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Abstract

Conventional variational autoencoders fail in
modeling correlations between data points
due to their use of factorized priors. Amor-
tized Gaussian process inference through GP-
VAEs has led to significant improvements
in this regard, but is still inhibited by the
intrinsic complexity of exact GP inference.
We improve the scalability of these meth-
ods through principled sparse inference ap-
proaches. We propose a new scalable GP-
VAE model that outperforms existing ap-
proaches in terms of runtime and memory
footprint, is easy to implement, and allows
for joint end-to-end optimization of all com-
ponents.

1 Introduction

Variational autoencoders (VAEs) are among the most
widely used models in representation learning and gen-
erative modeling (Kingma and Welling, 2013, 2019;
Rezende et al., 2014). As VAEs typically use factor-
ized priors, they fall short when modeling correlations
between different data points. However, more expres-
sive priors that capture correlations enable useful ap-
plications. Casale et al. (2018), for instance, showed
that by modeling prior correlations between the data,
one could generate a digit’s rotated image based on
rotations of the same digit at different angles.

Gaussian process VAEs (GP-VAEs) have been de-
signed to overcome this shortcoming (Casale et al.,
2018). These models introduce a Gaussian process
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(GP) prior over the latent variables that correlates
the latent variables through a kernel function. While
GP-VAEs have outperformed standard VAEs on many
tasks (Casale et al., 2018; Fortuin et al., 2020; Pearce,
2020), combining the GPs and VAEs brings along fun-
damental computational challenges. On the one hand,
neural networks reveal their full power in conjunction
with large datasets, making mini-batching a practical
necessity. GPs, on the other hand, are traditionally
restricted to medium-scale datasets due to their un-
favorable scaling. In GP-VAEs, these contradictory
demands must be reconciled, preferably by reducing
the O(N?) complexity of GP inference, where N is
the number of data points.

Despite recent attempts to improve the scalability of
GP-VAE models by using specifically designed ker-
nels and inference methods (Casale et al., 2018; For-
tuin et al., 2020), a generic way to scale these mod-
els, regardless of data type or kernel choice, has re-
mained elusive. This limits current GP-VAE imple-
mentations to small-scale datasets. In this work, we in-
troduce the first generically scalable method for train-
ing GP-VAEs based on inducing points. We thereby
improve the computational complexity from O(N?) to
O(bm? + m?), where m is the number of inducing
points and b is the batch size.

We show that applying the well-known inducing point
approaches (Hensman et al., 2013; Titsias, 2009) to
GP-VAE:s is a non-trivial task: existing sparse GP ap-
proaches cannot be used off-the-shelf within GP-VAE
models as they either necessitate having the entire
dataset in the memory or do not lend themselves to
being amortized. To address this issue, we propose a
simple hybrid sparse GP method that is amenable to
both mini-batching and amortization.

We make the following contributions:

e We propose the first scalable GP-VAE framework

!Contact: jazbec.metod@gmail.com
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based on sparse GP inference (Sec. 3). In con-
trast to existing methods, our model is agnostic
to the kernel choice, makes no assumption on the
structure of the data at hand and allows for joint
optimization of all model components.

e We provide theoretical motivations for the pro-
posed method and introduce a hybrid sparse
GP model that accommodates a crucial demand
of GP-VAEs for simultaneous amortization and
batching.

e We show empirically that the proposed approxi-
mation scheme maintains a high accuracy while
being much more scalable and efficient (Sec. 4).
Importantly from a practitioner’s point of view,
our model is easy to implement as it requires no
special modification of the training procedure.

2 Related Work

Sparse Gaussian processes. There has been a
long line of work on sparse Gaussian process approx-
imations, dating back to Snelson and Ghahramani
(2006), Quinonero-Candela and Rasmussen (2005),
and others. Most of these sparse methods rely on
a summarizing set of points referred to as inducing
points and mainly differ in the exact way of selecting
those. Variational learning of inducing points was first
considered in Titsias (2009) and was shown to lead
to significant performance gains. Instead of optimiz-
ing an approximate marginal GP likelihood as done in
non-variational sparse models, a lower bound on the
exact GP marginal likelihood is derived and used as
a training objective. Another approach relevant for
our work is the stochastic variational approach from
Hensman et al. (2013), where the authors proposed a
sparse model that can, in addition to reducing the GP
complexity, also be trained in mini-batches, enabling
the use of GP models on (extremely) large datasets.

