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Abstract

Motivation: Efficient and accurate alignment of DNA/RNA sequence reads to each other or to a reference genome/
transcriptome is an important problem in genomic analysis. Nanopore sequencing has emerged as a major
sequencing technology and many long-read aligners have been designed for aligning nanopore reads. However, the
high error rate makes accurate and efficient alignment difficult. Utilizing the noise and error characteristics inherent
in the sequencing process properly can play a vital role in constructing a robust aligner. In this article, we design
QAlign, a pre-processor that can be used with any long-read aligner for aligning long reads to a genome/transcrip-
tome or to other long reads. The key idea in QAlign is to convert the nucleotide reads into discretized current levels
that capture the error modes of the nanopore sequencer before running it through a sequence aligner.

Results: We show that QAlign is able to improve alignment rates from around 80% up to 90% with nanopore reads
when aligning to the genome. We also show that QAlign improves the average overlap quality by 9.2, 2.5 and 10.8%
in three real datasets for read-to-read alignment. Read-to-transcriptome alignment rates are improved from 51.6% to

75.4% and 82.6% to 90% in two real datasets.

Availability and implementation: https://github.com/joshidhaivat/QAlign.git.

Contact: ksreeram@uw.edu or suhas@ee.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In genomic data analysis, aligning DNA/RNA-seq reads to a gen-
ome/transcriptome is a key primitive, that precedes many down-
stream tasks, including genome/transcriptome assembly (Haas et al.,
2013; Pevzner et al., 2001) and variant calling (DePristo et al.,
2011; Li, 2011; Mao et al., 2017). Getting accurate read alignment
is difficult especially in repetitive regions of the genome, due to the
short length of the reads obtained via high throughput sequencing.
Emerging sequencing technologies, particularly, nanopore sequenc-
ing (Deamer et al., 2016; Mikheyev and Tin, 2014) offers a potential
solution to this problem by providing long reads (with average read
length 10-kb and the longest read sequenced so far >2 Mb) that can
span these repetitive regions. However, these long reads are riddled
with a high error rate, thus, making alignment of low accuracy
(Krizanovi¢ et al., 2018) and the downstream task difficult. For ex-
ample, while nanopore sequencing has enabled fully automated as-
sembly of some bacterial genomes, the assembly of human genome
still produces many contigs that have to be scaffolded manually
(Jain et al., 2018). Another important downstream task is structural
variant calling, where long reads can play an important role.
However, present structural variant calling algorithms have low

precision and recall due to noise in the reads (Stancu et al., 2017).
The assembly of long segmental duplications presents another
important problem where long reads can bridge repeated regions
but again becomes complicated due to read errors (Chaisson et al.,
2017).

In this article, we propose a novel method for aligning nanopore
reads that takes into account the particular structure of errors that is
inherent in the nanopore sequencing process. In many of the long
read aligners, the read errors are modeled using insertions, deletions
and substitutions which happen at differing rates. However, in
nanopore sequencing, many errors induced have structure, which is
missed by viewing the errors as independent insertions, deletions
and substitutions. In the nanopore sequencer, the current level
depends on a Q-mer (a set of Q consecutive nucleotide bases which
influence the current measurement in the nanopore). This is due to
the physics of the nanopore sequencing, where a set of DNA base-
pairs together influence the current output of the nanopore reader
(Laszlo et al., 2014; Mao et al., 2018) (e.g. occupying the nanopore
width). Therefore, the output current depends on a set of DNA
base-pairs (O-mer) influencing it. The current reading, which is used
by a de novo base caller for decoding, therefore could cause struc-
tured errors, especially between Q-mers that have similar outputs.
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This confusability between different Q-mers, is captured by the so-
called Q-mer map. InFigure 1b, the median current levels for various
Q-mers are plotted and it is clear that there is significant overlap in
the current levels observed when different Q-mers are passed
through the nanopore. These overlaps are one source of structured
errors in the sequencer and can be fundamental since they can be
indistinguishable by any de novo sequencer.

The novel alignment strategy that we propose takes into account
the structure of the Q-mer map to perform better alignment. In
Figure la, we give an example where a DNA sequence
(GCATGACAGG) gets wrongly sequenced as a completely different
sequence (CGGCAACCGA) due to this error mode of the nanopore
sequencer. Ideally, we would like to maintain the list of ‘equivalent’
QO-mers that could have plausibly caused the observed current read-
ings. However, this is infeasible as this would entail changing the de
novo sequencing process itself to output either multiple possible
reads, or give soft information about different possibilities. This is
difficult, as sophisticated de novo sequencing have been developed
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using artificial neural networks, which have been optimized for read
error-rate performance (Tran et al., 2017). Moreover, for a modular
approach, we would not want to change the de novo sequencer for
different downstream applications. Therefore, we take a different
approach to resolve this problem, by using the de novo sequenced
read as the input to our strategy. We then deterministically convert
this de novo sequenced nucleotide read into a current value using
the O-mer median current level of the corresponding Q-mer (i.e. the
QO-mer map as in Fig. 1b). We further quantize these resulting cur-
rent values from continuous values into properly chosen discrete lev-
els. This is illustrated in Figure 1c. In this work, we use 2-3 levels of
discrete values for the quantization, which is determined based on
the Q-mer map. Now, given this new discrete representation of the
de novo reads, we develop the new alignment algorithm, whose
workflow is illustrated in Figure 1a.

