
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Understanding security mistakes developers make:
Qualitative analysis from Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou,
Michelle L. Mazurek, and Michael Hicks, University of Maryland

https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding

Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks

University of Maryland
{dvotipka,kfulton,jprider1,mhou1,mmazurek,mwh}@cs.umd.edu

Abstract
Secure software development is a challenging task requir-
ing consideration of many possible threats and mitigations.
This paper investigates how and why programmers, despite a
baseline of security experience, make security-relevant errors.
To do this, we conducted an in-depth analysis of 94 submis-
sions to a secure-programming contest designed to mimic
real-world constraints: correctness, performance, and security.
In addition to writing secure code, participants were asked
to search for vulnerabilities in other teams’ programs; in to-
tal, teams submitted 866 exploits against the submissions we
considered. Over an intensive six-month period, we used itera-
tive open coding to manually, but systematically, characterize
each submitted project and vulnerability (including vulnera-
bilities we identified ourselves). We labeled vulnerabilities
by type, attacker control allowed, and ease of exploitation,
and projects according to security implementation strategy.
Several patterns emerged. For example, simple mistakes were
least common: only 21% of projects introduced such an error.
Conversely, vulnerabilities arising from a misunderstanding
of security concepts were significantly more common, ap-
pearing in 78% of projects. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

1 Introduction

Developing secure software is a challenging task, as evi-
denced by the fact that vulnerabilities are still discovered,
with regularity, in production code [19, 20, 54]. How can we
improve this situation? There are many steps we could take.
We could invest more in automated vulnerability discovery
tools [5,9,10,24,49,67,72,75,76]. We could expand security
education [17, 39, 42, 47, 59]. We could focus on improving
secure development processes [18, 48, 53, 65].

An important question is which intervention is ultimately
most effective in maximizing outcomes while minimizing
time and other resources expended. The increasing perva-
siveness of computing and the rising number of professional

developers [16, 44, 77] is evidence of the intense pressure to
produce new services and software quickly and efficiently. As
such, we must be careful to choose interventions that work
best in the limited time they are allotted. To do this, we must
understand the general type, attacker control allowed, and
ease of exploitation of different software vulnerabilities, and
the reasons that developers make them. That way, we can
examine how different approaches address the landscape of
vulnerabilities.

This paper presents a systematic, in-depth examination (us-
ing best practices developed for qualitative assessments) of
vulnerabilities present in software projects. In particular, we
looked at 94 project submissions to the Build it, Break it, Fix it
(BIBIFI) secure-coding competition series [66]. In each com-
petition, participating teams (many of which were enrolled
in a series of online security courses [34]) first developed
programs for either a secure event-logging system, a secure
communication system simulating an ATM and a bank, or a
scriptable key-value store with role-based access control poli-
cies. Teams then attempted to exploit the project submissions
of other teams. Scoring aimed to match real-world develop-
ment constraints: teams were scored based on their project’s
performance, its feature set (above a minimum baseline), and
its ultimate resilience to attack. Our six-month examination
considered each project’s code and 866 total exploit submis-
sions, corresponding to 182 unique security vulnerabilities
associated with those projects.

The BIBIFI competition provides a unique and valuable
vantage point for examining the vulnerability landscape, com-
plementing existing field measures and lab studies. When
looking for trends in open-source projects (field measures),
there are confounding factors: Different projects do differ-
ent things, and were developed under different circumstances,
e.g., with different resources and levels of attention. By con-
trast, in BIBIFI we have many implementations of the same
problem carried out by different teams but under similar cir-
cumstances. As such, we can postulate the reasons for ob-
served differences with more confidence. At the other end of
the spectrum, BIBIFI is less controlled than a lab study, but

USENIX Association 29th USENIX Security Symposium 109

offers more ecological validity—teams had weeks to build
their project submissions, not days, using any languages, tools,
or processes they preferred.

Our rigorous manual analysis of this dataset both identified
new insights about secure development and confirmed find-
ings from lab studies and field measurements, all with impli-
cations for improving secure-development training, security-
relevant APIs [2,35,57], and tools for vulnerability discovery.

Simple mistakes, in which the developer attempts a valid
security practice but makes a minor programming error, were
least common: only 21% of projects introduced such an er-
ror. Mitigations to these types of mistakes are plentiful. For
example, in our data, minimizing the trusted code base (e.g.,
by avoiding duplication of security-critical code) led to sig-
nificantly fewer mistakes. Moreover, we believe that modern
analysis tools and testing techniques [6, 7, 13, 14, 23, 27, 37,
40, 43, 70, 71, 81] should uncover many of them. All but one
of the mistakes in our dataset were found and exploited by
opposing teams. In short, this type of bug appears to be both
relatively uncommon and amenable to existing tools and best
practices, suggesting it can be effectively managed.

On the other hand, vulnerabilities arising from misunder-
standing of security concepts were significantly more com-
mon: 78% of projects introduced at least one such error. In
examining these errors, we identify an important distinction
between intuitive and unintuitive security requirements; for
example, several teams used encryption to protect confiden-
tiality but failed to also protect integrity. In 45% of projects,
teams missed unintuitive requirements altogether, failing to
even attempt to implement them. When teams implemented
security requirements, most were able to select the correct
security primitives to use (only 21% selected incorrectly), but
made conceptual errors in attempting to apply a security mech-
anism (44% of projects). For example, several projects failed
to provide randomness when an API expects it. Although
common, these vulnerabilities proved harder to exploit: only
71% were exploited by other teams (compared to 97% of
simple mistakes), and our qualitative labeling identified 35%
as difficult to exploit (compared to none of the simple mis-
takes). These more complex errors expose a need for APIs less
subject to misuse, better documentation, and better security
training that focuses on less-intuitive concepts like integrity.

Overall, our findings suggest rethinking strategies to pre-
vent and detect vulnerabilities, with more emphasis on con-
ceptual difficulties rather than mistakes.

2 Data

This section presents the Build It, Break It, Fix It (BIBIFI)
secure-programming competition [66], the data we gathered
from it which forms the basis of our analysis, and reasons why
the data may (or may not) represent real-world situations.1

1Our anonymized data is available upon request.

2.1 Build it, Break it, Fix it
A BIBIFI competition comprises three phases: building,
breaking, and fixing. Participating teams can win prizes in
both build-it and break-it categories.

In the first (build it) phase, teams are given just under two
weeks to build a project that (securely) meets a given specifi-
cation. During this phase, a team’s build-it score is determined
by the correctness and efficiency of their project, assessed by
test cases provided by the contest organizers. All projects
must meet a core set of functionality requirements, but they
may optionally implement additional features for more points.
Submitted projects may be written in any programming lan-
guage and are free to use open-source libraries, so long as
they can be built on a standard Ubuntu Linux VM.

In the second (break it) phase, teams are given access to
the source code of their fellow competitors’ projects in order
to look for vulnerabilities.2 Once a team identifies a vulnera-
bility, they create a test case (a break) that provides evidence
of exploitation. Depending on the contest problem, breaks
are validated in different ways. One is to compare the output
of the break on the target project against that of a “known
correct” reference implementation (RI) written by the compe-
tition organizers. Another way is by confirming knowledge
(or corruption) of sensitive data (produced by the contest orga-
nizers) that should have been protected by the target project’s
implementation. Successful breaks add to a team’s break-it
score, and reduce the target project’s team’s build-it score.

The final (fix it) phase of the contest affords teams the
opportunity to fix bugs in their implementation related to sub-
mitted breaks. Doing so has the potential benefit that breaks
which are superficially different may be unified by a fix, pre-
venting them from being double counted when scoring.

2.2 Data gathered
We analyzed projects developed by teams participating in four
BIBIFI competitions, covering three different programming
problems: secure log, secure communication, and multiuser
database. (Appendix A provides additional details about the
makeup of each competition.) Each problem specification
required the teams to consider different security challenges
and attacker models. Here we describe each problem, the
size/makeup of the reference implementation (for context),
and the manner in which breaks were submitted.

Secure log (SL, Fall 20143and Spring 2015, RI size: 1,013
lines of OCaml). This problem asks teams to implement two
programs: one to securely append records to a log, and one
to query the log’s contents. The build-it score is measured
by log query/append latency and space utilization, and teams
may implement several optional features.

2Source code obfuscation was against the rules. Complaints of violations
were judged by contest organizers.

3The Fall’14 contest data was not included in the original BIBIFI data

110 29th USENIX Security Symposium USENIX Association

Teams should protect against a malicious adversary with
access to the log and the ability to modify it. The adversary
does not have access to the keys used to create the log. Teams
are expected (but not told explicitly) to utilize cryptographic
functions to both encrypt the log and protect its integrity.
During the break-it phase, the organizers generate sample logs
for each project. Break-it teams demonstrate compromises to
either integrity or confidentiality by manipulating a sample
log file to return a differing output or by revealing secret
content of a log file.

Secure communication (SC, Fall 2015, RI size: 1,124 lines
of Haskell). This problem asks teams to build a pair of clien-
t/server programs. These represent a bank and an ATM, which
initiates account transactions (e.g., account creation, deposits,
withdrawals, etc.). Build-it performance is measured by trans-
action latency. There are no optional features.

Teams should protect bank data integrity and confiden-
tiality against an adversary acting as a man-in-the-middle
(MITM), with the ability to read and manipulate communica-
tions between the client and server. Once again, build teams
were expected to use cryptographic functions, and to consider
challenges such as replay attacks and side-channels. Break-it
teams demonstrate exploitations violating confidentiality or
integrity of bank data by providing a custom MITM and a
script of interactions. Confidentiality violations reveal the se-
cret balance of accounts, while integrity violations manipulate
the balance of unauthorized accounts.

Multiuser database (MD, Fall 2016, RI size: 1,080 lines
of OCaml). This problem asks teams to create a server that
maintains a secure key-value store. Clients submit scripts
written in a domain-specific language. A script authenticates
with the server and then submits a series of commands to
read/write data stored there. Data is protected by role-based
access control policies customizable by the data owner, who
may (transitively) delegate access control decisions to other
principals. Build-it performance is assessed by script running
time. Optional features take the form of additional script
commands.

The problem assumes that an attacker can submit com-
mands to the server, but not snoop on communications. Break-
it teams demonstrate vulnerabilities with a script that shows a
security-relevant deviation from the behavior of the RI. For ex-
ample, a target implementation has a confidentiality violation
if it returns secret information when the RI denies access.