Improving VAEs. Extending the expressiveness
and representational power of VAEs can be roughly
divided into two (orthogonal) approaches. The first
one focuses on increasing the flexibility of the approxi-
mate posterior (Rezende and Mohamed, 2015; Kingma
et al., 2016), while the second one consists of imposing
a richer prior distribution on the latent space. Var-
ious extensions to the standard Gaussian prior have
been proposed, including a Gaussian mixture prior
(Dilokthanakul et al., 2016; Kopf et al., 2019), hier-
archical structured priors (Johnson et al., 2016; Deng
et al., 2017), and a von Mises-Fisher distribution prior
(Davidson et al., 2018). GP-VAE models are part of
this second group and, contrary to other work on ex-
tending VAE priors, aim to relax the iid assumption

between data points. Moreover, GP-VAEs are also re-
lated to approaches that aim to learn more structured
and interpretable representations of the data by incor-
porating auxiliary information, such as time or view-
points (Sohn et al., 2015; Lin et al., 2018; Johnson
et al., 2016).

Gaussian process VAEs. As mentioned above, the
most related approaches to our work are the GP-VAE
models of Casale et al. (2018) and Pearce (2020). How-
ever, neither of these are scalable for generic kernel
choices and data types. The model from Pearce (2020)
relies on exact GP inference, while Casale et al. (2018)
exploit a (partially) linear structure of their GP kernel
and use a Taylor approximation of the ELBO to get
around computational challenges. Another GP-VAE
model is proposed in Fortuin et al. (2020) where it
is used for multivariate time series imputation. Their
model is indeed scalable (even in linear time complex-
ity), but it works exclusively on time series data since
it exploits the Markov assumption. Additionally, it
does not support a joint optimization of GP parame-
ters, but assumes a fixed GP kernel.

3 Scalable SVGP-VAE

This work’s main contribution is the sparsification of
the GP-VAE using the sparse GP approaches men-
tioned above. To this end, two separate variational
approximation problems have to be solved jointly: an
outer amortized inference procedure from the high-
dimensional space to the latent space, and the inner
sparse variational inference scheme on the GP. To mo-
tivate our proposed solution, we begin by pointing out
the problems that arise when naively combining the
two objectives.

3.1 Problem setting and notation

In this work, we consider high-dimensional data Y =
[yi,- -, yn]T € RYXE Each data point has a cor-
responding low-dimensional auxiliary data entry, sum-
marized as X = [xi,...,xy]|" € XN, X C RP. For
example, y, could be a video frame and x; the corre-
sponding time stamp. Our goal is to train a model
for (1) generating Y conditioned on X and (2) infer-
ing an interpretable and disentangled low-dimensional
representations.

To this end, we adopt a latent GP approach, sum-
marized below. First, we need to model a prior dis-
tribution over the collection of latent variables Z =
[z1,...,2x5]T € RVXL each latent variable z; living in
an L-dimensional latent space. To model their joint
distribution, we assume L independent latent func-
tions f1,..., f¥ ~ GP(0, ky) with kernel parameters
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0 that result in Z when being evaluated on X. More
precisely, z; = [f1(x;),..., fF(x;)]. By construction,
the [*" latent channel of all latent variables z}, , € RV
(the It column of Z) has a correlated Gaussian prior
with covariance Kyny = ko(X, X). Setting Kyy =1
recovers the fully factorized prior commonly used in
standard VAEs.

As in regular VAEs, each z; € R” is then “decoded” to
parameterize the distribution over observations y, =
iy (zi) + €; where py @ RE — RE is a network with
parameters 1 and g; ~ N(0, O’Z Ix). Mathematically,
the full generative model is given by

po(Z|X) = HN (2. 510, Knn),
=1

pr yilzi) = H

w(Y|Z) = (vl (2:), 05 1),

The joint distribution is  pye(Y,Z|X) =
Py (Y|Z)pe(Z|X). The true posterior for the latent
variables py 0(Z]Y,X) = py.o(Y,Z|X)/py,o(Y|X) is
intractable due to the denominator which requires
integrating over Z. Hence, approximate inference
methods are required to infer the unobserved Z given
the observed X and Y.

