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Abstract

We propose a novel algorithm for quantizing con-

tinuous latent representations in trained models.

Our approach applies to deep probabilistic mod-

els, such as variational autoencoders (VAEs), and

enables both data and model compression. Un-

like current end-to-end neural compression meth-

ods that cater the model to a fixed quantization

scheme, our algorithm separates model design

and training from quantization. Consequently,

our algorithm enables “plug-and-play” compres-

sion with variable rate-distortion trade-off, using

a single trained model. Our algorithm can be

seen as a novel extension of arithmetic coding to

the continuous domain, and uses adaptive quan-

tization accuracy based on estimates of posterior

uncertainty. Our experimental results demonstrate

the importance of taking into account posterior

uncertainties, and show that image compression

with the proposed algorithm outperforms JPEG

over a wide range of bit rates using only a single

standard VAE. Further experiments on Bayesian

neural word embeddings demonstrate the versatil-

ity of the proposed method.

1. Introduction

Latent-variable models have become a mainstay of modern

machine learning. Scalable approximate Bayesian infer-

ence methods, in particular Black Box Variational Inference

(Ranganath et al., 2014; Rezende et al., 2014), have spurred

the development of increasingly large and expressive proba-

bilistic models, including deep generative probabilistic mod-

els such as variational autoencoders (Kingma & Welling,

2014b) and Bayesian neural networks (MacKay, 1992; Blun-

dell et al., 2015). One natural application of deep latent

variable modeling is data compression, and recent work has

focused on end-to-end procedures that optimize a model
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for a particular compression objective. Here, we study a

related but different problem: given a trained model, what

is the best way to encode the information contained in its

continuous latent variables?

As we show, our proposed solution provides a new “plug-

and-play” approach to lossy compression of both data in-

stances (represented by local latent variables, e.g., in a VAE)

as well as model parameters (represented by global latent

variables that serve as parameters of a Bayesian statisti-

cal model). Our approach separates the compression task

from model design and training, thus implementing variable-

bitrate compression as an independent post-processing step

in a wide class of existing latent variable models.

At the heart of our proposed method lies a novel quanti-

zation scheme that optimizes a rate-distortion trade-off by

exploiting posterior uncertainty estimates. Quantization is

central to lossy compression, as continuous-valued data like

natural images, videos, and distributed representations ul-

timately need to be discretized to a finite number of bits

for digital storage or transmission. Lossy compression al-

gorithms therefore typically find a discrete approximation

of some semantic representation of the data, which is then

encoded with a lossless compression method.

In classical lossy compression methods such as JPEG or

MP3, the semantic representation is carefully designed to

support compression at variable bitrates. By contrast, state-

of-the-art deep learning based approaches to lossy data com-

pression (Ballé et al., 2017; 2018; Rippel & Bourdev, 2017;

Mentzer et al., 2018; Lombardo et al., 2019) are trained to

minimize a distortion metric at a fixed bitrate. To support

variable-bitrate compression in this approach, one has to

train several models for different bitrates. While training

several models may be viable in many cases, a bigger issue

is the increase in decoder size as the decoder has to store

the parameters of not one but several deep neural networks

for each bitrate setting. In applications like video streaming

under fluctuating connectivity, the decoder further has to

load a new deep learning model into memory every time a

change in bandwidth requires adjusting the bitrate.

By contrast, we propose a a quantization method for latent

variable models that decouples training from compression,

and that enables variable-bitrate compression with a single

model. We generalize a classical entropy coding algorithm,
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Arithmetic Coding (Witten et al., 1987; MacKay, 2003),

from the discrete to continuous domain. Our proposed algo-

rithm, Variational Bayesian Quantization, exploits posterior

uncertainty estimates to automatically reduce the quanti-

zation accuracy of latent variables for which the model is

uncertain anyway. This strategy is analogous to the way hu-

mans communicate quantitative information. For example,

Wikipedia lists the population of Rome in 2017 with the

specific number 2,879,728. By contrast, its population in

the year 500 AD is estimated by the round number 100,000
because the high uncertainty would make a more precise

number meaningless. Our ablation studies show that this

posterior-informed quantization scheme is crucial to obtain-

ing competitive performance.

In detail, our contributions are as follows:

• A new discretization scheme. We present a novel ap-

proach to discretizing latent variables in a variational

inference framework. Our approach generalizes arith-

metic coding from discrete to continuous distributions

and takes posterior uncertainty into account.

• Single-model compression at variable bitrates. The

decoupling of modeling and compression allows us

to adjust the trade-off between bitrate and distortion

in post-processing. This is in contrast to existing ap-

proaches to both data and model compression, which

often require specially trained models for each bitrate.

