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Rufus Willett

Abstract. We introduce a notion of approximate ideal structure for a C˚-
algebra, and use it as a tool to study K-theory groups. The notion is motivated
by the classical Mayer-Vietoris sequence, by the theory of nuclear dimension
as introduced by Winter and Zacharias, and by the theory of dynamical com-
plexity introduced by Guentner, Yu, and the author. A major inspiration for
our methods comes from recent work of Oyono-Oyono and Yu in the setting
of controlled K-theory of filtered C*-algebras; we do not, however, use that
language in this paper.

We give two main applications. The first is a vanishing result for K-theory
that is relevant to the Baum-Connes conjecture. The second is a permanence
result for the Künneth formula in C˚-algebra K-theory: roughly, this says
that if A can be decomposed into a pair of subalgebras pC,Dq such that C, D,
and C XD all satisfy the Künneth formula, then A itself satisfies the Künneth
formula.
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1. Introduction

Approximate ideal structures and long exact sequences

Let C and D be C
˚-subalgebras of a C

˚-algebra A. There is a natural sequence
of maps

(1) K1pC X Dq ◆Ñ K1pCq ‘ K1pDq �Ñ K1pAq B99K K0pC X Dq ◆Ñ K0pCq ‘ K0pDq
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of K-theory groups where the solid arrows labeled ◆ and � are defined respectively
by ◆pq :“ p,´q and �p,�q :“  ` �. The dashed arrow labeled B does not
exist in general, but in the very special case that C and D are ideals in A such
that A “ C ` D, one can canonically fill it in. Indeed, the dashed arrow is then a
boundary map in a six-term exact sequence

K1pC X Dq ◆
// K0pCq ‘ K0pDq �

// K0pAq
B
✏✏

K1pAq
B
OO

K1pCq ‘ K1pDq
�

oo K1pC X Dq
◆

oo

.

This is the C
˚-algebraic analogue of the classical Mayer-Vietoris sequence associ-

ated to a cover of a topological space by two open sets.
The main technical tools developed in this paper are partial exactness results

for the sequence in line (1) that hold under less rigid assumptions than C and D

being ideals. These tools have interesting consequences even for many simple C
˚-

algebras, where there are no non-trivial ideals. Looking at the diagram in line (1)
in more detail,

(2) K1pC X Dq ◆Ñ K1pCq ‘ K1pDqlooooooooomooooooooon
pIIIq

�Ñ K1pAqloomoon
pIIq

B99K K0pC X Dqlooooomooooon
pIq

◆Ñ K0pCq ‘ K0pDq

we establish partial exactness results at each of the three places marked (I), (II),
and (III), under progressively more stringent assumptions. Exactness at point (I)
is the easiest to prove, and is automatic: if ◆pq “ 0 for some  P K0pC X Dq, one
can always canonically construct a class in K1pAq that is the ‘reason’ for its being
zero in some sense.

For exactness in the positions marked (II) and (III) in line (2), we need more
assumptions. Here are the technical definitions.

Definition 1.1. Let A be a C
˚-algebra, and let C be a set of pairs pC,Dq of C˚-

subalgebras of A. Then A admits an approximate ideal structure over C if for any
� ° 0 and any finite subset F of A there exists a positive contraction h in the
multiplier algebra of A and a pair pC,Dq P C such that:

(i) }rh, as} † � for all a P F ;
(ii) dpha,Cq † � and dpp1 ´ hqa,Dq † � for all a P F ;
(iii) dpp1 ´ hqha,C X Dq † � and dpp1 ´ hqh2

a, C X Dq † � for all a P F .

The pair th, 1 ´ hu should be thought of as a ‘partition of unity’ on A, splitting
it into two ‘parts’ C and D that are simpler than the original. We discuss examples
below, but keep the discussion on an abstract level for now.

These conditions allow us to prove a version of exactness at position (II) in
line (2): roughly this says that if A admits an approximate ideal structure over C,
then for any class rus in K1pAq one can find a pair pC,Dq P C and build a class
Bpuq P K0pC X Dq such that if Bpuq “ 0, then rus is in the image of �.

The first of our main results is as follows.

Theorem 1.2. Say that A admits an approximate ideal structure over a set C such

that for all pC,Dq P C, the C
˚
-algebras C, D, and C X D have trivial K-theory.

Then A has trivial K-theory.
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This result is already quite powerful: for example, it allows one to reprove the
main theorem on the Baum-Connes conjecture of Guentner, Yu, and the author
from [16] without the need for the controlled K-theory methods used there.

In order to get our results on the Künneth formula, we need an exactness property
at position (III) in line (2); unfortunately, this needs the stronger assumption on A

defined below.

Definition 1.3. LetA be a C˚-algebra and C a set of pairs pC,Dq of C˚-subalgebras
of A. Then A admits a uniform approximate ideal structure over C if it admits an
approximate ideal structure over C, and if in addition the following property holds.
For all ✏ ° 0 there exists � ° 0 such that for any C

˚-algebra B, if c P C b B and
d P D b B satisfy }c ´ d} † �, then there exists x P pC X Dq b B with }x ´ c} † ✏

and }x ´ d} † ✏.

The above definition is satisfied, for example, if all the pairs pC,Dq P C are pairs
of ideals. However, this is too much to ask if one wants applications that go beyond
well-understood cases. There are non-trivial examples, but we will not discuss these
until later.

Here is our second main theorem.

Theorem 1.4. Let A be a C
˚
-algebra. Assume that A admits a uniform approxi-

mate ideal structure over C, and that for each pC,Dq P C, C, D, and C XD satisfy

the Künneth formula. Then A satisfies the Künneth formula.

Before moving on to examples, let us digress slightly to give background on the
Künneth formula for readers unfamiliar with this.

The Künneth formula

One of the main results in this paper is about the Künneth formula, which
concerns the external product map

ˆ : K˚pA b Bq Ñ K˚pAq b K˚pBq
in C

˚-algebra K-theory. This product is as a special case of the very general Kas-
parov product, but can also be defined in an elementary way: see for example [19,
Section 4.7]. A C

˚-algebra A is said to satisfy the Künneth formula if for any C
˚-

algebra B with free abelian K-groups, the product map above is an isomorphism.
Study of the Künneth formula seems to have been initiated by Atiyah [1] in

the commutative case, and in general by Schochet [30]. In particular, these authors
showed (in the relevant contexts) that A satisfies the Künneth formula in the above
sense if and only if for any B there is a canonical short exact sequence

0 Ñ K˚pAq b K˚pBq Ñ̂ K˚pA b Bq Ñ TorpK˚pAq,K˚pBqq Ñ 0.

This short exact sequence is a useful computational tool, so it is desirable to know
for which C

˚-algebras the Künneth formula holds. One can see the Künneth for-
mula as a sort of ‘dual form’ of the universal coe�cient theorem (UCT). Thus
another motivation for studying the Künneth formula is as it forms a simpler proxy
for the UCT.

The class of C˚-algebras known to satisfy the Künneth formula is large. Atiyah
[1] essentially showed that commutative C

˚-algebras satisfy the Künneth formula.
It follows that any C

˚-algebra1 that isKK-equivalent to a commutative C˚-algebra

1For this and the next paragraph, all C˚-algebras are separable.
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satisfies the Künneth formula. The class of such C
˚-algebras is exactly the class

satisfying the UCT2. Hence the UCT is implies the Künneth formula.
The UCT is in fact strictly stronger than the Künneth formula: this follows from

combining work of Chabert, Echterho↵, and Oyono-Oyono [7], of La↵orgue [21], and
of Skandalis [31]. Indeed, it follows from the ‘going down functor’ machinery of [7]
that if G is any group that satisfies the Baum-Connes conjecture with coe�cients,
then C

˚
r

pGq satisfies the Künneth formula. Thanks to [21], this applies in particular
when G is a hyperbolic group. On the other hand, results of [31] imply3 that if G is
an infinite, hyperbolic, property (T) group, then C

˚
r

pGq does not satisfy the UCT.
Other results extending the range of validity of the Künneth formula include

work of Bönicke and Dell’Aiera [4], which extends the results of [7] from groups
to groupoids; and work of Oyono-Oyono and Yu [25] which uses the methods of
controlled K-theory developed by those authors [24], and based on older ideas of
Yu [36]. The work of Oyono-Oyono and Yu was the main technical inspiration for
this paper, and we say more on this below.

Despite all these positive results, there are known to be C˚-algebras that do not
satisfy the Künneth formula. The only way we know to produce such examples is
based on the existence of non K-exact C

˚-algebras: see the discussion in [7, Re-
mark 4.3 (1)]. We do not know of an exact C

˚-algebra that does not satisfy the
Künneth formula.

Examples

Our definitions were motivated partly by the theory of nuclear dimension. In-
deed, we can weaken Definition 1.1 as follows.

Definition 1.5. A C
˚-algebra A admits a weak approximate ideal structure over C

if the conditions from Definition 1.1 are satisfied, with condition (iii) on intersections
omitted.

In Appendix A, we show4 that if A is a (separable) C˚-algebra of nuclear dimension
one, then A admits a weak approximate ideal structure over a class of pairs of sub-
homogeneous C˚-subalgebras with very simple structure. This result is not enough
to deduce K-theoretic consequences with our current techniques; nonetheless, it
provides evidence that our conditions are natural from the point of view of general
C

˚-algebra structure theory.
In Appendix B, we discuss examples coming from groupoids. In joint work with

Guentner and Yu [16, Appendix A], we introduced a notion of a decomposition of
an étale groupoid. In Appendix B, we show that such decompositions naturally
give rise to approximate ideal structures of the associated reduced groupoid C

˚-
algebras, and moreover that we get uniform approximate ideal structures in this
way if the groupoids involved are ample. We use this to show that a large class of

2This is implicit in the original work of Rosenberg and Schochet [29], and was made explicit
by Skandalis in [31, Proposition 5.3].

3The result as stated here is not exactly in Skandalis’s paper [31], but it follows from Skandalis’s
ideas, plus more recent advances in geometric group theory: see [18, Theorem 6.2.1] for a discussion
of the version stated.

4This result was pointed out to us by Wilhelm Winter.
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reduced groupoid C
˚-algebras satisfy the Künneth formula5.

Inspiration and motivation

This paper was inspired by the work of Oyono-Oyono and Yu in [25] on the
Künneth formula in controlled K-theory. It owes a great deal to their work, both
conceptually and in some technical details: in particular, the key idea to use a sort
of approximate Mayer-Vietoris sequence comes directly from [25], and the di�cult
proof of Proposition 5.7 is based closely on their work. A major di↵erence of our
work from [25] in that we do not use controlled K-theory, only usual K-theory
groups. We do not use filtrations on our C˚-algebras, and we do not need (nor do
we get results on) a ‘controlled’ version of the Künneth formula. It is not clear to
us what the di↵erence is between the range of validity of our results and those of
[25]; we suspect that there is a large overlap.

We were motivated largely by the theory of nuclear dimension [35]: we wanted
to narrow the gap between the sort of structural results that one can use to deduce
K-theoretic consequences, and the sort of structural results that are known for C˚-
algebras of finite nuclear dimension.

Outline of the paper

Section 2 introduces a general notion of ‘boundary classes’, and shows that
such classes have good properties with respect to the sequence of maps in line
(2): roughly, we prove a weak form of exactness at position (II) in line (2). The
discussion in Section 2 does not give a construction of boundary classes: this is
done in Section 3 using approximate ideal structures. We then prove Theorem 1.2,
our first main goal of the paper.

In Section 4, we prove exactness at position (I) in line (2); this is simpler than
exactness at position (II), but is postponed until later as it is not needed for the
proof of Theorem 1.2. We also collect together some other technical results on
the boundary map that are needed later. Exactness at position (III) in line (2) is
handled in Section 5: this is the most di�cult of our exactness properties, both to
prove and to use.

Section 6 recalls some facts about the product in K-theory, and proves that the
products maps interact well with our boundary classes. Section 7 recalls material
about the inverse Bott map that we need for the technical proofs. We prove The-
orem 1.4 in Sections 8 and 9, which handle the surjectivity and injectivity halves
respectively.

Finally, there are two appendices that discuss examples. The first of these,
Appendix A shows that C˚-algebras of nuclear dimension one have weak approxi-
mate ideal structures. Appendix B gives examples of (uniformly) approximate ideal
structures coming from groupoid theory, and briefly discusses consequences for the
Baum-Connes conjecture and Künneth formula.

Notation and conventions

Throughout, if A is a C
˚-algebra (or more generally, Banach algebra), then rA

denotes A itself if A is unital, and denotes the unitization of A if it is not unital.

5Similar results have been proved recently (and earlier than the current work) by Oyono-Oyono
using the methods of controlled K-theory.
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If X is a subspace of a C
˚-algebra A, then rX is the subspace of rA spanned by

X and the unit. There is an ambiguity here about what happens when C is a
C

˚-subalgebra of A, and C has its own unit which is not the unit of A: we adopt
the convention that in this case, rC means the C

˚-subalgebra of A generated by C

and the unit of rA. This convention will always, and only, apply to C
˚-subalgebras

called C, D and C XD (plus suspensions and matrix algebras of these), so we hope
it causes no confusion.

We use 1n and 0n to denote the unit and zero element of Mnp rAq when it seems
helpful to avoid ambiguity, but drop the subscripts whenever things seem more
readable without. We use the usual ‘top-left corner’ identification of MnpAq with
MmpAq for n § m, usually without comment. We also use the usual ‘block sum’
convention that if a P MnpAq, and b P MmpAq, then

a ‘ b :“
ˆ
a 0
0 b

˙
P Mn`mpAq.

The symbol b as applied to C
˚-algebras always denotes the spatial tensor prod-

uct. If X is a closed subspace of a C
˚-algebra A, and B is a C

˚-algebra, then
X b B denotes the closure of the algebraic tensor product X d B inside A b B.
For a C

˚-algebra A, SA :“ C0pRq b A is its suspension, S2
A :“ SpSAq its double

suspension, and for a closed subspace X of A, SX :“ C0pRqbX. We always denote
the compact operators on `2pNq by K, so in particular A b K is the stabilisation of
K.

It is typical in C
˚-algebra K-theory to treat the K0 and K1 groups as generated

by equivalence classes of projections and unitaries respectively. However, we will
need to work more generally with equivalence classes of idempotents and invertibles.
This is because one typically has more concrete formulas available in the latter
context. Readers unfamiliar with this approach can find the necessary background
in [2, Chapters II, III and IV], for example.

We have attempted to keep the paper self-contained and elementary, not as-
suming much any background beyond basic C˚-algebra K-theory6. Although using
only elementary language is often desirable in its own right, we must admit that we
were also forced into it: indeed, we tried and failed to find ‘softer’, more conceptual,
arguments, and would be interested in seeing progress in that direction.
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2. Boundary classes

In this section, we work in the context of general Banach algebras. This is not
needed for our applications, but we hope it clarifies what goes into the results; it
also makes no di↵erence to the proofs.

Definition 2.1. Let A be a Banach algebra, and let C and D be Banach subalge-
bras. We define maps on K-theory by

◆ : K˚pC X Dq Ñ K˚pCq ‘ K˚pDq,  fiÑ p,´q.
and

� : K˚pCq ‘ K˚pDq Ñ K˚pAq, p,�q fiÑ ` �.

With notation as above, assume for a moment that C and D are (closed, two-
sided) ideals in A such that A “ C ` D. Then there is a Mayer-Vietoris boundary
map B : K1pAq Ñ K0pC X Dq that fits into a long exact sequence

¨ ¨ ¨ ◆Ñ K1pCq ‘ K1pDq �Ñ K1pAq BÑ K0pC X Dq ◆Ñ K0pCq ‘ K0pDq �Ñ ¨ ¨ ¨ .
Our aim in this section is to get analogous results for more general Banach subalge-
bras C and D: for at least some classes rus P K1pAq, we want to (non-canonically)
construct a ‘boundary class’ Bpuq P K0pCXDq that has similar exactness properties
with respect to ◆ and �.

The next two lemmas concern ‘almost idempotents’. We would guess results
like these are well-known to experts, but could not find what we needed in the
literature.

Lemma 2.2. For any ✏, c ° 0 there exists � P p0, 1{16q with the following property.

Let A be a Banach algebra and e P A satisfy }e2 ´ e} † � and }e} § c. Let

� be the characteristic function of tz P C | Repzq ° 1{2u. Then �peq (defined

via the holomorphic functional calculus) is a well-defined idempotent, and satisfies

}�peq ´ e} † ✏.

