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Abstract

We address the problem of situated temporal planning, in
which an agent’s plan can depend on scheduled exogenous
events, and thus it becomes important to take the passage of
time into account during the planning process. Previous work
on situated temporal planning has proposed simple pruning
strategies, as well as complex schemes for a simplified ver-
sion of the associated metareasoning problem. Although even
the simplified version of the metareasoning problem is NP-
hard, we provide a pseudo-polynomial time optimal solu-
tion to the case with known deadlines. We leverage intuitions
emerging from this case to provide a fast greedy scheme that
significantly improves upon previous schemes even for the
case of unknown deadlines. Finally, we show how this new
method can be applied inside a practical situated temporal
planner. An empirical evaluation suggests that the new plan-
ner provides state-of-the-art results on problems where exter-
nal deadlines play a significant role.

1 Introduction

This paper addresses the problem of situated temporal plan-
ning, where an agent plans online in the presence of exter-
nal temporal constraints such as deadlines. For example, if a
promising partial plan involves taking a particular train, then
it might be worth ensuring that the planning process finishes
soon enough that the agent can get to the station in time.
In other words, a plan must be found quickly enough that it
is possible to execute that plan after planning completes. In
this setting, search decisions and temporal constraints inter-
act in complex ways, as choosing to include some action in
a plan can introduce a temporal constraint for the subtree of
the search tree that includes that action; time spent searching
within other subtrees affects the applicability of that action.
This differs from other time-aware planning settings, such
as real-time heuristic search (Korf 1990), in that each open
search node might have a different deadline.

The first planner to address situated temporal planning
(Cashmore et al. 2018) uses temporal reasoning (Dechter,
Meiri, and Pearl 1991) to prune search nodes for which it
is provably too late to start execution. It also uses estimates
of remaining search time (Dionne, Thayer, and Ruml 2011)
together with information from a temporal relaxed planning
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graph (Coles et al. 2010) to estimate whether a search node
is likely to be timely, i.e. likely to lead to a solution that will
be executable when planning finishes. As these estimates are
not admissible, it uses dual open lists: one only for timely
nodes, and another for all nodes (including nodes for which
it is likely too late to start execution). However, the planner
still uses standard heuristic search (Weighted A∗) with these
open lists, while noting that this is the wrong thing to do;
leaving for future work finding the right search strategy.

Inspired by the situated planning setting, Shperberg et al.
(2019) proposed a rational metareasoning (Russell and We-
fald 1991) approach for a simplified version of the search
problem faced by a situated planner. The problem was sim-
plified in several ways: first, only an abstract version of the
metareasoning problem was addressed, and second, distribu-
tions over the remaining search time and deadlines were as-
sumed known. The metareasoning problem was formulated
as an MDP with the objective of maximizing the probabil-
ity of finding a timely plan. This was proved to be NP-hard,
even when the deadlines are known. However, the reduc-
tion was from the Knapsack problem, suggesting the pos-
sibility of a pseudo-polynomial time optimal solution algo-
rithm. Shperberg et al. (2019) also suggested a greedy, and
somewhat ad-hoc, decision rule (denoted hereafter as basic
greedy), which worked well in an empirical evaluation with
various types of distributions.

In this paper, we first show that indeed the known dead-
line case can be solved in pseudo-polynomial time through
dynamic programming (DP). Despite being optimal when
deadlines are known, the DP approach does not perform well
with unknown deadlines. Our second contribution is an alter-
nate greedy decision rule, called DDA, that is better justified
theoretically than basic greedy; we show empirically that
DDA delivers better results than the basic greedy scheme
in the same abstract setting of the problem.

Finally, our third contribution is to integrate the new
metareasoning scheme as the search strategy for the situated
temporal planner of Cashmore et al. (2018). An empirical
evaluation shows that the new approach leads to timely so-
lutions for significantly more problems than using standard
heuristic search, even with pruning late nodes and dual open
lists. This is an important step in bringing situated temporal
planning closer to practical utility.



2 Background

We start by reviewing formal models of situated tempo-
ral planning and the associated metareasoning problem. Al-
though heuristic search with external temporal constraints
can arise in many settings, we focus in this paper on the
problem of situated domain-independent temporal planning.

2.1 Problem Statement

Following Cashmore et al. (2018), we formulate situated
temporal planning as propositional temporal planning with
Timed Initial Literals (TIL) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004). Such problems are
specified by a tuple Π = 〈F,A, I, T,G〉, where:

• F , a set of Bool. propositions describing the world state.