Project Characteristics. Teams used a variety of languages

analysis [66]. It had only 12 teams and was organizationally unusual; notably,
build-it teams were originally only allocated 3 days to complete the project,
but then were given an extension (with the total time on par with that of later
contests). Including Fall’14 in the original data analysis would have required
adding a variable (the contest date) to all models, but the small number of
submissions would have required sacrificing a more interesting variable to
preserve the models’ power. In this paper, including Fall’14 is not a problem
because we are performing a qualitative rather than quantitative analysis.

in their projects. Python was most popular overall (39 teams,
41%), with Java also widely used (19, 20%), and C/C++ third
(7 each, 7%). Other languages used by at least one team
include Ruby, Perl, Go, Haskell, Scala, PHP, JavaScript Vi-
sual Basic, OCaml, C#, and F#. For the secure log problem,
projects ranged from 149 to 3857 lines of code (median 1095).
secure communication ranged from 355 to 4466 (median 683)
and multiuser database from 775 to 5998 (median 1485).

2.3 Representativeness: In Favor and Against

Our hope is that the vulnerability particulars and overall trends
that we find in BIBIFI data are, at some level, representative
of the particulars and trends we might find in real-world code.
There are several reasons in favor of this view:

• Scoring incentives match those in the real world. At
build-time, scoring favors features and performance—security
is known to be important, but is not (yet) a direct concern.
Limited time and resources force a choice between uncertain
benefit later or certain benefit now. Such time pressures mimic
short release deadlines.

• The projects are substantial, and partially open ended, as
in the real world. For all three problems, there is a significant
amount to do, and a fair amount of freedom about how to
do it. Teams must think carefully about how to design their
project to meet the security requirements. All three projects
consider data security, which is a general concern, and suggest
or require general mechanisms, including cryptography and
access control. Teams were free to choose the programming
language and libraries they thought would be most successful.
While real-world projects are surely much bigger, the BIBIFI
projects are big enough that they can stand in for a component
of a larger project, and thus present a representative program-
ming challenge for the time given.

• About three-quarters of the teams whose projects we
evaluated participated in the contest as the capstone to an
on-line course sequence (MOOC) [34]. Two courses in this
sequence — software security and cryptography — were
directly relevant to contest problems. Although these partici-
pants were students, most were also post-degree professionals;
overall, participants had a average of 8.9 years software de-
velopment experience. Further, prior work suggests that in at
least some secure development studies, students can substitute
effectively for professionals, as only security experience, not
general development experience, is correlated with security
outcomes [3, 4, 56, 58].

On the other hand, there are several reasons to think the
BIBIFI data will not represent the real world:

• Time pressures and other factors may be insufficiently
realistic. For example, while there was no limit on team size
(they ranged from 1 to 7 people with a median of 2), some
teams might have been too small, or had too little free time,
to devote enough energy to the project. That said, the incen-
tive to succeed in the contest in order to pass the course for

USENIX Association 29th USENIX Security Symposium 111

the MOOC students was high, as they would not receive a
diploma for the whole sequence otherwise. For non-MOOC
students, prizes were substantial, e.g., $4000 for first prize.
While this may not match the incentive in some security-
mature companies where security is “part of the job” [36]
and continued employment rests on good security practices,
prior work suggests that many companies are not security-
mature [8].

• We only examine three secure-development scenarios.
These problems involve common security goals and mecha-
nisms, but results may not generalize outside them to other
security-critical tasks.

• BIBIFI does not simulate all realistic development set-
tings. For example, in some larger companies, developers
are supported by teams of security experts [78] who provide
design suggestions and set requirements, whereas BIBIFI par-
ticipants carry out the entire development task. BIBIFI partic-
ipants choose the programming language and libraries to use,
whereas at a company the developers may have these choices
made for them. BIBIFI participants are focused on building a
working software package from scratch, whereas developers
at companies are often tasked with modifying, deploying, and
maintaining existing software or services. These differences
are worthy of further study on their own. Nevertheless, we
feel that the baseline of studying mistakes made by develop-
ers tasked with the development of a full (but small) piece
of software is an interesting one, and may indeed support or
inform alternative approaches such as these.

• To allow automated break scoring, teams must submit
exploits to prove the existence of vulnerabilities. This can
be a costly process for some vulnerabilities that require com-
plex timing attacks or brute force. This likely biases the ex-
ploits identified by breaker teams. To address this issue, two
researchers performed a manual review of each project to
identify and record any hard to exploit vulnerabilities.

• Finally, because teams were primed by the competition
to consider security, they are perhaps more likely to try to
design and implement their code securely [57, 58]. While this
does not necessarily give us an accurate picture of developer
behaviors in the real world, it does mirror situations where
developers are motivated to consider security, e.g., by secu-
rity experts in larger companies, and it allows us to identify
mistakes made even by such developers.

Ultimately, the best way to see to what extent the BIBIFI
data represents the situation in the real world is to assess the
connection empirically, e.g., through direct observations of
real-world development processes, and through assessment
of empirical data, e.g., (internal or external) bug trackers or
vulnerability databases. This paper’s results makes such an
assessment possible: Our characterization of the BIBIFI data
can be a basis of future comparisons to real-world scenarios.

3 Qualitative Coding

We are interested in characterizing the vulnerabilities devel-
opers introduce when writing programs with security require-
ments. In particular, we pose the following research questions:

RQ1 What types of vulnerabilities do developers introduce?
Are they conceptual flaws in their understanding of se-
curity requirements or coding mistakes?

RQ2 How much control does an attacker gain by exploiting
the vulnerabilities, and what is the effect?

RQ3 How exploitable are the vulnerabilities? What level of
insight is required and how much work is necessary?

Answers to these questions can provide guidance about
which interventions—tools, policy, and education—might be
(most) effective, and how they should be prioritized. To ob-
tain answers, we manually examined 94 BIBIFI projects (67%
of the total), the 866 breaks submitted during the competi-
tion, and the 42 additional vulnerabilities identified by the
researchers through manual review. We performed a rigor-
ous iterative open coding [74, pg. 101-122] of each project
and introduced vulnerability. Iterative open coding is a sys-
tematic method, with origins in qualitative social-science re-
search, for producing consistent, reliable labels (‘codes’) for
key concepts in unstructured data.4 The collection of labels
is called a codebook. The ultimate codebook we developed
provides labels for vulnerabilities—their type, attacker con-
trol, and exploitability—and for features of the programs that
contained them.

This section begins by describing the codebook itself, then
describes how we produced it. An analysis of the coded data
is presented in the next section.

3.1 Codebook
Both projects and vulnerabilities are characterized by several
labels. We refer to these labels as variables and their possible
values as levels.

3.1.1 Vulnerability codebook

To measure the types of vulnerabilities in each project, we
characterized them across four variables: Type, Attacker Con-
trol, Discovery Difficulty, and Exploit Difficulty. The structure
of our vulnerability codebook is given in Table 1.5 Our coding
scheme is adapted in part from the CVSS system for scoring
vulnerabilities [30]. In particular, Attacker Control and Ex-
ploit Difficulty relate to the CVSS concepts of Impact, Attack
Complexity, and Exploitability. We do not use CVSS directly,

4Hence, our use of the term “coding” refers to a type of structured cate-
gorization for data analysis, not a synonym for programming.

5The last column indicates Krippendorff’s α statistic [38], which we
discuss in Section 3.2.

112 29th USENIX Security Symposium USENIX Association

Variable Levels Description Alpha [38]

Type (See Table 2) What caused the vulnerability to be introduced 0.85, 0.82
Attacker Control Full / Partial What amount of the data is impacted by an exploit 0.82
Discovery Difficulty Execution / Source / What level of sophistication would an attacker 0.80

Deep Insight need to find the vulnerability
Exploit Difficulty Single step / Few steps / How hard would it be for an attacker to exploit 1

Many steps / Probabilistic the vulnerability once discovered

Table 1: Summary of the vulnerability codebook.

in part because some CVSS categories are irrelevant to our
dataset (e.g., none of the contest problems involve human in-
teractions). Further, we followed qualitative best practices of
letting natural (anti)patterns emerge from the data, modifying
the categorizations we apply accordingly.

Vulnerability type. The Type variable characterizes the vul-
nerability’s underlying source (RQ1). For example, a vulner-
ability in which encryption initialization vectors (IVs) are
reused is classified as having the issue insufficient random-
ness. The underlying source of this issue is a conceptual
misunderstanding of how to implement a security concept.
We identified more than 20 different issues grouped into three
types; these are discussed in detail in Section 4.

Attacker control. The Attacker Control variable character-
izes the impact of a vulnerability’s exploitation (RQ2) as
either a full compromise of the targeted data or a partial one.
For example, a secure-communication vulnerability in which
an attacker can corrupt any message without detection would
be a full compromise, while only being able to corrupt some
bits in the initial transmission would be coded as partial.

Exploitability. We indicated the difficulty to produce an ex-
ploit (RQ3) using two variables, Discovery Difficulty and
Exploit Difficulty. The first characterizes the amount of knowl-
edge the attacker must have to initially find the vulnerability.
There are three possible levels: only needing to observe the
project’s inputs and outputs (Execution); needing to view
the project’s source code (Source); or needing to understand
key algorithmic concepts (Deep insight). For example, in the
secure-log problem, a project that simply stored all events in
a plaintext file with no encryption would be coded as Exe-
cution since neither source code nor deep insight would be
required for exploitation. The second variable, Exploit Dif-
ficulty, describes the amount of work needed to exploit the
vulnerability once discovered. This variable has four possible
levels of increasing difficulty depending on the number of
steps required: only a single step, a small deterministic set of
steps, a large deterministic set of steps, or a large probabilistic
set of steps. As an example, in the secure-communication
problem, if encrypted packet lengths for failure messages are
predictable and different from successes, this introduces an
information leakage exploitable over multiple probabilistic

steps. The attacker can use a binary search to identify the ini-
tial deposited amount by requesting withdrawals of varying
values and observing which succeed.

3.1.2 Project codebook

To understand the reasons teams introduced certain types
of vulnerabilities, we coded several project features as well.
We tracked several objective features including the lines of
code (LoC) as an estimate of project complexity; the IEEE
programming-language rankings [41] as an estimate of lan-
guage maturity (Popularity); and whether the team included
test cases as an indication of whether the team spent time
auditing their project.

We also attempted to code projects more qualitatively. For
example, the variable Minimal Trusted Code assessed whether
the security-relevant functionality was implemented in single
location, or whether it was duplicated (unnecessarily) through-
out the codebase. We included this variable to understand
whether adherence to security development best practices had
an effect on the vulnerabilities introduced [12, pg. 32-36]. The
remaining variables we coded (most of which don’t feature in
our forthcoming analysis) are discussed in Appendix B.

3.2 Coding Process

Now we turn our attention to the process we used to develop
the codebook just described. Our process had two steps: Se-
lecting a set of projects for analysis, and iteratively developing
a codebook by examining those projects.