A natural question is why this should help, since we are process-
ing the de novo reads which are erroneous, and we are 7ot using any
additional soft information, such as raw current values from the
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Fig. 1. (a) An example to illustrate the error-profile in nanopore base-called reads, and the ability of QAlign to perform accurate alignment despite of the errors (the edit dis-
tance used here is to demonstrate accuracy of the alignment, however, the nucleotide edit distance, which is used as a metric for read-to-genome and read-to-transcriptome
alignment, is computed in the nucleotide domain for the quantized alignments as well). (b) O-mer map for Nanopore R9.4 1D flow cell (for Q = 6). It represents the physics of
nanopore. The median current value along with the standard deviation (as error bars) are plotted for every 6-mers in the Q-mer map for R9.4 1D nanopore flow cell. Note
that the difference between the median current levels of any two consecutive Q-mers is very small. (c) An example showing the two different nucleotide sequences have similar

current levels (therefore similar quantized sequences)
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nanopore reads themselves. The basic insight is that the translation
of the nucleotide reads to current levels enables grouping together
reads that are confusable given the structure of the Q-mer map of
the nanopore sequencer. For example, when we have two reads illus-
trated in Figure 1c, if the de novo sequencer has chosen one of the
two equally likely sequences as the nucleotide read, it is clear that
the alternate read, which has significant edit distance (in the nucleo-
tide domain) is actually quite close when viewed from the lens of the
O-mer map, as captured by our quantized conversion process.
Therefore, this process naturally groups together reads that could
have been confused, and uses this as the input to our alignment algo-
rithm, QAlign. Therefore, this reduces the effect of the errors by rec-
ognizing one structure in the error process. Note that QAlign builds
an overlay layer on top of any alignment algorithm to align based
on current levels implied by the reads instead of directly aligning the
reads. Though we illustrate our ideas using the Minimap?2 aligner
(Li, 2018), this principle can be implemented with any other long-
read aligner such as GMAP (Wu and Watanabe, 2005).

We show that QAlign gives rise to significant performance
improvements across a variety of alignment tasks including read-to-
genome, read-to-read and read-to-transcriptome alignment as well
as different datasets spanning from R7 nanopore sequenced data
(Supplementary Fig. S6) to R9.4 data.

QAlign shows significant improvement in read-to-genome align-
ment rates for datasets where Minimap2 alignment rate is low
(improving up to around 90% for four real datasets). Furthermore,
the alignments are also of higher quality: QAlign shows up to
around 18% lower normalized edit distance than Minimap2 as well
as longer alignments.

For read-to-read alignments, QAlign is able to align around
3.6% more overlaps between read pairs with a high overlap quality
(refer to Section 2 for a description of the overlap quality) where
Minimap?2 is either unable to align the read overlaps or aligns with a
low overlap quality. We show that a hybrid alignment strategy
which combines QAlign and Minimap2 can improve the metric even
further to around 4.6% (Supplementary Fig. S14).

For read-to-transcriptome alignments, our method achieves 90%
alignment rate as opposed to 82.6% with mouse 2D reads and
75.4% as opposed to 51.6% with Human 1D reads. Furthermore,
the alignments are also of higher quality: QAlign shows 13.27%
lower normalized edit distance than Minimap2 as well as longer
alignments for Human 1D data.

In this study, we focus on the improvement of long read (in par-
ticular the Nanopore long read) alignment. To the best of our know-
ledge, there is no existing aligner, specifically designed to handle the
error modes introduced in nanopore sequencing. There is, however,
some work on incorporating the nanopore current levels in down-
stream tasks including post-processing of assembly by Nanopolish
(https://github.com/jts/manopolish). Nanopolish has demonstrated
that utilizing the current levels can reduce assembly errors. The
major difference of our work with Nanopolish is the level at which
the current-level information is taken into account. Since we take
into account current-level information while performing alignment,
we are able to get substantially more overlaps which can lead to po-
tentially better assembly of contigs whereas Nanopolish is only able
to correct fine errors.

2 Materials and methods

The QAlign strategy consists of two steps including the conversion
of the nucleotide sequences to quantized (e.g. 2 levels or 3 levels)
sequences in the first step. The next step is the alignment of the
quantized sequences for various alignment tasks such as read-to-
genome, read-to-read and read-to-transcriptome.

2.1 Quantization

The nucleotide sequences are inferred from the nanopore current
signals by base-callers, therefore, using a Q-mer map to translate the
base-called sequences to the current levels implicitly maintains all of
the ‘equivalent’ base-called sequences that could be inferred from

the observed current levels. These current levels can be quantized to
an alphabet of finite size (Fig. 1a and c).