• A is a set of durative actions; each action a ∈ A has:

– Duration in the range [durmin(a), durmax(a)]

– Start condition cond⊢(a), invariant condition
cond↔(a), and end condition cond⊣(a), all of
which are subsets of F , and

– Start effect eff ⊢(a) and end effect eff ⊣(a), both of
which specify which propositions in F become true or
false when a starts or ends, respectively.

• I ⊆ F is the initial state, and G ⊆ F specifies the goal.

• T is a set of timed initial literals (TIL). Each TIL l =
〈time(l), lit(l)〉 ∈ T consists of a time time(l) and a lit-
eral lit(l) ∈ F , specifying a proposition that becomes true
(or false) at time(l).

A solution to a situated temporal planning problem is a
schedule σ: a sequence of triples 〈a, ta, da〉, where a ∈ A
is an action, ta ∈ R

0+ is the time when action a is started,
and da ∈ [durmin(a), durmax(a)] is the duration chosen for
a. To define a valid schedule, we view it as a set of instanta-
neous happenings (Fox and Long 2003) that occur when an
action starts, when an action ends, and when a timed initial
literal is triggered. For each triple 〈a, t, d〉 in σ, we have ac-
tion a starting at time t (requiring cond⊢(a) to hold a small
amount of time ǫ before t, and applying the effects eff ⊢(a)
right at t), and ending at t + d (requiring cond⊣(a) to hold
ǫ before t + d, and applying the effects eff ⊣(a) at t + d).
For TIL l we have the effect specified by lit(l) triggered
at time(l). We require the invariant condition cond↔(a) to
hold over the open interval between t and t+d, and the goal
G to hold after all happenings have occurred.

The difference from standard temporal planning is that
here we interpret the TILs as encoding temporal constraints
in absolute time since planning started. Thus, we require the
schedule σ to start only after planning is completed. That
is, if the planner started at time 0 and took tp time for its
planning, we require that ta ≥ tp for all 〈a, ta, da〉 ∈ σ.

2.2 Metareasoning in Situated Planning

The requirement ta ≥ tp implies that the plan must be fully
generated before the minimum ta, which may be unknown
until planning completes. For a partial plan available at a
search node i in the planner, this can be modeled by a ran-
dom variable di, denoting the unknown deadline by which

a potential plan expanded from node i must be generated.
Thus, the planner faces the metareasoning problem of de-
ciding which nodes on the open list to expand in order to
maximize the chance of finding a plan before its deadline.

Shperberg et al. (2019) propose a model of this problem
called (AE)2 (‘allocating effort when actions expire’) which
abstracts away from the planning problem and merely as-
sumes n independent processes. Each process attempts to
solve the same problem under time constraints. In the con-
text of situated temporal planning using heuristic search
(which we explore further below), each process may repre-
sent a promising partial plan for the goal, implemented as a
node on the open list eager to have its subtree explored. But
the abstract problem may also be applicable to other settings,
such as algorithm portfolios or scheduling candidates for job
interviews. For simplicity, we assume a single processor, so
the core of the metareasoning problem is to determine how
to schedule the n processes on the single processor.

When process i terminates, it delivers a solution with
probability Pi or, otherwise, indicates its failure to find one.
For each process, there is a deadline defined in absolute wall
clock time by which its computation must be completed in
order for any solution it finds to be valid. The deadline may
be uncertain and is provided as a probability distribution.
For process i, let Di(t) be the CDF over wall clock times of
the random variable denoting the deadline. The actual dead-
line for a process is only discovered with certainty when the
process completes. This models the fact that a dependence
on an external timed event might not become clear until the
final action in a plan is added. If a process terminates with
a solution before its deadline, we say that it is timely. Given
Di(t), we assume w.l.o.g. that Pi is 1, otherwise one can ad-
just Di(t) to make the probability of a deadline that is in the
past (thus forcing the plan to fail) equal to 1− Pi.

The processes have known search time distributions, (per-
formance profiles (Zilberstein and Russell 1996)) described
by CDFs Mi(t), the probability that process i needs to-
tal computation time t or less to terminate. Although some
of the algorithms we present can handle dependencies, we
make the typical metareasoning assumption in our analysis
that all random variables are independent. Given the Di(t)
and Mi(t) distributions, the objective of (AE)2 is to sched-
ule processing time between the n processes maximizing the
probability of at least one process finding a timely solution.