3.2.1 Project Selection

We started with 142 qualifying projects in total, drawn from
four competitions involving the three problems. Manually
analyzing every project would be too time consuming, so we
decided to consider a sample of 94 projects—just under 67%
of the total. We did not sample them randomly, for two reasons.
First, the numbers of projects implementing each problem
are unbalanced; e.g., secure log comprises just over 50% of
the total. Second, a substantial number of projects had no
break submitted against them—57 in total (or 40%). A purely
random sample from the 142 could lead us to considering too

USENIX Association 29th USENIX Security Symposium 113

many (or too few) projects without breaks, or too many from
a particular problem category.

To address these issues, our sampling procedure worked as
follows. First, we bucketed projects by the problem solved,
and sampled from each bucket separately. This ensured that
we had roughly 67% of the total projects for each problem.
Second, for each bucket, we separated projects with a submit-
ted break from those without one, and sampled 67% of the
projects from each. This ensured we maintained the relative
break/non-break ratio of the overall project set. Lastly, within
the group of projects with a break, we divided them into four
equally-sized quartiles based on number of breaks found dur-
ing the competition, sampling evenly from each. Doing so
further ensured that the distribution of projects we analyzed
matched the contest-break distribution in the whole set.

One assumption of our procedure was that the frequency
of breaks submitted by break-it teams matches the frequency
of vulnerabilities actually present in the projects. We could
not sample based on the latter, because we did not have
ground truth at the outset; only after analyzing the projects
ourselves could we know the vulnerabilities that might have
been missed. However, we can check this assumption after
the fact. To do so, we performed a Spearman rank correlation
test to compare the number of breaks and vulnerabilities intro-
duced in each project [80, pg. 508]. Correlation, according to
this test, indicates that if one project had more contest breaks
than another, it would also have more vulnerabilities, i.e.,
be ranked higher according to both variables. We observed
that there was statistically significant correlation between the
number of breaks identified and the underlying number of
vulnerabilities introduced (ρ = 0.70, p < 0.001). Further, ac-
cording to Cohen’s standard, this correlation is “large,” as
ρ is above 0.50 [21]. As a result, we are confident that our
sampling procedure, as hoped, obtained a good representation
of the overall dataset.

We note that an average of 27 teams per competition, plus
two researchers, examined each project to identify vulnerabil-
ities. We expect that this high number of reviewers, as well as
the researchers’ security expertise and intimate knowledge of
the problem specifications, allowed us to identify the majority
of vulnerabilities.

3.2.2 Coding

To develop our codebooks, two researchers first cooperatively
examined 11 projects. For each, they reviewed associated
breaks and independently audited the project for vulnera-
bilities. They met and discussed their reviews (totaling 42
vulnerabilities) to establish the initial codebook.

At this point, one of the two original researchers and a third
researcher independently coded breaks in rounds of approx-
imately 30 each, and again independently audited projects’
unidentified vulnerabilities. After each round, the researchers
met, discussed cases where their codes differed, reached a

consensus, and updated the codebook.
This process continued until a reasonable level of inter-rater

reliability was reached for each variable. Inter-rater reliabil-
ity measures the agreement or consensus between different
researchers applying the same codebook. To measure inter-
rater reliability, we used the Krippendorff’s α statistic [38].
Krippendorff’s α is a conservative measure which consid-
ers improvement over simply guessing. Krippendorff et al.
recommend a threshold of α > 0.8 as a sufficient level of
agreement [38]. The final Krippendorff’s alpha for each vari-
able is given in Table 1. Because the Types observed in the
MD problem were very different from the other two problems
(e.g., cryptography vs. access control related), we calculated
inter-rater reliability separately for this problem to ensure re-
liability was maintained in this different data. Once a reliable
codebook was established, the remaining 34 projects (with
166 associated breaks) were divided evenly among the two
researchers and coded separately.

Overall, this process took approximately six months of
consistent effort by two researchers.

4 Vulnerability Types

Our manual analysis of 94 BIBIFI projects identified 182
unique vulnerabilities. We categorized each based on our
codebook into 23 different issues. Table 2 presents this data.
Issues are organized according to three main types: No Im-
plementation, Misunderstanding, and Mistake (RQ1). These
were determined systematically using axial coding, which
identifies connections between codes and extracts higher-level
themes [74, pg. 123-142]. For each issue type, the table gives
both the number of vulnerabilities and the number of projects
that included a vulnerability of that type. A dash indicates
that a vulnerability does not apply to a problem.

This section presents descriptions and examples for each
type. When presenting examples, we identify particular
projects using a shortened version of the problem and a ran-
domly assigned ID. In the next section, we consider trends in
this data, specifically involving vulnerability type prevalence,
attacker control, and exploitability.

4.1 No Implementation
We coded a vulnerability type as No Implementation when a
team failed to even attempt to implement a necessary security
mechanism. Presumably, they did not realize it was needed.
This type is further divided into the sub-type All Intuitive,
Some Intuitive, and Unintuitive. In the first two sub-types
teams did not implement all or some, respectively, of the re-
quirements that were either directly mentioned in the problem
specification or were intuitive (e.g., the need for encryption to
provide confidentiality). The Unintuitive sub-type was used
if the security requirement was not directly stated or was oth-
erwise unintuitive (e.g., using MAC to provide integrity [1]).

114 29th USENIX Security Symposium USENIX Association

Secure log Secure communication Multiuser database Totals3

Type Sub-type Issue P=521 V=532 P=27 V=64 P=15 V=65 P=94 V=182

No Impl. All Intuitive No encryption 3 (6%) 3 (6%) 2 (7%) 2 (3%) – – 5 (6%) 5 (4%)
No access
control – – – – 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total 3 (6%) 3 (6%) 2 (7%) 2 (3%) – – 5 (6%) 5 (4%)

Some Intuitive Missing some
access control – – – – 10 (67%) 18 (28%) 10 (67%) 18 (10%)

Total – – – – 10 (67%) 18 (28%) 10 (67%) 18 (10%)

Unintuitive No MAC 16 (31%) 16 (30%) 7 (26%) 7 (11%) – – 23 (29%) 23 (20%)
Side-channel attack – – 11 (41%) 11 (17%) 4 (15%) 4 (6%) 15 (36%) 15 (12%)
No replay check – – 7 (26%) 7 (11%) – – 7 (26%) 7 (11%)
No recursive
delegation check – – – – 4 (27%) 4 (6%) 4 (27%) 4 (6%)

Total 16 (31%) 16 (30%) 18 (67%) 25 (39%) 8 (53%) 8 (12%) 42 (45%) 49 (27%)

Total – 17 (33%) 19 (36%) 18 (67%) 27 (42%) 12 (80%) 26 (40%) 47 (50%) 72 (40%)

Misund. Bad Choice Unkeyed function 6 (12%) 6 (11%) 2 (7%) 2 (3%) – – 8 (9%) 8 (4%)
Weak crypto 4 (8%) 5 (9%) 0 (0%) 0 (0%) – – 4 (5%) 5 (4%)
Homemade crypto 2 (4%) 2 (4%) 0 (0%) 0 (0%) – – 2 (3%) 2 (2%)
Weak AC design – – – – 5 (33%) 6 (9%) 5 (33%) 6 (9%)
Memory corruption 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)

Total 13 (25%) 14 (26%) 2 (7%) 2 (3%) 5 (33%) 6 (9%) 20 (21%) 22 (12%)

Conceptual Fixed value 12 (23%) 12 (23%) 6 (22%) 6 (9%) 8 (53%) 8 (12%) 26 (28%) 26 (14%)
Error Insufficient

randomness 2 (4%) 3 (6%) 5 (19%) 5 (8%) 0 (0%) 0 (0%) 7 (7%) 8 (4%)
Security on subset
of data 3 (6%) 3 (6%) 6 (22%) 7 (11%) 0 (0%) 0 (0%) 9 (10%) 10 (5%)
Library cannot
handle input 0 (0%) 0 (0%) 1 (4%) 1 (2%) 2 (13%) 2 (3%) 3 (3%) 3 (2%)
Disabled protections 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)
Resource exhaustion 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 1 (2%) 1 (1%) 1 (1%)

Total 17 (33%) 19 (36%) 15 (56%) 19 (30%) 9 (60%) 11 (17%) 41 (44%) 49 (27%)

Total – 28 (54%) 33 (62%) 15 (56%) 21 (33%) 10 (67%) 17 (26%) 53 (56%) 71 (39%)

Mistake – Insufficient error
checking 0 (0%) 0 (0%) 8 (30%) 8 (12%) 4 (27%) 4 (6%) 12 (13%) 12 (7%)
Uncaught runtime
error 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 8 (12%) 5 (5%) 9 (5%)
Control flow mistake 0 (0%) 0 (0%) 1 (4%) 1 (2%) 4 (27%) 9 (14%) 5 (5%) 10 (6%)
Skipped algorithmic
step 0 (0%) 0 (0%) 4 (15%) 6 (9%) 1 (2%) 1 (2%) 5 (5%) 7 (4%)
Null write 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 1 (1%)

Total – 1 (2%) 1 (2%) 11 (41%) 16 (25%) 8 (53%) 22 (34%) 20 (21%) 39 (21%)

1 Number of projects submitted to the competition
2 Number of unique vulnerabilities introduced
3 Total percentages are based on the counts of applicable projects

Table 2: Number of vulnerabilities for each issue and the number of projects each vulnerability was introduced in.

USENIX Association 29th USENIX Security Symposium 115

Two issues were typed as All Intuitive: not using encryp-
tion in the secure log (P=3, V=3) and secure communication
(P=2, V=2) problems and not performing any of the speci-
fied access control checks in the multiuser database problem
(P=0, V=0). The Some Intuitive sub-type was used when
teams did not implement some of the nine multiuser database
problem access-control checks (P=10, V=18). For example,
several teams failed to check authorization for commands only
admin should be able to issue For Unintuitive vulnerabilities,
there were four issues: teams failed to include a MAC to pro-
tect data integrity in the secure log (P=16, V=16) and secure
communication (P=7, V=7) problems; prevent side-channel
data leakage through packet sizes or success/failure responses
in the secure communication (P=11, V=11) and multiuser
database (P=4, V=4) problems, respectively; prevent replay
attacks (P=7, V=7) in the secure communication problem;
and check the chain of rights delegation (P=4, V=4) in the
multiuser database problem.

4.2 Misunderstanding

A vulnerability type was coded as Misunderstanding when a
team attempted to implement a security mechanism, but failed
due to a conceptual misunderstanding. We sub-typed these as
either Bad Choice or Conceptual Error.

