢,e > 0. Then there exists § > 0 with the following property. Let
X be a subspace of a C*-algebra A and let {us}ie0,1] be a homotopy of invertibles
in My, (A) such that:

(Z) Uy = ]-n;

(ii) for each t, both u; and u; ' are 5-in {1+ 2 € M, (A) | z € M, (X)};
(iii) for each t, |us| < ¢ and |u; '] < c.

Then there exists m € N and invertible elements a €5 {1 + © € My, (A) | x €

My (X)} and b €5 {1 + 2 € Myy1yn(A) | @ € M(yp1)n(X)} such that a, b, a!
and b~ all have norm at most ¢, and such that the difference

, 0 0 0

U 0 0 a O 0 b 0

<0 1(2m+1)n>_ 0 0 at 0 (o b—1>
00 0 1,

n MQ(mH)n(/T) has norm at most .
Proof. Let § > 0 (to be chosen later), and choose a partition 0 =ty < ... <t,,, =1
of the interval [0, 1] with the property that for any i, ||us, , — ut, | < J. Define

i+1

u;l 0O ... O
0 u;zl . 0 -~
a:= ) ) ) ) € Mpyn(A).
0 0 up !
Uty 0 0
0 U, 0 ~
b:= . € M(erl)n(A)
0 0 e U

m

"This cannot be exactly true — otherwise the algebraic and topological Ki groups of a C*-
algebra would always be the same.
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Then we have that

1, 0 O 0
Ug 0 10 a O 0 b 0
0 lemtn 0 0 at 0 0 bt
0 0 0 1,
equals
0(m+1)n 0 0 e 0
0 1-— utlugjl 0 cee 0
0 0 1—ugu; - 0
0 0 0 R
Recalling that u;,, = 1, the latter element has norm bounded above by
max ”1 - uti+1ut_il = max Huh = Uty ” Huzl <dc,
which we can make as small as we like by decreasing the size of é. O

The next lemma uses decompositions and the identity in line (8) to split up an

0 . . . . »
element of the form (8 al) using approximate ideal structures as in Definition

3.1

Lemma 5.6. Say A is a C*-algebra and X a finite-dimensional subspace of A.
Then there is a finite-dimensional subspace Y of A such that for any € > 0 there
exists 6 > 0 so that the following holds. Assume that a € Mn(ﬁ) is an invertible
element such that a and a=* have norm at most ¢, and are 6-in the set {1 + x €
M, (A) | z € M,(X)}. Assume that (h,C,D) is a 6-ideal structure for Y. Then

there are homotopies {Utc}te[o,l] and {vP}ie[o,1] of invertible elements such that:
(i) for each t, v< €. {1 +c|ce Mo, (C)} and vP e. {1 +d | de M, (D)};
. fa 0
@ (5 ) = ofeps
(iii) v{ =P = 1oy;
(iv) for each t the norms of vf and vP are both at most (3 + c)®.

Proof. Let Yy be the subspace of A spanned by all monomials of degree between
one and four with entries from X. Let Y be as in Lemma 3.3 for this Yy and NV = 4.
Let then € > 0 be given, and let § > 0 be fixed, to be determined by the rest of the
proof. Let (h,C, D) be a d-ideal structure for X.

Write a = 1 + 2 and a=! = 1 + y with x,y €5 M, (X). Consider the product
decomposition

066 966 )

Set ¢ := 1+hz and 2P := (1—h)z, so that ¢+ = a. Similarly, set y© := 1+hy
and y” = (1 — h)y, so that y© + y? = a~!. For any element z of a C*-algebra, set

X(2) = (é f) and Y(2) = C 8)
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Then using that X (z1 + 22) = X (21)X (22) and similarly for Y, the product in line
(9) equals

X (@)X (a9)Y (—y)Y (—y") X ()X (27) <(1) 01> '

Rewriting further, this equals the product of

= XX (X6 (] ) K=,

" WP = X (2P) (fl é) X(=29)Y (—yP) X (2€)X (27) ((1) —01)'

We claim this v¢ and v” have the properties required of vg and v¥ in the statement.

. . . a 0
The norm estimates are clear, as is the equation 0 al) = v§vE. For the

remainder of the proof, any constant called §, depends only on ¢, X, and ¢, and
tends to zero as ¢ tends to zero (with the other inputs held constant).

We first claim that v© is e-in the set {1 + ¢ | ¢ € Ms, (C)} for § suitably small.
Using Lemma 3.4, h commutes with z and y up to some error §;. Using this, plus
the fact that xy = yx = —y — x, one computes that

XY 2x60) (] )

is within some d of an element of the form

1 0\, (h O
66D~

where all entries of Z; are products of a noncommutative polynomial in z and y of
degree at most two and with no constant term, with a polynomial in A of degree at
most two. Hence up to error some d3, we have that v¢ agrees with

weo(3 )+ (5 1))

and that up to some dy4, this is the same as

1 0\, (n 0
636 7)

where every entry of Z, is a product of a noncommutative polynomial in x and y
of degree at most four and with no constant term, with a polynomial in / of degree
at most four. The claim follows from this, and the choice of X.

The computations showing that v” is e-in the set {1 +d | d € M, (D)} for §
suitably small are similar. Indeed, we first we note that

1 0 1-h 0 0 0
Y(=up) = <0 1) - ( 0 1—h> (—y 0)’
whence X (—z9)Y (—yP)X (%) is within d5 of an element of the form
1 0 1—-h 0
(0 1)*( 0 1—h)Z3

where every entry of Zs is a product of a noncommutative polynomial in x and y
of degree at most two and with no constant term, with a polynomial in h of degree
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at most two. Hence X (—z)Y (—yP)X (x%)X (xP) is within dg of an element of the

form
10\, (1-h 0
<0 1)*( 0 1—h>Z4’

where every entry of Z3 is a product of a noncommutative polynomial in z and y of
degree at most three and with no constant term, with a polynomial in & of degree
at most three. The same is true therefore of

(_01 é)X(—xCW(—yD)X(xC)X(a:D) ((1) 01>.

We thus get that v” is within §7 of an element of the form

10\ . (1-h 0
(o 1>+< 0 1—h>Z5’

where every entry of Zs5 is a product of a noncommutative polynomial in x and y
of degree at most four and with no constant term, with a polynomial in A of degree
at most four.

To construct homotopies with the required properties, define ¢’ := 1+ (1 —t)hx,
zP = (1-t)(1—h)z, y¢ := 1+ (1—t)hy, and yP; = (1—t)(1—h)y. Define moreover

o = XX (OXEE) (] 7)) Xa?)

and
o= xP) () §) Xafebxadxe?) (1 ).

Using precisely analogous computations to those we have already done, one sees
that these elements have the claimed properties: we leave the remaining details to
the reader. (]

Here is the key technical result of this section.

Proposition 5.7. Let A be a C*-algebra, let f be a decay function, let € > 0,
let ¢ > 0, and let X be a finite-dimensional subspace of A. Then there exists a
finite-dimensional subspace Y of A and § > 0 with the following property.

Assume that for some n € N there is a homotopy {us}se0,1] of invertible elements
in M, (A) with uy = 1,, and such that each u; and u; ' are §-in the set {1+ x €
M, (A) | z € M,(X)}, and have norm at most some c. Then if (h,C, D) is a 6-ideal
structure for' Y with (C, D) f-uniform then the following holds.