A simplified discrete-time version of the problem, called
S(AE)2, can be cast as a Markov decision process. The
MDP’s actions are to assign (schedule) the next time unit
to process i, denoted by ai with i ∈ [1, n]. Action ai is al-
lowed only if process i has not already failed. A process is
considered to have failed if it has terminated and discovered
that its deadline has already passed, or if the current time is
later than the last possible deadline for the process.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N∪{F}, although
in practice the time domains of T, Ti are bounded by the lat-
est possible deadlines. Ti denotes the cumulative time as-
signed to each process i until the current state, or that the
process failed (indicated by F ). We also have special termi-



nal states SUCCESS and FAIL. Thus the state space is:

S = (dom(T )× ×
1≤i≤n

dom(Ti)) ∪ {SUCCESS, FAIL}

The initial state has T = 0, and Ti = 0 for all 1 ≤ i ≤ n.
The transition distribution is determined by which process
i has last been scheduled (the action ai), the Mi distribu-
tion (which determines whether currently scheduled pro-
cess i has completed its computation), and Di (which de-
termines the revealed deadline for a completed process, and
thus whether it has succeeded or failed). If all processes fail,
transition into FAIL (with probability 1). If some process is
successful, transition into SUCCESS. The reward is 0 for all
states except SUCCESS, for which the reward is 1.

The size of the state-space of the S(AE)2 MDP is expo-
nential in the number of processes, so it is impractical to
fully specify the MDP explicitly or to solve it directly. Fur-
thermore, the S(AE)2 problem is NP-hard, even for known
deadlines (denoted KDS(AE)2) (Shperberg et al. 2019).

2.3 Basic Greedy Scheme

As S(AE)2 is NP-hard, Shperberg et al. (2019) used in-
sights from a diminishing returns result to develop a greedy
scheme. They restrict their attention to linear contiguous al-
location policies: schedules where the action taken at time t
does not depend on the results of the previous actions, and
where each process receives its allocated time contiguously.
Using the p.m.f. mi(t

′) = Mi(t
′) − Mi(t

′ − 1), the prob-
ability that process i finds a timely plan when allocated ti
consecutive time units beginning at time tbi is:

si(ti, tbi) =

ti∑

t′=0

mi(t
′)(1−Di(t

′ + tbi)) (1)

Example 1. Let m1 ∼ [0.5 : 2; 0.5 : 5], i.e. process 1 re-
quires 2 time units or 5, equally likely; and d1 = 2 with
probability 1 (known deadline). Then s1(2, 0) = 0.5, and
s1(2, 1) = s1(1, 0) = 0. Thus, process 1 delivers a timely
solution with probability 0.5 given 2 time units at tb1 = 0;
and is useless with t1 < 2 or tb1 ≥ 1.

When considering linear contiguous policies, we need to
allocate ti, tbi pairs to all processes (with no allocation over-
lap). Note that overall a timely plan is found if at least one
process succeeds, that is, overall failure occurs only if all
processes fail. Thus, to maximize the probability of overall
success Ps (over all possible linear contiguous allocations),
we need to allocate ti, tbi pairs so as to maximize:

Ps = 1−
∏

i

(1− si(ti, tbi)) (2)

Using LPFi(·) (‘logarithm of probability of failure’) as
shorthand for log(1 − si(·)), we note that Ps is maxi-
mized if the sum of the LPFi(ti, tbi) is minimized and that
−LPFi(ti, tbi) behaves like a utility that we need to max-
imize. For known deadlines, we can assume that no policy
will allocate processing time after the respective deadline.
We will use LPFi(t) as shorthand for LPFi(t, 0).

To bypass the problem of non-diminishing returns, the no-
tion of most effective computation time for process i under

the assumption that it begins at time tb and runs for t time
units was defined as:

ei(tb) = argmin
t

LPFi(t, tb)

t
(3)

ei(tb) is a generalization of ei from Shperberg et al. (2019)
which equals ei(0) here. We use ei to denote ei(0) below.

Example 2. For process 1 from Example 1 we have (log
base 2): LPF1(t1, tb1) = −1 for all t1 ≥ 2 and tb1 = 0,
and LPF1(t1, tb1) = 0 for all other t1 and tb1 configura-
tions; so e1(0) = 2.