4.2.1 Bad Choice

Five issues fall under this sub-type, which categorizes algo-
rithmic choices that are inherently insecure.

The first three issues relate to the incorrect implementation
of encryption and/or integrity checks in the SL and SC prob-
lems: use of an algorithm without any secret component, i.e.,
a key (P=8, V=8), weak algorithms (P=4, V=5), or homemade
encryption (P=2, V=2). As an example of a weak algorithm,
SL-69 simply XOR’d key-length chunks of the text with the
user-provided key to generate the final ciphertext. Therefore,
the attacker could simply extract two key-length chunks of
the ciphertext, XOR them together and produce the key.

The next issue identifies a weak access-control design for
the MD problem, which could not handle all use cases (P=5,
V=6). For example, MD-14 implemented delegation improp-
erly. In the MD problem, a default delegator may be set by the
administrator, and new users should receive the rights this del-
egator has when they are created. However, MD-14 granted
rights not when a user was created, but when they accessed
particular data. If the default delegator received access to data
between time of the user’s creation and time of access, the
user would be incorrectly provided access to this data.

The final issue (potentially) applies to all three problems:
use of libraries that could lead to memory corruption. In this
case, team SL-81 chose to use strcpy when processing user
input, and in one instance failed to validate it, allowing an
overflow. Rather than code this as Mistake, we considered it a

bad choice because a safe function (strlcpy) could have been
used instead to avoid the security issue.

4.2.2 Conceptual Error

Teams that chose a secure design often introduced a vulner-
ability in their implementation due to a conceptual misun-
derstanding (rather than a simple mistake). This Conceptual
Error sub-type manifested in six ways.

Most commonly, teams used a fixed value when an ran-
dom or unpredictable one was necessary (P=26, V=26). This
included using hardcoded account passwords (P=8, V=8), en-
cryption keys (P=3, V=3), salts (P=3, V=3), or using a fixed
IV (V=12, N=12).

1 var nextNonce uint64 = 1337
2 ...
3 func sendMessage(conn *net.Conn , message
4 []byte) (err error) {
5 var box []byte
6 var nonce [24]byte
7
8 byteOrder.PutUint64(nonce[:], nextNonce)
9 box = secretbox.Seal(box , message , &nonce ,

10 &sharedSecret)
11 var packet = Packet{Size: uint64(len(box)),
12 Nonce: nextNonce}
13 nextNonce++
14 writer := *conn
15 err = binary.Write(writer , byteOrder , packet)
16 ...
17 }

Listing 1: SC-76 Used a hardcoded IV seed.

Sometimes chosen values were not fixed, but not suffi-
ciently unpredictable (P=7, V=8). This included using a
timestamp- based nonce, but making the accepted window too
large (P=3, V=3); using repeated nonces or IVs (P=3, V=4);
or using predictable IVs (P=1, V=1). As an example, SC-76
attempted to use a counter-based IV to ensure IV uniqueness.
Listing 1 shows that nonce nextNonce is incremented after
each message. Unfortunately, the counter is re-initialized ev-
ery time the client makes a new transaction, so all messages
to the server are encrypted with the same IV. Further, both the
client and server initialize their counter with the same number
(1337 in Line 1 of Listing 1), so the messages to and from the
server for the first transaction share an IV. If team SC-76 had
maintained the counter across executions of the client (i.e., by
persisting it to a file) and used a different seed for the client
and server, both problems would be avoided.

Other teams set up a security mechanism correctly, but only
protected a subset of necessary components (P=9, V=10). For
example, Team SL-66 generated a MAC for each log entry
separately, preventing an attacker from modifying an entry,
but allowing them to arbitrarily delete, duplicate, or reorder
log entries. Team SC-24 used an HTTP library to handle
client-server communication, then performed encryption on
each packet’s data segment. As such, an attacker can read or

116 29th USENIX Security Symposium USENIX Association

manipulate the HTTP headers; e.g., by changing the HTTP
return status the attacker could cause the receiver to drop a
legitimate packet.

In three cases, the team passed data to a library that failed
to handle it properly (P=3, V=3). For example, MD-27 used
an access-control library that takes rules as input and returns
whether there exists a chain of delegations leading to the
content owner. However, the library cannot detect loops in
the delegation chain. If a loop in the rules exists, the library
enters an infinite loop and the server becomes completely
unresponsive. (We chose to categorize this as a Conceptual
Error vulnerability instead of a Mistake because the teams vi-
olate the library developers’ assumption as opposed to making
a mistake in their code.)

1 self.db = self.sql.connect(filename , timeout=30)
2 self.db.execute(’pragma key="’ + token + ’";’)
3 self.db.execute(’PRAGMA kdf_iter=’
4 + str(Utils.KDF_ITER) + ’;’)
5 self.db.execute(’PRAGMA cipher_use_MAC = OFF;’)
6 ...

Listing 2: SL-22 disabled automatic MAC in SQLCipher
library.

Finally, one team simply disabled protections provided
transparently by the library (P=1, V=1). Team SL-22 used
the SQLCipher library to implement their log as an SQL
database. The library provides encryption and integrity checks
in the background, abstracting these requirements from the
developer. Listing 2 shows the code they used to initialize the
database. Unfortunately, on line 5, they explicitly disabled the
automatic MAC.

4.3 Mistake
Finally, some teams attempted to implement the solution cor-
rectly, but made a mistake that led to a vulnerability. The
mistake type is composed of five sub-types. Some teams did
not properly handle errors putting the program into an observ-
ably bad state (causing it to be hung or crash). This included
not having sufficient checks to avoid a hung state, e.g., in-
finite loop while checking the delegation chain in the MD
problem, not catching a runtime error causing the program to
crash (P=5, V=9), or allowing a pointer with a null value to be
written to, causing a program crash and potential exploitation
(P=1, V=1).

1 def checkReplay(nonce ,timestamp):
2 #First we check for tiemstamp delta
3 dateTimeStamp = datetime.strptime(timestamp ,
4 ’%Y-%m-%d %H:%M:%S.%f’)
5 deltaTime = datetime.utcnow() - dateTimeStamp
6 if deltaTime.seconds > MAX_DELAY:
7 raise Exception("ERROR:Expired nonce ")
8 #The we check if it is in the table
9 global bank

10 if (nonce in bank.nonceData):
11 raise Exception("ERROR:Reinyected package")

Listing 3: SC-80 forgot to save the nonce.

Other mistakes led to logically incorrect execution behav-
iors. This included mistakes related to the control flow logic
(P=5, V=10) or skipping steps in the algorithm entirely. List-
ing 3 shows an example of SC-80 forgetting a necessary step
in the algorithm. On line 10, they check to see if the nonce
was seen in the list of previous nonces (bank.nonceData)
and raise an exception indicating a replay attack. Unfortu-
nately, they never add the new nonce into bank.nonceData,
so the check on line 10 always returns true.

5 Analysis of Vulnerabilities

This section considers the prevalence (RQ1) of each vulner-
ability type as reported in Table 2 along with the attacker
control (RQ2), and exploitability (RQ3) of introduced types.
Overall, we found that simple implementation mistakes (Mis-
take) were far less prevalent than vulnerabilities related to
more fundamental lack of security knowledge (No Imple-
mentation, Misunderstanding). Mistakes were almost always
exploited by at least one other team during the Break It phase,
but higher-level errors were exploited less often. Teams that
that were careful to minimize the footprint of security-critical
code were less likely to introduce mistakes.

5.1 Prevalence

To understand the observed frequencies of different types
and sub-types, we performed planned pairwise comparisons
among them. In particular, we use a Chi-squared test—
appropriate for categorical data [32]—to compare the number
of projects containing vulnerabilities of one type against the
projects with another, assessing the effect size (φ) and signifi-
cance (p-value) of the difference. We similarly compare sub-
types of the same type. Because we are doing multiple com-
parisons, we adjust the results using a Benjamini-Hochberg
(BH) correction [11]. We calculate the effect size as the mea-
sure of association of the two variables tested (φ) [22, 282-
283]. As a rule of thumb, φ ≥ 0.1 represents a small effect,
≥ 0.3 a medium effect, and ≥ 0.5 a large effect [21]. A p-
value less than 0.05 after correction is considered significant.

Teams often did not understand security concepts. We
found that both types of vulnerabilities relating to a lack of se-
curity knowledge—No Implementation (φ = 0.29, p < 0.001)
and Misunderstanding (φ = 0.35, p < 0.001)—were signifi-
cantly more likely (roughly medium effect size) to be intro-
duced than vulnerabilities caused by programming Mistakes.
We observed no significant difference between No Implemen-
tation and Misunderstanding (φ = 0.05, p = 0.46). These
results indicate that efforts to address conceptual gaps should

USENIX Association 29th USENIX Security Symposium 117

Log
Variable Value Estimate CI p-value

Problem SC – – –
MD 6.68 [2.90, 15.37] < 0.001*
SL 0.06 [0.01, 0.43] 0.006*

Min Trust False – – –
True 0.36 [0.17, 0.76] 0.007*

Popularity C (91.5) 1.09 [1.02, 1.15] 0.009*
LoC 1274.81 0.99 [0.99, 0.99] 0.006*

*Significant effect – Base case (Log Estimate defined as 1)

Table 3: Summary of regression over Mistake vulnerabilities.
Pseudo R2 measures for this model were 0.47 (McFadden)
and 0.72 (Nagelkerke).

be prioritized. Focusing on these issues of understanding, we
make the following observations.

Unintuitive security requirements are commonly skipped.
Of the No Implementation vulnerabilities, we found that the
Unintuitive sub-type was much more common than its All
Intuitive (φ = 0.44, p < 0.001) or Some Intuitive (φ = 0.37,
p < 0.001) counterparts. The two more intuitive sub-types
did not significantly differ (φ = 0.08, p = 0.32) This indicates
that developers do attempt to provide security — at least when
incentivized to do so — but struggle to consider all the unin-
tuitive ways an adversary could attack a system. Therefore,
they regularly leave out some necessary controls.

Teams often used the right security primitives, but did
not know how to use them correctly. Among the Misunder-
standing vulnerabilities, we found that the Conceptual Error
sub-type was significantly more likely to occur than Bad
Choice (φ = 0.23, p = .003). This indicates that if developers
know what security controls to implement, they are often able
to identify (or are guided to) the correct primitives to use.
However, they do not always conform to the assumptions of
“normal use” made by the library developers.