Sayl <mn and uc € Mn,l(é) and up € Mn,l(ﬁ) are invertible, such that they
and their inverses have norm at most ¢, and such that |ug — ucup ® 1;| < 0.
Then there exists k € N and an invertible element x € Mk(m)) such that if
[z] € K1(C n D) is the corresponding class, then with notation as in Definition 2.1,

dz] = ([uc], [up]) € Ki(C) ® Ky1(D).

Proof. Applying Lemma 5.5 to the homotopy {u:} we get m € N and invertible
elements a €5 {1 + 2 € My,n(A) | 2 € Myn(X)} anbes {1+ € Mpq1)n(A) [z €
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My, yn(X)} such that

l, 0 0 0

U 0 0 a O 0 b 0

(0 1(%n+nn> o 0 et 0 <o bl)
00 0 1,

has norm at most é. Let Y, and Y} have the properties in Lemma 5.5 with respect
to a and b, and let Y := Y, + Y3, a finite dimensional subspace of A. Let then ¢
and € be given, and let ¢ be fixed, to be determined by the rest of the proof. Let

(h,C, D) be a d-ideal structure of Y with (C, D) f-uniform.
As usual, throughout the proof any constant called d,, depends on f, ¢, Y, and §,
and tends to zero as § tends to zero. Applying (a very slight variation of) Lemma
0 b

9 to g a1 ) and b91 , we get elements v©"® and v, and v~"* and v
for t € [0, 1] satisfying the conditions there for some ;. Moreover, if we write
@ = vlc’a and similarly for the other terms, then

1, 0 O 0

8 g Q(L 8 (8 b01> _ D3y Cay Ciby Db

o 0 0 1,

_ UD’a’UC’a’UC’b(’UD’a)_l ’UD’aUD’b )
—

—-yD
=0C =:v

Note that v¢ and v? are do-in Mg(m+1)n(5) and MQ(m+1)n(5) respectively, that
they define the trivial class in K;(C) and K;(D) respectively, and that they and
their inverses have norm at most (3 + ¢)?°.

Let uc and up have the properties in the statement. Replacing uc and up by
their block sums with 1;, we may (for notational simplicity) assume that | = 0. Now,
we have that ucup and vovp are within some 03 of each other. Hence 1—v51uc and
1—v Duf)l are within some 4 of each other. Applying our f-uniformity assumption,
there exists an element y in some matrix algebra over C' n D that is within some 5
of both. Set z = 1+y. Then z is an invertible element of some matrix algebra over
CnD (as long as ¢ is suitably small) that is close to both vEluc and to vDuBI.
Hence for suitably small J, we have that as classes in K;(C)

[2] = [vg uc] = [uc],

where the second equality follows as ve represents the trivial class in K (C'). Sim-
ilarly, in K;(D),

[2] = [vpup'] = [up'].
It follows from the last two displayed lines that

uz] = ([uc], [up])
as required. O
6. The product map

In this section we recall some facts about the product map

x: Ky(A)® Ky (B) > K. (A® B)
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and discuss how it interacts with the boundary classes of Definition 2.8.

We first recall concrete formulas for some of the special cases of this product.
See for example [19, Section 4.7] for background on this, and [19, Proposition 4.8.3]
for the particular ‘K; ® Ky’ formula that we use.

For each n and m, fix an identification M, (C) & M,,(C) = M, (C) that is
compatible with the usual top-left corner inclusions M,,(C) — M,,+1(C) as m and
n vary. Use this to identify M,,(A)® M,,(B) with M,,,,(A® B) for any C*-algebras
A and B. Any two such identifications differ by an inner automorphism, so the
choice does not matter on the level of K-theory. We will use these identifications
without comment from now on.

We recall a basic lemma that is useful for setting up products in the non-unital
case: see [19, Lemma 4.7.2] for a proof.

Lemma 6.1. For a non-unital C*-algebra A, let €4 : A — C denote the canon-
ical quotient map. For non-unital C*-algebras A and B, define ¢ to be the =-
homomorphism
(€A®id§)@(idg®63) : ﬁ@é — ﬁ@é

(where we have identified A®C with A and similarly for B to make sense of this).
Then the map

K+(A®B) > K. (A® B)
induced by the canonical inclusion A ® B — A® B is an isomorphism onto
Kernel(¢y).

Similarly, if A is unital and B is non-unital and ¢ := id®ep : AQB — A, then

the map

K«(A® B) » K.(A® B)

induced by the canonical inclusion AQ® B — A® B is an isomorphism onto
Kernel(yy). A precisely analogous statement holds if A is non-unital and B is
unital. O

Definition 6.2. Let A and B be unital C*-algebras, and let p € M, (A4) and
q € M, (B) be idempotents. Then the product of the corresponding K-theory
classes [p] € Ko(A) and [q] € K((B) is defined to be

[p] x [¢] :=[p®q] € Ko(A® B).

Still assuming that A and B are unital, let u € M,,(A) be invertible and p € M,,(B)
be an idempotent, and define

up:u®p+1®(1_p)€Mnm(A®B)

Note that uX]p is invertible, with inverse u~!xp. The product of [u] € K;(A) and
[p] € Ko(B) is defined to be

[u] x [p] := [uKIp] € K1(A® B).

One checks that these formulas defined on generators extend to well-defined homo-
morphisms

X Ko(A)®K0(B)—>K0(A®B) and X Kl(A)®K0(B)—>K1(A®B)
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Assume now that A and B are non-unital. Then one checks that for either
(¢,7) = (0,0), or (i,7) = (1,0), the canonical composition
Ki(A) ® K;(B) - K(A) @ K;(B) 5 Kiyj(A® B)

takes image in the subgroup Kernel(¢,) of the right hand side, where ¢ is as in
Lemma 6.1. Using the identification Kernel(¢,) = K;4;(A® B) of Lemma 6.1, we
thus get a general product map

if (4,4) € {(1,0),(0,0)}. This all works analogously if just one of A or B is non-
unital, using the other part of Lemma 6.1.

For the next definition, for any C*-algebra, let
B0 Ku(S74) - Ku(4)
be the inverse of the Bott periodicity isomorphism.
Definition 6.3. Let A and B be C*-algebras. Define
K(A)®1 K(B) := (K1(A) ® Ko(B)) ® (K1(SA) ® Ko(SB)).
Define a ‘product’ map
m: K(A)®; K(B) > K1(A® B)
to be the composition
(K1(A) ® KO(B)) @ (Kl(SA) ® Ko(SB)) @5 K, (AR B)® K, (S?(A® B))
9" K(A®B) @K (A® B)
24 Ki(A®B)
We define
K(A)® K(B) := (Ko(A) ® Ko(B)) @ (Ko(SA) ® Ko(SB))
and
m: K(A)®y K(B) > Ko(A® B)

completely analogously.

The product map is natural with respect to suspensions and Bott periodicity.
Hence the map 7w above identifies with the usual product map

(K1 (4) ® Ko(B)) @ (Ko(A) ® K1(B)) — Ki(A® B)

under the usual canonical identifications relating suspensions to dimension shifts in
K-theory, and similarly in the K case.

We need a tensor product lemma. Recall that if C, D are C*-subalgebras of a
C*-algebra A, and if B is another C*-algebra, then there is a natural inclusion

(CnD)®B< (C®B)n (D®B).

This inclusion need not be an equality above in general: see for example [20].
However, f-uniform pairs as in Definition 5.1 behave well in this setting.
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Lemma 6.4. Let (C, D) be an f-uniform pair of C*-algebras of some C*-algebra
A for some decay function f. Then the natural inclusion

(CnD)®B< (C®B)n (D®B)
is the identity.