Proof. First note that if � P p0, 1{16q and if z P C satisfies |z2 ´ z| † �, then
|z||z ´ 1| † �, and so either |z| †

?
�, or |z ´ 1| †

?
�. Hence by the polynomial

spectral mapping theorem, if }e2 ´ e} † �, then the spectrum of e is contained
in the union of the balls of radius

?
� and centered at 0 and 1 respectively. As?

� † 1{2, it follows that � is holomorphic on the spectrum of e. Hence �peq makes
sense under the assumptions, and is an idempotent by the functional calculus.

Let now r “ 2
?
� † 1{2, and let �0 and �1 be positively oriented circles centered

on 0 and 1 respectively, and of radius r. Then by the above remarks, if }e2 ´e} † �

we have that �0 Y �1 is a positively oriented contour on which � is holomorphic,
and that has winding number one around each point of the spectrum of e. Hence
by definition of the holomorphic functional calculus

�peq ´ e “ 1

2⇡i

ª

�0Y�1

p�pzq ´ zqpz ´ eq´1
dz.

Estimating the norm of this using that |�pzq ´ z| “ r for z P �0 Y �1 gives

(3) }�peq ´ e} § 1

2⇡

ª

�0Y�1

r}pz ´ eq´1}|dz|.
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Let us estimate the term }pz ´ eq´1} for z P �0 Y �1. Set w “ 1 ´ z. Then we
have that w ´ e is also invertible, and

}pz ´ eq´1} “ }pw ´ eqpw ´ eq´1pz ´ eq´1}
§ pc ` |w|q}|ppz2 ´ zq ´ pe2 ´ eqq´1}
§ pc ` 2q}|ppz2 ´ zq ´ pe2 ´ eqq´1}.(4)

Now, we have that for z P �0 Y �1,

|z2 ´ z| “ |z||z ´ 1| • 1

2
r “

?
� ° � ° }e2 ´ e}.

Hence using the Neumann series inverse formula

ppz2 ´ zq ´ pe2 ´ eqq´1 “ 1

z2 ´ z

´
1 ´ e

2 ´ e

z2 ´ z

¯´1
“ 1

z2 ´ z

8ÿ

n“0

´
e
2 ´ e

z2 ´ z

¯n

we get the estimate

}ppz2 ´ zq ´ pe2 ´ eqq´1} § 1

|z2 ´ z| ´ }e2 ´ e} § 1
1
2r ´ �

“ 1?
� ´ �

.

Combining this with line (4), we see that for z P �0 Y �1,

}pz ´ eq´1} § c ` 2?
� ´ �

.

To complete the proof, substituting the above estiumate into line (3) gives that

}�peq ´ e} § 1

2⇡

ª

�0Y�1

rpc ` 2q?
� ´ �

|dz| “ 1

2⇡

`
Lengthp�0q ` Lengthp�1q

˘rpc ` 2q?
� ´ �

.

Substituting in Lengthp�0q “ Lengthp�1q “ 2⇡r and r “ 2
?
� we get

}�peq ´ e} § 4
?
�pc ` 2q
1 ´

?
�

,

which is enough to complete the proof. ⇤

Definition 2.3. Let A be a Banach algebra, let X be a subset of A, let a P A,
and let ✏ ° 0. The element a is ✏-in X, denoted a P✏ X, if there exists x P X with
}a ´ x} § ✏.

Lemma 2.4. Let A be a Banach algebra and B a Banach subalgebra. Then for all

c ° 0 and all ✏ P p0, 1
4c`6 q there exists � ° 0 with the following property.

(i) Say n • 1 and say e P MnpAq is an idempotent which is �-in MnpBq and

such that }e} § c. Then there is an idempotent f P MnpBq with }e ´ f} † ✏.

Moreover, the class rf s P K0pBq does not depend on the choice of ✏, �, or f .

(ii) Assume moreover that A is unital, and that B contains the unit. Say u P
MnpAq is an invertible which is �-in MnpBq and such that }u´1} § c. Then

there exists an invertible v P MnpBq with }u´v} † ✏, and the class rvs P K1pBq
does not depend on the choice of ✏, �, or v.

Proof. Let � ° 0, to be chosen depending on c and ✏ in a moment, and assume
that e is �-in MnpBq so there is b P MnpBq with }b ´ e} † �. Then

}b2 ´ b} § }e}}b ´ e} ` }b}}b ´ e} ` }b ´ e} § p2c ` � ` 1q�.
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Let � be the characteristic function of the half-plane tz P C | Repzq ° 1{2u. Then
for suitably small � (depending only on c and ✏), we may apply Lemma 2.2 to get
that }b´�pbq} † ✏{2. Setting f “ �pbq and assuming also that � † ✏{2 we get that

}e ´ f} § }e ´ b} ` }b ´ f} † ✏

as desired.
To see that rf s P K0pBq does not depend on the choice of f , let f

1 P MnpBq
be another idempotent with }e ´ f

1} † ✏. Then }f ´ f
1} † 2✏ † 1{p2c ` 3q. As

}f} § c ` 1, we see that

}f ´ f
1} † 1

2c ` 3
§ 1

}2f ´ 1} ,

whence [2, Proposition 4.3.2] implies that f and f
1 are similar, and so in particular

define the same K-theory class.
For part (ii), let ✏0 “ 1

4c , let ✏ P p0, ✏0s, and let � “ ✏. Choose any v P MnpBq
with }u ´ v} † �. Then

}1 ´ u
´1

v} “ }u´1pu ´ vq} § }u´1}}u ´ v} † c� “ 1{4.
Hence u

´1
v is invertible, and so v is invertible too. Moreover, estimating the norm

of pu´1
vq´1 using the series expression pu´1

vq´1 “ ∞8
n“0p1 ´ u

´1
vqn gives that

}v´1
u} § 2, whence }v´1} “ }v´1

uu
´1} § 2c. On the other hand, if v1 also satisfies

}u ´ v
1} † ✏0, then }v ´ v

1} † 2✏0, and so

}1 ´ v
´1

v
1} § }v´1}}v ´ v

1} † 4c✏0 “ 1.

Hence v
´1

v
1 “ e

z for some z P MnpBq (see for example [3, II.1.5.3]), and so
tvetzutPr0,1s is a homotopy between v and v

1 passing through invertibles in MnpBq,
giving that rvs “ rv1s in K1pBq. ⇤

Definition 2.5. Let c ° 0, let ✏ P p0, 1
4c`6 q, and let � ° 0 be as in Lemma 2.4. Let

A be a Banach algebra, and B be a Banach subalgebra of A.

(1) Say e P MnpAq is an idempotent that is �-in MnpBq. Then we write teuB P
K0pBq for the class of any idempotent f P MnpBq with }e ´ f} † ✏.

(2) Say u P Mnp rAq is an invertible that is �-in Mnp rBq. Then we write tuuB P
K1pBq for the class of any invertible v P Mnp rBq with }u ´ v} † ✏.

The next definition is the key technical point that we need to construct our
boundary classes.

Definition 2.6. Let c ° 0, let ✏ P p0, 1
4c`6 q, and let � ° 0 be as in Lemma 2.4. Let

A be a Banach algebra, let C and D be Banach subalgebras of A, let u P Mnp rAq
be an invertible element for some n. An element v P M2np rAq is a p�, c, C,Dq-lift of
u if it satisfies the following conditions:

(i) }v} § c and }v´1} § c;
(ii) v P� M2np rDq;
(iii) v

ˆ
u

´1 0
0 u

˙
P� M2np rCq;

(iv) v

ˆ
1 0
0 0

˙
v

´1 P� M2np ÉC X Dq;
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(v) with notation as in Definition 2.5, the K-theory class
!
v

ˆ
1 0
0 0

˙
v

´1
)

ÉCXD

´
„
1 0
0 0

⇢
P K0p ÉC X Dq

is actually in the subgroup K0pC X Dq.
We may now use such lifts to construct ‘boundary classes’.

Proposition 2.7. Let c ° 0, let ✏ P p0, 1
4c`6 q. Then there is � ° 0 satisfying the

conclusion of Lemma 2.4, and with the following properties. Let A be a Banach

algebra, and let u P Mnp rAq be an invertible with }u} § c and }u´1} § c. Assume

there exist Banach subalgebras C and D of A and a p�, c, C,Dq-lift v of u. Then

the K-theory class

Bvu :“
!
v

ˆ
1 0
0 0

˙
v

´1
)

ÉCXD

´
„
1 0
0 0

⇢
P K0pC X Dq

has the following properties.

(i) If ◆ is as in Definition 2.1, then ◆pBvuq “ 0 in K0pCq ‘ K0pDq.
(ii) If Bvu “ 0, then there is l P N and an invertible x P✏ Mn`lp rDq such that

pu ‘ 1lqx´1 P✏ M2np rCq. In particular, if � is as in Definition 2.1, then

�ptpu ‘ 1lqx´1uC , txuDq “ rus in K1pAq.

Proof. Let us first consider ◆pBvuq. Note first that as v is �-in M2np rDq, there is
w P M2np rDq such that }w ´ v} † �. In particular, w is invertible for � suitably
small. It follows by definition of the left hand side that

!
v

ˆ
1 0
0 0

˙
v

´1
)

rD
“

”
w

ˆ
1 0
0 0

˙
w

´1
ı

in K0p rDq for all suitably small �. Hence as elements of K0p rDq,
!
v

ˆ
1 0
0 0

˙
v

´1
)

rD
´

„
1 0
0 0

⇢
“

”
w

ˆ
1 0
0 0

˙
w

´1
ı

´
„
1 0
0 0

⇢
.

However, as w is in M2np rDq,
”
w

ˆ
1 0
0 0

˙
w

´1
ı

“
„
1 0
0 0

⇢
in K0p rDq, so the above is

the zero class in K0p rDq, hence also in K0pDq.
On the other hand, our assumption that v

ˆ
u

´1 0
0 u

˙
is �-in M2np rCq implies

similarly that for all � suitably small, we have

Bvu “
!
v

ˆ
1 0
0 0

˙
v

´1
)

rC
´

„
1 0
0 0

⇢

“
! ˆ

u 0
0 u

´1

˙
v

´1
v

ˆ
1 0
0 0

˙
v

´1
v

ˆ
u

´1 0
0 u

˙ )
rC

´
„
1 0
0 0

⇢
,

which is zero as a class in K0pCq. We have shown that the image of Bvu in both
K0pCq and K0pDq is zero, whence ◆pBvuq “ 0 as claimed.

Throughout the rest of the proof, whenever we write ‘�n’, it is implicit that this
is a positive number, depending only on c and �, and that tends to zero when �

tends to zero as long as c stays in a bounded set.
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Now let us assume that Bvu “ 0. This implies that there exists l P N and an
invertible element w of M2n`lp ÉC X Dq such that

›››w
´
v

ˆ
1 0
0 0

˙
v

´1 ‘ 1l
¯
w

´1 ´
ˆ
1 0
0 0

˙
‘ 1l

››› † �1

for some �1 ° 0. Write v “
ˆ
v11 v12

v21 v22

˙
, and let

v1 :“

¨

˚̊
˝

v11 0 v12 0
0 1l 0 0
v21 0 v22 0
0 0 0 1l

˛

‹‹‚P� Mn`l`n`lp rDq

(writing the matrix size as n` l `n` l is meant to help understand the size of the
various blocks) and if

w “
¨

˝
w11 w12 w13

w21 w22 w23

w31 w32 w33

˛

‚P Mn`n`lp ÉC X Dq

let

w1 :“

¨

˚̊
˝

w11 0 w12 w13

0 1l 0 0
w21 w22 w23

w31 0 w32 w33

˛

‹‹‚P Mn`l`n`lp ÉC X Dq.

Then in Mpn`lq`pn`lqp rCq we have
›››w1v1

ˆ
1 0
0 0

˙
v

´1
1 w1 ´

ˆ
1 0
0 0

˙ ››› † �2

for some �2. This implies that for � suitably small there exist invertible x, y P
Mn`lp rDq and �3 such that

›››w1v1 ´
ˆ
x 0
0 y

˙ ››› † �3.

Now, by assumption

v

ˆ
u

´1 0
0 u

˙
P� M2np rCq.

Write u1 :“ u ‘ 1l P Mn`lp rAq. Then

v1

ˆ
u

´1
1 0
0 u1

˙
P� Mpn`lq`pn`lqp rCq.

and thus as w1 is in M2pn`lqp rCq, we have that

w1v1

ˆ
u

´1
1 0
0 u1

˙
P�4 M2pn`lqp rCq

for some �4. Hence in particular, xu´1
1 is invertible for � suitably small, is �4-in

Mn`lp rCq, and has norm bounded above by some absolute constant depending only
on c. We now have that for � suitably small (depending only on ✏ and c), u1x

´1 is
✏-in Mn`lp rCq and that x is ✏-in Mn`lp rDq, completing the proof. ⇤
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Definition 2.8. With notation as in Proposition 2.7, we call Bvpuq P K0pC X Dq
the boundary class associated to the data pu, v, C,Dq.

3. Approximate ideal structures and the vanishing theorem

Our main goal in this section is to show that approximate ideal structures in
Definition 1.1 can be used to build lifts as in Definition 2.6, and thus allow us to
build boundary classes.

It would be possible to get analogous results for general Banach algebras, but it
would make the statements and proofs more technical. As our applications are all
to the K-theory of C˚-algebras, at this stage we therefore specialise to that case.

First, it will be convenient to give a technical variation of Definition 1.1.

Definition 3.1. Let A be a C
˚-algebra, let X Ñ A be a subspace, and let � ° 0.

Then a �-ideal structure for X is a triple

ph,C,Dq
consisting of a positive contraction h in the multiplier algebra of A, and C

˚-
subalgebras C and D of A such that

(i) }rh, xs} § �}x} for all x P X;
(ii) hx and p1 ´ hqx are �}x}-in C and D respectively for all x P X;
(iii) hp1 ´ hqx and h

2p1 ´ hqx are �}x}-in C X D for all x P X.

We say that A has an approximate ideal structure over a class C of pairs of C˚-
subalgebras if for any � ° 0 and finite dimensional subspace X of A there exists a
�-ideal structure ph,C,Dq of X with pC,Dq in C.

Remark 3.2. The conditions on multiplying into the intersection in (iii) from Defi-
nition 3.1 might look odd for two reasons. First, they are asymmetric in h and 1´h:
this is a red herring, however, as it would be essentially the same to require that
hp1´hqx and hp1´hq2x are both �}x}-in C XD. Second, there are two conditions
for C X D, and only one each for C and D. This seems ultimately attributable to
the fact that one needs two polynomials to generate C0p0, 1q as a C

˚-algebra, but
only one each for C0p0, 1s and C0r0, 1q.

We need to show that admitting an approximate ideal structure bootstraps up
to a stronger version of itself (following a suggestion of Aaron Tikuisis and Wilhelm
Winter).

Lemma 3.3. Say A is a C
˚
-algebra, X0 is a finite-dimensional subspace of A, and

N • 2. Then there exists a finite-dimensional subspace X of A containing X0, such

that for any � ° 0 there exists �
1 ° 0 such that if ph,C,Dq is a �

1
-ideal structure

for X, then ph,C,Dq also satisfies the following properties:

(i) }rh, xs} § �}x} for all x P X0;

(ii) for all n P t1, ..., Nu, hn
x (respectively, h

np1´hqx, and h
np1´hqx) is �}x}-in

C (respectively D, and C X D) for all x P X0.

Proof. Take a basis of X0 consisting of contractions, and write each of these as
a sum of four positive contractions. Let X1 be the space of spanned by all these
positive contractions, say ta1, ..., anu. Let X be spanned by all mth roots of all of
a1, ..., an for m P t1, ..., N ` 1u. Clearly if �1 § �, then as X contains X0, we have
the almost commutation property in the statement.
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Let us now look at h
n
x for x P X0. It su�ces to look at h

n
a for some a P

ta1, ..., anu. Then using the almost commutation property, we have that h
n
a is

close to pha1{nqn, so for �1 suitably small we get what we want. Similarly, if a P
ta1, ..., anu, if we write g “ h ´ 1, then

h
np1 ´ hq “ p1 ` gqnp´gqa “ ´

nÿ

k“0

ˆ
n

k

˙
g
k`1

a,

and again using the almost commutation property, this is close to
nÿ

k“0

ˆ
n

k

˙
pga1{pk`1qqk`1

,

so we get the right property for �1 suitably small. The corresponding property for
the intersection is similar, once we realise that for all n • 1, hnp1 ´ hq can be
written as a polynomial in hp1 ´ hq and h

2p1 ´ hq (proof by induction on n, for
example): we leave the details of this to the reader. ⇤

The next lemma discusses how approximate ideal structures behave under tensor
products. If X is a subspace of a C

˚-algebra A, recall that we write X bB for the
norm closure of the subspace of A b B generated by elementary tensors x b b with
x P X and b P B.

