
Overcast: Running Controlled Experiments
Spanning Research and Commercial Clouds

Paul Ruth
RENCI

pruth@renci.org

Kate Keahey
Argonne National Laboratory

keahey@anl.gov

Mert Cevik
RENCI

mcevik@renci.org

Zhuo Zhen
University of Chicago

zhenz@uchicago.edu

Cong Wang
RENCI

cwang@renci.org

Jason Anderson
University of Chicago

jasonanderson@uchicago.edu

Abstract—The Chameleon project developed a unique experi-
mental testbed by adapting a mainstream cloud implementation
to the needs of systems research community and thereby demon-
strated that clouds can be configured to serve as a platform
for this type research. More recently, the CloudBank project
embarked on a mission of providing a conduit to commercial
clouds for the systems research community that eliminates much
of the complexity and some of the cost of using them for
research. This creates an opportunity to explore running systems
experiments in a combined setting, spanning both research and
commercial clouds. In this paper, we present an extension to
Chameleon for constructing controlled experiments across its
resources and commercial clouds accessible via CloudBank,
present a case study of an experiment running across such
combined resources, and discuss the impact of using a combined
research platform.

Index Terms—research cloud, research testbeds, multi-cloud,
networking

I. INTRODUCTION

Computational experiments comprise a large spectrum of

scientific computations, from large-scale simulations, to just-

in-time analytics, or performance studies. Different types of

such experiments place different requirements on the exper-

imental container in which they execute from the perspec-

tive of isolation (shared, multi-tenant, or completely isolated

environment), levels of access, configurability, interactivity,

and performance. Within this spectrum, computer science

systems experiments are perhaps the most challenging to

provide for as many – though not all – often require high

level of configurability and access (bare metal reconfigurability

with specialized network configuration capabilities), strong

performance isolation, interactive access, and the ability to

experiment at high performance.

To adequately address this level of challenge, traditional

testbeds that provided experimental capabilities for computer

science research have generally been configured by technolo-

gies developed in-house [1], [2]. The Chameleon testbed [3]

broke with this pattern by adapting a mainstream open source

cloud technology, OpenStack, to provide similar capabilities.

This implementation strategy carries a range of practical bene-

fits – such as familiar interfaces for users and operators, or the

opportunity to leverage contributions from a large development

community – but it also creates the potential to contribute

back, and thus influence the debate on the best cloud config-

uration to support computer science research. With commer-

cial cloud providers, such as Amazon Web Services (AWS),

increasingly willing to offer more flexibility in the form of

e.g., bare metal instances [4], and NSF’s investment in the

CloudBank [5] initiative to make commercial clouds available

to the systems research community, this debate is gaining in

importance, and could result in significant broadening of the

opportunities for computer science experimentation.
The ability to leverage commercial cloud resources could

open up significant opportunities for research. With their

greater geographic dispersion, greater diversity of resources,

and greater scales – though perhaps lesser customization to

research needs – the commercial clouds provide an interesting

offering to supplement specialized testbeds like Chameleon.

In [3] we articulate the specific extensions required to adapt

clouds to the needs of systems research; in this paper we

examine the question of what experiments could leverage both

research and commercial clouds and how such experiments

should be configured to control wide-area network perfor-

mance to enable repeatably. Specifically, we describe our ap-

proach to constructing such an experiment in the context of the

experimental workflow stages [6] of an experiment distributed

over the Chameleon testbed and AWS cloud accessed via

CloudBank.
The specific contributions of the paper are as follows:

• We present Overcast, a recipe and a set of tools, expressed

as a Jupyter notebook, that allows experimenters to

construct a class of experiments that are distributed over

research and commercial clouds.

• We describe an experiment case study using and ex-

periment that leverages Overcast to evaluate controlled

layer 2 network paths (AWS DirectConnect) spanning

resources on Chameleon, Internet2 CloudConnect, and

AWS; in particular, we show how VM instance types

affect achievable bandwidth.

• We discuss insights obtained from using research and

commercial clouds in conjunction, comparing their ca-

pabilities, in particular cost.

The rest of the paper is organized as follows. In Section 2

we describe tools and methods for constructing multi-cloud

experiments. In Section 3, we show how those tools can be

used to construct a non-trivial networking experiment. We

follow by a discussion of cloud capabilities and cost, discuss

related work, and conclude in Section 6.