Proof. The assumption of f-uniformity directly implies that the image of the in-
clusion is dense. The image is a C*-subalgebra, however, so closed. O

The next lemma is the key technical result of this section. Morally, it can be
thought of as saying that if notation is as in Proposition 2.7 and if p an idempotent
in some matrix algebra over B, then the diagram

61/

K,(A)® Ko(B) Ko(Cn D)
Ki(A® B) —=+ [o((C ~ D)® B)

makes some sort of sense, and commutes, when one inputs the class [u] ® [p] €
K (A) ® Ko(B).

Lemma 6.5. Let A be a unital C*-algebra, let ¢ > 0, and let € € (0, Tﬂrﬁ). Then
there exists § > 0 satisfying the assumptions of Proposition 2.7, and with the follow-
ing additional property. Assume that uw € M, (A) is invertible and that v € M, (A)
is a (0,¢,C, D)-lift for u as in the conclusion of Proposition 2.7. Let B be a C*-
algebra, and let p € My, (B) be an idempotent with |p| < c.

Then (with notation as in Definition 6.2) viXIp is a (€, ¢, C, D)-lift for uXlp, and
we have

O(u) x [p] = Oupap(u B p)
as classes in Ko((C n D) ® B).

Proof. We leave it to the reader to check that v[Xlp is a (e, ¢, C, D)-lift of uX]p for
suitably small § > 0 (depending only on € and ¢). Computing, we see that

avp (U p)

:{(U®p+1®(1fp)) ((1) 8) (v1®p+1®(1p))}(5ﬁ,)®3[(1) 8]

oo o)rere (b b et o 3]

Using that the two terms inside the curved brackets are orthogonal, we have

10y 10
{“<o 0)” ®p+<o 0)@(1—@}((%)@3

o2 ) [ Do)
(¢ Dean-[i -G el
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we get that

Pomp (4 EIP) = {U( > 1®p}<5m73)®3_[<(1’ 8>®p]
({v Mo 0]) <12

which is exactly 0,( [p] as claimed. g

We also need compatibility results for the maps ¢ and o of Definition 2.1 and the
maps 7 of Definition 6.3. These are recorded by the following lemma.

Lemma 6.6. Let C and D be an excisive pair of C*-subalgebras of a C*-algebra
A, and let B be a C*-algebra. Then for i € {0,1}, the diagrams

K(CnD)®, K(B) 2% K(C)®, K(B)® K(D) ®; K(B)

o X

K:((C ~ D)® B) Ki(C®B)®K.(D® B)

and
K(C)®; K(B)®K(D)®; K(B) 224 K(A)®; K(B)
K;(C®B)® K;(D® B) z Ki;(A® B)

commute (where we have the canonical identification of Lemma 6.4 amongst others
to make sense of this).

Proof. This follows directly from naturality of the product maps and Bott maps
in K-theory. (]

7. The inverse Bott map

For a C*-algebra A, let
B Ky (S?A) — Ky (A)
be the inverse Bott isomorphism. It will be convenient to have a model for 8!
based on an asymptotic family. In this section, we recall some facts about asymp-
totic families and their action on K-theory (in the ‘naive’, rather than E-theoretic,
picture). We then discuss how the inverse Bott map can be represented by an
asymptotic family with good properties.
Recall (see for example [13, Definition 1.3]) that an asymptotic family between
C*-algebras A and B is a collection of maps {a; : A — B}c[1,40) such that:
(i) for each a € A, the map ¢t — «;(a) is continuous and bounded,
(ii) for all ay,as € A and 21, 20 € C, the quantities

ag(araz) — ar(ar)ag(az), alal) — ag(ar)™*
and
ai(z1a1 + 20a2) — z1a¢(a1) — zocy(ag)

all tend to zero as t tends to infinity.
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An asymptotic family {a; : A — Blyc[1,0) canonically defines a map oy :
K4«(A) — Ki(B). One way to define ay uses the composition product in FE-
theory and the identification of E4(C, A) with K,(A). However, there is also a
more naive and direct way. This is certainly very well-known, but we are not sure
exactly where to point in the literature for a description, so we describe it here for
the reader’s convenience.

Assume for simplicity that A and B are not unital (this is the only case we
will need), and that {o; : A — B} is an asymptotic family. We extend {ay} to
unitisations and matrix algebras just as we would for a x-homomorphism. Note
that as A and B are not unital, the extended asymptotic morphism on unitisations
takes units to_units.

If e € M,,(A) is an idempotent, then ||a;(e)® — ay(e)| — 0 as t — 0. Hence if
is the characterisitic function of the half-plane {z € C | Re(z) > 1/2} then x(a:(e))
(defined using the holomorphic functional calculus) is a well-defined idempotent in
M, (B) for all t suitably large. If [e] — [f] is a formal difference of idempotents
in M, (/T) defining a class in Ky(A), then one sees that for all ¢ suitably large the
formal difference

~

Dx(e(e))] = [x(ax(f))] € Ko(B)

~

is in the kernel of the natural map Ky(B) — Ky(C) induced by the canonical
quotient B — C. We define ay ([e] = [f]) := [x(cw(e))] = [x(w(f))] for any suitably
large ¢. The choice of ¢ does not matter, as for any ¢’ > ¢, the path {x(as(e))}seft,¢]
is a homotopy of idempotents, and similarly for f.

Similarly (and more straightforwardly), if u € M, (A) is invertible, then as the
extension of a; to unitisations is unital, for all suitably large ¢, oy (u) € M, (B) is
invertible, and we get a well-defined class ay[u] := [a¢(u)] for any suitably large t.
In this way, we get a well-defined homomorphism

s K4 (A) — Ko (B).

We also need to discuss the tensor product of an asymptotic family and a -
homomorphism. First, we describe how an asymptotic family is essentially the
same thing as a #-homomorphism A — Cy([1, ), B)/Cy([1,0), B). More precisely,
given an asymptotic family {a; : A — B}, we can define
G([1, %), B)
CO([L OO), B) ,
Conversely, the Bartle-Graves selection theorem implies the existence of a contin-
uous section s : Cy([1,00), B)/Co([1, ), B) — Cp([1,0), B). Then given a homo-
morphism a : A — Cy([1,0), B)/Co([1,0), B) we can define an asymptotic family
{ay : A — B} by the formula a;(a) := s(a(a))(t). If s and s’ are two different
choices of section and {a;} and {a}} the corresponding asymptotic families, then
at(a) — aj(a) — 0 as t — oo (compare for example [13, pages 4-5]). In particular,
this implies that the induced maps ay, and o), on K-theory on the same.

We may use this correspondence to define the tensor product of an asymptotic
family and a *-homomorphism. Say {a; : A — B} is an asymptotic family, and
¢ : C — D a =-homomorphism with D nuclear. As in [13, Proposition 4.3], we get
a natural *-homomorphism

Cb([lv OO)? B)
CO([L 00)7 B)

a:A—

a— [t— a(a)].

®D —
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where we have used nuclearity of D to see that the spatial tensor product - ® D
agrees with the maximal tensor product -®max D. Hence we get a x-homomorphism

a®¢ Cb([LOO),B) Cb([LCD)vB@D)
10 ARC —= ——"7— L R®D — .
1o CullL=).5) 2”7 Co([L.#). B D)
Definition 7.1. We let {«; ® ¢ : AQ C — B ® D} be any choice of asymptotic
family corresponding to the #-homomorphism in line (10).