Mathematically, the quantization process is as follows. Let T =
{A,C,G, T} be the alphabet of nucleotide sequences. For a symbol
x € X, let ¥ be the Watson—Crick complement of x. A string s =
Xx1x2 ...%x, over X is called a DNA sequence, where |s| = n is the
string length and the reverse complement of s s
S =X1X2...X; = XnXn_1..-%1. Let p(s) be a list of all Q-mers (e.g.
Q = 6) in the string s, sorted by their occurances. For example,
p(s) = kiky ... ky—g41 and each Q-mer k; = x;xi1...xi10-1 for
i=1,2,...,n—Q+ 1. Now, we define f : 2¢ — R as the Q-mer
map [O-mer map is determined by the chemistry of the nanopore
flow cell, and is therefore dataset dependent, i.e. the Q-mer map for
sequencing using R9 flow cell is different from Q-mer map for
sequencing using R9.4.1 flow cell. The Q-mer maps used in this
work are generated by Nanopolish (https://github.com/jts/nanopol
ish).], which is a deterministic function that translates each Q-mer
(k;j) to the (median) current level (Fig. 1b). Now, let C(s) =
c1c2...¢cu—g4+1 be the sequence of the current levels, so that ¢; =
f(ki) fori=1,2,...,n— Q + 1. The current sequence C can be fur-
ther quantized into w(s) = g192 ... gu.—o+1 by applying a threshold-
ing function g; = g(¢;). The thresholding can be binary (g; € {0,1})
or ternary (q; € {0,1,2}) (Fig. 1c). We define w(s) as the reverse
complementary of a quantized sequence w(s), so w(s) = w(s).

2.2 Alignment

We can now use the aligners (e.g. Minimap2) to align the quantized
sequences. It is important to note that these aligners inherently per-
forms the alignment of the query sequence (e.g. s1) to the reference
sequence (e.g. sy) and also aligns the reverse complement (51) to the
reference (s;). For the corresponding quantized sequences, aligners
need to align the query sequence (e.g. w,) and its reverse comple-
mentary (e.g. 1) explicitly to the reference (e.g. w»), to take care of
the O-mer map for both w, and w properly.

The performance of such an aligner can be evaluated by compar-
ing the alignments of the nucleotide sequences s; onto s, to the
alignments of their quantized sequences w; onto w; union with 4
onto w,, respectively, using appropriate performance evaluation
metrics.

Read-to-genome alignment. We apply QAlign to the task of
read-to-genome alignment. Given a nucleotide read r and the refer-
ence nucleotide genome G, we first obtain 79 (the quantized tem-
plate strand of the read, @ = w(r)) and 79 (quantized reverse
complement strand of the read, 72 = 7(r)) from r, and obtain G©
(quantized reference genome) from G. We next align < and 7€ re-
spectively to G using Minimap2. Lastly, we aggregate the results
from both the template and reverse complement outputs to deter-
mine the best alignment for each read.

Note that the quantized alignment procedure differs from the
direct nucleotide alignment process in two ways. First, the nucleo-
tide alignment does not require Minimap2 to additionally align 7 to
G explicitly. Second, the quantized alignment uses a different seed
length (e.g. minimizer length k in Minimap2) to ensure that the com-
putation time for quantized alignment is similar as nucleotide align-
ment (see Supplementary Table S1 for the details of computation
time versus seed lengths).

We define several terms that are crucial for later performance
analyis, mainly including well-aligned, normalized edit distance and
normalized alignment length.

Consider in Figure 2a, Read 1 aligns at location 7; through j; on
the genome (we can get these locations from Minimap2 output). We
say that the read is well-aligned, if at-least 90% of the read is
aligned onto the genome (i.e. j; — 71 > 0.9(length(Read1))), and has
either the (approximate) normalized edit distance from Minimap?2
(i.e. number of unmatched bases, normalized with read length,
based on Minimap2 output) is less than a threshold value or the
mapping quality from Minimap2 is high (greater than 20). The fil-
tering for the well-aligned reads using this distance and mapping
quality is incorporated to eliminate some spurious alignments from
Minimap2. Note that the (approximate) normalized edit distance
from Minimap?2 is specific to nucleotide or quantized alignment. For
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Fig. 2. (a) An example of read-to-genome alignment. (b) An example of read-to-read
alignment. (c) An example for head-to-tail alignments between reads

example, for nucleotide sequences the value returned by Minimap2
is in nucleotide domain; the value returned by Minimap2 is in
Q2 domain for the Q2 sequences. Therefore, different filtering
threshold values are used—0.48 for nucleotide sequence, 0.25
for Q2 sequence and 0.35 for Q3 sequence (Supplementary
Figs S18 and S19).