Complexity breeds Mistakes. We found that complexity
within both the problem itself and also the approach taken by
the team has a significant effect on the number of Mistakes
introduced. This trend was uncovered by a poisson regression
(appropriate for count data) [15, 67-106] we performed for
issues in the Mistakes type.6

Table 3 shows that Mistakes were most common in the
MD problem and least common in the SL problem. This is
shown in the second row of the table. The log estimate (E) of
6.68 indicates that teams were 6.68× more likely to introduce
Mistakes in MD than in the baseline secure communication

6We selected initial covariates for the regression related to the language
used, best practices followed (e.g., Minimal Trusted Code), team character-
istics (e.g., years of developer experience), and the contest problem. From
all possible initial factor combinations, we chose the model with minimum
Bayesian Information Criteria—a standard metric for model fit [63]. We
include further details of the initial covariates and the selection process in
Appendix C, along with discussion of other regressions we tried but do not
include for lack of space.

case. In the fourth column, the 95% confidence interval (CI)
provides a high-likelihood range for this estimate between
2.90× and 15.37×. Finally, the p-value of < 0.001 indicates
that this result is significant. This effect likely reflects the fact
that the MD problem was the most complex, requiring teams
to write a command parser, handle network communication,
and implement nine different access control checks.

Similar logic demonstrates that teams were only 0.06×
as likely to make a mistake in the SL problem compared to
the SC baseline. The SL problem was on the other side of
the complexity spectrum, only requiring the team to parse
command-line input and read and write securely from disk.

Similarly, not implementing the secure components mul-
tiple times (Minimal Trusted Code) was associated with an
0.36× decrease in Mistakes, suggesting that violating the
“Economy of Mechanism” principle [68] by adding unnec-
essary complexity leads to Mistakes. As an example of this
effect, MD-74 reimplemented their access control checks four
times throughout the project. Unfortunately, when they real-
ized the implementation was incorrect in one place, they did
not update the other three.

Mistakes are more common in popular languages. Teams
that used more popular languages are expected to have a
1.09× increase in Mistakes for every one unit increase in pop-
ularity over the mean Popularity7 (p = 0.009). This means,
for example, a language 5 points more popular than average
would be associated with a 1.54× increase in Mistakes. One
possible explanation is that this variable proxies for experi-
ence, as many participants who used less popular languages
also knew more languages and were more experienced.

Finally, while the LoC were found to have a significant
effect on the number of Mistakes introduced, the estimate is
so close to one as to be almost negligible.

No significant effect observed for developer experience or
security training. Across all vulnerability types, we did not
observe any difference in vulnerabilities introduced between
MOOC and non-MOOC participants or participants with more
development experience. While this does not guarantee a lack
of effect, it is likely that increased development experience
and security training have, at most, a small impact.

5.2 Exploit Difficulty and Attacker control
To answer RQ2 and RQ3, we consider how the different vul-
nerability types differ from each other in difficulty to exploit,
as well as in the degree of attacker control they allow. We
distinguish three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (Discovery
Difficulty); our qualitative assessment of the difficulty of ex-
ploiting the vulnerability (Exploit Difficulty); and whether

7The mean Popularity score was 91.5. Therefore, C—whose Popularity
score of 92 was nearest to the mean—can be considered representative the
language of average popularity.

118 29th USENIX Security Symposium USENIX Association

a competitor team actually found and exploited the vulnera-
bility (Actual Exploitation). Figure 1 shows the number of
vulnerabilities for each type with each bar divided by Ex-
ploit Difficulty, bars grouped by Discovery Difficulty, and the
left and right charts showing partial and full attacker control
vulnerabilities, respectively.

To compare these metrics across different vulnerability
types and sub-types, we primarily use the same set of planned
pairwise Chi-squared tests described in Section 5.1. When
necessary, we substitute Fisher’s Exact Test (FET), which is
more appropriate when some of the values being compared
are less than five [31]. For convenience of analysis, we binned
Discovery Difficulty into Easy (execution) and Hard (source,
deep insight). We similarly binned Exploit Difficulty into Easy
(single-step, few steps) and Hard (many steps, deterministic
or probabilistic).

Misunderstandings are rated as hard to find. Identifying
Misunderstanding vulnerabilities often required the attacker
to determine the developer’s exact approach and have a good
understanding of the algorithms, data structures, or libraries
they used. As such, we rated Misunderstanding vulnerabil-
ities as hard to find significantly more often than both No
Implementation (φ = 0.52, p < 0.001) and Mistake (φ = 0.30,
p = 0.02) vulnerabilities.

Interestingly, we did not observe a significant difference
in actual exploitation between the Misunderstanding and No
Implementation types. This suggests that even though Mis-
understanding vulnerabilities were rated as more difficult to
find, sufficient code review can help close this gap in practice.

That being said, Misunderstandings were the least com-
monType to be actually exploited by Break It teams. Specifi-
cally, using a weak algorithm (Not Exploited=3, Exploited=2),
using a fixed value (Not Exploited=14, Exploited=12), and
using a homemade algorithm (Not Exploited=1, Exploited=1)
were actually exploited in at most half of all identified cases.
These vulnerabilities presented a mix of challenges, with some
rated as difficult to find and others difficult to exploit. In the
homemade encryption case (SL-61), the vulnerability took
some time to find, because the implementation code was diffi-
cult to read. However, once an attacker realizes that the team
has essentially reimplemented the Wired Equivalent Protocol
(WEP), a simple check of Wikipedia reveals the exploit. Con-
versely, seeing that a non-random IV was used for encryption
is easy, but successful exploitation of this flaw can require
significant time and effort.

No Implementations are rated as easy to find. Unsurpris-
ingly, a majority of No Implementation vulnerabilities were
rated as easy to find (V=42, 58% of No Implementations). For
example, in the SC problem, an auditor could simply check
whether encryption, an integrity check, and a nonce were
used. If not, then the project can be exploited. None of the All
Intuitive or Some Intuitive vulnerabilities were rated as diffi-
cult to exploit; however, 45% of Unintuitive vulnerabilities

were (V=22). The difference between Unintuitive and Some
Intuitive is significant (φ = 0.38, p = 0.003), but (likely due
to sample size) the difference between Unintuitive and All
Intuitive is not (φ = 0.17, p = 0.17).

As an example, SL-7 did not use a MAC to detect modifi-
cations to their encrypted files. This mistake is very simple to
identify, but it was not exploited by any of the BIBIFI teams.
The likely reason for this was that SL-7 stored the log data in
a JSON blob before encrypting. Therefore, any modifications
made to the encrypted text must maintain the JSON struc-
ture after decryption, or the exploit will fail. The attack could
require a large number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated
all Mistakes as easy to exploit. This is significantly different
from both No Implementation (φ = 0.43, p = 0.001) and Mis-
understanding (φ = 0.51, p < 0.001) vulnerabilities, which
were rated as easy to exploit less frequently. Similarly, Mis-
takes were actually exploited during the Break It phase signif-
icantly more often than either Misunderstanding (φ = 0.35,
p = 0.001) or No Implementation (φ = 0.28, p = 0.006). In
fact, only one Mistake (0.03%) was not actually exploited
by any Break It team. These results suggest that although
Mistakes were least common, any that do find their way into
production code are likely to be found and exploited. For-
tunately, our results also suggest that code review may be
sufficient to find many of these vulnerabilities. (We note that
this assumes that the source is available, which may not be
the case when a developer relies on third-party software.)

No significant difference in attacker control. We find no
significant differences between types or sub-types in the inci-
dence of full and partial attacker control. This result is likely
partially due to the fact that partial attacker control vulnerabil-
ities still have practically important consequences. Because of
this fact, our BIBIFI did not distinguish between attacker con-
trol levels when awarding points; i.e., partial attacker control
vulnerabilities received as many points as full attacker con-
trol. The effect of more nuanced scoring could be investigated
in future work. We do observe a trend that Misunderstand-
ing vulnerabilities exhibited full attacker control more often
(V=50, 70% of Misunderstandings) than No Implementation
and Mistake (V=44, 61% and V=20, 51%, respectively); this
trend specifically could be further investigated in future stud-
ies focusing on attacker control.

6 Discussion and Recommendations

Our results are consistent with real-world observations, add
weight to existing recommendations, and suggest prioritiza-
tions of possible solutions.

Our vulnerabilities compared to real-world vulnerabili-
ties. While we compiled our list of vulnerabilities by explor-
ing BIBIFI projects, we find that our list closely resembles

USENIX Association 29th USENIX Security Symposium 119

Figure 1: # vulnerabilities introduced for each type divided by Discovery Difficulty, Exploit Difficulty and Attacker Control.

both Mitre’s CWE and OWASP’s Top Ten [55,61] lists. Over-
lapping vulnerabilities include: broken authentication (e.g.,
insufficient randomness), broken access control, security mis-
configuration (e.g., using an algorithm incorrectly or with
the wrong default values), and sensitive data exposure (e.g.
side-channel leak).

Get the help of a security expert. In some large organi-
zations, developers working with cryptography and other
security-specific features might be required to use security-
expert determine tools and patterns to use or have a security
expert perform a review. Our results reaffirm this practice,
when possible, as participants were most likely to struggle
with security concepts avoidable through expert review.

API design. Our results support the basic idea that secu-
rity controls are best applied transparently, e.g., using simple
APIs [35]. However, while many teams used APIs that pro-
vide security (e.g., encryption) transparently, they were still
frequently misused (e.g., failing to initialize using a unique IV
or failing to employ stream-based operation to avoid replay
attacks). It may be beneficial to organize solutions around
general use cases, so that developers only need to know the
use case and not the security requirements.

API documentation. API usage problems could be a matter
of documentation, as suggested by prior work [2, 57]. For
example, teams SC-18 and SC-19 used TLS socket libraries
but did not enable client-side authentication, as needed by
the problem. This failure appears to have occurred because
client-side authentication is disabled by default, but this fact
is not mentioned in the documentation.8 Defaults within an
API should be safe and without ambiguity [35]. As another
example, SL-22 (Listing 2) disabled the automatic integrity
checks of the SQLCipher library. Their commit message
stated “Improve performance by disabling per-page MAC
protection.” We know that this change was made to improve

8https://golang.org/pkg/crypto/tls/#Listen and https:
//www.openssl.org/docs/manmaster/man3/SSL_new.html

performance, but it is possible they assumed they were only
disabling the “per-page” integrity check while a full database
check remained. The documentation is unclear about this.9

Security education. Even the best documented APIs are use-
less when teams fail to apply security at all, as we observed
frequently. A lack of education is an easy scapegoat, but we
note that many of the teams in our data had completed a cy-
bersecurity MOOC prior to the competition. We reviewed
lecture slides and found that all needed security controls for
the BIBIFI problems were discussed. While only three teams
failed to include All Intuitive requirements (5% of MOOC
teams), a majority of teams failed to include Unintuitive re-
quirements (P=33, 55% of MOOC teams). It could be that the
topics were not driven home in a sufficiently meaningful man-
ner. An environment like BIBIFI, where developers practice
implementing security concepts and receive feedback regard-
ing mistakes, could help. Future work should consider how
well competitors from one contest do in follow-on contests.