Since not all processes can start now, intuitions from di-
minishing returns are: to prefer process i that has the best
utility per time unit, i.e. such that −LPFi(ei))/ei is great-
est. Still, allocating time now to process i delays other pro-
cesses, so it is also important to allocate the time now to pro-
cesses with an early deadline. Shperberg et al. (2019) thus
suggested the following greedy algorithm: Iteratively allo-
cate tu units of computation time to process i maximizing:

Q(i) =
α

E[Di]
−

LPFi(ei)

ei
(4)

where α and tu are positive-valued parameters, and E[Di] is
the expectation of the random variable with CDF Di (a slight
abuse of notation). α trades off between preferring earlier
deadlines (large α) and better performance slopes (small α).

Example 3. Add to Example 2 process 2 with d2 = 4 and
m2 ∼ [0.75 : 2; 0.25 : 20]. Note that process 1 cannot be
delayed as d1 = 2, but process 2 can be delayed by 2 time
units. Thus, the optimal policy (which results in Ps = 7/8) is
to start with process 1 and then move to process 2. However,
LPF2(2, tb2) = −2 and e2(tb2) = 2 for tb2 ≤ 2, with

−LPF2(e2)
e2

= 1, better than −LPF1(e1)
e1

= 0.5. Nonetheless,

with α = 10, we have initially Q(1) = 10/3+0.5 = 23/6 and
Q(2) = 10/4+1 = 21/6, so start with process 1, as required.

3 New Metareasoning Schemes
Our new results for the S(AE)2 are a (pseudo) polynomial-
time algorithm for the case of known deadlines (dropping
the diminishing returns requirement), and a better justified
greedy scheme that also works better in practice.

3.1 DP Solution for Known Deadlines

Although S(AE)2 is NP-hard, Shperberg et al. (2019)
showed that under the additional restriction of diminishing
returns (non-decreasing logarithm of probability of failure)
an optimal schedule can be found in (pseudo) polynomial
time. However, planning processes do not have diminishing
returns. We therefore examine deliberation scheduling when
the diminishing returns assumption is removed.

For KDS(AE)2 (known deadlines S(AE)2), it is sufficient
to examine linear contiguous allocation policies (Shperberg
et al. 2019). We extend this result by showing that restricting
the schedules to ones with processes sorted by an increasing
order of deadlines is still optimal:

Theorem 1. Given a KDS(AE)2 problem, there exists a lin-
ear contiguous schedule with processes sorted by a non-
decreasing order of deadlines that is optimal.



Proof. Given an optimal linear contiguous policy P , we
show that it can be rearranged to have non-decreasing or-
der of deadlines. Let consecutive processes i, i + 1 in P be
the first two processes with deadlines di+1 < di. Let P’ be
the same as P but with the starting times of i and i + 1 ex-
changed. Since P ′ differs from P only in the order of i and
i + 1, all processes allocated either before i or after i + 1
are unaffected, as they maintain the same starting time and
duration allocations. In addition, since the time allocation
for both processes is unchanged, the only way to decrease
the solution quality is by violating the deadline of either i or
i + 1. Making process i + 1 start earlier cannot cause it to
violate its deadline. Furthermore, di > di+1 and di+1 was
not violated in P , therefore, di also cannot be violated in P ′.
Thus, the success probability for P ′ is not less than that of P .
These steps can be repeated until an optimal schedule sorted
by a non-decreasing order of deadlines is obtained.

Theorem 1 can be used to obtain a DP scheme.

Theorem 2. For known deadlines, an optimal schedule can
be found in time polynomial in n, dn using DP according to

OPT (t, l) = max
0≤j≤dl−t

(OPT (t+j, l+1)−LPFl(j)) (5)

Proof outline. We show by induction that OPT (t, l) is
the utility of the optimal linear contiguous ordered (LCO)
schedule for processes l through n for the ‘remaining’ time
dn − t. The base cases are when l = n + 1 (no processes
to be assigned), thus OPT (·, n + 1) = 0; or no time re-
maining, thus OPT (dn, ·) = 0. Assume that OPT (t′, l′) is
the utility of the optimal LCO schedule for every t′ ≥ t and
l′ > l. To compute the utility of the optimal LCO schedule
for processes l through n for the ”remaining” time dn − t,
we need to consider all time allocations j for process l. For
each time allocation j, we add the reward resulting from the
allocation, which is −LPFl(j), to the best utility over ev-
ery possible optimal schedule of processes l + 1 through n,
given that j time was already allocated. The latter is exactly
OPT (t+j, l+1) according to the inductive hypothesis. Note
that any allocation beyond the deadline of process l (dl) is
wasteful and cannot contribute to the utility. Thus, we can
only consider time allocations j between 0 and dl–t. This
computation is exactly the right-hand side of Equation 5.