II. OVERCAST: DEPLOYING AN EXPERIMENT OVER

MULTIPLE CLOUDS

Computer science experiments are typically enacted in

stages [6] beginning with experiment design, identifying suit-

able resources, allocating and configuring them, running the

experiment itself, and finally analysis. We analyze these stages

below, and compare and contrast approaches used for exper-

iment development on Chameleon and commercial resources

available via CloudBank.

Both Chameleon and CloudBank provide user access via

federated login – Chameleon via Globus Auth [7], CloudBank

via CILogon [8] – so that once logged into one system a user

can use the other without entering a password again. To use

system resources, a user needs to be associated with a project

that has active allocations. In Chameleon those allocations

consist of Service Units (SUs) which represent one hour

of wall clock time on a mainstream server. To request an

allocation, users are first certified for PI eligibility according

to infrastructure-specific policies [9], [10]. In Chameleon they

can then propose a project to be awarded an allocation. In

CloudBank, verified PIs are allocated pre-determined funds

which represent direct funding for a specific project to be spent

on one or more public clouds. Within each system, the PI or

their delegate can manage allocations to track spending and

grant membership in the project to others.

In the first step of the experimental workflow, users can

browse resources available for experimentation but their de-

scriptions differ among the systems. Chameleon resource

descriptions are fine-grained so that users can browse the

exact node configurations including processor types, cache

hierarchies, I/O device types, rack placement, etc. Commer-

cial providers typically represent their resources as “instance

types” (see e.g., [11]) and provide general information about

vCPUs/CPUs, memory, storage, network, and much less de-

tailed information about processors. Further, information about

resources in Chameleon is being kept rigorously up-to-date

– component upgrades might affect experiments sensitive to

hardware such as e.g., power management or performance

variability – the testbed is then versioned so that experimenters

can verify this information at a glance and users are offered a

suite of verification tools for sanity checks. Commercial clouds

do not track the hardware evolution and do not provide such

versioning though Chameleon’s verification tools, based on

standard Linux commands (such as e.g., “biosdecode” and

“dmidecode” to get BIOS settings) can be used to mitigate

these shortcomings to some extent.

Once selected, resources can be allocated. A notable dif-

ference between Chameleon and commercial resources is the

support for advance reservations which allow Chameleon users

to reserve availability of resources ranging from nodes, to net-

works, and IP addresses for a specific time in the future [12].

In contrast, commercial clouds rely primarily on on-demand

availability; vehicles such as “reserved instances” [13], [14]

represent a billing discount, while “capacity reservations”

based on an up-front payment that reserve capacity for specific

type of instance [15], [16] work in a similar way to allocation

on Chameleon. Another significant difference is how resources

are described: Chameleon allows users to specify resources at

different levels: from model-level descriptions (e.g., “I need

four nodes with at least 2GB per core”) to indicating a specific

node in the system, essential for experiments that require

control of hardware variability. In commercial clouds the only

way to describe resources to be allocated is the instance type;

while this provides a high-level description, it might map to

different types of resources, without the user being able to

control the mapping [3].

In both Chameleon and commercial clouds allocated re-

sources are configured by deploying disk images to create

bare metal or virtual machine instances; since many users

will want to use consistent configuration across a distributed

experiment it is useful to consider how portable those images

are. Most cloud platforms have specific requirements for the

format of a disk image (e.g., RAW or QCOW2 [17]), its disk

layout (e.g., whole disk or partition image), or the environment

included in the image (e.g., cloud-init for injecting SSH

keys or a DHCP client configured on specific interfaces)

making images incompatible between various providers. They

all however support the same general structure (e.g., the SSH

key injection pattern via cloud-init) that can be leveraged by

tools, such as OpenStack qemu-image convert [18] and AWS

VM Import/Export [19] to convert between images; thus, to

use a Chameleon image on AWS, it has to be converted to

RAW format (if not RAW already) and then converted to AMI

[20] using AWS VM Import. This common structure and the

resulting portability options are an important consequence of

the decision to configure a research testbed as a cloud [3].

The fact that Chameleon is not only a cloud, but an OpenStack

cloud in particular, facilitates things even further: for example,

the metadata service in OpenStack supports EC2-compatible

API [21] which means that the images designed for EC2

will work with OpenStack directly. That said, some aspects

of portability may be complicated by issues higher in the

stack: for example, Chameleon includes utilities for system

verification and snapshotting on its base images that will not

be present on images imported from AWS. We provide a more

general discussion of image conversion tools, including tools

like Packer [22], in [23].