Vulnerability analysis tools. There is significant interest in
automating security vulnerability discovery (or preventing
vulnerability introduction) through the use of code analysis
tools. Such tools may have found some of the vulnerabili-
ties we examined in our study. For example, static analyses
like SpotBugs/Findbugs [6,40], Infer [14], and FlowDroid [7];
symbolic executors like KLEE [13] and angr [71]; fuzz testers
like AFL [81] or libfuzzer [70]; and dynamic analyses like
libdft [43] and TaintDroid [27] could have uncovered vulner-
abilities relating to memory corruption, improper parameter
use (like a fixed IV [23]), and missing error checks. However,
they would not have applied to the majority of vulnerabili-
ties we saw, which are often design-level, conceptual issues.
An interesting question is how automation could be used to
address security requirements at design time.

Determining security expertise. Our results indicate that

9https://www.zetetic.net/sqlcipher/sqlcipher-api/
#cipher_use_MAC

120 29th USENIX Security Symposium USENIX Association

https://golang.org/pkg/crypto/tls/#Listen
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

the reason teams most often did not implement security was
due to a lack of knowledge. However, neither years of devel-
opment experience nor whether security training had been
completed had a significant effect on whether any of the vul-
nerability types were introduced. This finding is consistent
with prior research [60] and suggests the need for a new mea-
sure of security experience. Previous work by Votipka et al.
contrasting vulnerability discovery experts (hackers) and non-
experts (software testers) suggested the main factor behind
their difference in experience was the variety of different
vulnerabilities they discovered or observed (e.g., read about
or had described to them) [79]. Therefore, a metric for vul-
nerability experience based on the types of vulnerabilities
observed previously may have been a better predictor for the
types of vulnerabilities teams introduced.

7 Related Work

The original BIBIFI paper [66] explored how different quan-
titative factors influenced the performance and security of
contest submissions. This paper complements that analysis
with in-depth, qualitative examination of the introduced vul-
nerabilities in a substantial sample of BIBIFI submissions
(including a new programming problem, multiuser database).

The BIBIFI contest affords analysis of many attempts at the
same problem in a context with far more ecological validity
than a controlled lab study. This nicely complements prior
work examining patterns in the introduction and identification
of vulnerabilities in many contexts. We review and compare
to some of this prior work here.

Measuring metadata in production code. Several re-
searchers have used metadata from revision-control systems
to examine vulnerability introduction. In two papers, Meneely
et al. investigated metadata from PHP and the Apache HTTP
server [50, 52]. They found that vulnerabilities are associated
with higher-than-average code churn, committing authors who
are new to the codebase, and editing others’ code rather than
one’s own. Follow-up work investigating Chromium found
that source code reviewed by more developers was more likely
to contain a vulnerability, unless reviewed by someone who
had participated in a prior vulnerability-fixing review [51].
Significantly earlier, Sliwerski et al. explored mechanisms
for identifying bug-fix commits in the Eclipse CVS archives,
finding, e.g., that fix-inducing changes typically span more
files than other commits [73]. Perl et al. used metadata from
Github and CVEs to train a classifier to identify commits that
might contain vulnerabilities [62].

Other researchers have investigated trends in CVEs and the
National Vulnerability Database (NVD). Christey et al. ex-
amining CVEs from 2001–2006, found noticeable differences
in the types of vulnerabilities reported for open- and closed-
source operating-system advisories [20]. As a continuation,
Chang et al. explored CVEs and the NVD from 2007–2010,

showing that the percentage of high-attacker control vulner-
abilities decreased over time, but that more than 80% of all
examined vulnerabilities were exploitable via network ac-
cess without authentication [19]. We complement this work
by examining a smaller set of vulnerabilities in more depth.
While these works focus on metadata about code commits
and vulnerability reports, we instead examine the code itself.

Measuring cryptography problems in production code.
Lazar et al. discovered that only 17% of cryptography vul-
nerabilities in the CVE database were caused by bugs in
cryptographic libraries, while 83% were caused by developer
misuse of the libraries [46]. This accords with our Conceptual
Error results. Egele et al. developed an analyzer to recognize
specific cryptographic errors and found that nearly 88% of
Google Play applications using cryptographic APIs make at
least one of these mistakes [26]. Kruger et al. performed a sim-
ilar analysis of Android apps and found 95% made at least one
misuse of a cryptographic API [45]. Other researchers used
fuzzing and static analysis to identify problems with SSL/TLS
implementations in libraries and in Android apps [28,33]. Fo-
cusing on one particular application of cryptography, Reaves
et al. uncovered serious vulnerabilities in mobile banking
applications related to homemade cryptography, certificate
validation, and information leakage [64]. These works exam-
ine specific types of vulnerabilities across many real-world
programs; our contest data allows us to similarly investigate
patterns of errors made when addressing similar tasks, but ex-
plore more types of vulnerabilities. Additionally, because all
teams are building to the same requirement specification, we
limit confounding factors inherent in the review of disparate
code bases.

Controlled experiments with developers. In contrast to
production-code measurements, other researchers have ex-
plored security phenomena through controlled experiments
with small, security-focused programming tasks. Oliveira et al.
studied developer misuse of cryptographic APIs via Java “puz-
zles” involving APIs with known misuse cases and found that
neither cognitive function nor expertise correlated with ability
to avoid security problems [60]. Other researchers have found,
in the contexts of cryptography and secure password storage,
that while simple APIs do provide security benefits, simplicity
is not enough to solve the problems of poor documentation,
missing examples, missing features, and insufficient abstrac-
tions [2, 56–58]. Perhaps closest to our work, Finifter et al.
compared different teams’ attempts to build a secure web
application using different tools and frameworks [29]. They
found no relationship between programming language and
application security, but that automated security mechanisms
were effective in preventing vulnerabilities.

Other studies have experimentally investigated how effec-
tive developers are at looking for vulnerabilities. Edmundson
et al. conducted an experiment in manual code review: no
participant found all three previously confirmed vulnerabili-

USENIX Association 29th USENIX Security Symposium 121

ties, and more experience was not necessarily correlated with
more accuracy in code review [25]. Other work suggested that
users found more vulnerabilities faster with static analysis
than with black-box penetration testing [69].

We further substantiate many of these findings in a different
experimental context: larger programming tasks in which
functionality and performance were prioritized along with
security, allowing increased ecological validity while still
maintaining some quasi-experimental controls.

8 Conclusion

Secure software development is challenging, with many pro-
posed remediations and improvements. To know which inter-
ventions are likely to have the most impact requires under-
standing which security errors programmers tend to make,
and why. To this end, we presented a systematic, qualitative
study of 94 program submissions to a secure-programming
contest, each implementing one of three non-trivial, security-
relevant programming problems. Over about six months, we
labeled 182 unique security vulnerabilities (some from the
866 exploits produced by competitors, some we found our-
selves) according to type, attacker control, and exploitability,
using iterative open coding. We also coded project features
aligned with security implementation. We found implementa-
tion mistakes were comparatively less common than failures
in security understanding—78% of projects failed to imple-
ment a key part of a defense, or did so incorrectly, while
21% made simple mistakes. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

Acknowledgments

We thank the anonymous reviewers who provided helpful
comments on drafts of this paper. This project was supported
by gifts from Accenture, AT&T, Galois, Leidos, Patriot Tech-
nologies, NCC Group, Trail of Bits, Synposis, ASTech Con-
sulting, Cigital, SuprTek, Cyberpoint, and Lockheed Martin;
by NSF grants EDU-1319147 and CNS-1801545; and by
the U.S. Department of Commerce, National Institute for
Standards and Technology, under Cooperative Agreement
70NANB15H330.

References
[1] R. Abu-Salma, M. A. Sasse, J. Bonneau, A. Danilova, A. Naiakshina,

and M. Smith. Obstacles to the adoption of secure communication
tools. In IEEE Symposium on Security and Privacy, pages 137–153,
May 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle L Mazurek, and Christian Stransky. Com-
paring the usability of cryptographic apis. In IEEE Symposium on
Security and Privacy, pages 154–171. IEEE, 2017.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. You get where you’re looking for:
The impact of information sources on code security. In IEEE Sympo-
sium on Security and Privacy, pages 289–305. IEEE, 2016.

[4] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L
Mazurek, and Sascha Fahl. Security developer studies with github
users: Exploring a convenience sample. In Symposium on Usable
Privacy and Security, pages 81–95, 2017.

[5] Nuno Antunes and Marco Vieira. Comparing the effectiveness of pene-
tration testing and static code analysis on the detection of sql injection
vulnerabilities in web services. In IEEE Pacific Rim International
Symposium on Dependable Computing, pages 301–306, Washington,
DC, USA, 2009. IEEE Computer Society.

[6] Philippe Arteau, Andrey Loskutov, Juan Dodero, and Kengo Toda.
Spotbugs. https://spotbugs.github.io/, 2019.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM SIGPALN Notices,
49(6):259–269, 2014.

[8] Hala Assal and Sonia Chiasson. Security in the software development
lifecycle. In Symposium on Usable Privacy and Security, pages 281–
296, Baltimore, MD, 2018. USENIX Association.

[9] Andrew Austin and Laurie Williams. One technique is not enough:
A comparison of vulnerability discovery techniques. In International
Symposium on Empirical Software Engineering and Measurement,
pages 97–106, Washington, DC, USA, 2011. IEEE Computer Society.

[10] Dejan Baca, Bengt Carlsson, Kai Petersen, and Lars Lundberg. Improv-
ing software security with static automated code analysis in an industry
setting. Software: Practice and Experience, 43(3):259–279, 2013.

[11] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing. Journal
of the Royal Statistical Society. Series B (Methodological), 57(1):289–
300, 1995.

[12] Diana Burley, Matt Bishop, Scott Buck, Joseph J. Ekstrom, Lynn
Futcher, David Gibson, Elizabeth K. Hawthorne, Siddharth Kaza, Yair
Levy, Herbert Mattord, and Allen Parrish. Curriculum guidelines for
post-secondary degree programs in cybersecurity. Technical report,
ACM, IEEE, AIS, and IFIP, 12 2017.

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Conference on Operating Systems Design and
Implementation, pages 209–224. USENIX Association, 2008.

[14] Cristiano Calcagno and Dino Distefano. Infer: An automatic program
verifier for memory safety of c programs. In Mihaela Bobaru, Klaus
Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal
Methods, pages 459–465. Springer Berlin Heidelberg, 2011.

[15] A Colin Cameron and Pravin K Trivedi. Regression Analysis of Count
Data, volume 53. Cambridge University Press, 2013.