• Automatic self-pruning. Deep latent variable models

often exhibit posterior collapse, i.e., the variational

posterior collapses to the model prior. In our approach,

latent dimensions with collapsed posteriors require

close to zero bits, thus don’t require manual pruning.

• Competitive experimental performance. We show that

our method outperforms JPEG over a wide range of

bitrates using only a single model. We also show that

we can successfully compress word embeddings with

minimal loss, as evaluated on semantic reasoning task.

The paper is structured as follows: Section 2 reviews related

work in neural compression; Section 3 proposes our Varia-

tional Bayesian Quantization algorithm. We give empirical

results in Section 4, and conclude in Section 5. Section 6

provides additional theoretical insight about our method.

2. Related Work

Compressing continuous-valued data is a classical problem

in the signal processing community. Typically, a distortion

measure (often the squared error) and a source distribution

are assumed, and the goal is to design a quantizer that opti-

mizes the rate-distortion (R-D) performance (Lloyd, 1982;

Berger, 1972; Chou et al., 1989). Optimal vector quan-

tization, although theoretically well-motivated (Gallager,

1968), is not tractable in high-dimensional spaces (Gersho

& Gray, 2012) and not scalable in practice. Therefore most

classical lossy compression algorithms map data to a suit-

ably designed semantic representation, in such a way that

coordinate-wise scalar quantization can be fruitfully applied.

Recent machine-learning-based data compression methods

learn such hand-designed representation from data, but sim-

ilar to classical methods, most such ML methods directly

take quantization into account in the generative model de-

sign or training. Various approaches have been proposed

to approximate the non-differentiable quantization opera-

tion during training, such as stochastic binarization (Toderici

et al., 2016; 2017), additive uniform noise (Ballé et al., 2017;

2018; Habibian et al., 2019), or other differentiable approxi-

mation (Agustsson et al., 2017; Theis et al., 2017; Mentzer

et al., 2018; Rippel & Bourdev, 2017); many such schemes

result in quantization with a uniformly-spaced grid, with the

exception of (Agustsson et al., 2017), which optimizes for

quantization grid points. Yang et al. (2020) considers opti-

mal quantization at compression time, but assumes a fixed

quantization scheme of (Ballé et al., 2017) during training.

We depart from such approaches by treating quantization

as a post-processing step decoupled from model design and

training. Crucial to our approach is a new quantization

scheme that automatically adapts to different length scales

in the representation space based on posterior uncertainty

estimates. To our best knowledge, the only prior work that

uses posterior uncertainty for compression is in the context

of bits-back coding (Honkela & Valpola, 2004; Townsend

et al., 2019), but these works focus on lossless compression,

with the recent exception of (Yang et al., 2020).

Most existing neural image compression methods require

training a separate machine learning model for each desired

bitrate setting (Ballé et al., 2017; 2018; Mentzer et al., 2018;

Theis et al., 2017; Lombardo et al., 2019). In fact, Alemi

et al. (2018) showed that any particular fitted VAE model

only targets one specific point on the rate-distortion curve.

Our approach has the same benefit of variable-bitrate single-

model compression as methods based on recurrent VAEs

(Gregor et al., 2016; Toderici et al., 2016; 2017; Johnston

et al., 2018); but unlike these methods, which use dedicated

model architecture for progressive image reconstruction, we

instead focus more broadly on quantizing latent representa-

tions in a given generative model, designed and trained for

specific application purposes (possibly other than compres-

sion, e.g., modeling complex scientific observations).
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3. Posterior-Informed Variable-Bitrate

Compression

We now propose an algorithm for quantizing latent vari-

ables in trained models. After describing the problem setup

and assumptions (Subsection 3.1), we briefly review Arith-

metic Coding (Subection 3.2). Subsection 3.3 describes our

proposed lossy compression algorithm, which generalizes

Arithmetic Coding to the continuous domain.

3.1. Problem Setup

Generative Model and Variational Inference. We con-

sider a wide class of generative probabilistic models with

data x and unknown (or “latent”) variables z ∈ R
K from

some continuous latent space with dimension K. The gen-

erative model is defined by a joint probability distribution,

p(x, z) = p(z) p(x|z) (1)

with a prior p(z) and a likelihood p(x|z). Although our pre-

sentation focuses on unsupervised representation learning,

our framework also captures the supervised setup.1

Our proposed compression method uses z as a proxy to de-

scribe the data x. This requires “solving” Eq. 1 for z given x,

i.e., inferring the posterior p(z|x) = p(x, z)/
∫
p(x, z) dz.