3.2 Amortized variational inference

Amortization in the typical VAE architecture uses a
second (inference) network from the high-dimensional
data y, to the mean and variance of a fully fac-
torized Gaussian distribution over z; € R (Zhang
et al., 2018). We denote it as Gy(zily;) =
N (2i|po(y;), diag(ai(yi))) and it has network param-
eters ¢. In Casale et al. (2018), this Gaussian distri-
bution is used directly to approximate the posterior,
py,0(Z|Y) = [1, Go(zily;). While this approach mir-
rors classical VAE design, the approximate posterior
for a latent variable z; only depends on y,; and ig-
nores x;. This is in stark contrast to traditional Gaus-
sian processes where latent function values f(z) are
informed by all y values according to the similarity of
the corresponding z values.

Building on this model, Pearce (2020) instead pro-
posed to use the inference network Gy (2z;|y;) to replace
only the intractable likelihood py(y;|z;) in the poste-
rior. By combining G, with tractable terms, the ap-
proximate posterior could be explicitly normalized as

HHz 1(]¢

where the normalizing constant Zfb,G(Y’ X) can be
computed analytically. Noting the symmetry of the

|yz)p9(z1 N|X) (1)

A(Z[Y, X, 6,0) )

Gaussian distribution, N (z|u, o) = N (u|z,0), the ap-
proximate posterior for channel [ is mathematically
equivalent to the (exact) GP posterior in the tra-
ditional GP regression with inputs X and outputs
¥y, = /ifz;(Y) with heteroscedastic noise & := O’é(Y).
We therefore refer to each {X,y,,6;} as the latent
dataset for the I** channel. Each normalizing constant
of Equation 1 is also the GP marginal likelihood of the
Ith latent dataset. The parameters {1, ¢, 0} are learnt
by maximizing the evidence lower bound (ELBO) in
the Pearce model,

N
Lp(th,¢,0) = Y Eqz, |:10gpw(Yizi) — log Gy (zily;)
1=1
L
+) log Zl, (Y, X). (2)

=1

The first term is the difference between the true like-
lihood and inference network approximate likelihood,
while the second term is the sum over GP marginal
likelihoods of each latent dataset.

One subtle, yet important, characteristic of the vari-
ational approximation from Pearce (2020) is that it
gives rise to the ELBO Lp(-) that contains the GP
posterior. Note that this is in contrast to Casale et al.
(2018) and Fortuin et al. (2020), where the GP prior is
part of the ELBO. As we will show in Section 3.3, the
ELBO that contains the GP posterior naturally lends
itself to ”sparsification” through the use of sparse GP
posterior approximations.

The computational challenges of Lp(-) are twofold.
Firstly, for the latent GP regression, an inverse and
a log-determinant of the kernel matrix Kyy € RVXN
must be computed, resulting in O(N?) time complex-
ity. Secondly, the ELBO does not decompose as a
sum over data points, so the entire dataset {X,Y} is
needed for one evaluation of Lp(-).

Given the latent dataset, at first glance, we may simply
apply sparse GP regression techniques instead of tra-
ditional regression. We next look at two widely used
methods (Titsias (2009) and Hensman et al. (2013))
and highlight their drawbacks for this task. We then
propose a new hybrid approach solving these issues.

3.3 Latent Sparse GP Regression

To simplify the notation, we focus on a single chan-
nel and suppress [, resulting in y and &, log Zp 4(-)
and f. Given an (amortized latent) regression dataset
X, y, &, sparse Gaussian process methods assume that
there exists a set of m <« N inducing points with
inputs U = [uy,...,u,] € &A™ and outputs f,, :=
f(U) ~N(f(U)| pu, A) that summarize the regression
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dataset. U, u, A are parameters to be learnt. Given a
(test) set of r new inputs X,., the sparse approximate
(predictive) distribution over outputs f. = f(X,) is

QS(fr‘X'm Uu M, A7 9) =
N (KK bt K = KK Ko
+ Ko Ko AK L Ko ), (3)

where kernel matrices are K, = ko(U,U), K,., =
ko(X,,X,), and K,,, = K, = ke(U,X,). By intro-
ducing inducing points, the cost of learning the model
is reduced from O(N?) in log Zy (-) to O(Nm?) in a
modified objective.