Lemma 3.4. Say A is a C
˚
-algebra, and X is a finite-dimensional subspace of A.

Then there exists a constant MX ° 0 depending only on X such that if ph,C,Dq is

a �-ideal structure for X, and if B is any C
˚
-algebra, then ph b 1, C b B,D b Bq

is an MX�-ideal structure for X b B.

Proof. Let x1, ..., xn be a basis for X consisting of unit vectors, and let �1, ...,�n P
A

˚ be linear functionals dual to this basis, so �ipxjq “ �ij (here �ij is the Kronecker
� function). Let M “ maxn

i“1 }�i}. We claim that MX :“ nM has the property
required by the lemma. Note first that any a P X b B can be written

a “
nÿ

i“1

xi b bi

for some unique b1, ..., bn P B, and that we have for each i

}bi} “ }p�i b idqpaq} § }�i}}a} § M}a}.
To see property (i), note that for any a “ ∞

n

i“1 xi b bi P X b B we have

}rh b 1, as} §
nÿ

i“1

}rh, xis b bi} §
nÿ

i“1

�}xi}}bi} § �nM}a}.

To see properties (ii) and (iii), let us look at ha for some a P X b B; the cases
of p1 ´ hqa, hp1 ´ hqa, and h

2p1 ´ hqa are similar. For each i P t1, ..., nu choose
ci P C with }hxi ´ ci} † �. Then if a “ ∞

n

i“1 xi b bi P X b B is as above and if
c “ ∞

n

i“1 ci b bi P C b B we have

}ph b 1qa ´ c} §
nÿ

i“1

}phxi ´ ciq b bi} §
nÿ

i“1

�}bi} § �nM}a},

which completes the proof. ⇤
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Corollary 3.5. Say A and B are C
˚
-algebras and X is a finite-dimensional sub-

space of A b B. Then for any � ° 0 there exists a finite-dimensional subspace

Y of A and �
1 ° 0 such that if ph,C,Dq is a �

1
-ideal structure for Y , then

ph b 1B , C b B,D b Bq is a �-ideal structure for X.

Proof. As the unit sphere of X is compact, there is a finite dimensional subspace
Y of A such that for any x in the unit sphere of X there exists y in the unit
sphere of Y b B such that }y ´ x} † �{2. Let MY be as in Lemma 3.4, and let
�

1 “ �{p2MY q. Lemma 3.4 implies that if ph,C,Dq is a �1-ideal structure for Y then
ph b 1, C b B,D b Bq is a �-ideal structure for X. ⇤

For the remainder of this section, we will apply Lemma 3.4 to tensor products
MnpAq “ A b MnpCq without further comment. We will also abuse notation,
writing things like ‘hu’ for an element u P MnpAq, when we really mean ‘phb1nqu’.

The next proposition is the key technical result of this section. It says that we
can use approximate ideal structures to build boundary classes as in Definition 2.8.
For the statement, recall the notion of a p✏, c, C,Dq-lift from Definition 2.6 above.

Proposition 3.6. Let A be a C
˚
-algebra and let  P K1pAq be a K1-class. Then

there exist n and an invertible element u P Mnp rAq, c ° 0, and a finite-dimensional

subspace X of A such that for any ✏ ° 0 there exists � ° 0 such that the following

hold.

(i) The class rus equals .

(ii) If ph,C,Dq is a �-ideal structure of X, and if a “ h ` p1 ´ hqu and b “
h ` u

´1p1 ´ hq then

v :“
ˆ
1 a

0 1

˙ ˆ
1 0

´b 1

˙ ˆ
1 a

0 1

˙ ˆ
0 ´1
1 0

˙

is an p✏, c, C,Dq-lift for u.

First we have an ancillary lemma.

Lemma 3.7. Let A be a C
˚
-algebra and let u be an invertible element of rA such

that u “ 1 ` y and u
´1 “ 1 ` z with y, z elements of A with norms bounded by

some c ° 0. Let � ° 0 and let h be a positive contraction in MpAq such that

}rh, xs} § �}x} for all x P ty, zu. Define

a :“ h ` p1 ´ hqu and b :“ h ` u
´1p1 ´ hq.

Then ba ´ 1 and ab ´ 1 are both within 2pc2 ` cq� of py ` zqhp1 ´ hq.
Proof. Using that y and z commute, we have that

ra, bs “ p1 ´ hqyzp1 ´ hq ´ zp1 ´ hq2y
“ rp1 ´ hq, zsyp1 ´ hq ` zp1 ´ hqry, p1 ´ hqs
“ rz, hsyp1 ´ hq ` zp1 ´ hqrh, ys,

whence }ra, bs} § 2c2�. Hence it su�ces to show that ab ´ 1 is within 2c� of
hp1 ´ hqpy ` zq. Using that yz “ ´y ´ z, we see that

ab ´ 1 “ p1 ´ hqyh ` hzp1 ´ hq
and using that }ry, hs} § �}y} and }rz, hs} § �}z}, we are done. ⇤
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Proof of Proposition 3.6. Let u P Mnp rAq be any invertible element such that
rus “ . Using that GLnpCq is connected, up to a homotopy we may assume that
u and u

´1 are of the form 1 ` y and 1 ` z respectively with y, z P MnpAq. Let
X0 be the subspace of A spanned by all matrix entries of all monomials of degree
between one and three with entries from ty, zu. Let X be as in Lemma 3.3 for this
X0 and N “ 4. Let then ✏ ° 0 be given, and let � ° 0 be fixed, to be determined
by the rest of the proof. Let ph,C,Dq be an �-ideal structure for X.

Throughout the proof, anything called ‘�n’ is a constant depending on X, �
and maxt}y}, }z}u, and with the property that �n tends to zero as � tends to zero
(assuming the other inputs are held constant). Note that Lemma 3.4 implies that
there is �1 such that ph,MnpCq,MnpDqq is a �1-ideal structure of MnpAq for all n.
We check the properties from Definition 2.6. Property (i) is clear from the formula
for v (which implies a similar formula for v´1).

For property (ii), one computes

(5) v “
ˆ
ap2 ´ baq ab ´ 1
1 ´ ba b

˙
“

ˆ
a 0
0 b

˙
`

ˆ
ap1 ´ baq ab ´ 1
1 ´ ba 0

˙
.

As a “ 1`p1´hqy and b “ 1`zp1´hq, we have that a and b are both �2-in Mnp rDq
for some �2. Hence also

ˆ
a 0
0 b

˙
is �2-in M2np rDq. On the other hand, Lemmas 3.7

and 3.3 and the choice of X imply that 1 ´ ba and 1 ´ ab are �3-in M2np rDq for

some �3. It follows from this and that a is �2-in Mnp rDq that

ˆ
ap1 ´ baq ab ´ 1
1 ´ ba 0

˙

is �4-in M2np rDq for some �4.
For part (iii), we compute

(6) v

ˆ
u

´1 0
0 u

´1

˙
“

ˆ
au

´1 0
0 bu

˙
`

ˆ
ap1 ´ baqu´1 pab ´ 1qu
p1 ´ baqu´1 0

˙
.

We have that au
´1 “ 1 ` hz and that }bu ´ p1 ` yhq} † �5 for some �5. Hence

the first term in line (6) is �6-in M2np rCq for some �6. For the second term, using
Lemma 3.7 we have that up to some �7, p1 ´ baqu´1 and pab ´ 1qu equal

py ` zqhp1 ´ hqp1 ` zq and py ` zqhp1 ´ hqp1 ` yq.
On the other hand }ap1 ´ baqu´1 ´ p1 ` hzqpy ` zqhp1 ´ hq} † �8 for some �8. The
claim follows from all of this and the choice of X.

For parts (iv) and (v), note that

v
´1 “

ˆ
0 ´1
1 0

˙ ˆ
1 ´a

0 1

˙ ˆ
1 0
b 1

˙ ˆ
1 ´a

0 1

˙

“
ˆ

b 1 ´ ba

ab ´ 1 ap2 ´ baq
˙

“
ˆ
b 0
0 a

˙
`

ˆ
0 1 ´ ba

ab ´ 1 ap1 ´ baq
˙
.

Using this and the formula in line (5) we have that v

ˆ
1 0
0 0

˙
v

´1 ´
ˆ
1 0
0 0

˙
equals

(7)

ˆ
ab ´ 1 0

0 0

˙
`

ˆ
ap1 ´ baqb 0
p1 ´ baqb 0

˙
`

ˆ
0 ap1 ´ baq
0 0

˙
`

ˆ
0 ap1 ´ baq2
0 p1 ´ baq2

˙
.
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Now, using Lemma 3.7 and the fact that h almost commutes with y and z, every
term appearing is within some �9 of something of the form p1 ´ hqhpCphqqCpy, zq,
where pC is a polynomial of degree at most 3 in h (possibly with a constant term),
qC is a noncommutative polynomial of degree at most 3 with no constant term, and
moreover the coe�cients in pC and qD are universally bounded. Hence by choice of
X, all the terms are �10-in MnpC XDq, for some �10. This completes the proof. ⇤

We are now ready for the proof of Theorem 1.2 from the introduction.

Theorem 3.8. Say that A admits an approximate ideal structure over a set C such

that for all pC,Dq P C, the C
˚
-algebras C, D, and C X D have trivial K-theory.

Then A has trivial K-theory.

Proof. It su�ces to show that K1pAq “ K1pSAq “ 0. For K1pAq, let ↵ P K1pAq
be an arbitrary class. Then using Proposition 3.6 we may build a boundary class
Bvpuq P K0pC X Dq. As K0pC X Dq “ 0, this class Bvpuq is zero. Hence by
Proposition 2.7 it is in the image of � : K1pCq ‘ K1pDq Ñ K1pAq. However,
K1pCq “ K1pDq “ 0 by assumption, so we are done with this case.

The case of K1pSAq is almost the same. Indeed, Corollary 3.5 implies that SA
admits an approximate ideal structure over the set tpSC, SDq | pC,Dq P Cu, and
we have that SC, SD, and SC X SD “ SpC X Dq all have trivial K-theory. ⇤

We remark that Theorem 1.2 can be used to simplify the proof of the main
theorem of [16], in particular obviating the need for filtrations and controlled K-
theory in the proof, and replacing the material of [16, Section 7] entirely.

4. More on boundary classes

In this section we collect together some technical results on boundary classes that
are needed for the proof of Theorem 1.4 on the Künneth formula. We state results
for Banach algebras when it makes no di↵erence to the proof, and C

˚-algebras
when the proof is simpler in that case.

The first result corresponds to exactness at position (I) in line (2) from the in-
troduction. For the statement, recall the notion of a p�, c, C,Dq-lift from Definition
2.6, and the map ◆ : K0pC X Dq Ñ K0pCq ‘ K0pDq from Definition 2.1.

Proposition 4.1. Let A be a Banach algebra and let C and D be Banach subal-

gebras of A. Assume that p, q P Mnp ÉC X Dq are idempotents such that rps ´ rqs P
K0pC X Dq, and so that ◆prps ´ rqsq “ 0.

Then there exist k P N, an invertible element u of Mn`kp rAq, an invertible el-

ement v of M2pn`kqp rAq, and c ° 0 such that for any � ° 0, v and v
´1

are

p�, c, C,Dq-lifts of u and u
´1

respectively, and such that Bvu “ rps ´ rqs and

Bv´1pu´1q “ rqs ´ rps.
Proof. As ◆prps´rqsq “ 0, there exist natural numbers l § k and invertible elements
uC P Mn`kp rCq, uD P Mn`kp rDq such that

uCpp ‘ 1lqu´1
C

“ q ‘ 1l “ uDpp ‘ 1lqu´1
D

.

Define

u :“ p1 ´ p ‘ 1lqu´1
C

` pp ‘ 1lqu´1
D

P Mn`kp rAq.
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Direct checks that we leave to the reader show that u is invertible with inverse
u

´1 “ uCp1 ´ p ‘ 1lq ` uDpp ‘ 1lq. Define now

v :“
ˆ

pp ‘ 1lqu´1
D

p ‘ 1l ´ 1
1 ´ q ‘ 1l uDpp ‘ 1lq

˙
P M2pn`kqp rDq.

Note that v is invertible: indeed, direct computations show that

v
´1 :“

ˆ
uDpp ‘ 1lq 1 ´ q ‘ 1l
1 ´ pn ‘ 1l pp ‘ 1lqu´1

D

˙
.

We also compute that

v

ˆ
u

´1 0
0 u

˙
“

ˆ
p ‘ 1l p1 ´ p ‘ 1lqu´1

C

uCp1 ´ p ‘ 1lq q ‘ 1l

˙
,

which is an element of M2pn`kqp rCq, so at this point we have properties (i), (ii), and
(iii) from Definition 2.6.

To complete the proof, we compute using the formulas above for v and v
´1 that

v

ˆ
1 0
0 0

˙
v

´1 “
ˆ
p ‘ 1l 0

0 1 ´ q ‘ 1l

˙
,

which is in M2pn`kqp ÉC X Dq. Moreover, as a class in K0p ÉC X Dq,
”
v

ˆ
1 0
0 0

˙
v

´1
ı

´
„
1 0
0 0

⇢
“ rps ´ rqs,

so in particular this class is in K0pC XDq, completing the proof that v satisfies the
conditions from Definition 2.6, and that Bvpuq “ rps ´ rqs.

The computations with v
´1 and u

´1 replacing v and u are similar: we leave
them to the reader. ⇤

The proof of the next lemma consists entirely of direct checks; we leave these to
the reader.

Lemma 4.2. Let A be a Banach algebra, let c ° 0, and let ✏ P p0, 1
4c`6 q. Let � ° 0

satisfy the conclusion of Proposition 2.7. Assume that for i P t1, ...,mu, there is

an invertible element ui P Mnip rAq such that }ui} § c and }u´1
i

} § c, and let C

and D be Banach subalgebras of A such that for each i there is a p�, c, C,Dq-lift vi
of ui. Let s P M2pn1`¨¨¨`nmq be the self-inverse permutation matrix defined by the

following diagram in the sizes of the matrix blocks

n1

✏✏

n1

**

n2

}}

n2

((

¨ ¨ ¨ ¨ ¨ ¨ nm

tt

nm

✏✏

n1

OO

n2

==

¨ ¨ ¨ nm

44

n1

jj

n2

hh

¨ ¨ ¨ nm

OO

and define

v1 ‘ ¨ ¨ ¨ ‘ vm :“ spv1 ‘ ¨ ¨ ¨ ‘ vmqs
Then v :“ v1 ‘ ¨ ¨ ¨ ‘ vm is a p�, c, C,Dq-lift of u :“ u1 ‘ ¨ ¨ ¨ ‘ um, and

Bvu “
nÿ

i“1

Bvipuiq

in K0pC X Dq.
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We conclude this section with a technical result on inverses that we will need
later.

Lemma 4.3. Assume that the assumptions of Proposition 3.6 are satisfied. Then

on shrinking �, we may assume that v
´1

is also an p✏, c, C,Dq-lift of u
´1

, and

moreover that

Bvpuq “ ´Bv´1pu´1q
as elements of K0pC X Dq.
Proof. Checking that

v
´1 “

ˆ
0 ´1
1 0

˙ ˆ
1 ´a

0 1

˙ ˆ
1 0
b 1

˙ ˆ
1 ´a

0 1

˙

satisfies the properties from Definition 2.6 with respect to u´1 is essentially the same
as checking the corresponding properties for v and u in the proof of Proposition
3.6. We leave the details to the reader.

It remains to establish the formula Bvpuq “ ´Bv´1pu´1q. For t P r0, 1s, define

vt :“
ˆ
1 ta

0 1

˙ ˆ
1 0

´tb 1

˙ ˆ
1 ta

0 1

˙ ˆ
0 ´1
1 0

˙
.