Thus, OPT (0, 1) is the maximal utility among all LCO
schedules for processes from 1 to n starting at t = 0. Due
to Theorem 1, OPT (0, 1) is the maximal utility among all
schedules, indicating an optimal solution to KDS(AE)2. �

If the representation of the Mi is explicit, the algorithm
evaluating Equation 5 in descending order runs in polyno-
mial time. Otherwise, it is pseudo-polynomial and can be
approximated in polynomial time.

3.2 Delay-Damage Aware Greedy Scheme

Although the pseudo-polynomial algorithm for KDS(AE)2

is reasonably fast, it is still too slow for metareasoning
in a planner. Furthermore, it is not applicable when dead-
lines are unknown. Thus, we next examine a new greedy
scheme, beginning with pointing out shortcomings of the
greedy scheme from Shperberg et al. (2019); namely, using

the proxy E[Di] in the value Q(i) is somewhat ad-hoc and
fails when the deadline distribution has a large variance.

Example 4. Modify Example 3 so that process 2 deadline
d2 ∼ [0.75 : 2; 0.25 : 10], thus E[D2] = 4 as before.
Then Q(1), Q(2) are unaffected and basic greedy behaves
the same. However, now both process 1 and process 2 cannot
be delayed. Therefore, the optimal policy now is to schedule
only process 2 for Ps = 9/16.

A more principled scheme can use the utility per time unit
as in Q(i), but with a first term that is better justified theo-
retically. The first term of Q(i) is used for prioritizing pro-
cesses with early deadlines, as any delay might prevent them
from completing their computation before their deadline,
even if they would have been timely had they been sched-
uled for processing immediately. Therefore, instead of the
first term, it makes sense to provide a measure of the ‘utility
damage’ to a process i due to delaying its processing start
time from time 0 to time td. Consider the case of two pro-
cesses and allocating contiguous processing time to each of
them, each equal to their most effective computation time ei.
For simplicity assume e1 = e2 = e1,2. In this case, we can
write down the ‘utility’ (negative logarithm of probability of
failure) for first running process 1 and then process 2, as:

U(1, 2) = −LPF1(e1,2, 0)− LPF2(e1,2, e1,2)

where the second term is for LPF for process 2 delayed to
the end of the run of process 1. Likewise, for process 2 first:

U(2, 1) = −LPF2(e1,2, 0)− LPF1(e1,2, e1,2)

Since e1 = e2 = e1,2, we can re-normalize the utility terms
by adding LPF2(e1,2, e1,2) + LPF1(e1,2, e1,2) to get:

U ′(1, 2) = −LPF1(e1,2, 0) + LPF1(e1,2, e1,2) (6)

U ′(2, 1) = −LPF2(e1,2, 0) + LPF2(e1,2, e1,2)

U ′ is the difference in utility we could get for a process when
it is run at time 0, minus the utility it can achieve if delayed
by e1,2 time units, and thus we call U ′ the ‘utility loss of
delaying the process by e1,2 time units’. The advantage of
using U ′ as a measure of process i is that its value in equa-
tion 6 depends only on process i. Although this optimality
argument does not necessarily extend to more than 2 pro-
cesses or to non-contiguous schedules, it has the advantage
of correctly addressing the deadline distributions.

Example 5. In Example 3, LPF2(2, 0)=LPF2(2, 2) =−2
and LPF1(2, 0) = −1 but LPF1(2, 2) = 0. So U ′(1, 2) =
3 > U ′(2, 1) and process 1 is first as needed. In Example
4, LPF2(2, 2) = 0, LPF2(2, 0) = log(7/16), so U ′(2, 1) >
U ′(1, 2) and process 2 is run as required.

In practice, a greedy scheme assigns some tu < ei time
units to process i at a time. As the most effective time ei is
not assigned in one chunk, it makes sense to assign time in
order of the utility slope available if we allow process i to run
now, rather than the total utility. In other words, we will use
the utility slope as a proxy for the potential gain. This was
done in the second term in Equation 4 in the basic greedy
scheme, and thus we still prefer a process i that maximizes:

slopenowi = − LPFi(ei, 0)/ei



However, as suggested by Equation 6, a measure of the
urgency of process i w.r.t. the deadlines is in certain cases
proportional to the utility loss due to delaying the process.
The utility slope after delay of process i by tu is:

slopelateri = − LPFi(ei(tu), tu)/ei(tu)

The higher the slope after delay, the greater the gain, thus
the smaller the loss, and the lower the urgency. Thus, this
term is to be minimized.