‘The’ asymptotic family {«; ® ¢} is unfortunately not canonically determined by
{ay} and ¢. Nonetheless, any such choice will satisfy

(t®9¢)(a®c) —ar(c) ®p(c) >0 as t— ©

on elementary tensors, and any two such choices will induce the same map K, (A®
C)— K«(B®D).

The following lemma is the main technical result of this section. It says that
asymptotic families are compatible with boundary classes as in Definition 2.8. For
the statement, recall the definition of a (4, ¢, C, D)-lift from Definition 2.6.

Lemma 7.2. Let ¢,e > 0. Then there is § > 0 with the following property.

Let {a : A — B} be an asymptotic family between non-unital C*-algebras, and
let (Ca,D4) be a pair of C*-subalgebras of A and (Cp, Dg) a pair of C*-subalgebras
of B such that for allce Cy and de€ D4,

d(at(e),Cp) and d(a:(d), Dp)

tend to zero ast tends to infinity. Assume that u € Ma, (g) 1s an invertible element
with |u| < ¢ and |[u™t| < ¢, and let v be a (6/2,¢/2,Ca, Da)-lift of u. Then for all
suitably large t, a(v) € Mayn(B) is a (8, ¢, Cp, Dp)-lift of ay(u), and moreover

Oa () (@t (w)) = s (O (u))
in Ko(Cp n Dpg) for all suitably large t.

Proof. We use the same notation {«;} for the canonical extensions to matrix al-
gebras and unitisations. Note first that as the extension of {cy} to unitisations is
unital, and as «; is asymptotically multiplicaitve, «;(u) and oy (v) are invertible for
all suitably large t.

We first claim that asymptotic families are ‘asymptotically contractive’ in the
following sense: for any a € A and any ¢ > 0 we have |a:(a)| < |a]| + € for all
suitably large ¢. Indeed, let

Co([1, ), B)
CO([L OO), B) 7
be the corresponding #-homomorphism. As « is a s-homomorphism, it is con-

tractive. Hence by definition of the quotient norm, for any ¢ > 0 there is b €
Co([1,0), B) such that

sup |laz(a) —b(t)| < a(a)] + €< Jaf +e.
te[1,00)

a:A— a— [t — ai(a)]

As ||b(t)| — 0 as t — oo, the claim follows.
Now, from the claim and the fact that for all d € D4, d(«(d), Dp) tends to zero

as ¢ tends to infinity, that we have that a;(v) is d-in Ma, (b\é ) for all suitably large
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t. Similarly, and using also the asymptotic multiplicativity and unitality of {a},
we get that

o () (‘Mg)_l at?u)) &5 M (Cp)

for all suitably large t. The remaining conditions from Definition 2.6 follow similarly.
To see that 0y, () (a¢(u)) = ax(0y(u)) for t large enough, note that for suitably
large t, the former is represented by

a for (3 O)ewer ) [o 8]

For the latter, one starts by choosing an idempotent f € My, (C m 4) suitably
close to v <(1) 8) v~! as in Lemma 2.4 so that

10\ _, -
{” (0 0) v }cmA = U]
in Ko(Cx n D). Then oy (d,(u)) is represented by

(12) ()~ [g ol

for t suitably large, where x is as usual the characteristic function of {z € C |
Re(z) > 1/2}. Now, as |a;(f)] is uniformly bounded in ¢ and as | (f)% —aq(f)| —
0, we may apply Lemma 2.2 to conclude that |a:(f) — x(c:(f))] — 0. On the
other hand, by making ¢ suitably small and ¢ large, and using the ‘asymptotic
contractiveness’ claim at the start of the proof, we can make «;(f) as close as we

like to
au(v) <(1) 8) ay(v) )

Comparing lines (11) and (12), the proof is complete. O

We need the fact that Bott periodicity is induced by an appropriate asymptotic
morphism. The following lemma is well-known.

Lemma 7.3. For any C*-algebra A there is an associated asymptotic family
ap: S?A~ AQK

with the following properties:
(i) the map ay induced on K-theory by {ay} is the inverse Bott map B71;
(i3) if B is a C*-subalgebra of A and {a'} and {aP} are the asymptotic families
associated to A and B respectively, then for all be S?B, af*(b) — aP(b) — 0
ast — oo,
(iii) for any finite-dimensional subspace X of A and any element of S2X,

sup{d(oy(z), X ® K) | z € S?X, |z| < 1}
tends to zero as t tends to infinity;

() if we fiz an inductive limit description K = |Ji_, M,,(C), then for all t and
all a € S2A, ay(a) has image in the -subalgebra | J;_, M, (A) of AQK.
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Proof. There are several different ways to do this. We sketch one from [11] based
on the representation theory of the Heisenberg group. Asin [11, Section 4], one may
canonically construct a continuous field of C*-algebras over [0, 1] with the fibre at 0
equal to S2C, and all other fibres equal to K. As explained in [8, Appendix 2.B] or
[9, pages 101-2], such a deformation (non-canonically) gives rise to an asymptotic
family {c; : S?C — K}, and this family induces the map on K-theory described in
general in [11, Section 3], and which is shown in [11, Theorem 4.5] to be the inverse
of the Bott periodicity isomorphism.

This gives us our asymptotic family {«;} for the case A = C. In the general case,
we may take {a'} to be a choice of asymptotic family {a;®ida : S2CRA — KR A}
as in Definition 7.1.

Note that the construction of {a;'} is not canonical at two places: going from a
deformation to an asymptotic family, and taking the tensor product. However, any
two asymptotic families {4}, {«}} constructed from different choices will satisfy
a¢(a) —af(a) — 0 as t — oo for all a € S2A. It follows that the asymptotic families
so constructed satisfy (i), (ii), and (iii).

To make it also satisfy (iv), let {ki}ie1,00) be a continuous family of positive
contractions in | J M,,(A) < K such that for all k € K, kikk; —k — 0 as — oo. For
each a € A, choose a homeomorphism s, : [1,00) — [1,00) such that

ait(a) = (1@ ks, 1))ar(@) 1 @ ky, ) — 0
as t — o0. Replacing oy with the map
a— (1@ kg, )i (@) 1@ kq, 1)),
we get the result. ([l

8. Surjectivity of the product map
In this section, we prove the surjectivity half of Theorem 1.4.

Theorem 8.1. Let A be a C*-algebra, and say A admits a uniform ideal structure
over a class C such that for each (C,D) e C, C, D, and C n D satisfy the Kiinneth
formula. Then for any C*-algebra B with free abelian K -theory, the product map

x: Ky(A)® Ky(B) > K.(A® B)
18 surjective.

Proof. It suffices to show that the product maps
m: K(A)® K(B) > Kg(A®B) and 7:K(A)® K(B) > K1(A® B)

of Definition 6.3 are surjective for any B with K, (B) free. Replacing B with
its suspension, it moreover suffices to show that the second of the maps above is
surjective. Let then s be an arbitrary class in K1(A® B).

Let X € AQ® B and u € M,(A) be as in Proposition 3.6 for this x. Using
Corollary 3.5 and Lemma 5.4, for any § > 0 there is an f-uniform d-ideal structure
of the form (h® 1,C ® B,D ® B) for X. Fix such an ideal structure for a very

small 6 > 0 (how small will be determined by the rest of the proof).

Using Proposition 3.6 we may build an element v €, Mgn(M) with the
properties stated there, for some constant §; that tends to zero as J tends to zero.
We may use v to construct an element d,u € K1((C' n D) ® B) as in Proposition
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2.7 (here we use the identification (C' " D)® B =C ® B n D ® B of Lemma 6.4),
and have that if

1 Ko((C'n D)@ B) — Ko(C® B)® Ko(D ® B)

is the map from Definition 2.1, then ¢(0,u) = 0.