In order to compare the quality of the alignments at fine-grained
level, we further define Normalized edit distance (This is different
from approximate normalized edit distance from Minimap2 to filter
for well-aligned reads.). The normalized edit distance for nucleotide

edityistance {r:Glirsi I}

o B0 and for quantized alignment is

alignment is

ditgistance (TGl 5T .. g . .
W, where iy, j; and i{, j are locations obtained from nu-

cleotide and quantized alignment respectively. Similarly, we define
Normalized edit distance of aligned read for nucleotide alignment as

editgiseance (vl 154Gl |} (s i i

e e (Fig. 2a) and for the quantized alignment as

ditanee 171, G . - .

w As evident from the definitions, these metrics
max(7{ —1} /' —i'1)

for both nucleotide and quantized alignment are calculated all in nu-
cleotide domain (unlike the approximate normalized edit distance
from Minimap2, which is domain specific). Specifically, for quan-
tized alignment, we leverage the information about the alignment lo-
cation on genome (i.e. i{ and j{) to calculate the normalized edit
distance between the nucleotide read and the corresponding aligned
section on the nucleotide genome.

Another metric at fine-grained level is normalized alignment
length, which is the ratio of the length of the section on genome
ni=h

Tt for nucleotide

where a read aligns to the length of the read. It is

[Z, i;é) for quantized alignment. A contiguous align-
ment tends to have this metric as 1.

We have been discussing the nanopore 1D reads for read-to-
genome alignment so far. There are also 2D reads (e.g. 7), which are
the consensus calling using the 1D reads from both the template
strand (e.g. 7,) and the complement strand (e.g. r.). For the read-to-
genome alignment algorithm of the 2D reads using QAlign, the
experiment pipeline has been modified so that the error profile intro-
duced in the sequencing of the 1D reads can be mitigated.
Specifically, the quantized reads from both the template strand
(e.g. 1) and the complement strand (e.g. rQ) are aligned to the
quantized genome (e.g. G©) individually using Minimap2. The
union of the two alignments (For example, alignment regions are
[0, 2] and [1, 3], and union is [0, 3].) is considered as the output of
the QAlign algorithm. In case there is no overlap in the alignments
of the reads from the individual strands, both the genome sections
are given as the output of the QAlign algorithm, as the 2D consensus

alignment, and

read might align to either of these sections. Since QAlign yields the
genome section as the union of the two alignments, it could be much
larger (nearly twice) than the read length. Therefore, the genome
section needs to be further refined by the local alignment of the 2D
consensus read onto the section. The performance evaluation of
QAlign is mainly based on the normalized edit distance between the
2D consensus read and the refined genome section (the results using
this method for the 2D read alignment onto genome are discussed in
Supplementary Figs S3 and S4).

Read-to-read alignment. We apply QAlign to read-to-read align-
ment as the second alignment task, which provides overlaps between
reads that are typically necessary for genome assembly.

The alignments between the nucleotide reads r; and 7, (or be-
tween the quantized reads rlQ and rZQ ) are obtained using Minimap2
as well. Similar to read-to-genome alignment, the quantized align-
ment not only aligns rlQ to rg, but also needs to align 772 to rZQ. In
addition, the quantized alignment uses a seed length (e.g. the minim-
izer length ‘6’ in Minimap2) different from nucleotide alignment so
that the computation time in both nucleotide and quantized regimes
is maintained to be similar (see Supplementary Table S2 for detailed
analysis of computation time versus k).

For the algorithm evaluation purpose, we need to have the
ground truth, which is unknown. One way to judge the quality is to
compute the normalized edit distances of alignment overlaps.
However, this is not only computationally expensive but also suffers
from false alignments between reads from repeated regions. Instead,
we leverage the read-to-genome alignments to build the ground
truth for read-to-read alignment. Specifically, all of the reads are
firstly aligned to the genome via both the nucleotide alignment and
the quantized alignment. The reason behind performing the read-to-
genome alignment in both the nucleotide and the quantized domain
is to ensure that more read alignments are captured, as there can be
some alignments that are captured/contiguous only in quantized
alignments and vice-versa. For the experiments, we focus on a sec-
tion of the genome G (say, G1 = G[1:1000000]) to find all the
reads aligning onto G{. Assume there are 7, and 7, number of reads
aligned to G, in nucleotide domain and in quantized domain, re-
spectively, with normalized edit distance (in nucleotide domain for
both methods) less than 0.48, which indicates the found alignment
of the reads are better than the alignment of two random DNA
sequences (see Supplementary Fig. S18). Now, we randomly choose
n reads from a union of 7; and 7, reads such that 7 ~ X XLd""', where
d.oy 18 the required coverage depth, N is the length of the genome
section G (i.e. 1 000 000) and L is the average length of the 72, U7
reads.

To estimate the ground truth, consider the alignment of Read 1
(r1) and Read 2 (r,) onto the genome as shown in Figure 2b, where
the alignment locations of the reads on the genome are (7},7]) and
(&5,75), respectively. We say that the reads are overlapping in the
ground truth if there is an overlap (denoted as /) of at least 100
bases, where | = min(f, — i, 7] — ;). For reads that have overlaps in
both nucleotide and quantized alignment, denoted as (I™<leotide) and
(I9) respectively, the larger one is chosen as [ = max([™eleotide O,

Provided the ground truth, we can compute the Precision and
Recall to make a comparison between the two methods. Precision
is defined as the fraction of overlaps in the ground truth among
the overlaps determined by the algorithm. Recall (also known as
sensitivity) is the fraction of overlaps in the ground truth that are
determined by the algorithm.