We next describe two of the most popular ways to learn
the variational parameters U, p, A that are based on
a second inner variational approximation for the Gaus-
sian process regression that lower bounds log Zy (-).
For this second inner variational inference, we aim to
learn a cheap ¢s(-) (Equation 3) that closely approxi-
mates the expensive ¢(-) (Equation 1).

Titsias (2009). Let z = 1zl ,, then the pa-
rameters U, u, A may be learnt by minimizing
KL(gs(z|-) || g(z]-)), or equivalently by maximiz-
ing a lower bound to the marginal likelihood of
the latent dataset log Z(ZM(-). Let ¥ = Ky +
K, ndiag(6~2)K ., , then the optimal g and A may
be found analytically:

M1 = Kmmz_leNdiag(&_2)S’a (4)
AT = Kmmz_lema (5)
where K,y = kg(U, X). Plugging pr and Ar back

into the appropriate evidence lower bound yields the
final lower bound for learning U in the Titsias model

Lr(U,¢,0) = (6)
log N (310, KninK Ky + diag(6?))

1o _
—5Tr(diag(e %) (Kny — Knm Kb Kon))-

Note that the bound is a function of y and & which
depend on the inference network with parameters ¢
and the kernel matrices which depend upon 6 hence
we make these arguments explicit. In the full GP-VAE
ELBO Lp(-), substituting gs(-), £r(-) in place of ¢(-),
log Zy9(-) yields a sparse GP-VAE ELBO that can
be readily used to reduce computational complexity of
existing GP-VAE methods for a generic dataset and
an arbitrary GP kernel function.!

However, observe from Equations 4, 5 and 6 that the
entire dataset {X,Y} enters through Kyy and y, &

! As an aside, this sparse GP-VAE ELBO may also be de-
rived in the standard way using KL(gs(Z|")||py,0 (Z]|Y, X)),
see Appendix B.4.

respectively. Therefore, this ELBO is not amenable to
mini-batching and has large memory requirements.

Hensman et al. (2013). In order to make varia-
tional sparse GP regression amenable to mini-batching,
Hensman et al. (2013) proposed an ELBO that lower
bounds L7 and, more importantly, decomposes as a
sum of terms over data points. Adopting our notation
with explicit parameters, the Hensman ELBO is given
by

EH(UaUaA7¢a 9) = _KL(QS(fm|') || p@(fm|'))

N
# 3 { tou N (K b, ) -

i=1

s (b= Tr(ALD L. (1)

Above, k; is the i-th row of Kym, A;i =
K;ﬁnkik: K ! and k; is the i-th diagonal element

of the matrix Kyy — KNmK;l}nKmN. Due to the de-
composition over data points, the gradients VLg(+) in
stochastic or mini-batch gradient descent are unbiased
and only the data in the current batch are needed in
memory for the gradient updates. Consequently, with
batch size b the GP complexity is further reduced to
O(bm? + m3). Note that for p = pur, A = Ar and
b= N, Lg(:) recovers Lr(-) (Hensman et al., 2013).

While this method may seem to meet our requirements,
it has a fatal drawback. Firstly, it is not amortized
as pu and A are not functions of the observed data
{X, Y} but instead need to be optimized once for each
dataset. Secondly, as a consequence, in the full GP-
VAE ELBO Lp(-), substituting ¢s(-), Lx(-) in place
of q(), log Zy,¢(-) and simplifying yields the following
expression

Lpu(U, 9,0, pt L AV) = (8)

N L
Z%hmwﬂ—zm%wme»

i=1 =1

where ¢k (£,.]-) = N (£ ]!, AY).

Note that the ELBO above is not a function of the in-
ference network parameters ¢ (for the full derivation,
we refer to Appendix B.1). The sparse approximate
posterior is parameterized by U, u, A, 6 which are all
treated as free parameters to be optimized, that is,
they are not functions of the latent dataset or the in-
ference network. Maximizing the full GP-VAE ELBO
is equivalent to minimizing the KL divergence from
the approximate to the true posterior and neither of
these depend upon the latent dataset or the inference
network. Therefore, using the Hensman sparse GP
within an amortized GP-VAE model causes the ELBO
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to be independent of the inference network parameters.
Hence, this method also cannot be used as-is to amor-
tize the sparse GP-VAE with mini-batches.