Analogous computations to those we used to establish to property (iii) in the proof

of Proposition 3.6 show that v´1
t

v

ˆ
1 0
0 0

˙
v

´1
vt is in M2np ÉC X Dq up to an error

we can make as small as we like depending on � (with c and X fixed), and that the
di↵erence

v
´1
t

v

ˆ
1 0
0 0

˙
v

´1
vt ´ v

´1
t

ˆ
1 0
0 0

˙
vt

is in M2npC X Dq, again up to an error that we can make as small as we like by
making � small (and keeping c and X fixed). Hence for all t P r0, 1s we get that the
classes !

v
´1
t

v

ˆ
1 0
0 0

˙
v

´1
vt

)
ÉCXD

´
!
v

´1
t

ˆ
1 0
0 0

˙
vt

)
ÉCXD

of K0pC X Dq are well-defined. They are moreover all the same, as the elements
defining them are homotopic. However, the above equals �vpuq when t “ 0, and
equals ´�v´1pu´1q when t “ 1, so we are done. ⇤

5. Approximate ideal structures and the summation map

In this section, we prove a technical result, based very closely on [25, Lemma 2.9],
and corresponding to exactness at position (III) in line (2) from the introduction.

The precise statement is a little involved, but roughly it says that given a finite-
dimensional subspace X of A there is � ° 0 such that if ph,C,Dq is a �-ideal
structure for X as in Definition 3.1, then the maps � and ◆ from Definition 2.1 have
the following exactness property: if p,�q P K0pCq‘K0pDq is such that �p,�q “ 0
and the subspace X contains a ‘reason’ for this element being zero, then p,�q is in
the image of ◆.

This result is weak: it seems the quantifiers are in the wrong order for it to be
useful, meaning that one would like to be able to choose X based on C and D,
but the statement of the result is the other way around. Nonetheless, the result is
useful, and plays a crucial role in the proof of the injectivity half of theorem 1.4.
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For the proof of the result, we need a condition that is closely related to the so-
called ‘CIA property’ as used in the definition of ‘nuclear Mayer-Vietoris pairs’ in
[25, Definition 4.8]. For the statement, let us say that a function f : p0,8q Ñ p0,8q
is a decay function if fptq Ñ 0 as t Ñ 0. The following definition is a somewhat
more quantitative variant of Definition 1.3 from the introduction.

Definition 5.1. Let pC,Dq be a pair of C˚-subalgebras of a C
˚-algebra A, and let

f be a decay function. Then pC,Dq is f -uniform if for all C˚-algebras B and � ° 0,
if c P C b B and d P D b B satisfy }c ´ d} § �, then there exists x P pC X Dq b B

with }x ´ c} § fp�q and }x ´ d} † fp�q.
Let A be a C

˚-algebra and C a set of pairs pC,Dq of C˚-subalgebras of A. Then
A admits a uniform approximate ideal structure over C if it admits an approximate
ideal structure over C, and if in addition there is a decay function f such that all
pairs in C are f -uniform.

The following example and non-example might help illuminate the definition.
We give some more interesting examples in Appendix B.

Example 5.2. If pC,Dq is a pair of C˚-ideals in A, then pC,Dq is f -uniform where
fptq “ 3t. To see this, say that c P C b B and d P D b B satisfy }c ´ d} § �. Let
phiq be an approximate unit for C.

Let 1B denote the unit of rB. We claim first that for each i, phi b 1Bqd is in
pC X Dq b B. Indeed, let ✏ ° 0, and let d

1 be an element of the algebraic tensor
product D d B such that }d1 ´ d} † ✏. Then }phi b 1Bqd ´ phi b 1Bqd1} † ✏, and
phi b 1Bqd1 P pC X Dq d B. As ✏ was arbitrary, phi b 1Bqd is in pC X Dq b B.

Choose i large enough so that }phi b1Bqc´c} † �, and set x “ phi b1Bqd. Then
x is in pC X Dq b B by the claim, and

}x ´ c} § }phi b 1Bqd ´ phi b 1Bqc} ` }phi b 1Bqc ´ c} † 2�

and

}x ´ d} § }phi b 1Bqd ´ phi b 1Bqc} ` }c ´ phi b 1Bqc} ` }c ´ d} † 3�,

completing the argument that pC,Dq is f -uniform.

On the other hand, the following non-example shows that f -uniformity is quite
a strong condition: while it is automatic for ideals by the above, it can fail badly
for very simple examples of hereditary subalgebras.

Example 5.3. Let A “ K be the compact operators on H “ `
2pNq. Choose

projections p and q on H whose ranges have trivial intersection, but such that there
are sequences pxnq and pynq of unit vectors in the ranges of p and q respectively with
}xn´yn} Ñ 0 (it is not too di�cult to see that such projections exist). Let C “ pKp

andD “ qKq, so C andD are hereditary subalgebras of K. As rangeppqXrangepqq “
t0u, we have that C XD “ t0u: indeed, any self-adjoint element of C XD is a self-
adjoint compact operator with all its eigenvectors contained in rangeppq X rangepqq.
On the other hand, if pn and qn are the rank-one projections onto the spans of xn

and yn respectively, then pn P C and qn P D for all n, and }pn ´ qn} Ñ 0. It follows
that the pair pC,Dq is not f -uniform for any decay function f .

The following lemma is immediate from the associativity of the minimal C˚-
algebra tensor product.
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Lemma 5.4. Say A and B are C
˚
-algebras and f is a decay function. If pC,Dq is

an f -uniform pair for A, then pC bB,D bBq is an f -uniform pair for AbB. ⇤
We need two preliminary lemmas before we get to the main result. Recall first

that if u is an invertible element of a unital ring, then we have the ‘Whitehead
formula’

(8)

ˆ
u 0
0 u

´1

˙
“

ˆ
1 u

0 1

˙ ˆ
1 0

´u
´1 1

˙ ˆ
1 u

0 1

˙ ˆ
0 ´1
1 0

˙
.

This implies that invertible elements of the form

ˆ
u 0
0 u

´1

˙
are equal to zero in

K-theory for purely ‘algebraic’ reasons (compare [22, Lemma 2.5 and Lemma 3.1]).
The following lemma can thus be thought of as saying that any invertible element
u of a C

˚-algebra that is zero in K1 for ‘topological reasons’ (i.e. is homotopic to
the identity) is also zero in K1 for ‘algebraic’ reasons, up to an arbitrarily good
approximation7.

For the statement of the lemma, recall the notion of being �-in a subspace of a
C

˚-algebra from Definition 2.3.

Lemma 5.5. Let c, ✏ ° 0. Then there exists � ° 0 with the following property. Let

X be a subspace of a C
˚
-algebra A and let tututPr0,1s be a homotopy of invertibles

in Mnp rAq such that:

(i) u1 “ 1n;
(ii) for each t, both ut and u

´1
t

are �-in t1 ` x P Mnp rAq | x P MnpXqu;
(iii) for each t, }ut} § c and }u´1

t
} § c.

Then there exists m P N and invertible elements a P� t1 ` x P Mmnp rAq | x P
MmnpXqu and b P� t1 ` x P Mpm`1qnp rAq | x P Mpm`1qnpXqu such that a, b, a

´1

and b
´1

all have norm at most c, and such that the di↵erence

ˆ
u0 0
0 1p2m`1qn

˙
´

¨

˚̊
˝

1n 0 0 0
0 a 0 0
0 0 a

´1 0
0 0 0 1n

˛

‹‹‚

ˆ
b 0
0 b

´1

˙

in M2pm`1qnp rAq has norm at most ✏.

Proof. Let � ° 0 (to be chosen later), and choose a partition 0 “ t0 † ... † tm “ 1
of the interval r0, 1s with the property that for any i, }uti`1 ´ uti} † �. Define

a :“

¨

˚̊
˚̋

u
´1
t1

0 . . . 0
0 u

´1
t2

. . . 0
...

...
. . .

...
0 0 . . . u

´1
tm

˛

‹‹‹‚P Mmnp rAq.

b :“

¨

˚̊
˚̋

ut0 0 . . . 0
0 ut1 . . . 0
...

...
. . .

...
0 0 . . . utm

˛

‹‹‹‚P Mpm`1qnp rAq.

7This cannot be exactly true – otherwise the algebraic and topological K1 groups of a C˚-
algebra would always be the same.
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Then we have that

ˆ
u0 0
0 1p2m`1qn

˙
´

¨

˚̊
˝

1n 0 0 0
0 a 0 0
0 0 a

´1 0
0 0 0 1n

˛

‹‹‚

ˆ
b 0
0 b

´1

˙

equals ¨

˚̊
˚̊
˚̋

0pm`1qn 0 0 ¨ ¨ ¨ 0
0 1 ´ ut1u

´1
t0

0 ¨ ¨ ¨ 0
0 0 1 ´ ut2u

´1
t1

¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ 1 ´ u
´1
tm

˛

‹‹‹‹‹‚
.

Recalling that utm “ 1, the latter element has norm bounded above by

max
i

}1 ´ uti`1u
´1
ti

} “ max
i

}uti ´ uti`1}}u´1
ti

} † �c,

which we can make as small as we like by decreasing the size of �. ⇤

The next lemma uses decompositions and the identity in line (8) to split up an

element of the form

ˆ
a 0
0 a

´1

˙
using approximate ideal structures as in Definition

3.1.

Lemma 5.6. Say A is a C
˚
-algebra and X a finite-dimensional subspace of A.

Then there is a finite-dimensional subspace Y of A such that for any ✏ ° 0 there

exists � ° 0 so that the following holds. Assume that a P Mnp rAq is an invertible

element such that a and a
´1

have norm at most c, and are �-in the set t1 ` x P
Mnp rAq | x P MnpXqu. Assume that ph,C,Dq is a �-ideal structure for Y . Then

there are homotopies tvC
t

utPr0,1s and tvD
t

utPr0,1s of invertible elements such that:

(i) for each t, v
C

t
P✏ t1 ` c | c P M2npCqu and v

D

t
P✏ t1 ` d | d P M2npDqu;

(ii)

ˆ
a 0
0 a

´1

˙
“ v

C

0 v
D

0 ;

(iii) v
C

1 “ v
D

1 “ 12n;
(iv) for each t the norms of v

C

t
and v

D

t
are both at most p3 ` cq5.

Proof. Let Y0 be the subspace of A spanned by all monomials of degree between
one and four with entries from X. Let Y be as in Lemma 3.3 for this Y0 and N “ 4.
Let then ✏ ° 0 be given, and let � ° 0 be fixed, to be determined by the rest of the
proof. Let ph,C,Dq be a �-ideal structure for X.

Write a “ 1 ` x and a
´1 “ 1 ` y with x, y P� MnpXq. Consider the product

decomposition

(9)

ˆ
a 0
0 a

´1

˙
“

ˆ
1 a

0 1

˙ ˆ
1 0

´a
´1 1

˙ ˆ
1 a

0 1

˙ ˆ
0 ´1
1 0

˙
.

Set xC :“ 1`hx and x
D :“ p1´hqx, so that xC`x

D “ a. Similarly, set yC :“ 1`hy

and y
D “ p1 ´ hqy, so that yC ` y

D “ a
´1. For any element z of a C

˚-algebra, set

Xpzq :“
ˆ
1 z

0 1

˙
and Y pzq :“

ˆ
1 0
z 0

˙
.



22 RUFUS WILLETT

Then using that Xpz1 ` z2q “ Xpz1qXpz2q and similarly for Y , the product in line
(9) equals

XpxDqXpxCqY p´y
CqY p´y

DqXpxCqXpxDq
ˆ
0 ´1
1 0

˙
.

Rewriting further, this equals the product of

v
C :“ XpxDqXpxCqY p´y

CqXpxCq
ˆ
0 ´1
1 0

˙
Xp´x

Dq,

and

v
D :“ XpxDq

ˆ
0 1

´1 0

˙
Xp´x

CqY p´y
DqXpxCqXpxDq

ˆ
0 ´1
1 0

˙
.

We claim this vC and v
D have the properties required of vC0 and v

D

0 in the statement.

The norm estimates are clear, as is the equation

ˆ
a 0
0 a

´1

˙
“ v

C

0 v
D

0 . For the

remainder of the proof, any constant called �n depends only on c, X, and �, and
tends to zero as � tends to zero (with the other inputs held constant).

We first claim that vC is ✏-in the set t1 ` c | c P M2npCqu for � suitably small.
Using Lemma 3.4, h commutes with x and y up to some error �1. Using this, plus
the fact that xy “ yx “ ´y ´ x, one computes that

XpxCqY p´y
CqXpxCq

ˆ
0 ´1
1 0

˙

is within some �2 of an element of the form
ˆ
1 0
0 1

˙
`

ˆ
h 0
0 h

˙
Z1,

where all entries of Z1 are products of a noncommutative polynomial in x and y of
degree at most two and with no constant term, with a polynomial in h of degree at
most two. Hence up to error some �3, we have that vC agrees with

XpxDq
´ ˆ

1 0
0 1

˙
`

ˆ
h 0
0 h

˙
Z

¯
Xp´x

Dq,

and that up to some �4, this is the same as
ˆ
1 0
0 1

˙
`

ˆ
h 0
0 h

˙
Z2,

where every entry of Z2 is a product of a noncommutative polynomial in x and y

of degree at most four and with no constant term, with a polynomial in h of degree
at most four. The claim follows from this, and the choice of X.

The computations showing that v
D is ✏-in the set t1 ` d | d P M2npDqu for �

suitably small are similar. Indeed, we first we note that

Y p´yDq “
ˆ
1 0
0 1

˙
`

ˆ
1 ´ h 0
0 1 ´ h

˙ ˆ
0 0

´y 0

˙
,

whence Xp´x
CqY p´y

DqXpxCq is within �5 of an element of the form
ˆ
1 0
0 1

˙
`

ˆ
1 ´ h 0
0 1 ´ h

˙
Z3

where every entry of Z3 is a product of a noncommutative polynomial in x and y

of degree at most two and with no constant term, with a polynomial in h of degree
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at most two. Hence Xp´x
CqY p´y

DqXpxCqXpxDq is within �6 of an element of the
form ˆ

1 0
0 1

˙
`

ˆ
1 ´ h 0
0 1 ´ h

˙
Z4,

where every entry of Z3 is a product of a noncommutative polynomial in x and y of
degree at most three and with no constant term, with a polynomial in h of degree
at most three. The same is true therefore of

ˆ
0 1

´1 0

˙
Xp´x

CqY p´y
DqXpxCqXpxDq

ˆ
0 ´1
1 0

˙
.

We thus get that vD is within �7 of an element of the form
ˆ
1 0
0 1

˙
`

ˆ
1 ´ h 0
0 1 ´ h

˙
Z5,

where every entry of Z5 is a product of a noncommutative polynomial in x and y

of degree at most four and with no constant term, with a polynomial in h of degree
at most four.

To construct homotopies with the required properties, define xC

t
:“ 1`p1´tqhx,

x
D

t
:“ p1´tqp1´hqx, yC

t
:“ 1`p1´tqhy, and y

D

t
;“ p1´tqp1´hqy. Define moreover

v
C

t
:“ XpxD

t
qXpxC

t
qY p´y

C

t
qXpxC

t
q

ˆ
0 ´1
1 0

˙
Xp´x

D

t
q

and

v
D

t
:“ XpxD

t
q

ˆ
0 1

´1 0

˙
Xp´x

C

t
qY p´y

D

t
qXpxC

t
qXpxD

t
q

ˆ
0 ´1
1 0

˙
.

Using precisely analogous computations to those we have already done, one sees
that these elements have the claimed properties: we leave the remaining details to
the reader. ⇤

Here is the key technical result of this section.

Proposition 5.7. Let A be a C
˚
-algebra, let f be a decay function, let ✏ ° 0,

let c ° 0, and let X be a finite-dimensional subspace of A. Then there exists a

finite-dimensional subspace Y of A and � ° 0 with the following property.

Assume that for some n P N there is a homotopy tututPr0,1s of invertible elements

in Mnp rAq with u1 “ 1n, and such that each ut and u
´1
t

are �-in the set t1 ` x P
Mnp rAq | x P MnpXqu, and have norm at most some c. Then if ph,C,Dq is a �-ideal

structure for Y with pC,Dq f -uniform then the following holds.

Say l † n and uC P Mn´lp rCq and uD P Mn´lp rDq are invertible, such that they

and their inverses have norm at most c, and such that }u0 ´ uCuD ‘ 1l} † �.