Since exact Bayesian inference is often intractable, we resort

to Variational Inference (VI) (Jordan et al., 1999; Blei et al.,

2017; Zhang et al., 2019), which approximates the posterior

by a so-called variational distribution qφ(z|x) by minimiz-

ing the Kullback-Leibler divergence DKL(qφ(z|x) || p(z|x))
over a set of variational parameters φ.

Factorization Assumptions. We assume that both the

prior p(z) and the variational distribution qφ(z|x) are fully

factorized (mean-field assumption). For concreteness, our

examples use a Gaussian variational distribution. Thus,

p(z) =
∏K

i=1p(zi); and (2)

qφ(z|x) =
∏K

i=1N (zi;µi(x), σ
2
i (x)), (3)

where p(zi) is a prior for the ith component of z, and the

means µi and standard deviations σi together comprise the

variational parameters φ over which VI optimizes.2

Prominently, the model class defined by Eqs. 1-3 in-

cludes variational autoencoders (VAEs) (Kingma & Welling,

2014a) for data compression, but we stress that the class is

1For supervised learning with labels y, we would consider
a conditional generative model p(y, z|x) = p(y|z,x) p(z) with
conditional likelihood p(y|z,x), where z are the model parameters,
treated as a Bayesian latent variable with associated prior p(z).

2These parameters are often amortized by a neural network (in
which case µi and σi depend on x), but don’t have to (in which
case µi and σi do not depend on x and are directly optimized).

much wider, capturing also Bayesian neural nets (MacKay,

2003), probabilistic word embeddings (Barkan, 2017; Bam-

ler & Mandt, 2017), matrix factorization (Mnih & Salakhut-

dinov, 2008), and topic models (Blei et al., 2003).

Protocol Overview. We consider two parties in commu-

nication, a sender and a receiver. In the case of data com-

pression, both parties have access to the model, but only

the sender has access to the data point x, which it uses

to fit a variational distribution qφ(z|x). It then uses the

algorithm proposed below to select a latent variable vec-

tor ẑ that has high probability under qφ, and that can be

encoded into a compressed bitstring, which gets transmitted

to the receiver. The receiver losslessly decodes the com-

pressed bitstring back into ẑ and uses the likelihood p(x|ẑ)
to generate a reconstructed data point x̂, typically setting

x̂ = argmaxx p(x|ẑ). In the case of model compression,

the sender infers a distribution qφ(z|x) over model parame-

ters z given training data x, and uses our algorithm to select

a suitable vector ẑ of quantized model parameters. The

receiver receives ẑ and uses it to reconstruct the model.

The rest of this section describes how the proposed algo-

rithm selects ẑ and encodes it into a compressed bitstring.

3.2. Background: Arithmetic Coding

Our quantization algorithm, introduced in Section 3.3 below,

is inspired by a lossless compression algorithm, arithmetic

coding (AC) (Witten et al., 1987; MacKay, 2003), which

we generalize from discrete data to the continuous space of

latent variables z ∈ R
K . To get there, we first review the

main idea of AC that our proposed algorithm borrows.

AC is an instance of so-called entropy coding. It uniquely

maps messages m ∈ M from a discrete set M to a com-

pressed bitstring of some length Rm (the “bitrate”). Entropy

coding exploits prior knowledge of the distribution p(m) of

messages to map probable messages to short bitstrings while

spending more bits on improbable messages. This way, en-

tropy coding algorithms aim to minimize the expected rate

Ep(m)[Rm]. For lossless compression, the expected rate has

a fundamental lower bound, the entroy H = Ep(m)[h(m)],
where h(m) = − log2 p(m) is the Shannon information

content of m. AC provides near optimal lossless compres-

sion as it maps each message m ∈ M to a bitstring of length

Rm = ⌈h(m)⌉, where ⌈·⌉ denotes the ceiling function.

AC is usually discussed in the context of streaming com-

pression where m is a sequence of symbols from a finite

alphabet, as AC improves on this task over the more widely

known Huffman coding (Huffman, 1952). In our work, we

focus on a different aspect of AC: its use of a cumulative

probability distribution function to map a nonuniformly dis-

tributed random variable m ∼ p(m) to a number ξ that is

nearly uniformly distributed over the interval [0, 1).
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Figure 4. Qualitative behavior of our proposed VBQ algorithm on

two data sets of small-scale images (MNIST and Frey Faces). With

decreasing bitrate, the method starts to confuse the encoded object

with a generic one (encoded by the median of the prior p(z)).

4.2. Image Compression

While Section 4.1 demonstrated the proposed VBQ method

for model compression, we now apply the same method to

data compression using a variational autoencoder (VAE).