[16] Ryan Camille. Computer and internet use in the united
states:2016. https://www.census.gov/library/publications/
2018/acs/acs-39.html, 2018.

[17] Center for Cyber Safety and Education. Global information security
workforce study. Technical report, Center for Cyber Safety and Educa-
tion, Clearwater, FL, 2017.

[18] Pravir Chandra. Software assurance maturity model. Technical report,
Open Web Application Security Project, 04 2017.

[19] Yung-Yu Chang, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. Trend
analysis of the cve for software vulnerability management. In Inter-
national Conference on Social Computing, pages 1290–1293. IEEE,
2011.

122 29th USENIX Security Symposium USENIX Association

https://spotbugs.github.io/
https://www.census.gov/library/publications/2018/acs/acs-39.html
https://www.census.gov/library/publications/2018/acs/acs-39.html

[20] Steve Christey and Robert A Martin. Vulnerability type distribu-
tions in cve. https://cwe.mitre.org/documents/vuln-trends/
index.html, 2007.

[21] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 1988.

[22] Harald Cramér. Mathematical Methods of Statistics (PMS-9), volume 9.
Princeton University Press, 2016.

[23] Felix Dörre and Vladimir Klebanov. Practical detection of entropy
loss in pseudo-random number generators. In ACM Conference on
Computer and Communications Security, pages 678–689, 2016.

[24] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t
pentest: An analysis of black-box web vulnerability scanners. In In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 111–131, Berlin, Heidelberg, 2010.
Springer-Verlag.

[25] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter,
Adrian Mettler, and David Wagner. An empirical study on the ef-
fectiveness of security code review. In International Conference on
Engineering Secure Software and Systems, pages 197–212, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[26] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android ap-
plications. In ACM Conference on Computer and Communications
Security, pages 73–84. ACM, 2013.

[27] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems, 32(2):5:1–5:29, 2014.

[28] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why eve and mallory love
android: An analysis of android ssl (in)security. In ACM Conference
on Computer and Communications Security, pages 50–61. ACM, 2012.

[29] Matthew Finifter and David Wagner. Exploring the relationship be-
tween web application development tools and security. In USENIX
Conference on Web Application Development, 2011.

[30] FIRST.org. Common vulnerability scoring system. https://www.
first.org/cvss/calculator/3.0, 2016. (Accessed 12-19-2016).

[31] Ronald A Fisher. On the interpretation of χ2 from contingency tables,
and the calculation of p. Journal of the Royal Statistical Society,
85(1):87–94, 1922.

[32] Karl Pearson F.R.S. On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random
sampling. Philosophical Magazine, 50(302):157–175, 1900.

[33] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan
Boneh, and Vitaly Shmatikov. The most dangerous code in the world:
Validating ssl certificates in non-browser software. In ACM Conference
on Computer and Communications Security, pages 38–49, New York,
NY, USA, 2012. ACM.

[34] Jennifer Goldbeck, Jonathan Katz, Michael Hicks, and Gang Qu.
Coursera cybersecurity specialization. https://www.coursera.org/
specializations/cyber-security, 2019.

[35] Matthew Green and Matthew Smith. Developers are not the enemy!:
The need for usable security apis. IEEE Security & Privacy, 14(5):40–
46, 2016.

[36] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard
Prettyman. “we make it a big deal in the company”: Security mindsets
in organizations that develop cryptographic products. In Symposium
on Usable Privacy and Security, pages 357–373, Baltimore, MD, 2018.
USENIX Association.

[37] William R. Harris, Somesh Jha, Thomas W. Reps, and Sanjit A. Seshia.
Program synthesis for interactive-security systems. Formal Methods
System Design, 51(2):362–394, November 2017.

[38] Andrew F Hayes and Klaus Krippendorff. Answering the call for a
standard reliability measure for coding data. Communication Methods
and Measures, 1(1):77–89, 2007.

[39] Mariana Hentea, Harpal S Dhillon, and Manpreet Dhillon. Towards
changes in information security education. Journal of Information
Technology Education: Research, 5:221–233, 2006.

[40] David Hovemeyer and William Pugh. Finding bugs is easy. ACM
SIGPLAN Notices, 39(12):92–106, December 2004.

[41] IEEE. IEEE spectrum: The top programming languages
2018. https://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2018, 2018.

[42] Melanie Jones. Why cybersecurity education matters. https:
//www.itproportal.com/features/why-cybersecurity-
education-matters/, 2019.

[43] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and An-
gelos D. Keromytis. Libdft: Practical dynamic data flow tracking
for commodity systems. In ACM Conference on Virtual Execution
Environments, pages 121–132, 2012.

[44] Nick Kolakowski. Software developer jobs will increase through
2026. https://insights.dice.com/2019/01/03/software-
developer-jobs-increase-2026/, 2019.

[45] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL: An Extensible Approach to Validating the Correct
Usage of Cryptographic APIs. In Todd Millstein, editor, European Con-
ference on Object-Oriented Programming, pages 10:1–10:27, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[46] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why
does cryptographic software fail?: A case study and open problems. In
Asia-Pacific Workshop on Systems, page 7. ACM, 2014.

[47] Timothy C Lethbridge, Jorge Diaz-Herrera, Richard Jr J LeBlanc, and
J Barrie Thompson. Improving software practice through education:
Challenges and future trends. In Future of Software Engineering, pages
12–28. IEEE Computer Society, 2007.

[48] Gary McGraw, Sammy Migues, and Brian Chess. Software security
framework | bsimm, 2009. (Accessed 05-22-2018).

[49] Gary McGraw and John Steven. Software [in]security: Comparing
apples, oranges, and aardvarks (or, all static analysis tools are not cre-
ated equal. http://www.informit.com/articles/article.aspx?
p=1680863, 2011. (Accessed 02-26-2017).

[50] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates. When a patch goes bad: Exploring the properties of
vulnerability-contributing commits. In International Symposium on
Empirical Software Engineering and Measurement, pages 65–74, Oct
2013.

[51] Andrew Meneely, Alberto C Rodriguez Tejeda, Brian Spates, Shannon
Trudeau, Danielle Neuberger, Katherine Whitlock, Christopher Ketant,
and Kayla Davis. An empirical investigation of socio-technical code
review metrics and security vulnerabilities. In International Workshop
on Social Software Engineering, pages 37–44. ACM, 2014.

[52] Andrew Meneely and Oluyinka Williams. Interactive churn metrics:
Socio-technical variants of code churn. ACM Software Engineering
Notes, 37(6):1–6, 2012.

[53] Microsoft. Microsoft security development lifecycle practices.
https://www.microsoft.com/en-us/securityengineering/
sdl/practices, 2019.

[54] MITRE. Cve. https://cve.mitre.org/, 2019.

[55] MITRE. Cwe: Common weakness enumeration. https://cwe.mitre.
org/data/definitions/1000.html/, 2019.

USENIX Association 29th USENIX Security Symposium 123

https://cwe.mitre.org/documents/vuln-trends/index.html
https://cwe.mitre.org/documents/vuln-trends/index.html
https://www.first.org/cvss/calculator/3.0
https://www.first.org/cvss/calculator/3.0
https://www.coursera.org/specializations/cyber-security
https://www.coursera.org/specializations/cyber-security
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://insights.dice.com/2019/01/03/software-developer-jobs-increase-2026/
https://insights.dice.com/2019/01/03/software-developer-jobs-increase-2026/
http://www.informit.com/articles/article.aspx?p=1680863
http://www.informit.com/articles/article.aspx?p=1680863
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/1000.html/
https://cwe.mitre.org/data/definitions/1000.html/

[56] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, Emanuel von
Zezschwitz, and Matthew Smith. “if you want, i can store the encrypted
password”: A password-storage field study with freelance developers.
In Conference on Human Factors in Computing Systems, pages 140:1–
140:12, New York, NY, USA, 2019. ACM.

[57] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Her-
zog, Sergej Dechand, and Matthew Smith. Why do developers get
password storage wrong?: A qualitative usability study. In ACM Con-
ference on Computer and Communications Security, pages 311–328.
ACM, 2017.

[58] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and
Matthew Smith. Deception task design in developer password studies:
Exploring a student sample. In Symposium on Usable Privacy and
Security, pages 297–313, Baltimore, MD, 2018. USENIX Association.

[59] William Newhouse, Stephanie Keith, Benjamin Scribner, and Greg
Witte. Nist special publication 800-181, the nice cybersecurity work-
force framework. Technical report, National Institute of Standards and
Technology, 08 2017.

[60] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad
Akefirad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong,
Justin Cappos, and Yuriy Brun. API blindspots: Why experienced
developers write vulnerable code. In Symposium on Usable Privacy and
Security, pages 315–328, Baltimore, MD, 2018. USENIX Association.

[61] OWASP. Top 10-2017 top 10. https://www.owasp.org/index.
php/Top_10-2017_Top_10, 2017.

[62] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian
Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder:
Finding potential vulnerabilities in open-source projects to assist code
audits. In ACM Conference on Computer and Communications Security,
pages 426–437, New York, NY, USA, 2015. ACM.

[63] Adrian E Raftery. Bayesian model selection in social research. Socio-
logical Methodology, pages 111–163, 1995.

[64] Bradley Reaves, Nolen Scaife, Adam M Bates, Patrick Traynor, and
Kevin RB Butler. Mo (bile) money, mo (bile) problems: Analysis of
branchless banking applications in the developing world. In USENIX
Security Symposium, pages 17–32, 2015.

[65] Tony Rice, Josh Brown-White, Tania Skinner, Nick Ozmore, Nazira
Carlage, Wendy Poland, Eric Heitzman, and Danny Dhillon. Funda-
mental practices for secure software development. Technical report,
Software Assurance Forum for Excellence in Code, 04 2018.

[66] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L.
Mazurek, and Piotr Mardziel. Build it, break it, fix it: Contesting secure
development. In ACM Conference on Computer and Communications
Security, pages 690–703, New York, NY, USA, 2016. ACM.

[67] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison
of bug finding tools for java. In International Symposium on Software
Reliability Engineering, pages 245–256, Washington, DC, USA, 2004.
IEEE Computer Society.

[68] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. In Symposium on Operating System Principles,
pages 1278–1308, Sep. 1975.

[69] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analy-
sis versus penetration testing: A controlled experiment. In International
Symposium on Software Reliability Engineering, pages 451–460. IEEE,
2013.

[70] K Serebryany. libfuzzer. https://llvm.org/docs/LibFuzzer.
html, 2015.

[71] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
Sok: (state of) the art of war: Offensive techniques in binary analysis.
In IEEE Symposium on Security and Privacy, pages 138–157, 2016.