Orchestration, which allows users to deploy configurations

consisting of multiple interdependent images , networks, and

other cloud services automatically, is a related issue and pro-

vides a further demonstration of the advantages of configuring

a CS research testbed as a cloud. OpenStack Heat [24] and

CloudFormation [25], used for orchestration in Chameleon and

AWS respectively, both use declarative languages (YAML or

TABLE I. EC2 Instance Type and the Bandwidth Limit

EC2 Instance Type Description AWS Network Limit

t2.micro 1 CPU, 1 GB mem (free) Low to Moderate
t2.2xlarge 8 CPU, 32 GB mem Moderate
t3.2xlarge 8 CPU, 32 GB mem 5 Gbps

m5a.2xlarge 8 CPU, 32 GB mem 10 Gbps
m5dn.2xlarge 8 CPU, 32 GB mem Up to 25 Gbps

c5n.metal 72 CPU, 196 GB mem 100 Gbps

instance types were evaluated. Each instance used the imported

CentOS7 image and was hosted on a VM or bare metal

server with the hardware properties and stated networking

bandwidth limitations in Table I. The AWS stated networking

limitations ranged from “Low to Moderate” to “100 Gbps”.

The CloudConnect circuit limited the maximum bandwidth

to 5 Gbps. To configure Chameleon nodes, we used the

Centos7 image provided by the testbed. To achieve a consistent

configuration on AWS, the same image was converted from

QCOW2 to RAW type, then uploaded to AWS S3, and then

converted to AMI using AWS VM Import using one of the

methods described in Section II. All hosts were tuned by

using ESnet’s recommendations [36] for large wide area data

transfers as in Table II.

B. Experiment

The experiment used iperf3 [37] to test the TCP bandwidth

achievable between the baremetal host on Chameleon and each

of the targeted AWS instance types over the deployed direct

connect circuit. Each instance type was tested using 30 second

tests with both single and multiple streams in each direction.

Each test was executed 15 times. The average, minimum, and

maximum egress and ingress bandwidth are shown in Figure 2.

C. Discussion

Other studies have shown that achieving repeatable network-

ing results on public clouds is difficult or even impossible [38].

Although using direct connections eliminates some of the

unpredictability of the public Internet it does not change the

way public clouds control network performance.

Figure 2 shows the bandwidth achieved between Chameleon

and the AWS instances. Each group of columns shows the

bandwidth achieved by an AWS instance type. The smallest

two instance types were described by AWS as having ‘low’

and ‘moderate’ bandwidth limitations. In the experiments,

these limitations were effectively 1 Gbps in either direction.

The ‘low’ bandwidth instance achieved less consistent perfor-

mance and appeared to be the subject of periodic rate limiting.

Continuous transfers with the ‘low’ bandwidth node would re-

sult in extremely low rate limiting of approximately 65 Mbps.

Each iperf3 test was executed for 30 seconds. In order to avoid

artificial rate limiting, the tests were performed 5 minutes

apart. Applications requiring continuous 1 Gbps performance

should opt for at least ‘moderate’ network performance.

The CloudConnect circuit across Internet2 was limited to 5

Gbps and the remainder of the instance types should have been

able to fully utilize the circuit. Their AWS network limitations

TABLE II. Host Network Tuning Parameters

Setting Value

net.core.netdev max backlog 250000
net.core.rmem max 67108864
net.core.wmem max 67108864

net.ipv4.tcp congestion control htcp
net.ipv4.tcp rmem 4096 87380 33554432
net.ipv4.tcp wmem 4096 65536 33554432

net.ipv4.tcp mtu probing 1
net.core.netdev budget 600
net.core.default qdisc fq

interface MTU 9000
interface txqueuelen 10000

ranged from 5 Gbps to 100 Gbps. The experiment attempted

to maximize the bandwidth using 1, 2, 4, and 8 parallel

network streams. Ideally, the the maximum bandwidth could

be achieved with a single TCP stream. However, wide area

TCP data transfers are adversely affected by small numbers

of dropped packets. The data shows that all instance types

achieved network performance near the maximum 5 Gbps.

However, the single stream performance increased for higher

bandwidth instance types even though the instance’s network

limitation was well beyond the CloudConnect circuit. Further,

the m5dn.2xlarge virtual machine performed as well as the

c5n.metal node for egress and slightly better for ingress even

though the bare metal node had more memory, more compute

cores, and a higher bandwidth limitation.