3.4 The best of both ELBOs

Recall our goal to make GP-VAE models amenable to
large datasets. This requires avoiding the large mem-
ory requirements and being able to amortize inference.
To alleviate these problems, Casale et al. (2018) pro-
pose to use a Taylor approximation of the GP prior
term in their ELBO. However, this significantly in-
creases implementation complexity and gives rise to
potential risks in ignoring curvature. We take a differ-
ent approach utilising sparse GPs. We desire a model
that can scale to large datasets, like Hensman et al.
(2013), while also being able to directly compute vari-
ational parameters from the latent regression dataset,
like Titsias (2009). To this end, we take a mini-batch
of the data, X; C X, Y, C Y, and with the network
ds(-) create a mini-batch of the latent dataset X;, y,,
&y. Following Titsias (2009), with Equations 4 and 5
for the optimal pr and A7, we analytically compute
stochastic estimates for each latent channel [ given by

N
2%; =Kpm + —Kmp dlag(&I;Z) Kbma

b
N -1 . ~ 9\ ~
/J,é = ?K’mm (Eé) K’mb dlag(ab 2) yi,
-1
AL =Kpm (B)) Ko (9)

where K., = ko(U,X;) € R™*?, For a full deriva-
tion of these estimators, see Appendix B.2. All these
estimators are consistent, so they converge to the true
values for b — N. However, while Eé is an unbiased es-
timator for !, the same does not hold for p! and Aé.
We investigate the magnitude of the bias in Appendix
C.4 finding that it is generally small in practice. We
believe this result to be in line with sparse Gaussian
process approximations that assume the whole dataset
may be summarized by a set of inducing points. Al-
ternatively, this may be interpreted as assuming that
the dataset contains redundancy, that is, that we have
more than enough data to learn the latent function.
In such a case, (cheaply) learning an average of latent
functions of multiple mini-batches would closely ap-
proximate (expensively) learning one latent function
using the full dataset.

p! and Aé parameterize the approximate posterior
gs(+) which is, therefore, a direct function of the data
Xy, Y, and hence it is an amortized approximate pos-
terior. By taking a mini-batch of data, one may as-
sume that we may also compute Lp(-) of the mini-
batch latent dataset. However, note that such an L7 ()
is a lower bound for log Zy ¢(-) of the mini-batch la-
tent dataset, not a lower bound for the full latent

dataset. Instead, we use ué and Aé along with U
and 6 to compute the GP evidence lower bound of
Hensman et al. (2013) given in Equation 7, which is
also suitable to mini-batching and lower bounds the
marginal likelihood of the full latent dataset. Finally,
the evidence lower bound of our Sparse (Variational)
Gaussian Process Variational Autoencoder, for a sin-
gle mini-batch Xy, Yy, is thus

Lsvar—vae(U, 1, ¢,0) =

b
> Ey {logpw(yilzi) — log 4y (zily;)

i=1

L
b
+ ;ﬁH(U, 6, 0.y, Ay, (10)

where each L%, (+) is computed using the mini-batch of
the latent dataset Xy, Sfé, &!. By naturally combining
well known approaches, we arrive at a sparse GP-VAE
that is both amortized and can be trained using mini-
batches. The VAE parameters ¢, 1, inducing points
U, and the GP kernel € can all be optimized jointly in
an end-to-end fashion as we show in the next section.

Also note that during training, p},..,uf and
Ai,...,AbL are computed from a mini-batch X;, Y.
However at test time, given a new dataset, all avail-
able data X, Y may be used to compute the p', .., u”
and A, ..., AL, The Gaussian process structure places
no theoretical restriction upon the number of observa-
tions that are incorporated into the approximate pos-
terior parameters, any amount of data can be pooled
simply according to the kernel operations. In contrast,
neural networks typically assume fixed input and out-
put sizes and pooling data in a principled way requires
much more attention.

While we have treated the auxiliary data X as ob-
served throughout this section, our model can also
be used when X is not given (or is only partly ob-
served). In such cases, we make use of the Gaussian
Process Latent Variable Model (GP-LVM) introduced
by Lawrence (2004) to learn the missing part of X, sim-
ilar to what is done in Casale et al. (2018). In SVGP-
VAE, (missing parts of) X can be learned jointly with
the rest of the model parameters.