The read-to-read alignment will label two reads to have an
overlap (different from the overlap used to find ground truth)
if the length of the ‘Mapped Region’ is at least 90% of the
‘Mapped Region’ plus the ‘Overhang Region’ (Fig. 2b), i.e. g; >
09(g1+t1+t) and g >09(g2+t +1), or equivalently
t1 4+t < 0.1(min(g1,g2)). For evaluation, we define another metric
called the overlap quality (denoted as X) as % where
(Empirically dy and d, tend to be simply zero) the overfap quality
measures how well the reads are aligned with respect to each other,
compared to the alignment in ground truth. Ideally, it is desired
to have the value of overlap quality close to 1. We also define the
average overlap quality, which is the expected value of the overlap
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quality (i.e. E[X] = [IP{X > x}dx), or the area under the comple-
mentary CDF of X.

It is possible that two reads will be falsely aligned especially
when they are from repetitive regions. To remedy this, we only con-
sider head-to-tail alignment between reads. For example in
Figure 2¢, three reads Read 1, Read2 and Read 3 have been
sequenced where Read 1 and Read 2 are from repetitive regions.
Consequently after read-to-read alignment, there will be an overlap
between Read 1 and Read 2 that can be filtered out since it is not a
head-to-tail alignment. However, there will also be another false
positive overlap between Read 3 and Read 2, which will not be
removed as it satisfies the head-to-tail alignment condition. In order
to further reduce the number of false positives of read-to-read align-
ments, the (approximate) normalized edit distance provided by
Minimap?2 is used for extra filtering (see Supplementary Fig. S18).

In addition to reduce false positives, the read-to-read alignment
results can be further improved by implementing an Ensemble
model, which is able to capture the best alignment (e.g. longer length
of ‘Mapped Region’) from both methods of the nucleotide alignment
and the quantized alignment, as well as to incorporate the align-
ments that are complementary in either method (see Supplementary
Fig. S14).

Read-to-transcriptome alignment. Applying QAlign strategy to
the third task of the RNA read-to-transcriptome alignment is analo-
gous to the DNA read-to-genome alignment. This is not the spliced
alignment of the reads to the genome; instead all of the RNA reads
are aligned to the transcriptome. Since the ground truth is unknown
for the alignments, we use normalized edit distance, and normalized
alignment length as the evaluation metric.

3 Results

In this section, we demonstrate and discuss the results for (i) DNA
Read-to-Genome alignment, (ii) DNA Read-to-Read alignment and
(iii) RNA Read-to-Transcriptome alignment using QAlign and
Minimap2.

3.1 Datasets

Datasets for DNA-seq alignments: We use five datasets for DNA
read-to-genome and read-to-read alignment: (i) MinION sequencing
of Klebsiella pneumoniae DNA using R9.4 1D flow cell (Wick ez al.,
2017), (ii) MinION sequencing of Escherichia coli DNA using R9
2D flow cell (http://lab.loman.net/2016/07/30/nanopore-r9-data-re
lease/), (iii) MinION sequencing of E.coli DNA using R9.4 1D flow
cell  (https://www.ncbi.nlm.nih.gov/sra/lSRX4387499[accn]),  (iv)
MinION sequencing of Human genome using R9.4.1 flow cell (De
Coster et al., 2019) and (v) Simulated read data from GRCh38
chromosome 1 using Deep Simulator (Li et al., 2018) for benchmark-
ing the performance of QAlign.

Datasets for RNA-seq alignments: The experiments are based on
the RNA reads obtained by MinION sequencing of human cDNA
using R9.4 1D flow cell (https://github.com/nanopore-wgs-consor
tium/NA12878), and MinION sequencing of mouse cDNA using
R9.4 2D flow cell (Byrne et al., 2017) (SRA access No.
SRR5286961).

Compared to DNA-seq datasets, RNA-seq datasets carried out
using nanopore sequencing are relatively rare. We select these data-
sets because they have relatively complete reference transcriptome
le.g. for human there are 200 401 annotated transcripts (https://
www.gencodegenes.org/human/release_27.html) and for mouse
46 415 annotated transcripts from UCSC Genome Browser
(Haeussler ez al., 2019)], and the corresponding Q-mer map models
(https://github.com/jts/manopolish/tree/master/etc/r9-models) are
available for quantization.

3.2 DNA read-to-genome alignment

The alignment of DNA reads to the genome is a task with wide-
ranging applications in sequencing experiments. It is a required step
in variant calling pipelines (DePristo et al., 2011), in particular
structural variant calling can benefit significantly from long reads

offered by the nanopore sequencing platform (Stancu et al., 2017).
It is also useful in calling variants in long segmental duplications
(Chaisson et al., 2017), where long duplications necessitate long
reads to resolve the repeat ambiguity. Another application for DNA
read-to-genome alignment appears in reference matching—for ex-
ample, in meta-genomics, in estimating which reference species is
present in the sample.