[72] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher
Salls, Ruoyu Wang, Christopher Kruegel, and Giovanni Vigna. Rise
of the hacrs: Augmenting autonomous cyber reasoning systems with
human assistance. In ACM Conference on Computer and Communica-
tions Security. ACM, 2017.

[73] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? ACM Software Engineering Notes, 30(4):1–5,
May 2005.

[74] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research,
volume 15. Newbury Park, CA: Sage, 1990.

[75] Larry Suto. Analyzing the effectiveness and coverage of web applica-
tion security scanners. Technical report, BeyondTrust, Inc, 2007.

[76] Larry Suto. Analyzing the accuracy and time costs of web application
security scanners. Technical report, BeyondTrust, Inc, 2010.

[77] Patrick Thibodeau. India to overtake u.s. on number of devel-
opers by 2017. https://www.computerworld.com/article/
2483690/it-careers/india-to-overtake-u-s--on-number-
of-developers-by-2017.html, 2013.

[78] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford.
Security during application development: An application security ex-
pert perspective. In Conference on Human Factors in Computing
Systems, pages 262:1–262:12, New York, NY, USA, 2018. ACM.

[79] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. Hackers
vs. testers: A comparison of software vulnerability discovery processes.
In IEEE Symposium on Security and Privacy, pages 374–391, May
2018.

[80] Arnold D Well and Jerome L Myers. Research Design & Statistical
Analysis. Psychology Press, 2nd edition, 2003.

[81] Michal Zalewski. American fuzzing lop (afl). http://lcamtuf.
coredump.cx/afl/, 2014.

A Additional Contest Details

To provide additional context for our results, this appendix
includes a more thorough breakdown of the sampled popu-
lation along with the number of breaks and vulnerabilities
for each competition. Table 4 presents statistics for sampled
teams, participant demographics, and counts of break sub-
missions and unique vulnerabilities introduced divided by
competition. Figure 2 shows the variation in team sizes across
competitions.

B Additional Coding

We coded several variables in addition to those found to have
significant effect on vulnerability types introduced. This ap-
pendix describes the full set of variables coded. Table 5 pro-
vides a summary of all variables.

Hard to read code is a potential reason for vulnerability
introduction. If team members cannot comprehend the code,
then resulting misunderstandings could cause more vulnera-
bilities. To determine whether this occurred, we coded each
project according to several readability measures. These in-
cluded whether the project was broken into several single-
function sub-components (Modularity), whether the team
used variable and function names representative of their se-
mantic roles (Variable Naming), whether whitespace was

124 29th USENIX Security Symposium USENIX Association

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
https://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Contest Fall 14 (SL) Spring 15 (SL) Fall 15 (SC) Fall 16 (MD) Total

Teams 10 42 27 15 94
Contestants 26 100 86 35 247
% Male 46 % 92 % 87 % 80 % 84 %
% Female 12 % 4 % 8 % 3 % 6 %
Age 22.9/18/30 35.3/20/58 32.9/17/56 24.5/18/40 30.1/17/58
% with CS degrees 85 % 39 % 35 % 57 % 45 %
Years programming 2.9/1/4 9.7/0/30 9.6/2/37 9.6/3/21 8.9/0/37
Team size 2.6/1/6 2.4/1/5 3.2/1/5 2.3/1/8 2.7/1/8
PLs known per team 6.4/3/14 6.9/1/22 8.0/2/17 7.9/1/17 7.4/1/22
% MOOC 0% 100 % 91 % 53 % 76 %
Breaks 30 334 242 260 866
Vulnerabilities 12 41 64 65 182

Table 4: Participants demographics from sampled teams with the number of breaks submitted and vulnerabilities introduced per
competition. Some participants declined to specify gender. Slashed values represent mean/min/max

Variable Levels Description Alpha

Modular T / F Whether the project is segmented into a set of functions and classes each performing 1
small subcomponents of the project

Variable Naming T / F Whether the author used variable names indicating the purpose of the variable 1
Whitespace T / F Whether the author used whitespace (i.e., indentation and new lines) to allow the reader 1

to easily infer control-flow and variable scope
Comments T / F Whether the author included comments to explain blocks of the project 0.89
Economy of Mechanism T / F How complicated are the implementations of security relevant functions 0.84
Minimal Trusted Code T / F Whether security relevant functions are implemented once or multiple times 0.84

Table 5: Summary of the project codebook.

Figure 2: Histogram of team size by competition.

used support visualization of control-flow and variable scope
(Whitespace), and whether comments were included to sum-
marize relevant details (Comments).

Additionally, we identified whether projects followed se-
cure development best practices [12, pg. 32-36], specifically
Economy of Mechanism and Minimal Trusted Code.

When coding Economy of Mechanism, if the reviewer
judged the project only included necessary steps to provide
the intended security properties, then the project’s security

was economical. For example, one project submitted to the
secure log problem added a constant string to the end of each
access log event before encrypting. In addition to using a mes-
sage authentication code to ensure integrity, they checked that
this hardcoded string was unchanged as part of their integrity
check. Because removing this unnecessary step would not
sacrifice security, we coded this project as not economical.

Minimal Trusted Code was measured by checking whether
the security-relevant functionality was implemented in multi-
ple locations. Projects passed if they created a single function
for each security requirement (e.g., encryption, access con-
trol checks, etc.) and called it throughout. The alternative—
copying and pasting code wherever security functionality was
needed—is likely to lead to mistakes if each code segment is
not updated whenever changes are necessary.

C Regression Analysis

For each vulnerability type subclass, we performed a pois-
son regression [15, 67-106] to understand whether the team’s
characteristics or their programming decisions influenced the
vulnerabilities introduced. In this appendix, we provide an
extended analysis discussion, focusing on the full set of co-
variates in each initial model, our model selection process,
and the results omitted from the main paper due to their lack

USENIX Association 29th USENIX Security Symposium 125

of significant results or poor model fit.

C.1 Initial Covariates
As a baseline, all initial regression models included factors for
the language used (Type Safety and Popularity), team charac-
teristics (development experience and security education), and
the associated problem. These base covariates were used to
understand the effect of a team’s intrinsic characteristics, their
development environment, and the problem specification. The
Type Safety variable identified whether each project was stati-
cally typed (e.g., Java or Go, but not C or C++), dynamically
typed (e.g., Python, Ruby), or C/C++ (Type Safety).

For Misunderstanding regressions, the Bad Choice regres-
sion only included the baseline covariates and the Conceptual
Error regression added the library type (Library Type). The
project’s Library Type was one of three categories based on
the libraries used (Library Type): no library used (None), a
standard language library (e.g., PyCrypto for Python) (Lan-
guage), or a non-standard library (3rd Party).

The No Implementation regressions only included the base-
line covariates. Additionally, since the Some Intuitive vulnera-
bilities only occurred in the MD problem, we did not include
problem as a covariate in the Some Intuitive regression.

In addition to the baseline covariates, the Mistake regres-
sion added the Minimal Trusted Code and Economy of Mech-
anism variables, whether the team used test cases during the
build phase, and the project’s number of lines of code. These
additional covariates were chosen as we expect smaller, sim-
pler, and more rigorously tested code to include less mistakes.

C.2 Model Selection
We calculated the Bayseian Information Criterion (BIC)—a
standard metric for model fit [63]—for all possible combina-
tions of the initial factors. To determine the optimal model
and avoid overfitting, we selected the minimum BIC model.

As our study is semi-controlled, there are a large number
of covariates which must be accounted for in each regression.
Therefore, our regressions were only able to identify large
effects [21]. Note, for this reason, we also did not include any
interaction variables. Including interaction variables would
have reduced the power of each model significantly and pre-
cluded finding even very large effects. Further, due to the
sparse nature of our data (e.g., many languages and libraries
were used, in many cases only by one team), some covari-
ates could only be included in an aggregated form, limiting
the analysis specificity. Future work should consider these
interactions and more detailed questions.

C.3 Results
Tables 6–10 provide the results of each regression not in-
cluded in the main text.

Log
Variable Value Estimate CI p-value

Popularity C (91.5) 1.03 [0.98, 1.09] 0.23

*Significant effect – Base case (Estimate=1, by
definition)

Table 6: Summary of regression over Bad Choice vulnerabili-
ties. Pseudo R2 measures for this model were 0.02 (McFad-
den) and 0.03 (Nagelkerke).

Log
Variable Value Estimate CI p-value

MOOC False – – –
True 1.76 [0.70, 4.34] 0.23

*Significant effect – Base case (Estimate=1,
by definition)

Table 7: Summary of regression over Conceptual Error vul-
nerabilities. Pseudo R2 measures for this model were 0.01
(McFadden) and 0.02 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Yrs. Experience 8.9 1.12 [0.82, 1.55] 0.47

*Significant effect – Base case (Estimate=1, by def-
inition)

Table 8: Summary of regression over All Intuitive vulnerabili-
ties. Pseudo R2 measures for this model were 0.06 (McFad-
den) and 0.06 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Problem SC – – –
SL 1.02 [0.98, 1.07] 0.373

*Significant effect – Base case (Estimate=1,
by definition)

Table 9: Summary of regression over Some Intuitive vulnera-
bilities. Pseudo R2 measures for this model were 0.02 (Mc-
Fadden) and 0.07 (Nagelkerke).

Log
Variable Value Estimate CI p-value

Problem SC – – –
MD 0.58 [0.25, 1.35] 0.21
SL 0.31 [0.15, 0.60] < 0.001*

*Significant effect – Base case (Estimate=1,
by definition)

Table 10: Summary of regression over Unintuitive vulnerabil-
ities. Pseudo R2 measures for this model were 0.07 (McFad-
den) and 0.16 (Nagelkerke).

126 29th USENIX Security Symposium USENIX Association

	1 Introduction
	2 Data
	2.1 Build it, Break it, Fix it
	2.2 Data gathered
	2.3 Representativeness: In Favor and Against

	3 Qualitative Coding
	3.1 Codebook
	3.1.1 Vulnerability codebook
	3.1.2 Project codebook

	3.2 Coding Process
	3.2.1 Project Selection
	3.2.2 Coding

	4 Vulnerability Types
	4.1 No Implementation
	4.2 Misunderstanding
	4.2.1 Bad Choice
	4.2.2 Conceptual Error

	4.3 Mistake

	5 Analysis of Vulnerabilities
	5.1 Prevalence
	5.2 Exploit Difficulty and Attacker control

	6 Discussion and Recommendations
	7 Related Work
	8 Conclusion
	A Additional Contest Details
	B Additional Coding
	C Regression Analysis
	C.1 Initial Covariates
	C.2 Model Selection
	C.3 Results