Using that the product map 7 for C' n D is surjective, we may lift d,u to an
element A of K(C n D) ®y K(B). With notation as in Definition 6.3, Lemma 6.6
gives that the diagram

K(C nD)® K(B) &% K(C)® K(B)® K(D) ® K(B)

y ¥

Ko((C n D)® B) - Ko(C®B)® Ko(D® B)

commutates. Hence

(L ®id)(N\)) = ¢(7(N)) = t(yu) = 0.
Using that the product maps for C' and D are injective, this gives us that (¢ ®
id)(\) = 0.

Now, we may write

k m
A= ZN’@M-F Z Ai @ i
i=1 i=k+1
for some k < m, where A\; € Ko(C n D) for i < k, \; € Ko(S(C n D)) for i > k,
and similarly p; € Ko(B) for ¢ < k and p; € Ko(SB) for i > k. As Ky (B) is free,
we may assume moreover that the set {u1, ..., i, } generates a free direct summand
of Ko(B) ® Ko(SB). We then have that

(t®id)(\) = Z t(N) ® pi = 0,

which forces ¢(A\;) = 0 for each 7 by assumption that the collection {1, ..., ttm}
generates a free direct summand of Ko(B)® Ko(SB). Applying Lemma 4.1 to each
\; separately gives us [y, ..., [, € N and invertible elements wy, ..., w,, with
(A) i<
e { M, (A) i<k

~

Mlz(SA) i>k
and corresponding lifts vy, ..., v,, with

v,-e{ My, (A) i<k

My, (SA) i>k
such that 0, (w;) = A; and 9,1 (w; ') = —\;. It will be important that there is
¢ > 0 such that for i < k, each v; is an (e, ¢, C, D)-lift of u,; for any € > 0, and
similarly for ¢ > k, with SC and SD in place of C' and D.
Now, write u; = [p;] — [¢:] for projections p; and ¢; in matrix algebras over B
for i < k, and over SB for i > k. Let {oy : S2(AQ@ B) ~» A® B® K} be an
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asymptotic family inducing the inverse Bott map as in Lemma 7.3. With notation
as in Definition 6.2, let us define
ui=u® (W ®p) @ (w1 Ka) ® - © (wy ' Kpx) B (wi K gr)
® (Wi Ly B prr1) @ (Wit M qes1) @ -+ D o (wy,! K pim) D (W B gim),

and with notation also as in Lemma 4.2 define

vi=vE @ Kp) B0 Ka) BB oy Kpk) B (o X ax)
o (v B prs1) B o (Vg1 K qrsr) B+ B ow (v, B pim) B o (i X gim)

which we can think of as elements of M, (A® B) and M, (A® B) respectively for
some n; € N depending on ¢ (recall from Lemma 7.3 that each a; : S?(A® B) —
A® B® K takes image in M,,, (A ® B) for some m; € N depending on t). Then
Lemma 4.2 gives that as long as our original § was sufficiently small, we have

oy (u) = +Za 1, (W X ps) +Zal.ql (wi [ q;)

i=1

+ Z aat(v;lpi)at(wi—lpi)—’_ Z a@t(vim)at(wiqi)'

i=k+1 i=k+1

On the other hand, Lemmas 6.5, 7.2, and 7.3 give that for suitably large ¢ this
equals

k k
)+ Oy (W7 EP) + Y Ouya, (i R )
=1 i=1
m

+ Z (0,1, (W7 BP)) + Y i (Gugmy, (wi K )

i=k+1 i=k+1

)+ 2 I x [pi] + 2 v, (w3) % [qi]

+ ) (0,1 (wi ) x [pi]) + D (0, (ws) x [gi])
i=k+1 i=k+1
k k
= du(u) + D2 (=X) x [pi] + X N x [ai]
=1 i=1
+ 2 BN x )+ D) BT N x [a))
i=k+1 i=k+1
k m
= d(u) = Do Nix i — Y, BTN x i)
i=1 i=k+1
= Oy(u) — m(N),

and this last line is zero. N
We have just shown that 0 (u) = 0. Noting that [u] defines a class in K;(A® B)
by Lemma 6.1, it follows at this point from Proposition 2.7 that (as long as the

original § > 0 was suitably small) there exists v € K1(C ® B) ® K,(D ® B) such
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that o(v) = [u]. Moreover, if we define

£= Nlwl o +2 (0] = S ® s € K(4)®1 K(B)

ﬁMg

then we have by definition of u that

o(v) = [u] = [u] = =(¢).
Using surjectivity of the product maps for C' and D, and with notation as in Defi-
nition 6.3, we may lift v to some ( € K(C)®; K(B)® K(D)®; K(B). Lemma 6.6
gives commutativity of the diagram

K(C) @1 K(B)® K(D) ® K(B) K(A)® K(B) ,
Ki(C®B)® K1(D® B) Z Ki(A® B)

which implies that
[u] = m(§) + o(v) = m(§) + a(n(C)) = 7(§) + (0 ®id)(C)) = 7(§ + (o ®id)(C)),

so we have that [u] is in the image of the map 7, and are done. O

o®id
—

9. Injectivity of the product map

Finally, in this section we complete the main part of the paper by proving the
injectivity half of Theorem 1.4.

Theorem 9.1. Let A be a C*-algebra, and say A admits a uniform approximate
ideal structure over a class C such that for each (C,D) e C, C, D, and Cn D satisfy
the Kinneth formula. Then for any C*-algebra B with free abelian K -theory, the
product map
x: Ky(A)® Ky (B) > Ky (A® B)

1s injective.
Proof. With notation as in Definition 6.3, it suffices to show that the maps

m: K(A)®) K(B) > Ko(A® B) and 7:K(A)® K(B) > K1(A® B)

defined there are injective for any B with K (B) free abelian. On replacing B with
its suspension, it suffices just to show injectivity in the K case.

Consider then an element k € K(A) ®; K(B) such that m(k) = 0. We will show
that k = 0. Fix a very small § > 0, to be determined by the rest of the proof.

We may assume k is of the form

k
K= Z ki @ ([pi] — Z ki @ = [ai]),
i=1

i=k+1
where for some n € N, each «; is an element of K;(A) for i < k or of K;(SA) for
i > k, and each pair p;, ¢; consists of projections in Mn(é) for i < k or in Mn(g\é)
for i > k, so that the difference is in M, (B) or M, (SB) as appropriate, and so that
the collection ([p;] — [¢:])%; constitutes part of a basis for the free abelian group
Ky(B) ® K¢(SB). Using Proposition 3.6, we may assume that for ¢ < k there is a
finite-dimensional subspace Xy ; of A and invertible u; € Mn(;l) with the properties
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stated there for k; and ¢§; and similarly for each ¢ > k, a finite-dimensional subspace
X1,; of SA and invertible u; € Mn(é\zzl) with the properties stated in Proposition
3.6 with respect to x; and J.