The results are illustrated in the Figure 3 and Table 1. At a coarse
level, the performance is measured by the fraction of the reads that
have been well-aligned by the algorithm. A read is said to be well-
aligned if at-least 90% of the read is aligned to genome and has ei-
ther the (approximate) normalized edit distance from Minimap2
(i.e. number of unmatched bases, normalized with the read length)
below a threshold value or the mapping quality from Minimap?2 is
high (see Section 2). QAlign is shown to significantly improve the
fraction of well-aligned reads—in particular, in the K.pneumoniae
R9.4 1D dataset, this metric improves to 88.7% from 79.4%. In the
E.coli R9.4 1D dataset, it improves to 84.2% from 79.2%; in the
E.coli R9 2D dataset, the numerics improves to 91.8% from 82.6%
and for the human R9.4.1 dataset, it improves to 87.95% from
85.70%. For the benchmark with the simulated data, the numerics
improves to 84.35% from 69.04% (refer to Table 1).

The results in Figure 3a and b compare the quality of the align-
ments using Minimap2 and QAlign at a fine-grained level for the
K.pneumoniae dataset (plots for other datasets are available in
Supplementary Figs $1-510).

Specifically, Figure 3a compares the normalized edit distance for
QAlign and Minimap2. The normalized edit distance is the edit dis-
tance between the entire read and the aligned section on the genome
normalized with the length of the read, in nucleotide domain for
both nucleotide alignment and quantized alignment (Q2). In case of
Q2, the information of the location of the alignment on the genome
is leveraged from the alignment between the quantized read and the
quantized genome first, and the edit distance is computed between
the corresponding nucleotide read and the aligned section on the nu-
cleotide genome (see Section 2 for details). Intuitively, the normal-
ized edit distance gives a measure of how close the two sequences
are. Therefore, the smaller the normalized edit distance, better is the
alignment. In addition, the normalized edit distance for the reads
that have normalized edit distance of aligned reads more than 0.48
is set to 1 (we noticed that the normalized edit distance between a
pair of random DNA sequences is above 0.48, refer to
Supplementary Fig. S18). Therefore, the figure represents only those
alignments that are better than alignment of random DNA
sequences.

To better visualize the results, we group alignments with differ-
ent colors and marks for different conditions. The red circles in
Figure 3a and b represent the reads that are well-aligned in both nu-
cleotide and Q2 alignments and at nearly the same location on the
genome. The blue cross represent well-aligned reads in both Q2 and
nucleotide alignments but at different location on the genome or on
a different chromosome. The black asterisks are the reads that are
well-aligned in Q2 only, i.e. in nucleotide alignments, the alignment
of these reads are either missing or does not satisfy the definition of
the well-aligned reads. The green diamonds are the reads that are
well-aligned in nucleotide alignments only. The pink square points
are the reads that are not well-aligned in both Q2 and nucleotide
alignments. For each read, there could be multiple alignments on the
genome because of the repeats in the genome, but we consider the
alignment that has the minimum edit distance amongst all of them
for the evaluation in these plots.

Figure 3a shows that the normalized edit distance is overall
smaller for Q2 alignments than nucleotide alignments. The better
alignment in Q2 is also evident from the slope of the regression line
in Figure 3a. It shows that on average Q2 alignments has 18.19%
improvement in terms of the normalized edit distance than the nu-
cleotide alignments.

The results for another fine-grained metric are shown in
Figure 3b, which compares the normalized alignment length on gen-
ome in Q2 to the normalized alignment length on genome in nucleo-
tide alignments. The normalized alignment length is the ratio of the
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Fig. 3. Nanopore long DNA reads alignment onto Genome. (a) Comparison of normalized edit distance for K.pneumoniae R9.4 1D reads data. Smaller values for normalized
edit distance is desirable as it represents better alignment. The slope of the regression line is <1, therefore, representing better alignments with Q2 than nucleotide alignments

for same reads on average. (b) Comparison of normalized align-length on genome for K.pneumoniae R9.4 1D reads data. Normalized alignment length of 1 is desirable as it
represents that entire read is aligned. Majority of the reads are above y =x line representing longer alignment length in Q2 than nucleotide alignment

Table 1. Comparison for the percentage of well-aligned reads onto genome, and slope of the regression line (for normalized edit distance
comparison plot of Q2 versus nucleotide alignments) with randomly sampled reads for each datasets

Dataset (no. of sampled reads) Method of alignment

Percentage well-aligned reads Slope of regression line

K.pneumoniae R9.4 1D (1k) Nucleotide
02

E.coli R9.4 1D (1k) Nucleotide
02

E.coli R9 2D (1k) Nucleotide
Q2

Human R9.4 1D (50k) Nucleotide
02

Simulated human with deep simu- Nucleotide
lator (Li et al., 2018) (10k) 02

79.4 0.8181
88.70
79.2 0.9584
84.20
82.6 0.9627
91.8
85.70 0.9696
87.95
69.04 0.8527
84.35

Note: The slope of the regression line shows the average gain in the normalized edit distance.

length of the section on genome where a read aligns to the length
of the read. There are 10.1% reads that are well-aligned in Q2
only (the black asterisks), and the normalized alignment length is
close to 1 in Q2 but it is much less than 1 in nucleotide align-
ments, therefore representing several non-contiguous alignments
in nucleotide domain that are captured in Q2. The normalized
edit distance for such reads in Q2 is much less than the normal-
ized edit distance for the same reads in nucleotide alignments.
Similar results are observed across different datasets as evident
from the slope of the regression line for normalized edit distance

comparison between Q2 and nucleotide alignments shown in
Table 1.