Since the time tu allocated at each round is not equal to
ei; and since with more than two processes the delay a pro-
cess suffers is unknown, the tradeoff between these terms
is not necessarily equal. We use an empirically determined
constant multiplier γ to balance between exploiting the cur-
rent process reward from allocating time to process i now
and the loss in reward due to delay. Thus, the delay-damage
aware (DDA) greedy scheme is to assign, at each processing
allocation round, tu time to the process i that maximizes:

Q′(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
−

LPFi(ei, 0)

ei
(7)

3.3 Evaluation on S(AE)2

We performed an empirical evaluation in order to assess
the effectiveness of the different metareasoning schemes on
the abstract problem, and to decide which scheme to in-
tegrate into an actual planner. Following Shperberg et al.
(2019), we generated problems with performance profiles
and deadline distributions based on a variety of distri-
butions: Uniform (U), with minimal range value a =
1 and maximal range value b uniformly drawn from
{[5, 10], [50, 100], [100, 200], [150, 300]}, we denote the set
of possible [a, b] ranges by R; Boltzmann (B), truncated ex-
ponential distribution with the diminishing return property,
using a λ ∈ {0.1, 1, 2} and range drawn from R; Truncated
Normal Distribution (N) with µ ∈ {5, 50, 100, 150}, σ ∈
{1, 5, 10}, and range drawn from R; and Planner (P), distri-
butions collected from search trees of the Robocup Logistics
League (Niemueller, Lakemeyer, and Ferrein 2015) domain
generated by the OPTIC planner. To acquire the planner dis-
tributions, A* was executed from each node of the dumped
search tree. The result of each of these searches provides the
number N(v) of expansions necessary to find the goal un-
der a node v. These numbers were binned separately for each
(h(v), g(v)) pair. Then, a set of nodes V was selected ran-
domly from the trees, each node standing for a process. For
each such v ∈ V , the list of numbers of expansions in the bin
corresponding to g(v) and h(v) was treated as a distribution
over completion times (in terms of number of expansions).
Likewise for creating the latest start times for the resulting
plan (the deadline distribution). Experiments were run with
unknown deadlines, and with a known deadline randomly
drawn from the corresponding distribution before execution.

The algorithms we evaluated are: the optimal MDP solu-
tion (whenever possible), computed using the Bellman equa-
tion in value-determination; the basic greedy scheme using
α ∈ {0, 0.2, 0.5, 1, 20}; the DDA scheme using tu = 1 and
γ ∈ {0, 0.2, 0.5, 0.75, 1, 2, 10, 100}; and the dynamic pro-
gramming (DP) scheme, treating the expected deadline of