4 Experiments

We compared our proposed model with existing ap-
proaches measuring both performance and scalabil-
ity on some simple synthetic data and large high-
dimensional benchmark datasets. Implementation de-
tails can be found in Appendix A and additional ex-
periments in Appendix C. The implementation of our
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Figure 1: Performance of our SVGP-VAE models as
a function of the number of inducing points. We see
that as we increase the number of inducing points, the

performance gracefully approaches the one of the exact
GP-VAE baseline model.

model as well as our experiments are publicly available
at https://github.com/ratschlab/SVGP-VAE.

4.1 Synthetic moving ball data

The moving ball data was utilized in Pearce (2020).
It consists of black-and-white videos of a moving cir-
cle, where the 2D trajectory is sampled from a GP
with radial basis function (RBF) kernel. The goal is
to reconstruct the correct underlying trajectory in the
two-dimensional latent space from the frames in pixel
space. Since the videos are short (30 frames), full GP
inference is still feasible in this setting, such that we
can compare our sparse approach against the gold stan-
dard. Note that due to the small dataset size we do
not perform mini-batching within each video here.

Scaling behavior. We see in Figure 1 that as we in-
crease the number of inducing points our method uses,
its performance in terms of root mean squared error
(RMSE) approaches the performance of the full GP
baselines. It reaches the baseline performance already
with 15 inducing points, which is half the number of
data points in the trajectory and therefore four times
less computationally intensive than the baseline. The
reconstructions of the trajectories also qualitatively
agree with the baseline, as can be seen in Figure 2.

Optimization of kernel parameters. Another ad-
vantage of our proposed method over the previous ap-
proaches is that it is agnostic to the kernel choice and
even allows to optimize the kernel parameters (and
thereby learn a better kernel) jointly during training.

GPVAE Pearce (2020) SVGPVAE (ours) VAE
\ A\ Y
A\ A\ \\ X
(C\\ ) TN {\' &\
N (N N 4
O(N?) O(bm? + m?3)
(AN AN
C\Z( / Wi )\/"'
| -/ {
i J
o3 & o(bm? +m?)
</ DY) y
/\T' ==/ ( ==2/ ;/\,::
/O(N3) »'/O(bm2+m3)

Figure 2: Reconstructions of the latent trajectories
for the moving ball data. Frames of each test video
are overlaid and shaded by time in the first column.
Ground truth trajectories are depicted in blue, while
predicted trajectories are shown in orange. We can see
that the standard VAE fails to model the trajectories
faithfully, while the GP-VAE models (including our
sparse approximation) match them closely. Note that
b= N in SVGP-VAE for this experiment. For SVGP-
VAE, the number of inducing points was set to m = 15.

In Pearce (2020), joint optimization of kernel parame-
ters was not considered, while in Casale et al. (2018)
a special training regime is deployed where VAE and
GP parameters are optimized at different stages. Since
the moving ball data is generated by a GP, we know
the optimal kernel length scale for the RBF kernel in
this case, which is namely the one of the generating pro-
cess. We optimized the length scale of our SVGP-VAE
kernel and found that when using a sufficient number
of inducing points, we indeed recover the true length
scale almost perfectly (Fig. 3). Note that when too few
inducing points are used, the effective length scale of
the observed process in the subspace spanned by these
inducing points is indeed larger, since some of the vari-
ation in the data will be orthogonal to that subspace.
It is thus to be expected that our model would also
choose a larger length scale to model the observations
in this subspace.

Optimization of inducing points. When working
with sparse Gaussian processes, the selection of induc-
ing point locations can often be crucial for the qual-
ity of the approximation (Titsias, 2009; Fortuin et al.,
2018; Jahnichen et al., 2018; Burt et al., 2019). In
our model, we can optimize these inducing point lo-
cations jointly with the other components. On the
moving ball data, since the trajectories are generated
from stationary GPs, the optimal inducing point loca-
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Figure 3: Optimized length scales of our SVGP-VAE
model during training on the moving ball data. With
sufficiently many inducing points, the model recovers
the true length scale of the generating process.

tions should be roughly equally spaced along the time
dimension. When we adversarially initialize the induc-
ing points in a small region of the time series, we see
that the model pushes them apart over the course of
training and converges to this optimal spacing (Fig. 4).
Together with the previous experiment, these observa-
tions suggest that the model is able to choose close-
to-optimal inducing points and kernel functions in a
data-driven way during the normal training process.