3.3 Read-to-read alignment

Alignment of genomic reads to other reads is a basic primitive use-
ful in many settings. For example, this is a first step in many
overlap-layout-consensus assemblers (Pevzner et al., 2001). A key
challenge in read-to-read assembly is the increased error rate that
the aligner has to deal with. For example, if two reads Ry, R, are
sampled from the same region of the genome, each may be within
15% edit-distance of the reference genome (assuming a 15% error-
rate), however, the edit distance between R, and R, can be up to

30% leading to an effective doubling of the error-rate. Long-reads
hold the promise of fully automated assembly but are currently
feasible only when for bacterial genomes (Loman e al., 2015). For
complex mammalian genomes, long repeats fragment assembly
(Pevzner et al., 2004) and more accurate alignment can help allevi-
ate this problem.

The results for read-to-read alignment are illustrated in the
Figure 4a and b and Table 2. Table 2 summarizes the precision, re-
call and average overlap quality for different methods used (namely,
nucleotide, Q2 and Q3) to find the alignments between the overlap-
ping reads across different datasets. It is evident from the table that
Q2 provides higher recall and average overlap quality than nucleo-
tide alignments at the cost of a bit lower precision. O3, on the other
hand, shows better recall and average overlap quality than nucleo-
tide alignments at similar precision.

For a fine-grained evaluation, Figure 4a shows overlap quality
comparison for the quantized (Q2) alignments versus nucleotide
alignments using the K.pneumoniae dataset. The blue circles in the
figure represent the overlaps that are aligned [An overlap between a
pair of reads is said to be aligned by the algorithm if the Mapped re-
gion by the algorithm is at least 90% of the Mapped region plus the
Overhang region (refer to Section 2 for more details).] in both
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Fig. 4. Nanopore long DNA read-to-read alignment. (a) Comparison of overlap
quality for K.pneumoniae R9.4 1D reads dataset (Q2 versus nucleotide). Overlap
quality of 1 is desirable as it represents the alignment of the algorithm matched the
alignment in the ground truth exactly. Therefore, slope of the regression line >1 rep-
resents better overlap quality of Q2 alignments than nucleotide alignments on aver-
age. (b) Complementary CDF of overlap quality for K.pneumoniae R9.4 1D reads
dataset. Q2 curve is strictly above the curve for nucleotide, therefore, demonstrating
better overlap quality for Q2. Area under the curve gives an average overlap quality
which is higher for Q2

QAlign and Minimap2. The black asterisks (along the line x = 0)
represent the overlaps that are aligned only in Q2 and not aligned in
nucleotide, whereas the green diamonds (along the line y = 0) repre-
sent the overlaps that are aligned only in nucleotide and not aligned
in Q2. In Figure 4a, the read overlaps that are aligned only in Q2 is
7.3%, whereas the read overlaps that are aligned only in nucleotide
is 2.3%. Therefore, QAlign demonstrates a net gain of 5.0% in
terms of the number of reads aligned by the algorithm. For the read
overlaps that are aligned in both Q2 and nucleotide, 4.62% of the
read overlaps have overlap quality more than 0.9 in QAlign but not
in Minimap2 whereas the opposite holds true in only 1.0% of the
read overlaps. Thus QAlign gives a net performance improvement of
3.62% over Minimap2. In addition to that, the slope of the regres-
sion line in the figure is 1.0089, therefore also illustrating better
overlap quality with QAlign than Minimap2.

Figure 4b shows the fraction of reads which have overlap quality
greater than x for the two aligners—the performance gain is seen to

hold across a wide range of threshold values x. The area under the
curve (which equals the average overlap quality) is computed for nu-
cleotide, O2 and Q3 alignments across all the datasets and is dem-
onstrated in Table 2. The gain in the average overlap quality is
observed using QAlign across all the datasets as evident from
Figure 4b. Specifically, there is a gain of 9.2% in K.pneumoniae
dataset, when we compute it as the ratio of the average overlap qual-
ity of Q2 to average overlap quality of nucleotide alignments.
Similarly, there is a gain of 2.5, 10.8 and 31.2% in the average over-
lap quality for the E.coli R9.4 1D, E.coli R9 2D dataset and simu-
lated human dataset, respectively.