Dist # pr
MDP Basic DDA DP

Q T Q T Q T Q T

B

2 0.72 0.1 0.63 0.00 0.66 0.00 0.72 0.00
5 0.71 0.00 0.78 0.01 0.83 0.01

10 0.63 0.01 0.75 0.08 0.88 0.09
100 0.82 0.07 0.99 0.19 1.00 0.21

N

2 0.61 7.7 0.55 0.00 0.57 0.00 0.61 0.00
5 0.84 0.00 0.84 0.01 0.84 0.01

10 0.92 0.01 0.93 0.06 0.93 0.08
100 1.00 0.02 1.00 0.23 1.00 0.28

U

2 0.66 1.5 0.62 0.00 0.64 0.01 0.66 0.02
5 0.85 0.02 0.85 0.09 0.91 0.10

10 0.97 0.03 0.98 0.22 0.98 0.31
100 1.00 0.08 1.00 0.78 1.00 0.71

P

2 0.82 11.7 0.71 0.00 0.77 0.00 0.82 0.00
5 0.77 0.00 0.82 0.02 0.83 0.03

10 0.98 0.01 1.00 0.09 1.00 0.1
100 1.00 0.05 1.00 0.27 1.00 0.24

Known, Avg. 0.81 0.02 0.85 0.13 0.87 0.14

B

2 0.69 188.1 0.62 0.01 0.65 0.03 0.50 0.03
5 0.65 0.02 0.77 0.12 0.57 0.14

10 0.71 0.06 0.75 0.48 0.72 0.55
100 0.70 0.21 0.82 1.19 0.68 1.43

N

2 0.69 25.6 0.61 0.01 0.69 0.04 0.47 0.04
5 0.70 0.02 0.87 0.10 0.66 0.13

10 0.64 0.05 0.72 0.44 0.55 0.49
100 0.76 0.19 0.84 2.03 0.73 1.95

U

2 0.73 112.8 0.67 0.04 0.73 0.25 0.73 0.26
5 0.69 0.19 0.78 1.26 0.45 1.12

10 0.79 0.22 0.91 2.25 0.84 2.31
100 0.85 0.88 0.89 7.83 0.74 7.50

P

2 0.81 20.6 0.62 0.00 0.77 0.01 0.63 0.01
5 0.89 0.00 0.93 0.03 0.81 0.06

10 0.9 0.05 0.9 0.38 0.88 0.39
100 0.86 0.21 0.95 2.21 0.75 2.23

Unknown, Avg. 0.73 0.14 0.81 1.17 0.67 1.17

Total, Avg 0.77 0.08 0.83 0.65 0.77 0.65

Table 1: Solution quality and runtime for different settings

each process as its true deadline when the deadlines are un-
known. The reported results are only the best parameter val-
ues: α = 0 for basic greedy and γ = 1 for DDA.

Evaluating the quality of a solution (policy) is not triv-
ial, especially for adaptive policies. We ran the algorithms
on each setting for 500 attempts and reported the fraction
of successful runs out of the total number of attempts as the
solution quality. Since this policy evaluation process intro-
duced noise, we have measured the standard deviation (std)
of the solution quality (not reported in the table); the overall
std was small (±0.02), therefore, the introduced noise does
not affect the trends reported below. The results are shown
in Table 1, in which the top and bottom halves of the table
contains results of the known and unknown deadlines cases
respectively. Q indicates the solution quality (success prob-
ability achieved by the policy created by the algorithm); T is
the metareasoning runtime in seconds. ‘Avg’ rows give av-
erage solution quality and geometric mean of the runtimes.
DP is optimal (and therefore the best) when the deadlines
are known; however, it performed poorly for unknown dead-
lines. For the unknown deadlines case, and on average across



both cases, DDA achieved the best solution quality, outper-
forming the basic greedy scheme. However, DDA had the
worst metareasoning runtime, except for the MDP, which we
must consider when integrating it with a planner.

4 Integrating DDA into a Planner

DDA was the best performing algorithm in Section 3.3,
while the basic greedy scheme (with α = 0) had the best
runtime. Since DDA with γ = 0 is equivalent to basic
greedy with α = 0, it suffices to implement DDA in the
planner. In order to do so, several issues must be addressed.
First, the non-trivial task of obtaining the distributions; sec-
ond, how to use the DDA scheme as the basis for search.

4.1 Estimating the Distributions

DDA needs the Di and Mi distributions as input. To estimate
these distributions, we leverage estimates easily obtained in
the situated temporal planner on which we build (Cashmore
et al. 2018). The planner uses the temporal relaxed planning
graph (TRPG) (Coles et al. 2010) to estimate E[Di], and the
distance to go (also from the TRPG) to estimate remaining
search time (Dionne, Thayer, and Ruml 2011), which we
treat as an estimate of E[Mi].

However, to use the DDA greedy rule we must also es-
timate the whole distribution, rather than just the expected
values. For Di(t), we simply use a step function that goes
from probability zero to one when t is equal to the deadline
of the relaxed plan (our estimation of E[Di]). In order to
estimate Mi, we use an online temporal difference learning
technique (Thayer, Dionne, and Ruml 2011). Note that the
true distance-to-go from some state s, denoted d∗(s) is equal
to d∗(bc(s))+1, where bc(s) is the best child of state s, that
is, the successor that is on the best path to the goal. If d is a
heuristic estimate of d∗, then the one-step error of d at s is
defined as ǫd(s) = d(bc(s)) + 1 − d(s). The average error
of d is then estimated by the average one-step error, either
throughout the entire search space or along a specific path.

We extend these ideas to estimate Mi. First, as we have
the one-step errors for all states observed so far, we can es-
timate the distribution of one-step errors of distance to go,
denoted Od. Since these errors accumulate along the path
to the goal, to estimate the distribution of the distance to go
from state s, we convolve Od with itself d(s) times. We then
multiply this distribution by the average expansion delay di-
vided by the expansion rate (Cashmore et al. 2018), which
measures how much time passes, on average, between gen-
erating a state and expanding it.