Then there exists k P N and an invertible element x P Mkp ÉC X Dq such that if

rxs P K1pC XDq is the corresponding class, then with notation as in Definition 2.1,

◆rxs “ pruCs, ruDsq P K1pCq ‘ K1pDq.
Proof. Applying Lemma 5.5 to the homotopy tutu we get m P N and invertible
elements a P� t1 ` x P Mmnp rAq | x P MmnpXqu an b P� t1 ` x P Mpm`1qnp rAq | x P
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Mpm1qnpXqu such that

ˆ
u0 0
0 1p2m`1qn

˙
´

¨

˚̊
˝

1n 0 0 0
0 a 0 0
0 0 a

´1 0
0 0 0 1n

˛

‹‹‚

ˆ
b 0
0 b

´1

˙

has norm at most �. Let Ya and Yb have the properties in Lemma 5.5 with respect
to a and b, and let Y :“ Ya ` Yb, a finite dimensional subspace of A. Let then c

and ✏ be given, and let � be fixed, to be determined by the rest of the proof. Let
ph,C,Dq be a �-ideal structure of Y with pC,Dq f -uniform.

As usual, throughout the proof any constant called �n depends on f , c, Y , and �,
and tends to zero as � tends to zero. Applying (a very slight variation of) Lemma

9 to

ˆ
a 0
0 a

´1

˙
and

ˆ
b 0
0 b

´1

˙
, we get elements v

C,a

t
and v

D,a

t
, and v

C,b

t
and v

D,b

t

for t P r0, 1s satisfying the conditions there for some �1. Moreover, if we write
v
C,a :“ v

C,a

1 and similarly for the other terms, then
¨

˚̊
˝

1n 0 0 0
0 a 0 0
0 0 a

´1 0
0 0 0 1n

˛

‹‹‚

ˆ
b 0
0 b

´1

˙
“ v

D,a
v
C,a

v
C,b

v
D,b

“ v
D,a

v
C,a

v
C,bpvD,aq´1

loooooooooooomoooooooooooon
“:vC

v
D,a

v
D,blooomooon

“:vD

.

Note that v
C and v

D are �2-in M2pm`1qnp rCq and M2pm`1qnp rDq respectively, that
they define the trivial class in K1pCq and K1pDq respectively, and that they and
their inverses have norm at most p3 ` cq20.

Let uC and uD have the properties in the statement. Replacing uC and uD by
their block sums with 1l, we may (for notational simplicity) assume that l “ 0. Now,
we have that uCuD and vCvD are within some �3 of each other. Hence 1´v

´1
C

uC and
1´vDu

´1
D

are within some �4 of each other. Applying our f -uniformity assumption,
there exists an element y in some matrix algebra over C XD that is within some �5
of both. Set x “ 1`y. Then x is an invertible element of some matrix algebra over
ÉC X D (as long as � is suitably small) that is close to both v

´1
C

uC and to vDu
´1
D

.
Hence for suitably small �, we have that as classes in K1pCq

rxs “ rv´1
C

uCs “ ruCs,
where the second equality follows as vC represents the trivial class in K1pCq. Sim-
ilarly, in K1pDq,

rxs “ rvDu
´1
D

s “ ru´1
D

s.
It follows from the last two displayed lines that

◆rxs “ pruCs, ruDsq
as required. ⇤

6. The product map

In this section we recall some facts about the product map

ˆ : K˚pAq b K˚pBq Ñ K˚pA b Bq
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and discuss how it interacts with the boundary classes of Definition 2.8.
We first recall concrete formulas for some of the special cases of this product.

See for example [19, Section 4.7] for background on this, and [19, Proposition 4.8.3]
for the particular ‘K1 b K0’ formula that we use.

For each n and m, fix an identification MnpCq b MmpCq – MnmpCq that is
compatible with the usual top-left corner inclusions MnpCq Ñ Mn`1pCq as m and
n vary. Use this to identify MnpAqbMmpBq with MnmpAbBq for any C

˚-algebras
A and B. Any two such identifications di↵er by an inner automorphism, so the
choice does not matter on the level of K-theory. We will use these identifications
without comment from now on.

We recall a basic lemma that is useful for setting up products in the non-unital
case: see [19, Lemma 4.7.2] for a proof.

Lemma 6.1. For a non-unital C
˚
-algebra A, let ✏A : rA Ñ C denote the canon-

ical quotient map. For non-unital C
˚
-algebras A and B, define � to be the ˚-

homomorphism

p✏A b id rBq ‘ pid rA b ✏Bq : rA b rB Ñ rA ‘ rB.

(where we have identified rAbC with rA and similarly for rB to make sense of this).

Then the map

K˚pA b Bq Ñ K˚p rA b rBq
induced by the canonical inclusion A b B Ñ rA b rB is an isomorphism onto

Kernelp�˚q.
Similarly, if A is unital and B is non-unital and  :“ idb ✏B : Ab rB Ñ A, then

the map

K˚pA b Bq Ñ K˚pA b rBq
induced by the canonical inclusion A b B Ñ A b rB is an isomorphism onto

Kernelp ˚q. A precisely analogous statement holds if A is non-unital and B is

unital. ⇤

Definition 6.2. Let A and B be unital C
˚-algebras, and let p P MnpAq and

q P MnpBq be idempotents. Then the product of the corresponding K-theory
classes rps P K0pAq and rqs P K0pBq is defined to be

rps ˆ rqs :“ rp b qs P K0pA b Bq.
Still assuming that A and B are unital, let u P MnpAq be invertible and p P MmpBq
be an idempotent, and define

u b p :“ u b p ` 1 b p1 ´ pq P MnmpA b Bq.
Note that ub p is invertible, with inverse u´1 b p. The product of rus P K1pAq and
rps P K0pBq is defined to be

rus ˆ rps :“ ru b ps P K1pA b Bq.
One checks that these formulas defined on generators extend to well-defined homo-
morphisms

ˆ : K0pAq b K0pBq Ñ K0pA b Bq and ˆ : K1pAq b K0pBq Ñ K1pA b Bq.
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Assume now that A and B are non-unital. Then one checks that for either
pi, jq “ p0, 0q, or pi, jq “ p1, 0q, the canonical composition

KipAq b KjpBq Ñ Kip rAq b Kjp rBq Ñ̂ Ki`jp rA b rBq
takes image in the subgroup Kernelp�˚q of the right hand side, where � is as in
Lemma 6.1. Using the identification Kernelp�˚q – Ki`jpA b Bq of Lemma 6.1, we
thus get a general product map

ˆ : KipAq b KjpBq Ñ Ki`jpA b Bq
if pi, jq P tp1, 0q, p0, 0qu. This all works analogously if just one of A or B is non-
unital, using the other part of Lemma 6.1.

For the next definition, for any C
˚-algebra, let

�
´1 : K˚pS2

Aq Ñ K˚pAq
be the inverse of the Bott periodicity isomorphism.

Definition 6.3. Let A and B be C
˚-algebras. Define

KpAq b1 KpBq :“
`
K1pAq b K0pBq

˘
‘

`
K1pSAq b K0pSBq

˘
.

Define a ‘product’ map

⇡ : KpAq b1 KpBq Ñ K1pA b Bq
to be the composition

`
K1pAq b K0pBq

˘
‘

`
K1pSAq b K0pSBq

˘ ˆ‘ˆ›Ñ K1pA b Bq ‘ K1pS2pA b Bqq
id‘�

´1

›Ñ K1pA b Bq ‘ K1pA b Bq
add›Ñ K1pA b Bq

We define

KpAq b0 KpBq :“
`
K0pAq b K0pBq

˘
‘

`
K0pSAq b K0pSBq

˘

and

⇡ : KpAq b0 KpBq Ñ K0pA b Bq
completely analogously.

The product map is natural with respect to suspensions and Bott periodicity.
Hence the map ⇡ above identifies with the usual product map

`
K1pAq b K0pBq

˘
‘

`
K0pAq b K1pBq

˘
Ñ K1pA b Bq

under the usual canonical identifications relating suspensions to dimension shifts in
K-theory, and similarly in the K0 case.

We need a tensor product lemma. Recall that if C,D are C
˚-subalgebras of a

C
˚-algebra A, and if B is another C˚-algebra, then there is a natural inclusion

pC X Dq b B Ñ pC b Bq X pD b Bq.
This inclusion need not be an equality above in general: see for example [20].
However, f -uniform pairs as in Definition 5.1 behave well in this setting.
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Lemma 6.4. Let pC,Dq be an f -uniform pair of C
˚
-algebras of some C

˚
-algebra

A for some decay function f . Then the natural inclusion

pC X Dq b B Ñ pC b Bq X pD b Bq
is the identity.

Proof. The assumption of f -uniformity directly implies that the image of the in-
clusion is dense. The image is a C

˚-subalgebra, however, so closed. ⇤

The next lemma is the key technical result of this section. Morally, it can be
thought of as saying that if notation is as in Proposition 2.7 and if p an idempotent
in some matrix algebra over B, then the diagram

K1pAq b K0pBq Bv
//

ˆ
✏✏

K0pC X Dq
ˆ
✏✏

K1pA b Bq Bvbp
// K0ppC X Dq b Bq

makes some sort of sense, and commutes, when one inputs the class rus b rps P
K1pAq b K0pBq.
Lemma 6.5. Let A be a unital C

˚
-algebra, let c ° 0, and let ✏ P p0, 1

4c`6 q. Then

there exists � ° 0 satisfying the assumptions of Proposition 2.7, and with the follow-

ing additional property. Assume that u P MnpAq is invertible and that v P M2npAq
is a p�, c, C,Dq-lift for u as in the conclusion of Proposition 2.7. Let B be a C

˚
-

algebra, and let p P MmpBq be an idempotent with }p} § c.

Then (with notation as in Definition 6.2) vbp is a p✏, c, C,Dq-lift for ubp, and

we have

Bvpuq ˆ rps “ Bvbppu b pq
as classes in K0ppC X Dq b Bq.
Proof. We leave it to the reader to check that v b p is a p✏, c, C,Dq-lift of ub p for
suitably small � ° 0 (depending only on ✏ and c). Computing, we see that

Bvbppu b pq

“
!`

v b p ` 1 b p1 ´ pq
˘ ˆ

1 0
0 0

˙ `
v

´1 b p ` 1 b p1 ´ pq
˘)

p ÉCXDqbB

´
„
1 0
0 0

⇢

“
!
v

ˆ
1 0
0 0

˙
v

´1 b p `
ˆ
1 0
0 0

˙
b p1 ´ pq

)

p ÉCXDqbB

´
„
1 0
0 0

⇢
.

Using that the two terms inside the curved brackets are orthogonal, we have
!
v

ˆ
1 0
0 0

˙
v

´1 b p `
ˆ
1 0
0 0

˙
b p1 ´ pq

)

p ÉCXDqbB

“
!
v

ˆ
1 0
0 0

˙
v

´1 b p

)

p ÉCXDqbB

`
” ˆ

1 0
0 0

˙
b p1 ´ pq

ı
.

As ” ˆ
1 0
0 0

˙
b p1 ´ pq

ı
´

„
1 0
0 0

⇢
“ ´

” ˆ
1 0
0 0

˙
b p

ı
,
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we get that

Bvbppu b pq “
!
v

ˆ
1 0
0 0

˙
v

´1 b p

)

p ÉCXDqbB

´
” ˆ

1 0
0 0

˙
b p

ı

“
˜!

v

ˆ
1 0
0 0

˙
v

´1
)

ÉCXD

´
„
1 0
0 0

⇢ ¸
ˆ rps,

which is exactly Bvpuq ˆ rps as claimed. ⇤
We also need compatibility results for the maps ◆ and � of Definition 2.1 and the

maps ⇡ of Definition 6.3. These are recorded by the following lemma.

Lemma 6.6. Let C and D be an excisive pair of C
˚
-subalgebras of a C

˚
-algebra

A, and let B be a C
˚
-algebra. Then for i P t0, 1u, the diagrams

KpC X Dq bi KpBq ◆bid
//

⇡

✏✏

KpCq bi KpBq ‘ KpDq bi KpBq
⇡

✏✏

KippC X Dq b Bq ◆
// K1pC b Bq ‘ K1pD b Bq

and

KpCq bi KpBq ‘ KpDq bi KpBq �bid
//

⇡

✏✏

KpAq bi KpBq
⇡

✏✏

KipC b Bq ‘ KipD b Bq �
// KipA b Bq

commute (where we have the canonical identification of Lemma 6.4 amongst others

to make sense of this).

Proof. This follows directly from naturality of the product maps and Bott maps
in K-theory. ⇤

7. The inverse Bott map

For a C
˚-algebra A, let

�
´1 : K˚pS2

Aq Ñ K˚pAq
be the inverse Bott isomorphism. It will be convenient to have a model for �´1

based on an asymptotic family. In this section, we recall some facts about asymp-
totic families and their action on K-theory (in the ‘naive’, rather than E-theoretic,
picture). We then discuss how the inverse Bott map can be represented by an
asymptotic family with good properties.

Recall (see for example [13, Definition 1.3]) that an asymptotic family between
C

˚-algebras A and B is a collection of maps t↵t : A Ñ ButPr1,8q such that:

(i) for each a P A, the map t fiÑ ↵tpaq is continuous and bounded;
(ii) for all a1, a2 P A and z1, z2 P C, the quantities

↵tpa1a2q ´ ↵tpa1q↵tpa2q, ↵tpa˚
1 q ´ ↵tpa1q˚

and
↵tpz1a1 ` z2a2q ´ z1↵tpa1q ´ z2↵tpa2q

all tend to zero as t tends to infinity.
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An asymptotic family t↵t : A Ñ ButPr1,8q canonically defines a map ↵˚ :
K˚pAq Ñ K˚pBq. One way to define ↵˚ uses the composition product in E-
theory and the identification of E˚pC, Aq with K˚pAq. However, there is also a
more naive and direct way. This is certainly very well-known, but we are not sure
exactly where to point in the literature for a description, so we describe it here for
the reader’s convenience.

Assume for simplicity that A and B are not unital (this is the only case we
will need), and that t↵t : A Ñ Bu is an asymptotic family. We extend t↵tu to
unitisations and matrix algebras just as we would for a ˚-homomorphism. Note
that as A and B are not unital, the extended asymptotic morphism on unitisations
takes units to units.

If e P Mnp rAq is an idempotent, then }↵tpeq2 ´ ↵tpeq} Ñ 0 as t Ñ 8. Hence if �
is the characterisitic function of the half-plane tz P C | Repzq ° 1{2u then �p↵tpeqq
(defined using the holomorphic functional calculus) is a well-defined idempotent in
MnpBq for all t suitably large. If res ´ rf s is a formal di↵erence of idempotents
in Mnp rAq defining a class in K0pAq, then one sees that for all t suitably large the
formal di↵erence

r�p↵tpeqqs ´ r�p↵tpfqqs P K0p rBq
is in the kernel of the natural map K0p rBq Ñ K0pCq induced by the canonical
quotient rB Ñ C. We define ↵˚pres´rf sq :“ r�p↵tpeqqs´r�p↵tpfqqs for any suitably
large t. The choice of t does not matter, as for any t

1 • t, the path t�p↵speqqusPrt,t1s
is a homotopy of idempotents, and similarly for f .

Similarly (and more straightforwardly), if u P Mnp rAq is invertible, then as the
extension of ↵t to unitisations is unital, for all suitably large t, ↵tpuq P Mnp rBq is
invertible, and we get a well-defined class ↵˚rus :“ r↵tpuqs for any suitably large t.
In this way, we get a well-defined homomorphism

↵˚ : K˚pAq Ñ K˚pBq.
We also need to discuss the tensor product of an asymptotic family and a ˚-

homomorphism. First, we describe how an asymptotic family is essentially the
same thing as a ˚-homomorphism A Ñ Cbpr1,8q, Bq{C0pr1,8q, Bq. More precisely,
given an asymptotic family t↵t : A Ñ Bu, we can define

↵ : A Ñ Cbpr1,8q, Bq
C0pr1,8q, Bq , a fiÑ rt fiÑ ↵tpaqs.