With notation ‘x]" as in Definition 6.2, and with

{1 S’(A®B) > AQ B®K)

an asymptotic family for A® B as in Lemma 7.3 that realizes the inverse Bott
periodicity isomorphism, define

k k m m
(13) g 52@%%@6—)11;1%4' P u(wiEp)® P o (u; ' K q).
i= = i=k+1 i=k+1

Then for all ¢ suitably large, [u¢] defines a class in Ki(A ® B), which we may
consider as a class in Ky(A ® B) thanks to Lemma 6.1.
By definition of 7, there is to € [1,00) such that w(k) = [u] for all ¢ > t(, and

so that the map
a0
tOv U 7 t— Ut

is a continuous path of invertibles. As [us,] = (k) = 0, we may assume moreover
that there exist [, p € N and a homotopy {ws}se[0,1] of invertible elements in Mp(ﬁ®
é) such that wy @ 1; = uy,, such that w; = 1, such that each w, and w* are in
(1+zeM,(A®B) | ze My(A ® B)}. Let X3 be a finite-dimensional subspace
of A® B such that all w, and w;! are é-in {1+ z € M, (A®B) | © € M,(X3)}.
Using part (iii) of Lemma 7.3, there is moreover a finite-dimensional subspace X,
of A® B such that for all ¢ > to there exists ny; € N such that u; and ut_1 are 0-in
M, (Xy).

Now, using Corollary 3.5 and Lemma 5.4, for any § > 0 there exists a triple
(h,C, D) such that (1 ® h,SC, SD) is an f-uniform d-ideal structure of X, and
such that (h®1,C® B,D® B) is an f-uniform d-ideal structure of both X3 and
Xy4. If § is small enough7 Proposition 3.6 and Lemma 4.3 then let us build for each
1 an invertible element

k

1 <m

o {Mgn(A) 1

<i<
M (SA) k+1<

such that for some ¢ > 0 and §; that tends to zero as J tends to zero, we have that
v; and v;l is a (01, ¢, C, D) lift of u; and u;l respectively for 1 < i < k, and so that
v; and v; * are a (01, ¢, SC, SD) lift for u; and u; ' respectively for k + 1 < i < m.
With notation as in Lemma 4.2, define also

k k m m
= [ Bp) BH(v; ') and vg:= (v; K p;) (v; ' X qi),
i=1 =1 1=k+1 i=k+1

which are elements of matrix algebras over A®B and SA® SB respectively. Define
also

k k
—1
=PuEpi®Pu; Ky
i=1 i=1
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and
m m
—1
us = P uRp® P u ' Ma.
i=k+1 i=k+1

Then as long as § > 0 is sufficiently small, Lemmas 4.2 and 6.5 give boundary
classes O,u € Ko((C n D) ® B) and 0,4 (us) € Ko(S(C n D) ® SB).
Now, with 87! the inverse Bott periodicity map, the element

(id @ B71)(0pu, D (us)) € Ko((C n D) ® B)
is necessarily zero. Indeed, using Lemmas 7.2 and 4.2, this element is represented
by

Ovu + aat'US (at(us))) = aUOtt(US) (’LL ® at(u5>)
for suitably large ¢. With notation as in line (13), this equals 0yga, (vs)(ut). Now,
we can drag a homotopy between u; and 1 through the construction of Proposition
3.6 to produce a homotopy between this element and 1 (this uses our choice of
(h,C, D), and the fact that there is a homotopy through invertibles between u; and
1 that is close to (1, + My, (X3)) v (1, + M, (X4)) for some appropriate n, € N).

Lemmas 6.5 and 4.2 give then that

i ( Z v, (ui) @ ([ps] — [%])) = (i[d® B 1) (pt, Ous (us))
whence the class
W(Z v, (ui) @ ([pi] — [%])) € Ko((C n D)® B)

is zero also. Hence by injectivity of the product map for C' n D, we have that

m

S 20, () @ ([pi] — [a1])

i=1
is zero in K(C n D) ®y K(B). Using the assumption that the collection ([p;] —
[¢:])7, forms part of a basis for Ko(B) ® Ko(SB), we get that d,,(u;) = 0 in
Ko(CnD)® Ky(S(C n D)) for each i. Hence Proposition 2.7 gives us j,I € N and

invertible elements

‘e M (D) 1<i<k
’ M;(SD) k+1<i<m

such that for each i € {1,...,k} we have that (u; ® 1;)s; " is in MjH(CN’)7 and such
that for each i € {k +1,...,m} we have that (u; ®1;)s; " is in MjH(g\C/). Applying
the same reasoning with the roles of u; and ui_l interchanged, we similarly get
invertible elements

e Mj-q-l(a) 1<i<k
’ M;(SC) k+1<i<m

such that for each i € {1, ..., k}, we have that (u; ' @ 1;)r; " is in Mﬂl(é’), and for
each i€ {k+1,..,m}, we have that (u;' @ 1;)r; ! is in Mj+l(§\é).
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Now, consider the class A € (K(C) ®; K(B)) @ (K(D) ® K(B)) defined by
A = (Ac, Ap) where

Ac = [(u; ' @ L)r; ' ® [a:]

IR

Il
—

’MS

-
Il
-

[(ui ® 10)s; 1 ® [pi] +

K3

and
m

Ap =Y [si] @ [pi] + D [ri] @

i=1
and note that x = o(A). The image of A under the product map
x: K(C)®, K(B)® K(D)®; K(B)
— (K1(C®B)® K1(SC®SB)) ® (K1(D® B) ® K1(SD ® SB))

is represented by the invertible element

(@( w® 157 Bps) @D (47! @ L)' [ay) |

= i=1

ég (Sipi) (—B(—né (Tiqi)>.

i=1 i=1
We have that w(\) equals the image of the class above under the map

idop™": (K1(C®B)® K (SC®SB)) @ (K1(D®B)® K1(SD® SB))
- K (C®B)®K,(D®B),

which, with notation as in Lemma 7.3, is represented concretely by the invertible
element (id @ «¢)(x) for all suitably large ¢. On the other hand, using almost
multiplicativity of the asymptotic family {a;} and comparing this with the formula
for u; in line (13), we see that u; can be made arbitrarily close to

m

(id @ o) (((-né(ul@ll 'Hpi) @D ((ui ' @ L)y lqz))

i=1 i=1

: (é(&m)@é(ﬂ%)))

i=1 i=1

by increasing ¢, and up to taking block sum with 1, for some ¢ depending on .
Now, for each fixed ¢ there is ny € N such that u; is homotopic to the identity
through invertibles that are d-in

{(1+zeM,,(AQB) |z e M, (X3) U M,,(X4)}

via the concatenation of the homotopies {us}sefs,,+) and {ws ® 1, —p}sefo,1] and our
assumption on (h,C,D). We are thus in a position to apply Proposition 5.7 to
conclude that there exists a class u € K1((C n D) ® B) such that o(u) = 7(\).
Using surjectivity of the product map for C' n D, we may lift © to some element v
of K(C n D)®, K(B). Using Lemma 6.6, we have that

m(A) = u(p) = vz (V) = 7((v)).
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Hence by injectivity of the product maps for C and D, this forces A = +(v). Finally,
we have that £ = o(\) and so

k=0c(\) =o((v)).

However, o o is clearly the zero map on K-theory, so we are done. (I

Appendix A. Nuclear dimension

In this appendix, we give examples of weak approximate ideal structures coming
from nuclear dimension one. See [35] for background on the theory of nuclear
dimension.

For the statement of the next result, if A is a C*-algebra, let Ay denote the
quotient [ [y A/ @n A of the product of countably many copies of A by the direct
sum. If (B,) is a sequence of C*-subalgebras of A, we let By denote the C*-
subalgebra [ [ Bn/ @~ By, of Ay.

The following fact was told to me by Wilhelm Winter®.