The reason that a single stream could not achieve the

maximum bandwidth on virtual instances that had greater

than or equal to 5 Gbps networks was that the DirectCon-

nect configuration studied resulted in more dropped packets

for instances with lower network limitations. The dropped

packets occurred in both directions and were typically seen in

small bursts. As a result, maximum AWS egress and ingress

bandwidth could only be achieved with multiple TCP streams

or on instances with over provisioned networks. In addition,

the average single stream egress bandwidth is higher than the

ingress bandwidth for each instance type but the minimum

single stream ingress bandwidth is higher than the minimum

egress bandwidth. This means that single stream ingress flows

are more often affected by small bursts of dropped packets

while single stream egress flows are more likely to experience

large bursts of dropped packets.

IV. DISCUSSION

Combining commercial and research clouds significantly

expands the resource portfolio available to science, increasing

opportunities to build more complex experimental topologies,

deploy them on more sites, provide access to more diversity,

as well as more scale. While bare metal offerings are few,

information about resources and their evolution is not always

available, and the user typically has no control over the specific

architecture their experiment will map to, not all experiments

require these features as exemplified by our case study.

Overall our experiences configuring an experiment spanning

Chameleon and commercial clouds available via CloudBank

0

1

2

3

4

5

t2.micro (Low) t2.2xlarge

(Moderate)

t3.2xlarge (5 Gbps) m5a.2xlarge (10

Gbps)

m5dn.2xlarge (Up to

25 Gbps)

c5n.metal (100

Gbps)

O
b

se
rv

e
d

 B
a

n
d

w
id

th
 (

G
b

p
s)

AWS Instance Type and Bandwidth Limitation

Chameleon-to-AWS CloudConnect Bandwidth

AWS Egress, 5 Gbps DirectConnect

1 Streams

2 Streams

4 Streams

8 Streams

(a) AWS Egress

0

1

2

3

4

5

t2.micro (Low) t2.2xlarge

(Moderate)

t3.2xlarge (5 Gbps) m5a.2xlarge (10

Gbps)

m5dn.2xlarge (Up to

25 Gbps)

c5n.metal (100

Gbps)

O
b

se
rv

e
d

 B
a

n
d

w
id

th
 (

G
b

p
s)

AWS Instance Type and Bandwidth Limitation

Chameleon-to-AWS CloudConnect Bandwidth

AWS Ingress, 5 Gbps DirectConnect

1 Streams

2 Streams

4 Streams

8 Streams

(b) AWS Ingress

Fig. 2: Chameleon-to-AWS CloudConnect bandwidth for various instance types.

demonstrated that configuring a research testbed as a cloud

brought the unexpected benefit of improved portability. While

digital artifacts the users produce, such as images and orches-

tration templates, are not always directly compatible (though

we noted ready-made conversion tools for some scenarios),

they represent a similar structure, captured by such tools

as e.g., use of cloud-init for SSH key injection. Converting

them to achieve consistent configuration on experiment re-

sources deployed on Chameleon and AWS is thus a relatively

simple matter of updating well-known qualities rather than

rebuilding them from scratch. In addition to convenience,

this also addresses an issue of consistency and ultimately

also reproducibility of how exactly a configuration can be

or was repeated in a different setting. Similarly, configuring

networking relied on the existence of similar concepts at edge

on both ends of the connection

Another issue distinguishing research and commercial

clouds is the cost to the scientific community. To create a rough

comparison of cost we first paired the resource types available

on Chameleon with AWS instances that are comparable or less

powerful to create a conservative estimate. For example, our

Haswell compute nodes [39] were paired with “c5d.metal”

– but our GPU P100 nodes were paired with “p3.8xlarge”

even though “p3.8xlarge” are not bare metal as AWS does not

offer comparable bare metal resources. We then took actual

usage numbers for each Chameleon resource type, computed

the number of hours they were used over the first 5 years of

the project, and multiplied it by the price of the corresponding

AWS resource. The total number of node hours over all the

resource types were 5,676,114, representing an estimated cost

of $30,353,133 ($49,172,075 including overhead which would

normally be applied to this type of purchase though is waived

through CloudBank usage). In comparison, the total funding

received for Chameleon over this period of time is projected

to be $16.6M. Further, our rough estimate did not include the

Chameleon KVM cloud, data download or storage, any of the

special features or specialized services (like BYOC [40] used

in the experiment), or startup costs, all of which would have

made the Chameleon resources even more cost-effective. On

the other hand, Chameleon provides significantly lesser avail-

ability than commercial clouds (a factor partially mitigated

by advance reservations described in Section II) and probably

lesser reliability; while those are of course desirable to the

research application, increasing them would also increase the

cost. Thus, this is another area where research and commercial

clouds provide different offerings at a different cost.