4.2 Conditional generation of rotated
MNIST digits

To benchmark our model against existing scalable GP-
VAE approaches, we follow the experimental setup
from Casale et al. (2018) and use rotated MNIST digits
(LeCun et al., 1998) in a conditional generation task.
The task is to condition on a number of digits that have
been rotated at different angles and to generate an im-
age of one of these digits rotated at an unseen angle. In
the original work, they consider 400 images of the digit
3, each rotated at multiple angles in [0, 27]. Using iden-
tical architectures, kernel, and dataset (N = 4050), we
report, results for both the GP-VAE of Casale et al.
(2018) and our SVGP-VAE. The full GP-VAE model
from Pearce (2020) cannot be applied to this size of
data, hence it is omitted. As alternative baselines, we
report results for a conditional VAE (CVAE) (Sohn
et al., 2015) as well as for an extension of a sparse GP
(SVIGP) approach from Hensman et al. (2013). We
use the GECO algorithm (Rezende and Viola, 2018) to

30

25

20

Time index
=
w

0 5000 10000 15000 20000

Training step

25000 30000

Figure 4: Optimized inducing points of our SVGP-
VAE model during training on the moving ball data
for three different (suboptimal) initializations. We can
see that the model correctly learns to spread the induc-
ing points evenly over the time series, which should be
expected as a stationary GP kernel is used in the data
generating process.

train our SVGP-VAE model, which greatly improves
the stability of the training procedure.

Performance of conditional generation. We see
in Table 1 that our proposed model outperforms the
VAE baselines in terms of MSE, while still being com-
putationally more efficient than the model from Casale
et al. (2018) (in theory and practice).? This can also
be seen visually in Figure 5 as our model produces the
most faithful generations. For the SVGP-VAE, the
number of inducing points was set to m = 32 and
the batch size was set to b = 256. For the GP-VAE
(Casale et al., 2018), the low-rank matrix factor H de-
pends on the dimension of the linear kernel M used in
their model (M = 8 and H = 128).

Moreover, our SVGP-VAE model comes close in perfor-
mance to the unamortized sparse GP model with deep
likelihood from Hensman et al. (2013). This shows
that the amortization gap of our model is small (Cre-
mer et al., 2018). Note that this baseline was not
considered in the previous GP-VAE literature (Casale
et al., 2018), even though for the task of conditional
generation, where we try to learn a single GP over
the entire dataset, amortization is not strictly needed.
However, in tasks where the inference has to be amor-

*Note that in their paper, Casale et al. (2018) report a
performance of 0.028 on this task. However, their code
for the MNIST experiment is not openly available and
we could not reproduce this result with our reimplemen-
tation (which is also available at https://github.com/
ratschlab/SVGP-VAE).
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Table 1: Results on the rotated MNIST digit 3 dataset. Reported here are mean values together with standard
deviations based on 5 runs. We see that our proposed model performs comparably to the sparse GP baseline
from Hensman et al. (2013) and outperforms the VAE baselines while still being more scalable than the Casale
et al. (2018) model.

MSE GP complexity Time/epoch [s]
CVAE (Sohn et al., 2015) 0.0796 £ 0.0023 - 0.39+£0.01
GPPVAE (Casale et al., 2018) 0.0370 £ 0.0012 O(NH?) 19.10 £ 0.66
SVGP-VAE (ours) 0.02514+0.0005  O(bm? +m?) 1.90 +0.02
Deep SVIGP (Hensman et al., 2013) 0.0233 £ 0.0014 O(bm? +m?) 1.15+0.04
GROUND TRUTH SVGPVAE (ours)  GPVAE (Casale 2018)  CVAE (Sohn 2015)
r L]
—e— SVGPVAE (ours)
t L 0-040 —e— Casale (201)8;5
0.038
0.036
o w 0.034
= 0.032
c 0.030
0.028
0.026
1 10 100

AL

Figure 5: Conditionally generated rotated MNIST im-
ages. The generations of our proposed model are qual-
itatively more faithful to the ground truth. For more
examples see Appendix C.3.

tized across several GPs, this model could not be used.
More details on this baseline are provided in Appendix

C.5.