Proposition A.1. Let A be a separable’ unital C*-algebra of nuclear dimension
one. Then there exist

(i) a positive contraction h € Ay N A’, and
(ii) sequences (Cy), (Dy) of C*-subalgebras of A
such that:
(1) each Cy, and each D,, is a quotient of a cone over a finite-dimensional
C*-algebra,
(2) for alla€ A, ha€ Cy, (1 —h)a € Dy,

Proof. Using [35, Theorem 3.2] (and that A is separable) there exists a sequence
(¥n, On, Fr) where:
(i) each F, is a finite-dimensional C*-algebra that decomposes as a direct sum
F,=F" @ F,
(ii) each v, is a ccp map A — F, such that the induced diagonal map
) A— Fy

is order zero; ‘ ‘

(iii) each ¢,, is a map F,, — A such that the restriction (;553 ) of oy, to F,(f) is ccp
and order zero;

(iv) for each a € A, ¢ptbn(a) — a as n — 0.

Let ¢: Fp — Ay, and &0 Fo(é) — A denote the induced maps, let k(9 : F, —
Fo(ol) denote the canonical quotient, and consider the composition
0 = ¢ 0 kM 07p: A— Ay,

Each 0() is then ccp and order zero, and we have moreover that (9 +0(1) : A4 — A,
agrees with the canonical diagonal inclusion.

Now, let M; := M(C*(0)(A))) be the multiplier algebra of the C*-subalgebra
C*(0W(A)) of Ay generated by 6()(A). Using [34, Theorem 2.3] if we set h; :=

8The proof, however, is the author’s. Professor Winter likely knows a better proof.
INot really necessary, but the statement would be a little fiddlier otherwise.
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6 (1), then h; is a positive contraction in C*(6)(A)) n A’, and there exists a
unital'® x-homomorphism 79 : A — M; n {h;}’ such that

09D (a) = hyw(a)

forallae A. As 1 =0 (1) + 01 (1) = hy + hy, we will switch notation and write
h:=hy,801 —h=ho,soforallae A,

(14) a=hr(a)+ (1 —h)xW(a).

Note in particular that h commutes with both §(1)(A) (as h = hy and h; commutes
with this collection), and with #®)(A) (as 1 — h = hy, and hy commutes with this
collection). Hence h commutes with 6()(A) + 02 (A) 2 A, so in particular h is in
Apn A,

Now, let us think of 7(¥) : A — M; as having image in the double dual (Au)**
by postcomposing with the canonical embedding M; — (Ay)**. Let us replace 7(%)
with the map

(15) a = X010y ()7 (@) + xp3y (h)a.

Then the equation in line (14) still holds for all a € A. Let B be the unital C*-
algebra generated by h, A, 7(®)(A) and 7()(A), and note that h is central in B.
For each A € [0,1] in the spectrum of h in C*(h,1), let Iy be the C*-ideal in B
generated by the corresponding maximal ideal in C*(h, 1) (with Iy = B if A is not
in the spectrum of h). Then in B/I, the equation in line (14) descends to

a=x) + (1 - 7W(a).

If A€ (0,1) and @ = u € A is unitary, this writes the image of u in B/I as a convex
combination of two elements in the unit ball; as unitaries are always extreme points
in the unit ball of a C*-algebra [3, Theorem 11.3.2.17], this is impossible unless
7O (u) = 7 (1) = v modulo I for all XA € (0,1). As the unitaries span any unital
C*-algebra [3, Proposition 11.3.2.12], this forces 7(?)(a) = 7V (a) = a modulo Iy
for all @ € A and all A € (0,1). On the other hand, if A = 0, we clearly get
71 (a) = a modulo Iy for all a € A, while 7(%) (a) = a modulo I, follows from the
replacement we made in line (15). Similarly, if A = 1, we also get that 7(°)(a) = a
and 7™ (a) = a modulo I;. Putting this together, we have that the precomposition
of either 7(9 or 7(1) with the natural diagonal *-homomorphism

®:B — 1_[ B/I,
Aespectrum(h)
agrees with the natural map A — [],01) B/1x induced by the inclusion A — B.
However, as C*(h, 1) is contained in the center of B, the map ® is injective by
[10, Theorem 7.47]. Hence we get that both 7 and 7(1) agree with the diagonal
inclusion A — A, and thus have the equations
0 (a) = ha and 6Y(a) = (1 - h)a

for all a € A.
To complete the proof, therefore, we need to find sequences (C,,) and (D,,) of
C*-subalgebras of A with the right properties. For each n and each i € {0,1},

1OUnitaIity follows from the proof in the given reference, but does not appear explicitly in the
statement.
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consider (bsf) : F,Si) — A. As this is order zero, [34, Corollary 3.1] gives a -
homomorphism pg) : Co(0,1] ® Fff) — A such that qﬁg)(b) = pgf)(x ® b) for all
be A, where z € Cy(0, 1] is the identity function. Set C,, := pglo)(C’o(O, 1]®F,(LO)) and
D, = pg)(C’o(O, 1]1® F,(Ll))7 which contain the images of (,25510) and ng) respectively.
It is straightforward to check that (C,) and (D,,) have the right properties. O

The next corollary follows by lifting the element h € Ay, to a positive contraction
(hn) €[], A: we leave the details to the reader.

Corollary A.2. Let A be a separable C*-algebra of nuclear dimension one, and
let C be the class of pairs (C, D) of C*-subalgebras of A such that each of C' and D
is isomorphic to a quotient of a cone over a finite dimensional C*-algebra. Then
A has a weak approrimate ideal structure over C. O

Remark A.3. Based on the above it is natural to ask: if A admits a weak approx-
imate ideal structure over a class C as in Definition 1.5, can one use an additional
argument to show that A admits an approximate ideal structure over C? We do not
believe this is true due to the following example'!; we warn the reader that we did
not check the details of what follows. It seems by adapting Proposition A.1 that
one can show that if A has nuclear dimension one and real rank zero, then it has a
weak approximate ideal structure over the class C of pairs of its finite dimensional
C*-subalgebras. In particular, this would apply to any Kirchberg algebra (see [5,
Theorem G] and [27, Proposition 4.1.1]). However, if A admits an approximate
ideal structure over a class of pairs of finite-dimensional C*-algebras, then a mild
elaboration of Proposition 3.6 below shows that K (A) is torsion free. As there are
Kirchberg algebras with non-trivial torsion K7 group (see [27, Section 4.3]), this
(if correct!) would show that admitting a weak approximate ideal structure over C
and admitting an approximate ideal structure over C are not the same.

Appendix B. Finite dynamical complexity

In this appendix, we give examples of approximate ideal structures coming from
decompositions of groupoids as introduced in [16]. Our conventions on groupoids
will be as in [16, Appendix A] and [26, Section 2.3].

The following is a slight variant of [16, Definition A.4].

Definition B.1. Let G be a locally compact, Hausdorff, étale groupoid, let H be
an open subgroupoid of G, and let C be a set of open subgroupoids of G. We say
that H is decomposable over C if for any open, relatively compact subset K of H
there exists an open cover H(®) = Uy U U; of the unit space of H such that for each
i € {0,1} the subgroupoid of H generated by

{he K |s(h) eU;}
is contained in an element of C.
The first technical result of this section is as follows. See Definitions 1.1 and 1.3

for terminology.

11Inspilred by a suggestion of Ian Putnam.
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Proposition B.2. Say G is a second countable, locally compact, Hausdorff étale
groupoid that that decomposes over a set D of open subgroupoids of G. Then the
reduced groupoid C*-algebra C*(G) admits an approzimate ideal structure over the
class of pairs

C = {(CH(H), CF(Hy)) | Hy, Hy € D).
Moreover, if every groupoid in D is clopen, then C*(G) admits a uniform approxi-
mate ideal structure over the class C above.