Conversely, the Bartle-Graves selection theorem implies the existence of a contin-
uous section s : Cbpr1,8q, Bq{C0pr1,8q, Bq Ñ Cbpr1,8q, Bq. Then given a homo-
morphism ↵ : A Ñ Cbpr1,8q, Bq{C0pr1,8q, Bq we can define an asymptotic family
t↵t : A Ñ Bu by the formula ↵tpaq :“ sp↵paqqptq. If s and s

1 are two di↵erent
choices of section and t↵tu and t↵1

t
u the corresponding asymptotic families, then

↵tpaq ´ ↵
1
t
paq Ñ 0 as t Ñ 8 (compare for example [13, pages 4-5]). In particular,

this implies that the induced maps ↵˚ and ↵1
˚ on K-theory on the same.

We may use this correspondence to define the tensor product of an asymptotic
family and a ˚-homomorphism. Say t↵t : A Ñ Bu is an asymptotic family, and
� : C Ñ D a ˚-homomorphism with D nuclear. As in [13, Proposition 4.3], we get
a natural ˚-homomorphism

Cbpr1,8q, Bq
C0pr1,8q, Bq b D Ñ Cbpr1,8q, B b Dq

C0pr1,8q, B b Dq ,
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where we have used nuclearity of D to see that the spatial tensor product ¨ b D

agrees with the maximal tensor product ¨bmaxD. Hence we get a ˚-homomorphism

(10) A b C
↵b�›Ñ Cbpr1,8q, Bq

C0pr1,8q, Bq b D Ñ Cbpr1,8q, B b Dq
C0pr1,8q, B b Dq .

Definition 7.1. We let t↵t b � : A b C Ñ B b Du be any choice of asymptotic
family corresponding to the ˚-homomorphism in line (10).

‘The’ asymptotic family t↵t b�u is unfortunately not canonically determined by
t↵tu and �. Nonetheless, any such choice will satisfy

p↵t b �qpa b cq ´ ↵tpcq b �pcq Ñ 0 as t Ñ 8
on elementary tensors, and any two such choices will induce the same map K˚pAb
Cq Ñ K˚pB b Dq.

The following lemma is the main technical result of this section. It says that
asymptotic families are compatible with boundary classes as in Definition 2.8. For
the statement, recall the definition of a p�, c, C,Dq-lift from Definition 2.6.

Lemma 7.2. Let c, ✏ ° 0. Then there is � ° 0 with the following property.

Let t↵t : A Ñ Bu be an asymptotic family between non-unital C
˚
-algebras, and

let pCA, DAq be a pair of C
˚
-subalgebras of A and pCB , DBq a pair of C

˚
-subalgebras

of B such that for all c P CA and d P DA,

dp↵tpcq, CBq and dp↵tpdq, DBq
tend to zero as t tends to infinity. Assume that u P M2np rAq is an invertible element

with }u} § c and }u´1} § c, and let v be a p�{2, c{2, CA, DAq-lift of u. Then for all

suitably large t, ↵tpvq P M2np rBq is a p�, c, CB , DBq-lift of ↵tpuq, and moreover

B↵tpvqp↵tpuqq “ ↵˚pBvpuqq
in K0pCB X DBq for all suitably large t.

Proof. We use the same notation t↵tu for the canonical extensions to matrix al-
gebras and unitisations. Note first that as the extension of t↵tu to unitisations is
unital, and as ↵t is asymptotically multiplicaitve, ↵tpuq and ↵tpvq are invertible for
all suitably large t.

We first claim that asymptotic families are ‘asymptotically contractive’ in the
following sense: for any a P A and any ✏ ° 0 we have }↵tpaq} † }a} ` ✏ for all
suitably large t. Indeed, let

↵ : A Ñ Cbpr1,8q, Bq
C0pr1,8q, Bq , a fiÑ rt fiÑ ↵tpaqs

be the corresponding ˚-homomorphism. As ↵ is a ˚-homomorphism, it is con-
tractive. Hence by definition of the quotient norm, for any ✏ ° 0 there is b P
C0pr1,8q, Bq such that

sup
tPr1,8q

}↵tpaq ´ bptq} † }↵paq} ` ✏ § }a} ` ✏.

As }bptq} Ñ 0 as t Ñ 8, the claim follows.
Now, from the claim and the fact that for all d P DA, dp↵tpdq, DBq tends to zero

as t tends to infinity, that we have that ↵tpvq is �-in M2npÅDBq for all suitably large
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t. Similarly, and using also the asymptotic multiplicativity and unitality of t↵tu,
we get that

↵tpvq
ˆ
↵tpuq´1 0

0 ↵tpuq
˙

P� M2np ÄCBq

for all suitably large t. The remaining conditions from Definition 2.6 follow similarly.
To see that B↵tpvqp↵tpuqq “ ↵˚pBvpuqq for t large enough, note that for suitably

large t, the former is represented by

(11)
!
↵tpvq

ˆ
1 0
0 0

˙
↵tpvq´1

)
ÉCBXDB

´
„
1 0
0 0

⇢
.

For the latter, one starts by choosing an idempotent f P M2np ÉCA X DAq suitably

close to v

ˆ
1 0
0 0

˙
v

´1 as in Lemma 2.4 so that

!
v

ˆ
1 0
0 0

˙
v

´1
)

ÉCAXDA

“ rf s

in K0p ÉCA X DAq. Then ↵˚pBvpuqq is represented by

(12) �p↵tpfqq ´
„
1 0
0 0

⇢

for t suitably large, where � is as usual the characteristic function of tz P C |
Repzq ° 1{2u. Now, as }↵tpfq} is uniformly bounded in t and as }↵tpfq2´↵tpfq} Ñ
0, we may apply Lemma 2.2 to conclude that }↵tpfq ´ �p↵tpfqq} Ñ 0. On the
other hand, by making � suitably small and t large, and using the ‘asymptotic
contractiveness’ claim at the start of the proof, we can make ↵tpfq as close as we
like to

↵tpvq
ˆ
1 0
0 0

˙
↵tpvq´1

.

Comparing lines (11) and (12), the proof is complete. ⇤

We need the fact that Bott periodicity is induced by an appropriate asymptotic
morphism. The following lemma is well-known.

Lemma 7.3. For any C
˚
-algebra A there is an associated asymptotic family

↵t : S
2
A A b K

with the following properties:

(i) the map ↵˚ induced on K-theory by t↵tu is the inverse Bott map �
´1

;

(ii) if B is a C
˚
-subalgebra of A and t↵A

t
u and t↵B

t
u are the asymptotic families

associated to A and B respectively, then for all b P S
2
B, ↵

A

t
pbq ´ ↵

B

t
pbq Ñ 0

as t Ñ 8;

(iii) for any finite-dimensional subspace X of A and any element of S
2
X,

suptdp↵tpxq, X b Kq | x P S
2
X, }x} § 1u

tends to zero as t tends to infinity;

(iv) if we fix an inductive limit description K “ î8
n“1 MnpCq, then for all t and

all a P S
2
A, ↵tpaq has image in the ˚-subalgebra î8

n“1 MnpAq of A b K.
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Proof. There are several di↵erent ways to do this. We sketch one from [11] based
on the representation theory of the Heisenberg group. As in [11, Section 4], one may
canonically construct a continuous field of C˚-algebras over r0, 1s with the fibre at 0
equal to S

2C, and all other fibres equal to K. As explained in [8, Appendix 2.B] or
[9, pages 101-2], such a deformation (non-canonically) gives rise to an asymptotic
family t↵t : S2C Ñ Ku, and this family induces the map on K-theory described in
general in [11, Section 3], and which is shown in [11, Theorem 4.5] to be the inverse
of the Bott periodicity isomorphism.

This gives us our asymptotic family t↵tu for the case A “ C. In the general case,
we may take t↵A

t
u to be a choice of asymptotic family t↵tb idA : S2CbA Ñ KbAu

as in Definition 7.1.
Note that the construction of t↵A

t
u is not canonical at two places: going from a

deformation to an asymptotic family, and taking the tensor product. However, any
two asymptotic families t↵tu, t↵1

t
u constructed from di↵erent choices will satisfy

↵tpaq ´↵
1
t
paq Ñ 0 as t Ñ 8 for all a P S

2
A. It follows that the asymptotic families

so constructed satisfy (i), (ii), and (iii).
To make it also satisfy (iv), let tktutPr1,8q be a continuous family of positive

contractions in
î

MnpAq Ñ K such that for all k P K, ktkkt ´ k Ñ 0 as Ñ 8. For
each a P A, choose a homeomorphism sa : r1,8q Ñ r1,8q such that

↵
A

t
paq ´ p1 b ksaptqq↵tpaqp1 b ksaptqq Ñ 0

as t Ñ 8. Replacing ↵t with the map

a fiÑ p1 b ksaptqq↵A

t
paqp1 b ksaptqq,

we get the result. ⇤

8. Surjectivity of the product map

In this section, we prove the surjectivity half of Theorem 1.4.

Theorem 8.1. Let A be a C
˚
-algebra, and say A admits a uniform ideal structure

over a class C such that for each pC,Dq P C, C, D, and C XD satisfy the Künneth

formula. Then for any C
˚
-algebra B with free abelian K-theory, the product map

ˆ : K˚pAq b K˚pBq Ñ K˚pA b Bq
is surjective.

Proof. It su�ces to show that the product maps

⇡ : KpAq b0 KpBq Ñ K0pA b Bq and ⇡ : KpAq b1 KpBq Ñ K1pA b Bq
of Definition 6.3 are surjective for any B with K˚pBq free. Replacing B with
its suspension, it moreover su�ces to show that the second of the maps above is
surjective. Let then  be an arbitrary class in K1pA b Bq.

Let X Ñ A b B and u P Mnp rAq be as in Proposition 3.6 for this . Using
Corollary 3.5 and Lemma 5.4, for any � ° 0 there is an f -uniform �-ideal structure
of the form ph b 1, C b B,D b Bq for X. Fix such an ideal structure for a very
small � ° 0 (how small will be determined by the rest of the proof).

Using Proposition 3.6 we may build an element v P�1 M2np ÉA b Bq with the
properties stated there, for some constant �1 that tends to zero as � tends to zero.
We may use v to construct an element Bvu P K1ppC X Dq b Bq as in Proposition
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2.7 (here we use the identification pC X Dq b B “ C b B X D b B of Lemma 6.4),
and have that if

◆ : K0ppC X Dq b Bq Ñ K0pC b Bq ‘ K0pD b Bq
is the map from Definition 2.1, then ◆pBvuq “ 0.

Using that the product map ⇡ for C X D is surjective, we may lift Bvu to an
element � of KpC X Dq b0 KpBq. With notation as in Definition 6.3, Lemma 6.6
gives that the diagram

KpC X Dq b0 KpBq ◆bid
//

⇡

✏✏

KpCq b0 KpBq ‘ KpDq b0 KpBq
⇡

✏✏

K0ppC X Dq b Bq ◆
// K0pC b Bq ‘ K0pD b Bq

commutates. Hence

⇡pp◆b idqp�qq “ ◆p⇡p�qq “ ◆pBvuq “ 0.

Using that the product maps for C and D are injective, this gives us that p◆ b
idqp�q “ 0.

Now, we may write

� “
kÿ

i“1

�i b µi `
mÿ

i“k`1

�i b µi

for some k § m, where �i P K0pC X Dq for i § k, �i P K0pSpC X Dqq for i ° k,
and similarly µi P K0pBq for i § k and µi P K0pSBq for i ° k. As K˚pBq is free,
we may assume moreover that the set tµ1, ..., µmu generates a free direct summand
of K0pBq ‘ K0pSBq. We then have that

p◆b idqp�q “
mÿ

i“1

◆p�iq b µi “ 0,

which forces ◆p�iq “ 0 for each i by assumption that the collection tµ1, ..., µmu
generates a free direct summand of K0pBq‘K0pSBq. Applying Lemma 4.1 to each
�i separately gives us l1, ..., lm P N and invertible elements w1, ..., wm with

wi P
#

Mlip rAq i § k

Mlip ÄSAq i ° k

and corresponding lifts v1, ..., vm with

vi P
#

M2lip rAq i § k

M2lip ÄSAq i ° k

such that Bvipwiq “ �i and B
v

´1
i

pw´1
i

q “ ´�i. It will be important that there is

c ° 0 such that for i § k, each vi is an p✏, c, C,Dq-lift of ui for any ✏ ° 0, and
similarly for i ° k, with SC and SD in place of C and D.

Now, write µi “ rpis ´ rqis for projections pi and qi in matrix algebras over rB
for i § k, and over ÅSB for i ° k. Let t↵t : S2pA b Bq  A b B b Ku be an
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asymptotic family inducing the inverse Bott map as in Lemma 7.3. With notation
as in Definition 6.2, let us define

u :“ u ‘ pw´1
1 b p1q ‘ pw1 b q1q ‘ ¨ ¨ ¨ ‘ pw´1

k
b pkq ‘ pwk b qkq

‘ ↵tpw´1
k`1 b pk`1q ‘ ↵tpwk`1 b qk`1q ‘ ¨ ¨ ¨ ‘ ↵tpw´1

m
b pmq ‘ ↵tpwm b qmq,

and with notation also as in Lemma 4.2 define

v :“ v ‘ pv´1
1 b p1q ‘ pv1 b q1q ‘ ¨ ¨ ¨ ‘ pv´1

k
b pkq ‘ pvk b qkq

↵tpv´1
k`1 b pk`1q ‘ ↵tpvk`1 b qk`1q ‘ ¨ ¨ ¨ ‘ ↵tpv´1

m
b pmq ‘ ↵tpvm b qmq

which we can think of as elements of Mntp rAb rBq and Mntp rAb rBq respectively for
some nt P N depending on t (recall from Lemma 7.3 that each ↵t : S2pA b Bq Ñ
A b B b K takes image in MmtpA b Bq for some mt P N depending on t). Then
Lemma 4.2 gives that as long as our original � was su�ciently small, we have

Bvpuq “ Bvpuq `
kÿ

i“1

B
v

´1
i bpi

pw´1
i

b piq `
kÿ

i“1

Bvibqipwi b qiq

`
mÿ

i“k`1

B
↵tpv´1

i bpiq↵tpw´1
i

b piq `
mÿ

i“k`1

B↵tpvibqiq↵tpwi b qiq.

On the other hand, Lemmas 6.5, 7.2, and 7.3 give that for suitably large t this
equals

Bvpuq `
kÿ

i“1

B
v

´1
i bpi

pw´1
i

b piq `
kÿ

i“1

Bvibqipwi b qiq

`
mÿ

i“k`1

↵˚pB
v

´1
i bpi

pw´1
i

b piqq `
mÿ

i“k`1

↵˚pBvibqipwi b qiqq

“ Bvpuq `
kÿ

i“1

B
v

´1
i

pw´1
i

q ˆ rpis `
kÿ

i“1

Bvipwiq ˆ rqis

`
mÿ

i“k`1

↵˚pB
v

´1
i

pw´1
i

q ˆ rpisq `
mÿ

i“k`1

↵˚pBvipwiq ˆ rqisq

“ Bvpuq `
kÿ

i“1

p´�iq ˆ rpis `
kÿ

i“1

�i ˆ rqis

`
mÿ

i“k`1

�
´1pp´�i ˆ rpisq `

mÿ

i“k`1

�
´1p�i ˆ rqisq

“ Bvpuq ´
kÿ

i“1

�i ˆ µi ´
mÿ

i“k`1

�
´1p�i ˆ µiq

“ Bvpuq ´ ⇡p�q,
and this last line is zero.

We have just shown that Bvpuq “ 0. Noting that rus defines a class in K1pAb rBq
by Lemma 6.1, it follows at this point from Proposition 2.7 that (as long as the
original � ° 0 was suitably small) there exists ⌫ P K1pC b rBq ‘ K1pD b rBq such
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that �p⌫q “ rus. Moreover, if we define

⇠ :“
mÿ

i“1

rwis b rpis `
mÿ

i“1

rw´1
i

s b rqis “
mÿ

i“1

rwis b µi P KpAq b1 KpBq

then we have by definition of u that

�p⌫q “ rus “ rus ´ ⇡p⇠q.
Using surjectivity of the product maps for C and D, and with notation as in Defi-
nition 6.3, we may lift ⌫ to some ⇣ P KpCq b1 KpBq ‘KpDq b1 KpBq. Lemma 6.6
gives commutativity of the diagram

KpCq b1 KpBq ‘ KpDq b1 KpBq �bid
//

⇡

✏✏

KpAq b1 KpBq
⇡

✏✏

K1pC b Bq ‘ K1pD b Bq �
// K1pA b Bq

,

which implies that

rus “ ⇡p⇠q ` �p⌫q “ ⇡p⇠q ` �p⇡p⇣qq “ ⇡p⇠q ` ⇡pp� b idqp⇣qq “ ⇡p⇠ ` p� b idqp⇣qq,
so we have that rus is in the image of the map ⇡, and are done. ⇤

9. Injectivity of the product map

Finally, in this section we complete the main part of the paper by proving the
injectivity half of Theorem 1.4.