V. RELATED WORK

Investigating methods of building an integrated environment

across multiple clouds is almost as old as cloud computing

itself [41]. In particular, works like [23], [42], [43] investigate

issues of resource management, image portability, and orches-

tration; our focus is different in that we investigate this issue

from the perspective of providing an experimental container

for computer science systems research which among others

includes management of low-level networking resources, and

consider the issue of cost.

Multiple projects also sought to characterize the networking

performance of research versus commercial clouds [44], [45].

Our approach pushes this line of investigation further by

focusing on low-level networking services like DirectConnect

and shows a measure of similarity in the problems.

VI. CONCLUSIONS

In this paper, we present a recipe and a set of tools,

expressed as a Jupyter notebook, that allows experimenters

to construct a class of experiments distributed over research

and commercial clouds, specifically the Chameleon testbed

and commercial clouds available via the CloudBank project.

In doing so, we discuss the different capabilities of these two

different types of clouds and show how they can be used to

construct experiments spanning both.

Our observations show that the decision to configure

Chameleon as an enhanced cloud pays dividends in the context

of such experiments. Specifically, similar structure of disk

images and orchestration templates used in experiments of

this type facilitates portability and maintaining a consistent

experimental environment. Further, similarities between the

ExoGENI stitchport and direct connects implemented by

commercial clouds allow experimenters to leverage the same

concepts when constructing wide-area circuits.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the

Chameleon testbed supported by the National Science Foun-

dation. This work was also partially supported by the U.S.

Department of Energy, Office of Science, under contract

number DE-AC02-06CH11357.

REFERENCES

[1] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric
Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre,
David Margery, Nicolas Niclausse, Lucas Nussbaum, et al. Adding
Virtualization Capabilities to the Grid’5000 Testbed. In I. I. Ivanov,
M. van Sinderen, F. Leymann, and T. Shan, editors, Cloud Computing

and Services Science, volume 367 of Communications in Computer

and Information Science, pages 3–20. Springer International
Publishing, 2013.

[2] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David
Johnson, Kirk Webb, et al. The Design and Operation of CloudLab. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
1–14, 2019.

[3] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody
Hammock, et al. Lessons Learned from the Chameleon Testbed. In
2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
pages 219–233, 2020.

[4] Announcing General Availability of Amazon EC2 Bare Metal
Instances.
https://aws.amazon.com/about-aws/whats-new/2018/05/announcing-
general-availability-of-amazon-ec2-bare-metal-instances/.

[5] CloudBank. https://www.cloudbank.org/.
[6] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe

Mambretti, Paul Rad, and Paul Ruth. Chameleon: a Scalable
Production Testbed for Computer Science Research. In Jeffrey Vetter,
editor, Contemporary High Performance Computing: From Petascale

toward Exascale, volume 3 of Chapman & Hall/CRC Computational

Science, chapter 5, pages 123–148. CRC Press, Boca Raton, FL, 1
edition, May 2019.

[7] Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias
Lidman, Brendan McCollam, Stephen Rosen, and Ian Foster. Globus
Auth: A Research Identity and Access Management Platform. In 2016

IEEE 12th International Conference on e-Science (e-Science), pages
203–212. IEEE, 2016.

[8] Jim Basney, Heather Flanagan, Terry Fleury, Jeff Gaynor, Scott
Koranda, and Benn Oshrin. Cilogon: Enabling Federated Identity and
Access Management for Scientific Collaborations. Proceedings of

Science, 351:031, 2019.
[9] Chameleon PI Elibibility.

https://chameleoncloud.readthedocs.io/en/latest/getting-
started/pi eligibility.html.

[10] CloudBank Managing Cloud Funds and Billing Accounts.
https://www.cloudbank.org/training/managing-cloud-funds-and-billing-
accounts.

[11] Amazon EC2 Instance Types.
https://aws.amazon.com/ec2/instance-types/.

[12] Kate Keahey, Pierre Riteau, Jason Anderson, and Zhuo Zhen.
Managing Allocatable Resources. In 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pages 41–49. IEEE, 2019.
[13] Amazon EC2 Reserved Instances.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-reserved-
instances.html.