The proof will proceed via some lemmas. First we give the existence of approx-
imate ideal structures.

Lemma B.3. Say G is a locally compact, Hausdorff étale groupoid that decomposes
over a set D of subgroupoids of G in the sense of Definition B.1. Then the reduced
groupoid C*-algebra C*(G) admits an approzimate ideal structure over the set C :=
{(C}¥(Hy),C}(H2)) | Hy, Hy € D}.

Proof. Let X be a finite-dimensional subspace of C*(G). Up to an approximation,
we may assume that there is an open relatively compact subset K of G such that
every element of X is an element of C.(G) supported in K. Using (a slight variation
on) [16, Lemma A.12], for any ¢ > 0, there is an open cover GO = U, u U;
of the base space of G and a pair of continuous compactly supported functions
{0, d1 : G — [0,1]} with the following properties.

(i) each ¢; is supported in U;;

(ii) for each i € {0, 1}, the set {k € K | (k) € U;} generates an open subgroupoid

of G that is contained in some element H; of D;

(iii) for each z € G, ¢pg(x)+¢1(z) < 1 and for each k € K, ¢o(r(k)) + p1(r(k)) =
L

(iv) for any k € K and i € {0,1}, |o;(s(k)) — s (r(k))| < e.

We claim that for any é > 0, there exists € suitably small such that if ¢g and ¢; are

chosen as above, then (h,C, D) = (¢o,CF(H;),C}(Hz)) is a d-approximate ideal

structure.

Indeed, the fact that |[h,a]| < d|a| for all @ € X follows from condition (iv)
above and [17, Lemma 8.20]. We have moreover that for any a € X, ha = ¢pa, and
this is supported in {k € K | r(k) € Uy} by condition (i), whence is in C}*(Hj) by
condition (ii). On the other hand, (1 — h)a = ¢;a for any a € X by condition (iii),
whence (1 — h)a is in C¥(H;) by the same argument. O

The next lemma is presumably well-known.

Lemma B.4. Let G be a locally compact, Hausdorff, étale groupoid, and let H € G
be a clopen subgroupoid. Then the restriction map E : Co.(G) — C.(H) extends to
a conditional expectation E : C}F(G) — C¥(H).

Proof. For 2 € H®, let 7, : C*(H) — B(¢*(H,)) be the associated regular
representation defined by

(me(D)E)(h) := Y b(hk™")E(h)
keH,
as in [26, Section 2.3.4]. Let &,n € ¢?(H,), and consider
Ema(B@)mem, = Y, B@mk™nkER) = Y alhk™ik)ER)
h,keG .

h,keH,
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where € € (2 (G,) is the function defined by extending & by zero on G, \H,, and the
second equality uses that H is a subgroupoid to deduce that if h, k € H, then hk~!
is in H. Hence if 7& is the corresponding representation of G' on ¢?(G,), we have

& mo(B(@)mem,) = &g (a)i),

and so

|B(@)| = suwp [ m(B(a)mem,)l = sw (&g (@] < |al.
[€l=lnl=1 I€1=lnll=1
Hence E is contractive, and so in particular extends to an idempotent linear con-
traction E : C*(G) — C*(H). This extended map is necessarily a contraction by
a classical theorem of Tomiyama: see for example [6, Theorem 1.5.10]. |

Lemma B.5. Say G is a locally compact, Hausdorff, étale groupoid. Then the set of
pairs of C*-subalgebras of C¥(G) of the form (C*(Hy),C¥*(Hz)) with Hy,Hy € G
both open subgroupoids, and at least one of them also closed, is f-uniform as in
Definition 5.1, with f(t) = 2t.

Proof. Say B is an arbitrary C*-algebra, and consider ¢ € C*(H;) ® B and d €
C}(H2)® B. Say without loss of generality that Hs is closed, and let E : C*(G) —
C¥(Hz) be the conditional expectation of Lemma B.4. As FE is just defined on
C.(G) by restriction of functions, it follows that E takes C*(Hy) into itself, and
therefore into C*(Hy) n C*(Hz). Hence by functoriality of tensor product maps,
we see that F ®id restricted to C*(H;) ® B is a map

E®id: C}(H1)® B — (C¥(Hy) n C¥(Hy)) ® B.
In particular, z := (E ®1id)(c) is in (C*(Hy) n C*(H2)) ® B. On the other hand,

E ®id is contractive (see for example [6, Theorem 3.5.3]) and takes C}(H;) to
itself, so we get that

|d—z| = [(E®id)(c - d)| < [c—d|

and
le—=| <fe—d| +|d— =] <2]c—d]

so we are done. O

Proposition B.2 now follows directly from Lemmas B.3, B.4, and B.5.
We spend the rest of this appendix deriving some consequences of Proposition
B.2.

Corollary B.6. Say G is an ample, second countable, locally compact, Hausdorff
étale groupoid. Let IC be the class of clopen subgroupoids of G, such that for any
H e K, and any clopen subgroupoid K of H, C}(K) satisfies the Kiinneth formula.
Then K is closed under decomposability.

Proof. Say H is a clopen subgroupoid of G that decomposes over K. Then C*(H)
admits a uniform approximate ideal structure over the class {(C* (K1), C*(K32)) |
K;,Ks € K} by Proposition B.2, and so C*(H) satisfies Kiinneth by Theorem
1.4. The same argument also applies to any clopen subgroupoid of H: indeed, any
clopen subgroupoid of H is easily seen to also decompose over K (compare the proof
of [16, Lemma 3.16]). O
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We will finish with an example that is closely related to the notion of finite
dynamical complexity for groupoids introduced in [16, Definition A.4]

Definition B.7. Say G is an ample, locally compact, Hausdorff étale groupoid
with finite dynamical complexity. Let C be the class of compact open subgroupoids
of G, and let D be the smallest class of clopen subgroupoids of G containing C and
closed under decomposability. Then G has strong finite dynamical complezity if G
itself is contained in D.

Theorem B.8. Say G is a principal, locally compact, Hausdorff étale groupoid with
strong finite dynamical complexity. Then C*(G) satisfies the Kinneth formula.

This result is not new: groupoids as in the statement are amenable by [16,
Theorem A.9], and therefore their C*-algebras satisfy the UCT by a result of Tu
[32, Proposition 10.7] (at least in the second countable case). Nonetheless, it seems
interesting to give a relatively direct proof based on the internal structure of the
C*-algebra.

Proof. Let K be as in Corollary B.6, and let C be the class of compact open sub-
groupoids of C. Then for any H € K, the reduced C*-algebra C*(H) is principal
and proper, so Morita equivalent to the continuous functions C(H (0) /H) on the
orbit space by [23, Example 2.5 and Theorem 2.8] (the second countability assump-
tions in that paper are not necessary in the étale case [12]). Hence C*(H) satisfies
the Kiinneth formula. As C is closed under taking clopen subgroupoids, K contains
C.

Hence if D is as in Definition B.7, then IC contains D by Corollary B.6. However,
strong finite dynamical complexity implies that G itself is in D, so we are done. [

Example B.9. Let X be a bounded geometry metric space, and assume that
X has finite decomposition complexity as introduced in [14] and studied in [15].
Then the associated coarse groupoid G(X) has strong finite dynamical complex-
ity by the proof of [16, Theorem A.4]. Hence the associated groupoid C*-algebra
C*(G(X)), which canonically identifies with the uniform Roe algebra C*(X), sat-
isfies the Kiinneth formula by Theorem B.8.
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