Theorem 9.1. Let A be a C
˚
-algebra, and say A admits a uniform approximate

ideal structure over a class C such that for each pC,Dq P C, C, D, and CXD satisfy

the Künneth formula. Then for any C
˚
-algebra B with free abelian K-theory, the

product map

ˆ : K˚pAq b K˚pBq Ñ K˚pA b Bq
is injective.

Proof. With notation as in Definition 6.3, it su�ces to show that the maps

⇡ : KpAq b0 KpBq Ñ K0pA b Bq and ⇡ : KpAq b1 KpBq Ñ K1pA b Bq
defined there are injective for any B with K˚pBq free abelian. On replacing B with
its suspension, it su�ces just to show injectivity in the K1 case.

Consider then an element  P KpAq b1 KpBq such that ⇡pq “ 0. We will show
that  “ 0. Fix a very small � ° 0, to be determined by the rest of the proof.

We may assume  is of the form

 “
kÿ

i“1

i b prpis ´ rqisq `
mÿ

i“k`1

i b prpis ´ rqisq,

where for some n P N, each i is an element of K1pAq for i § k or of K1pSAq for

i ° k, and each pair pi, qi consists of projections in Mnp rBq for i † k or in MnpÅSBq
for i ° k, so that the di↵erence is in MnpBq or MnpSBq as appropriate, and so that
the collection prpis ´ rqisqni“1 constitutes part of a basis for the free abelian group
K0pBq ‘ K0pSBq. Using Proposition 3.6, we may assume that for i § k there is a
finite-dimensional subspace X0,i of A and invertible ui P Mnp rAq with the properties
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stated there for i and �; and similarly for each i ° k, a finite-dimensional subspace
X1,i of SA and invertible ui P Mnp ÄSAq with the properties stated in Proposition
3.6 with respect to i and �.

With notation ‘b’ as in Definition 6.2, and with

t↵t : S
2p rA b rBq Ñ rA b rB b Ku

an asymptotic family for rA b rB as in Lemma 7.3 that realizes the inverse Bott
periodicity isomorphism, define

(13) ut :“
kà

i“1

ui b pi ‘
kà

i“1

u
´1
i

b qi `
mà

i“k`1

↵tpui b piq ‘
mà

i“k`1

↵tpu´1
i

b qiq.

Then for all t suitably large, ruts defines a class in K1p rA b rBq, which we may
consider as a class in K1pA b Bq thanks to Lemma 6.1.

By definition of ⇡, there is t0 P r1,8q such that ⇡pq “ ruts for all t • t0, and
so that the map

rt0,8q Ñ
8§

n“1

MnpAq, t fiÑ ut

is a continuous path of invertibles. As rut0s “ ⇡pq “ 0, we may assume moreover
that there exist l, p P N and a homotopy twsusPr0,1s of invertible elements in Mpp rAb
rBq such that w0 ‘ 1l “ ut0 , such that w1 “ 1p, such that each ws and w

´1
s

are in

t1 ` x P Mpp rA b rBq | x P MppA b rBqu. Let X3 be a finite-dimensional subspace

of A b rB such that all ws and w
´1
s

are �-in t1 ` x P Mpp rA b rBq | x P MppX3qu.
Using part (iii) of Lemma 7.3, there is moreover a finite-dimensional subspace X4

of A b rB such that for all t • t0 there exists nt P N such that ut and u
´1
t

are �-in
MntpX4q.

Now, using Corollary 3.5 and Lemma 5.4, for any � ° 0 there exists a triple
ph,C,Dq such that p1 b h, SC, SDq is an f -uniform �-ideal structure of X1, and
such that ph b 1, C b rB,D b rBq is an f -uniform �-ideal structure of both X3 and
X4. If � is small enough, Proposition 3.6 and Lemma 4.3 then let us build for each
i an invertible element

vi P
#

M2np rAq 1 § i § k

M2np ÄSAq k ` 1 § i § m

such that for some c ° 0 and �1 that tends to zero as � tends to zero, we have that
vi and v

´1
i

is a p�1, c, C,Dq lift of ui and u
´1
i

respectively for 1 § i § k, and so that
vi and v

´1
i

are a p�1, c, SC, SDq lift for ui and u
´1
i

respectively for k ` 1 § i § m.
With notation as in Lemma 4.2, define also

v :“
k

i“1

pvi b piq ‘
k

i“1

pv´1
i

b qiq and vS :“
m

i“k`1

pvi b piq ‘
m

i“k`1

pv´1
i

b qiq,

which are elements of matrix algebras over rAb rB and ÄSAbÅSB respectively. Define
also

u :“
kà

i“1

ui b pi ‘
kà

i“1

u
´1
i

b qi
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and

uS :“
mà

i“k`1

ui b pi ‘
mà

i“k`1

u
´1
i

b qi.

Then as long as � ° 0 is su�ciently small, Lemmas 4.2 and 6.5 give boundary
classes Bvu P K0ppC X Dq b rBq and BvS puSq P K0pSpC X Dq b ÅSBq.

Now, with �´1 the inverse Bott periodicity map, the element

pid ‘ �
´1qpBvu, BvS puSqq P K0ppC X Dq b rBq

is necessarily zero. Indeed, using Lemmas 7.2 and 4.2, this element is represented
by

Bvu ` B↵tvS p↵tpuSqqq “ Bv‘↵tpvSqpu ‘ ↵tpuSqq
for suitably large t. With notation as in line (13), this equals Bv‘↵tpvSqputq. Now,
we can drag a homotopy between ut and 1 through the construction of Proposition
3.6 to produce a homotopy between this element and 1 (this uses our choice of
ph,C,Dq, and the fact that there is a homotopy through invertibles between ut and
1 that is close to p1nt `MntpX3qq Y p1nt `MntpX4qq for some appropriate nt P N).

Lemmas 6.5 and 4.2 give then that

⇡

˜
mÿ

i“1

Bvipuiq b prpis ´ rqisq
¸

“ pid ‘ �
´1qpBvu, BvS puSqq

whence the class

⇡

˜
mÿ

i“1

Bvipuiq b prpis ´ rqisq
¸

P K0ppC X Dq b rBq

is zero also. Hence by injectivity of the product map for C X D, we have that

mÿ

i“1

Bvipuiq b prpis ´ rqisq

is zero in KpC X Dq b0 KpBq. Using the assumption that the collection prpis ´
rqisqmi“1 forms part of a basis for K0pBq ‘ K0pSBq, we get that Bvipuiq “ 0 in
K0pC X Dq ‘ K0pSpC X Dqq for each i. Hence Proposition 2.7 gives us j, l P N and
invertible elements

si P
#

Mj`lp rDq 1 § i § k

Mj`lpÅSDq k ` 1 § i § m

such that for each i P t1, ..., ku we have that pui ‘ 1lqs´1
i

is in Mj`lp rCq, and such

that for each i P tk ` 1, ...,mu we have that pui ‘ 1lqs´1
i

is in Mj`lpÅSCq. Applying
the same reasoning with the roles of ui and u

´1
i

interchanged, we similarly get
invertible elements

ri P
#

Mj`lp rCq 1 § i § k

Mj`lpÅSCq k ` 1 § i § m

such that for each i P t1, ..., ku, we have that pu´1
i

‘ 1lqr´1
i

is in Mj`lp rCq, and for

each i P tk ` 1, ...,mu, we have that pu´1
i

‘ 1lqr´1
i

is in Mj`lpÅSCq.
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Now, consider the class � P
`
KpCq b1 KpBq

˘
‘

`
KpDq b1 KpBq

˘
defined by

� “ p�C ,�Dq where

�C :“
mÿ

i“1

rpui ‘ 1lqs´1
i

s b rpis `
mÿ

i“1

rpu´1
i

‘ 1lqr´1
i

s b rqis

and

�D :“
mÿ

i“1

rsis b rpis `
mÿ

i“1

rris b rqis,

and note that  “ �p�q. The image of � under the product map

ˆ : KpCq b1 KpBq ‘ KpDq b1 KpBq
Ñ

`
K1pC b Bq ‘ K1pSC b SBq

˘
‘

`
K1pD b Bq ‘ K1pSD b SBq

˘

is represented by the invertible element

x :“
˜

mà

i“1

`
pui ‘ 1lqs´1

i
b pi

˘
‘

mà

i“1

`
pu´1

i
‘ 1lqr´1

i
b qi

˘
,

mà

i“1

`
si b pi

˘
‘

mà

i“1

`
ri b qi

˘
¸
.

We have that ⇡p�q equals the image of the class above under the map

id ‘ �
´1 :

`
K1pC b Bq ‘ K1pSC b SBq

˘
‘

`
K1pD b Bq ‘ K1pSD b SBq

˘

Ñ K1pC b Bq ‘ K1pD b Bq,
which, with notation as in Lemma 7.3, is represented concretely by the invertible
element pid ‘ ↵tqpxq for all suitably large t. On the other hand, using almost
multiplicativity of the asymptotic family t↵tu and comparing this with the formula
for ut in line (13), we see that ut can be made arbitrarily close to

pid ‘ ↵tq
˜´ mà

i“1

`
pui ‘ 1lqs´1

i
b pi

˘
‘

mà

i“1

`
pu´1

i
‘ 1lqr´1

i
b qi

˘¯

¨
´ mà

i“1

`
si b pi

˘
‘

mà

i“1

`
ri b qi

˘¯¸

by increasing t, and up to taking block sum with 1q for some q depending on t.
Now, for each fixed t there is nt P N such that ut is homotopic to the identity

through invertibles that are �-in

t1 ` x P MntpA b rBq | x P MntpX3q Y MntpX4qu
via the concatenation of the homotopies tususPrt0,ts and tws ‘1nt´pusPr0,1s and our
assumption on ph,C,Dq. We are thus in a position to apply Proposition 5.7 to
conclude that there exists a class µ P K1ppC X Dq b rBq such that ◆pµq “ ⇡p�q.
Using surjectivity of the product map for C X D, we may lift µ to some element ⌫
of KpC X Dq b1 Kp rBq. Using Lemma 6.6, we have that

⇡p�q “ ◆pµq “ ◆p⇡p⌫qq “ ⇡p◆p⌫qq.
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Hence by injectivity of the product maps for C and D, this forces � “ ◆p⌫q. Finally,
we have that  “ �p�q and so

 “ �p�q “ �p◆p⌫qq.
However, � ˝ ◆ is clearly the zero map on K-theory, so we are done. ⇤

Appendix A. Nuclear dimension

In this appendix, we give examples of weak approximate ideal structures coming
from nuclear dimension one. See [35] for background on the theory of nuclear
dimension.

For the statement of the next result, if A is a C
˚-algebra, let A8 denote the

quotient
±

N A{ ‘N A of the product of countably many copies of A by the direct
sum. If pBnq is a sequence of C

˚-subalgebras of A, we let B8 denote the C
˚-

subalgebra
±

N Bn{ ‘N Bn of A8.
The following fact was told to me by Wilhelm Winter8.

Proposition A.1. Let A be a separable
9
unital C

˚
-algebra of nuclear dimension

one. Then there exist

(i) a positive contraction h P A8 X A
1
, and

(ii) sequences pCnq, pDnq of C
˚
-subalgebras of A

such that:

(1) each Cn and each Dn is a quotient of a cone over a finite-dimensional

C
˚
-algebra,

(2) for all a P A, ha P C8, p1 ´ hqa P D8,

Proof. Using [35, Theorem 3.2] (and that A is separable) there exists a sequence
p n,�n, Fnq where:

(i) each Fn is a finite-dimensional C˚-algebra that decomposes as a direct sum

Fn “ F
p0q
n ‘ F

p1q
n ;

(ii) each  n is a ccp map A Ñ Fn such that the induced diagonal map

 : A Ñ F8

is order zero;

(iii) each �n is a map Fn Ñ A such that the restriction �piq
n of �n to F

piq
n is ccp

and order zero;
(iv) for each a P A, �n npaq Ñ a as n Ñ 8.

Let � : F8 Ñ A8, and �piq : F piq
8 Ñ A8 denote the induced maps, let piq : F8 Ñ

F
piq
8 denote the canonical quotient, and consider the composition

✓
piq :“ �piq ˝ piq ˝  : A Ñ A8.

Each ✓piq is then ccp and order zero, and we have moreover that ✓p0q`✓p1q : A Ñ A8
agrees with the canonical diagonal inclusion.

Now, let Mi :“ MpC˚p✓piqpAqqq be the multiplier algebra of the C
˚-subalgebra

C
˚p✓piqpAqq of A8 generated by ✓piqpAq. Using [34, Theorem 2.3] if we set hi :“

8The proof, however, is the author’s. Professor Winter likely knows a better proof.
9Not really necessary, but the statement would be a little fiddlier otherwise.
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✓
piqp1q, then hi is a positive contraction in C

˚p✓piqpAqq X A
1, and there exists a

unital10 ˚-homomorphism ⇡
piq : A Ñ Mi X thiu1 such that

✓
piqpaq “ hi⇡

piqpaq
for all a P A. As 1 “ ✓

p0qp1q ` ✓
p1qp1q “ h1 ` h2, we will switch notation and write

h :“ h1, so 1 ´ h “ h2, so for all a P A,

(14) a “ h⇡
p0qpaq ` p1 ´ hq⇡p1qpaq.

Note in particular that h commutes with both ✓p1qpAq (as h “ h1 and h1 commutes
with this collection), and with ✓p2qpAq (as 1 ´ h “ h2, and h2 commutes with this
collection). Hence h commutes with ✓p1qpAq ` ✓

p2qpAq Ö A, so in particular h is in
A8 X A

1.
Now, let us think of ⇡piq : A Ñ Mi as having image in the double dual pA8q˚˚

by postcomposing with the canonical embedding Mi Ñ pA8q˚˚. Let us replace ⇡piq

with the map

(15) a fiÑ �r0,1sztiuphq⇡piqpaq ` �tiuphqa.
Then the equation in line (14) still holds for all a P A. Let B be the unital C˚-
algebra generated by h, A, ⇡p0qpAq and ⇡

p1qpAq, and note that h is central in B.
For each � P r0, 1s in the spectrum of h in C

˚ph, 1q, let I� be the C
˚-ideal in B

generated by the corresponding maximal ideal in C
˚ph, 1q (with I� “ B if � is not

in the spectrum of h). Then in B{I�, the equation in line (14) descends to

a “ �⇡
p0qpaq ` p1 ´ �q⇡p1qpaq.

If � P p0, 1q and a “ u P A is unitary, this writes the image of u in B{I� as a convex
combination of two elements in the unit ball; as unitaries are always extreme points
in the unit ball of a C

˚-algebra [3, Theorem II.3.2.17], this is impossible unless
⇡

p0qpuq “ ⇡
p1qpuq “ u modulo I� for all � P p0, 1q. As the unitaries span any unital

C
˚-algebra [3, Proposition II.3.2.12], this forces ⇡p0qpaq “ ⇡

p1qpaq “ a modulo I�

for all a P A and all � P p0, 1q. On the other hand, if � “ 0, we clearly get
⇡

p1qpaq “ a modulo I0 for all a P A, while ⇡p0qpaq “ a modulo I0 follows from the
replacement we made in line (15). Similarly, if � “ 1, we also get that ⇡p0qpaq “ a

and ⇡p1qpaq “ a modulo I1. Putting this together, we have that the precomposition
of either ⇡p0q or ⇡p1q with the natural diagonal ˚-homomorphism

� : B Ñ
π

�Pspectrumphq
B{I�

agrees with the natural map A Ñ ±
�Pr0,1s B{I� induced by the inclusion A Ñ B.

However, as C
˚ph, 1q is contained in the center of B, the map � is injective by

[10, Theorem 7.47]. Hence we get that both ⇡p0q and ⇡p1q agree with the diagonal
inclusion A Ñ A8, and thus have the equations

✓
p0qpaq “ ha and ✓

p1qpaq “ p1 ´ hqa
for all a P A.