Tradeoff between runtime and performance.
The performance of our sparse approximation can be
increased by choosing a larger number of inducing
points, at a quadratic cost in terms of runtime. The
Casale et al. (2018) model, while being more restricted
in its kernel choice, offers a similar tradeoff between
runtime and performance by choosing a different di-
mensionality for the low-rank linear kernel used in
their latent space (see Appendix B.3). In Figure 6 we
depict performance for both models when varying the
number of inducing points and the dimension of the lin-
ear kernel, respectively. We observe that SVGP-VAE,
besides being much faster, exhibits a steeper decline
in the MSE as the model’s capacity is increased.

time/epoch (log-scale)

Figure 6: Performance of our proposed model with dif-
ferent numbers of inducing points and the Casale et al.
(2018) model with different kernel dimensionalities as a
function of runtime. For the SVGP-VAE, we consider
four different configurations of inducing points, while
for the Casale et al. (2018) model, we use four different
dimensions of the linear kernel: m, M € {8, 16,24, 32}.
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Figure 7: Performance and runtime of our proposed
model on differently sized subsets of the MNIST
dataset, including the full set. We see that the per-
formance stays roughly the same, regardless of dataset
size, while the runtime grows linearly as expected. The
size of each dataset equals 4050 x nr. of MNIST digits.
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Scaling to larger data. As mentioned above,
Casale et al. (2018) restrict their experiment to a small
subset of the MNIST dataset and indeed we did also
not manage to scale their model to the whole dataset
on our hardware (11 GB GPU memory). Our SVGP-
VAE, however, is easily scalable to such dataset sizes.
We report its performance on larger subsets of MNIST
(including the full dataset) in Figure 7. We see that
the performance of our proposed model does not dete-
riorate with increased dataset size, while the runtime
grows linearly as expected. All in all, we thus see that
our model is more flexible than the previous GP-VAE
approaches, scales to larger datasets, and achieves a
better performance at lower computational cost.

4.3 SPRITES experiment

We additionally assessed the performance of our model
on the SPRITES dataset (Li and Mandt, 2018). It
consists of images of cartoon characters in different ac-
tions/poses. Each character has a unique style (skin
color, tops, pants, hairstyle). There are in total 1296
characters, each observed in 72 different poses. For
training, we use 1000 characters and we randomly sam-
ple 50 poses for each (N = 50,000). Auxiliary data for
each image frame consists of a character style and a
specific pose. The task is to conditionally generate
characters not seen during training in different poses.

For the pose part of the auxiliary data, we use a GP-
LVM (Lawrence, 2004), similar to what was done in
the rotated MNIST experiment for the digit style. Us-
ing the GP-LVM also for the character style would not
allow us to extrapolate to new character styles during
the test phase. To overcome this, we introduce a repre-
sentation network, with which we learn the unobserved
parts of the auxiliary data in an amortized way.

Our model easily scales to the size of the SPRITES
dataset (time per training epoch: 51.8 £ 0.8 seconds).
Moreover, on the test set of 296 characters, our SVGP-
VAE achieves a solid performance of 0.0079 £ 0.0009
pixel-wise MSE. In Figure 8, we depict some genera-
tions for two test characters. We observe that model
faithfully generates the pose information. However, it
sometimes wrongly generates parts of the character
style. We attribute this to the additional complexity
of trying to amortize the learning of the auxiliary data.
Extending our initial attempt of using the representa-
tion network for such purposes, together with more
extensive benchmarking of our model performance, is
left for future work. More details on the SPRITES
experiment are provided in Appendix A.3.

Figure 8: Conditionally generated SPRITES images
for characters not observed during training. Images in
the respective upper row are the ground truths, while
the images in the respective lower row are conditional
generations using our model.

5 Conclusion

We have proposed a novel sparse inference method
for GP-VAE models and have shown theoretically
and empirically that it is more scalable than existing
approaches, while achieving competitive performance.
Our approach bridges the gap between sparse varia-
tional GP approximations and GP-VAE models, thus
enabling the utilization of a large body of work in the
sparse GP literature. As such, it represents an impor-
tant step towards unlocking the possibility to perform
amortized GP regression on large datasets with com-
plex likelihoods (e.g., natural images).

Fruitful avenues for future work include considering
even more recently proposed sparse GP approaches
(Cheng and Boots, 2017; Evans and Nair, 2020) and
comparing our proposed scalable GP-VAE solution
against other families of deep generative models (Mirza
and Osindero, 2014; Eslami et al., 2018a). This would
help identify real-world applications where GP-VAEs
could be most impactful.
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