[14] Google Cloud Committed Use Discounts.
https://cloud.google.com/compute/docs/instances/signing-up-
committed-use-discounts.

[15] Amazon EC2 On-Demand Capacity Reservations.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-
reservations.html.

[16] Google Cloud Reserving Compute Engine Zonal Resources.
https://cloud.google.com/compute/docs/instances/reserving-zonal-
resources.

[17] QEMU Images. https://en.wikibooks.org/wiki/QEMU/Images.
[18] The qemu-img Tool.

https://docs.openstack.org/image-guide/convert-images.html.
[19] Amazon EC2 VM Import/Export.

https://aws.amazon.com/ec2/vm-import/.
[20] Amazon Machine Image.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.
[21] OpenStack EC2-compatible Metadata.

https://docs.openstack.org/nova/latest/user/metadata.htmlmetadata-ec2-
format.

[22] HashiCorp Packer. https://www.packer.io/.
[23] Kate Keahey, Pierre Riteau, and Nicholas P Timkovich. Lambdalink:

an Operation Management Platform for Multi-cloud Environments. In
Proceedings of the10th International Conference on Utility and Cloud

Computing, pages 39–46, 2017.
[24] OpenStack Heat. https://docs.openstack.org/heat/latest/.
[25] AWS CloudFormation. https://aws.amazon.com/cloudformation/.
[26] OpenStack Wiki Heat. https://wiki.openstack.org/wiki/Heat.
[27] OpenStack CloudFormation Compatible Resource Types.

https://docs.openstack.org/heat/rocky/templateguide/cfn.html.
[28] AWS Cloud Development Kit.

https://docs.aws.amazon.com/cdk/latest/guide/home.html.
[29] AWS Direct Connect. https://aws.amazon.com/directconnect/.
[30] Azure ExpressRoute.

https://azure.microsoft.com/en-us/services/expressroute/.
[31] Google Cloud Dedicated interconnect.

https://cloud.google.com/network-
connectivity/docs/interconnect/concepts/dedicated-overview.

[32] AWS Direct Connect Pricing.
https://aws.amazon.com/directconnect/pricing/.

[33] Internet2 Layer 2 Services. https://www.internet2.edu/products-
services/advanced-networking/layer-2-services/.

[34] Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci. The

GENI Book. Springer, 2016.
[35] Internet2 Networking for Cloud. https://www.internet2.edu/products-

services/advanced-networking/networking-for-cloud/.
[36] ESNet Linux Tuning. http://fasterdata.es.net/host-tuning/linux/.
[37] iperf3. https://software.es.net/iperf/.
[38] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan S. Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru
Iosup. Is big data performance reproducible in modern cloud
networks. In 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), pages 513–527, 2019.
[39] Per Hammarlund, Alberto J Martinez, Atiq A Bajwa, David L Hill,

Erik Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal
Hunsaker, Rajesh Kumar, et al. Haswell: The Fourth-generation Intel
Core Processor. IEEE Micro, 34(2):6–20, 2014.

[40] Mert Cevik, Paul Ruth, Kate Keahey, and Pierre Riteau. Wide-area
Software Defined Networking Experiments using Chameleon. In IEEE

INFOCOM 2019-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pages 811–816. IEEE, 2019.
[41] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose

Fortes. Sky Computing. IEEE Internet Computing, 13(5):43–51, 2009.
[42] Kate Keahey, Patrick Armstrong, John Bresnahan, David LaBissoniere,

and Pierre Riteau. Infrastructure Outsourcing in Multi-cloud
Environment. In Proceedings of the 2012 workshop on Cloud services,

federation, and the 8th open cirrus summit, pages 33–38, 2012.
[43] Gregor Von Laszewski, Fugang Wang, Hyungro Lee, Heng Chen, and

Geoffrey C Fox. Accessing Multiple Clouds with Cloudmesh. In
Proceedings of the 2014 ACM international workshop on

Software-defined ecosystems, pages 21–28, 2014.
[44] Devarshi Ghoshal, Richard Shane Canon, and Lavanya Ramakrishnan.

I/O Performance of Virtualized Cloud Environments. In Proceedings

of the second international workshop on Data intensive computing in

the clouds, pages 71–80, 2011.
[45] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup.
Is Big Data Performance Reproducible in Modern Cloud Networks? In
17th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 20), pages 513–527, 2020.