To complete the proof, therefore, we need to find sequences pCnq and pDnq of
C

˚-subalgebras of A with the right properties. For each n and each i P t0, 1u,
10Unitality follows from the proof in the given reference, but does not appear explicitly in the

statement.
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consider �piq
n : F

piq
n Ñ A. As this is order zero, [34, Corollary 3.1] gives a ˚-

homomorphism ⇢
piq
n : C0p0, 1s b F

piq
n Ñ A such that �piq

n pbq “ ⇢
piq
n px b bq for all

b P A, where x P C0p0, 1s is the identity function. Set Cn :“ ⇢
p0q
n pC0p0, 1sbF

p0q
n q and

Dn “ ⇢
p1q
n pC0p0, 1s b F

p1q
n q, which contain the images of �p0q

n and �p1q
n respectively.

It is straightforward to check that pCnq and pDnq have the right properties. ⇤

The next corollary follows by lifting the element h P A8 to a positive contraction
phnq P ±

n
A: we leave the details to the reader.

Corollary A.2. Let A be a separable C
˚
-algebra of nuclear dimension one, and

let C be the class of pairs pC,Dq of C
˚
-subalgebras of A such that each of C and D

is isomorphic to a quotient of a cone over a finite dimensional C
˚
-algebra. Then

A has a weak approximate ideal structure over C. ⇤

Remark A.3. Based on the above it is natural to ask: if A admits a weak approx-
imate ideal structure over a class C as in Definition 1.5, can one use an additional
argument to show that A admits an approximate ideal structure over C? We do not
believe this is true due to the following example11; we warn the reader that we did
not check the details of what follows. It seems by adapting Proposition A.1 that
one can show that if A has nuclear dimension one and real rank zero, then it has a
weak approximate ideal structure over the class C of pairs of its finite dimensional
C

˚-subalgebras. In particular, this would apply to any Kirchberg algebra (see [5,
Theorem G] and [27, Proposition 4.1.1]). However, if A admits an approximate
ideal structure over a class of pairs of finite-dimensional C˚-algebras, then a mild
elaboration of Proposition 3.6 below shows that K1pAq is torsion free. As there are
Kirchberg algebras with non-trivial torsion K1 group (see [27, Section 4.3]), this
(if correct!) would show that admitting a weak approximate ideal structure over C
and admitting an approximate ideal structure over C are not the same.

Appendix B. Finite dynamical complexity

In this appendix, we give examples of approximate ideal structures coming from
decompositions of groupoids as introduced in [16]. Our conventions on groupoids
will be as in [16, Appendix A] and [26, Section 2.3].

The following is a slight variant of [16, Definition A.4].

Definition B.1. Let G be a locally compact, Hausdor↵, étale groupoid, let H be
an open subgroupoid of G, and let C be a set of open subgroupoids of G. We say
that H is decomposable over C if for any open, relatively compact subset K of H
there exists an open cover Hp0q “ U0 YU1 of the unit space of H such that for each
i P t0, 1u the subgroupoid of H generated by

th P K | sphq P Uiu
is contained in an element of C.

The first technical result of this section is as follows. See Definitions 1.1 and 1.3
for terminology.

11Inspired by a suggestion of Ian Putnam.
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Proposition B.2. Say G is a second countable, locally compact, Hausdor↵ étale

groupoid that that decomposes over a set D of open subgroupoids of G. Then the

reduced groupoid C
˚
-algebra C

˚
r

pGq admits an approximate ideal structure over the

class of pairs

C :“ tpC˚
r

pH1q, C˚
r

pH2qq | H1, H2 P Du.
Moreover, if every groupoid in D is clopen, then C

˚
r

pGq admits a uniform approxi-

mate ideal structure over the class C above.

The proof will proceed via some lemmas. First we give the existence of approx-
imate ideal structures.

Lemma B.3. Say G is a locally compact, Hausdor↵ étale groupoid that decomposes

over a set D of subgroupoids of G in the sense of Definition B.1. Then the reduced

groupoid C
˚
-algebra C

˚
r

pGq admits an approximate ideal structure over the set C :“
tpC˚

r
pH1q, C˚

r
pH2qq | H1, H2 P Du.

Proof. Let X be a finite-dimensional subspace of C˚
r

pGq. Up to an approximation,
we may assume that there is an open relatively compact subset K of G such that
every element of X is an element of CcpGq supported in K. Using (a slight variation
on) [16, Lemma A.12], for any ✏ ° 0, there is an open cover G

p0q “ U0 Y U1

of the base space of G and a pair of continuous compactly supported functions
t�0,�1 : Gp0q Ñ r0, 1su with the following properties.

(i) each �i is supported in Ui;
(ii) for each i P t0, 1u, the set tk P K | rpkq P Uiu generates an open subgroupoid

of G that is contained in some element Hi of D;
(iii) for each x P G

p0q, �0pxq`�1pxq § 1 and for each k P K, �0prpkqq`�1prpkqq “
1;

(iv) for any k P K and i P t0, 1u, |�ipspkqq ´ �iprpkqq| † ✏.

We claim that for any � ° 0, there exists ✏ suitably small such that if �0 and �1 are
chosen as above, then ph,C,Dq “ p�0, C˚

r
pH1q, C˚

r
pH2qq is a �-approximate ideal

structure.
Indeed, the fact that }rh, as} § �}a} for all a P X follows from condition (iv)

above and [17, Lemma 8.20]. We have moreover that for any a P X, ha “ �0a, and
this is supported in tk P K | rpkq P U0u by condition (i), whence is in C

˚
r

pH0q by
condition (ii). On the other hand, p1 ´ hqa “ �1a for any a P X by condition (iii),
whence p1 ´ hqa is in C

˚
r

pH1q by the same argument. ⇤
The next lemma is presumably well-known.

Lemma B.4. Let G be a locally compact, Hausdor↵, étale groupoid, and let H Ñ G

be a clopen subgroupoid. Then the restriction map E : CcpGq Ñ CcpHq extends to

a conditional expectation E : C˚
r

pGq Ñ C
˚
r

pHq.
Proof. For x P H

p0q, let ⇡x : C
˚
r

pHq Ñ Bp`2pHxqq be the associated regular
representation defined by

p⇡xpbq⇠qphq :“
ÿ

kPHx

bphk´1q⇠phq

as in [26, Section 2.3.4]. Let ⇠, ⌘ P `2pHxq, and consider

x⇠,⇡xpEpaqq⌘y`2pHxq “
ÿ

h,kPHx

Epaqphk´1q⌘pkq⇠phq “
ÿ

h,kPGx

aphk´1q⌘̃pkq⇠̃phq
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where ⇠̃ P `2pGxq is the function defined by extending ⇠ by zero on GxzHx, and the
second equality uses that H is a subgroupoid to deduce that if h, k P H, then hk

´1

is in H. Hence if ⇡G

x
is the corresponding representation of G on `2pGxq, we have

x⇠,⇡xpEpaqq⌘y`2pHxq “ x⇠̃,⇡G

x
paq⌘̃y,

and so

}Epaq} “ sup
}⇠}“}⌘}“1

|x⇠,⇡xpEpaqq⌘y`2pHxq| “ sup
}⇠}“}⌘}“1

|x⇠̃,⇡G

x
paq⌘̃y| § }a}.

Hence E is contractive, and so in particular extends to an idempotent linear con-
traction E : C˚

r
pGq Ñ C

˚
r

pHq. This extended map is necessarily a contraction by
a classical theorem of Tomiyama: see for example [6, Theorem 1.5.10]. ⇤

Lemma B.5. Say G is a locally compact, Hausdor↵, étale groupoid. Then the set of

pairs of C
˚
-subalgebras of C

˚
r

pGq of the form pC˚
r

pH1q, C˚
r

pH2qq with H1, H2 Ñ G

both open subgroupoids, and at least one of them also closed, is f -uniform as in

Definition 5.1, with fptq “ 2t.

Proof. Say B is an arbitrary C
˚-algebra, and consider c P C

˚
r

pH1q b B and d P
C

˚
r

pH2q bB. Say without loss of generality that H2 is closed, and let E : C˚
r

pGq Ñ
C

˚
r

pH2q be the conditional expectation of Lemma B.4. As E is just defined on
CcpGq by restriction of functions, it follows that E takes C

˚
r

pH1q into itself, and
therefore into C

˚
r

pH1q X C
˚
r

pH2q. Hence by functoriality of tensor product maps,
we see that E b id restricted to C

˚
r

pH1q b B is a map

E b id : C˚
r

pH1q b B Ñ pC˚
r

pH1q X C
˚
r

pH2qq b B.

In particular, x :“ pE b idqpcq is in pC˚
r

pH1q X C
˚
r

pH2qq b B. On the other hand,
E b id is contractive (see for example [6, Theorem 3.5.3]) and takes C

˚
r

pH1q to
itself, so we get that

}d ´ x} “ }pE b idqpc ´ dq} § }c ´ d}
and

}c ´ x} § }c ´ d} ` }d ´ x} § 2}c ´ d}
so we are done. ⇤

Proposition B.2 now follows directly from Lemmas B.3, B.4, and B.5.
We spend the rest of this appendix deriving some consequences of Proposition

B.2.

Corollary B.6. Say G is an ample, second countable, locally compact, Hausdor↵

étale groupoid. Let K be the class of clopen subgroupoids of G, such that for any

H P K, and any clopen subgroupoid K of H, C
˚
r

pKq satisfies the Künneth formula.

Then K is closed under decomposability.

Proof. Say H is a clopen subgroupoid of G that decomposes over K. Then C
˚
r

pHq
admits a uniform approximate ideal structure over the class tpC˚

r
pK1q, C˚

r
pK2qq |

K1,K2 P Ku by Proposition B.2, and so C
˚
r

pHq satisfies Künneth by Theorem
1.4. The same argument also applies to any clopen subgroupoid of H: indeed, any
clopen subgroupoid of H is easily seen to also decompose over K (compare the proof
of [16, Lemma 3.16]). ⇤
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We will finish with an example that is closely related to the notion of finite
dynamical complexity for groupoids introduced in [16, Definition A.4]

Definition B.7. Say G is an ample, locally compact, Hausdor↵ étale groupoid
with finite dynamical complexity. Let C be the class of compact open subgroupoids
of G, and let D be the smallest class of clopen subgroupoids of G containing C and
closed under decomposability. Then G has strong finite dynamical complexity if G
itself is contained in D.

Theorem B.8. Say G is a principal, locally compact, Hausdor↵ étale groupoid with

strong finite dynamical complexity. Then C
˚
r

pGq satisfies the Künneth formula.

This result is not new: groupoids as in the statement are amenable by [16,
Theorem A.9], and therefore their C

˚-algebras satisfy the UCT by a result of Tu
[32, Proposition 10.7] (at least in the second countable case). Nonetheless, it seems
interesting to give a relatively direct proof based on the internal structure of the
C

˚-algebra.

Proof. Let K be as in Corollary B.6, and let C be the class of compact open sub-
groupoids of C. Then for any H P K, the reduced C

˚-algebra C
˚
r

pHq is principal
and proper, so Morita equivalent to the continuous functions CpHp0q{Hq on the
orbit space by [23, Example 2.5 and Theorem 2.8] (the second countability assump-
tions in that paper are not necessary in the étale case [12]). Hence C

˚
r

pHq satisfies
the Künneth formula. As C is closed under taking clopen subgroupoids, K contains
C.

Hence if D is as in Definition B.7, then K contains D by Corollary B.6. However,
strong finite dynamical complexity implies that G itself is in D, so we are done. ⇤
Example B.9. Let X be a bounded geometry metric space, and assume that
X has finite decomposition complexity as introduced in [14] and studied in [15].
Then the associated coarse groupoid GpXq has strong finite dynamical complex-
ity by the proof of [16, Theorem A.4]. Hence the associated groupoid C

˚-algebra
C

˚
r

pGpXqq, which canonically identifies with the uniform Roe algebra C
˚
u

pXq, sat-
isfies the Künneth formula by Theorem B.8.
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[13] Guentner, Erik; Higson, Nigel; Trout, Jody. Equivariant E-theory. Mem. Amer. Math.

Soc. 148 (2000), no. 703. MR1711324, Zbl 0983.19003 .
[14] Guentner, Erik; Tessera, Romain; Yu, Guoliang. A notion of geometric complexity and

its application to topological rigidity. Invent. Math., 189 (2012), 315–357. MR2947546, Zbl
1257.57028.

[15] Guentner, Erik; Tessera, Romain; Yu, Guoliang. Discrete groups with finite decom-
position complexity. Groups, Geometry and Dynamics, 7 (2013), 377–402. MR3054574, Zbl
1272.52041.

[16] Guentner, Erik; Willett, Rufus; Yu, Guoliang. Finite dynamical complexity and con-
trolled operator K-theory. arXiv:1609.02093, 2016.

[17] Guentner, Erik; Willett, Rufus; Yu, Guoliang. Dynamic asymptotic dimension: re-
lation to dynamics, topology, coarse geometry, and C˚-algebras. Math. Ann., 367 (2017),
785–829. MR3606454, Zbl 1380.37018.

[18] Higson, Nigel; Guentner, Erik. Group C˚-algebras and K-theory. Noncommutative geom-

etry, 137–251, Lecture Notes in Math., 1831, Fond. CIME/CIME Found. Subser., Springer,
Berlin, 2004. MR2058474, Zbl 1053.46048.

[19] Higson, Nigel; Roe, John. Analytic K-homology. Oxford Mathematical Monographs.
Oxford Science Publications. Oxford University Press, Oxford, 2000. MR1817560, Zbl
0968.46058.

[20] Kye, Seung-Hyeok. Counterexamples in intersections for C˚-tensor products. Proc. Edin-
burgh Math. Soc., 27 (1984), 301–302. MR0800220, Zbl 0538.46040.

[21] Lafforgue, Vincent. La conjecture de Baum-Connes à coe�cients pour les groupes hyper-
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(IMPA), Rio de Janeiro, 2009. MR2536186, Zbl 1182.46047.

[27] Rørdam, Mikael. Classification of Nuclear C˚
-algebras. Entropy in operator algebras. Ency-

clopaedia of Mathematical Sciences, 126. Operator Algebras and Non-commutative Geometry,
7. Springer-Verlag, Berlin, 2002. MR1878882, Zbl 1016.46037.

[28] Rørdam, Mikael; Larsen, Flemming; Laustsen, Niels. An Introduction to K-Theory for

C˚
-Algebras. London Mathematical Society Student Texts, 49. Cambridge University Press,

Cambridge, 2000. MR1783408, Zbl 0967.19001.



46 RUFUS WILLETT

[29] Rosenberg, Jonathan; Schochet, Claude. The Künneth theorem and the universal co-
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1 (1988), 549–573. MR0953916, Zbl 0653.46065.

[32] Tu, Jean Louis. La conjecture de Baum-Connes pour les feuilletages moyennables. K-theory,
17 (1999), 215–264. MRR1703305, Zbl 0939.19001.

[33] Wegge-Olsen, Niels. K-Theory and C˚
-Algebras (A Friendly Approach). Oxford Science

Publications. The Clarendon Press, Oxford University Press, New York, 1993. MR1222415,
Zbl 0780.46038.

[34] Winter, Wilhelm; Zacharias, Joachim. Completely positive maps of order zero. Münster

J. Math., 2 (2009), 311–324. MR2545617, Zbl 1190.46042.
[35] Winter, Wilhelm; Zacharias, Joachim. The nuclear dimension of C˚-algebras.Adv. Math.,

224 (2010), 461–498. MR2609012, Zbl 1201.46056.
[36] Yu, Guoliang. The Novikov conjecture for groups with finite asymptotic dimension. Ann.

of Math., 147 (1998), 325–355. MR1626745, Zbl 0911.19001.

rufus@math.hawaii.edu

Mathematics Department, University of Hawai‘i at Mānoa, Keller 401A, 2565 McCarthy
Mall, Honolulu, HI 96822, USA


	1. Introduction
	2. Boundary classes
	3. Approximate ideal structures and the vanishing theorem
	4. More on boundary classes
	5. Approximate ideal structures and the summation map
	6. The product map
	7. The inverse Bott map
	8. Surjectivity of the product map
	9. Injectivity of the product map
	Appendix A. Nuclear dimension
	Appendix B. Finite dynamical complexity
	References