We first provide qualitative insight on small-scale images,

and then quantitative results on full resolution color images.

Model. For simplicity, we consider regular VAEs with a

standard normal prior and Gaussian variational posterior.

The generative network parameterizes a factorized categor-

ical or Gaussian likelihood model in experiments in Sec.

4.2.1 or 4.2.2, respectively. Network architectures are de-

scribed below and in more detail in Supplementary Material.

Baselines. We consider the following baselines:

• Uniform quantization: for a given image x, we quan-

tize each dimension of the posterior mean vector µ(x)
to a uniform grid. We report the bitrate for encoding

the resulting quantized latent representation via stan-

dard entropy coding (e.g., arithmetic coding). Entropy

coding requires prior knowledge of the probabilities of

each grid point. Here, we use the empirical frequencies

of grid points over a subset of the training set;

• k-means quantization: similar to “uniform quantiza-

tion”, but with the placement of grid points optimized

via k-means clustering on a subset of the training data;

• Quantization with generalized Lloyd algorithm: similar

to above, but the grid points are optimized using gener-

alized Lloyd algorithm (Chou et al., 1989), a widely-

used state-of-the-art classical quantization method;

• JPEG: we used the libjpeg implementation packaged

with the Python Pillow library, using default config-

urations (e.g., 4:2:0 subsampling), and we adjust the

quality parameter to vary the rate-distortion trade-off;

• Deep learning baseline: we compare to Ballé et al.

(2017), who directly optimized for the rate and distor-

tion, training a separate model for each point on the R-

D curve. In our large-scale experiment, we adopte their

model architecture, so their performance essentially

represents the end-to-end optimized performance up-

per bound for our method (which uses a single model).

4.2.1. QUALITATIVE ANALYSIS ON TOY DATASETS

We trained a VAE on the MNIST dataset and the Frey Faces

dataset, using 5 and 4-dimensional latent spaces, respec-

tively. See Supplemental Material for experimental details.

Figure 4 shows example image reconstructions from our

VBQ algorithm with increasing λ, and thus decreasing bi-

trate. The right-most column is the extreme case λ → ∞,

resulting in the shortest possible bistring encoding ξ̂i =
(0.1)2 = 1

2 (i.e., ẑi being the median of the prior p(zi)) for

every dimension i. As the bitrate decreases (as R(ξ̂) → 0),

our method gradually “confuses” the original image with

a generic image (roughly in the center of the embedding

space), while preserving approximately the same level of

sharpness. This is in contrast to JPEG which typically intro-

duces blocky and/or pixel-level artifacts at lower bitrates.

4.2.2. FULL-RESOLUTION COLOR IMAGES

We apply our VBQ method to a VAE trained on color im-

ages, and obtain practical image compression performance

rivaling JPEG, while outperforming baselines that ignore

posterior uncertainty and directly quantize latent variables.

Model and Dataset. The inference and generative net-

works of our VAE are identical to the analysis and syn-

thesis networks of Ballé et al. (2017), using 3 layers of

256 filters each in a convolutional architecture. We used a

diagonal Gaussian likelihood model, whose mean is com-

puted by the generative net and the variance σ2 is fixed

as a hyper-parameter, similar to a β-VAE (Higgins et al.,

2017) approach (σ2 was tuned to 0.001 to ensure the VAE

achieved overall good R-D trade-off; see (Alemi et al.,

2018)). We trained the model on the same subset of the

ImageNet dataset as used in (Ballé et al., 2017). We evalu-

ated performance on the standard Kodak (Kodak) dataset,

a separate set of 24 uncompressed color images. As in the

word embedding experiment, we also observed that using an

empirical prior for our method improved the bitrate; for this,

we used the flexible density model of Ballé et al. (2018),

fitting a different distribution per latent channel, on samples

of posterior means µ (treating spatial dimensions as i.i.d.).
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sults in prior work (Ballé et al., 2017). Yibo Yang acknowl-

edges funding from the Hasso Plattner Foundation. This

material is based upon work supported by the Defense Ad-

vanced Research Projects Agency (DARPA) under Contract

No. HR001120C0021. Any opinions, findings and con-

clusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the

views of the Defense Advanced Research Projects Agency

(DARPA). Furthermore, this work was supported by the

National Science Foundation under Grants NSF-1928718,

NSF-2003237, and by Qualcomm.

References

Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L.,

Timofte, R., Benini, L., and Gool, L. V. Soft-to-hard

vector quantization for end-to-end learning compressible

representations. In Advances in Neural Information Pro-

cessing Systems, 2017.

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A.,

and Murphy, K. Fixing a broken elbo. In International

Conference on Machine Learning, 2018.
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