3.4 Read-to-transcriptome alignment

RNA-seq is a popular sequencing technology with emerging applica-
tions including single-cell RNA-seq (Tang et al., 2009). While short
high-throughput reads may suffice to assess rough gene expression
estimates, isoform level analysis is better facilitated by long nano-
pore reads that can straddle several exons simultaneously (Deamer
et al., 2016). Here, we perform the alignment of cDNA reads (com-
plementary DNA reads extracted from reverse transcription of
RNA) onto a reference transcriptome.

The results for read-to-transcriptome alignment are illustrated in
Figure 5a and b and Table 3. At a coarse level, QAlign improves the
fraction of the well-aligned reads significantly. For the Human R9.4
1D dataset, the metric improves to 75.40% from 51.60%, and for
the Mouse R9.4 2D dataset, it improves to 90.00% from 82.60%,
as shown in Table 3.

At a fine-grained level, Figure 5a compares the normalized edit
distance for Human R9.4 1D dataset. Note that the normalized edit
distance is set to 1 for the reads that have normalized edit distance
of aligned reads greater than 0.48. Therefore, the figure represents
the alignments that are not ‘equivalent’ to the alignment of random
nucleotide sequences. This figure clearly demonstrates the gain of
quantized alignment. Specifically, Q2 is able to align 27.00% more
reads with 8.75% better quality than nucleotide alignments (from
the slope of the regression line; a similar trend of slope of regression
line using Mouse R9.4 2D dataset is shown in Table 3).
In Figure 5b, the lengths of aligned chunks are compared between
nucleotide and Q2 domain. Most of the reads gets larger aligned
chunks using Q2 quantization. Moreover, we observe a similar
trend in the alignment using the Mouse R9.4 2D dataset as shown
by the slope of the regression line in Table 3.

4 Discussion

QAlign is a pre-processor that can be used with any long read
aligner for a nanopore sequencer. It can be used for aligning reads
onto genome or as a long-read overlapper or for aligning RNA-seq
reads onto transcriptome. QAlign provides alignments that outper-
forms other aligners that uses nucleotide sequences in terms of the
accuracy of the alignment at the cost of a similar computation
time.

The reason for this performance improvement is because it takes
into account the underlying physics of the nanopore sequencer
through its Q-mer mapping, which could be the pre-dominant cause
of the error behavior in nanopore sequencing. We demonstrated
how the structure of the Q-mer map can be used even with only nu-
cleotide read outputs, and without access to the current-level output
of the sequencer. In particular, QAlign converts the nucleotide reads
to quantized current levels (of finite alphabet size) which are then
aligned using any state-of-the-art aligner. This improvement in the
alignment of the long nanopore reads can be useful in several down-
stream applications such as structural variant calling, assembly—
where the QAlign can benefit in the discovery of SVs and read
overlaps that are difficult to capture because of the high error rate of
nanopore reads.

The current limitation of QAlign is that it works well when we
have long contiguity in the alignments. Therefore, it does not per-
form as well in doing the spliced alignments of the RNA-seq reads
onto genome while maintaining a similar computation time cost
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Table 2. Comparison for precision, recall and average overlap quality for read-to-read alignment for four different datasets

Precision (%)

Recall (%) Avg. overlap quality

Dataset Method of alignment
K.pneumoniae R9.4 1D Nucleotide
02
Q3
E.coliR9.4 1D Nucleotide
02
03
E.coliR9 2D Nucleotide
02
03
Simulated Human with Nucleotide
Deep Simulator (Li et al., 2
2018) o3

97.47 67.99 0.4908
96.93 72.92 0.5360
97.49 69.52 0.5053
99.20 62.27 0.4688
99.06 62.60 0.4803
99.23 63.87 0.4811
98.94 59.42 0.5339
96.97 65.47 0.5914
98.99 62.46 0.5615
75.72 41.91 0.3888
75.34 53.10 0.5100
76.08 54.19 0.5174

Note: Average overlap quality is computed as the area under the complementary CDF curve of overlap quality.
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Fig. 5. Nanopore long RNA read to transcriptome alignment. (a) Comparison of normalized edit distance for Human R9.4 1D dataset. A small normalized edit distance is de-
sirable as it represents better alignment. The slope of the regression line is <1, therefore, representing better alignments with Q2 than nucleotide alignments for same reads. (b)
Comparison of normalized alignment length of the aligned sections on the transcriptome for Human R9.4 1D dataset. Normalized alignment length of 1 is desirable as it repre-
sents that entire read is aligned. Majority of the reads are above y = x line, representing longer alignment length in Q2 than nucleotide alignment

Table 3. Comparison for the percentage of well-aligned reads onto transcriptome, and slope of the regression line (for normalized edit dis-
tance comparison plot for Q2 versus nucleotide) for two different dataset for randomly sampled reads for each dataset

Dataset (no. of sampled reads) Method of alignment

Percentage well-aligned reads Slope of the regression line

Human R9.4 1D (2k) Nucleotide
02

Mouse R9.4 2D (2k) Nucleotide
02

51.60 0.9125
75.40
82.60 0.8455
90.00

(as shown using empirical results in Supplementary Fig. S20).
Part of ongoing extensions is to build a deep hybrid aligner which
brings together the advantages of the nucleotide alignments and

QAlign.
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