One important implementation detail is that, when the ex-
pansion delay is small, the remaining-search-time estimate
may unrealistically have zero probability of failure. Thus we
add to the Mi distribution an infinite remaining search time
outcome, with probability pf min = 0.0001.

4.2 Searching with DDA

For search, each state i on the open list can be treated as a
process. Hence, the Q′(i) value (Equation 7) is maintained
for each state i, and computation time is allocated to a state
with highest Q′(i). Recalling that the DDA scheme is based

on allocating tu units of computation time, thus we perform
tu expansions in the subtree rooted at i; after tu expansions,
the non-expanded (frontier) nodes in this subtree are added
to the open list, and another state is chosen according to Q′.

One important aspect of searching based on Q′ values is
that these values are not static: during search, the distribution
Od changes, and time passes, all of which change the Q′(i)
values. Hence, we recompute them every tu expansions, i.e.
whenever the next subtree to allocate time to is to be chosen.
To reduce the metareasoning overhead (for instance, to keep
it under some desired proportion of planner runtime), one
could consider changing the frequency of this during search,
but as we have not found the overheads to be excessive in
our experiments, we leave this for future work.

Since DDA needs statistics, such as one-step error esti-
mates, that are unavailable early in the search, we actually
start off by using the baseline weighted A∗ search (Cash-
more et al. 2018). The DDA ordering kicks in only after nexp
expansions (an algorithm parameter).

In some domains the distribution information is unhelp-
ful, e.g. if the deadline is very far, in which case probability
of success for many nodes is close to 1, both before and
after delay. Alternately, the deadline may be very close, in
which case the probability of success is close to 0, regard-
less of delay for many nodes. In such cases, many leading
Q′ values are identical, and our scheme may become erratic.
In such cases we break ties or near-ties by preferring nodes
with lower f value. This tie-breaking was implemented by
actually expanding nodes with the highest Q′(i) + βf(i),
where a very small β = −0.000001 was used throughout.

One could also imagine a more sophisticated scheme in
which the algorithm monitors the distribution of Q′ values
to assess whether they contain useful information or suffer
from substantial estimation error. This interesting issue re-
mains for future work.

5 Empirical Evaluation

To evaluate the DDA metareasoning scheme, we imple-
mented it on top of the situated temporal planner of Cash-
more et al. (2018), which itself is implemented on top of
OPTIC (Benton, Coles, and Coles 2012). As a baseline, we
use the heuristic search scheme of Cashmore et al. (2018).
We used the same set of benchmarks as this prior work,
which includes all IPC domains with Timed Initial Literals
(TILs), representing constraints on absolute time; as well as
200 instances from the Robocup Logistics League (RCLL)
(Niemueller et al. 2016), a simulated robotic manufacturing
setting – divided into instances with 1 or 2 robots, and a
Turtlebot office delivery domain with tight deadlines from
Cashmore et al. (2019). All experiments were run on a server
with 72 Intel Xeon E5-2695 CPUs, using up to 64 processes
in parallel (Tange 2011) and a 3GB memory limit.

5.1 Comparing DDA to the Baseline

We begin by comparing DDA, with the default parameter
values (tu = 100, γ = 1, and nexp = 1000), to the base-
line. These values were the result of an initial guess, which
we verified empirically. In situated temporal planning, the



Domain baseline DDA DDA(nexp = 1) DDA(γ = 0) DDA(hs) DDA (dom tuned)

airport 19.0 (19–19) 20.0 (20–20) 20.0 (20–20) 20.0 (20–20) 19.1 (19–20) 20.5 (19–21)
pw-nt 4.0 (3–4) 4.0 (3–5) 4.5 (3–5) 4.0 (3–4) 4.0 (4–4) 3.9 (3–5)
rcll 1 37.7 (37–40) 73.7 (53–92) 73.0 (65–91) 76.4 (69–81) 34.6 (15–75) 83.9 (59–99)
rcll 2 1.0 (1–1) 4.0 (2–23) 1.1 (0–14) 2.0 (2–2) 1.8 (1–7) 2.7 (0–13)
sat cmplx 5.0 (5–5) 5.0 (5–5) 4.8 (4–5) 5.0 (5–5) 5.0 (5–5) 3.8 (2–5)
sat tw 5.0 (5–5) 5.0 (5–5) 5.1 (5–6) 5.0 (5–5) 5.0 (5–5) 3.6 (3–5)
trucks 6.0 (6–6) 6.9 (6–9) 6.3 (6–7) 7.5 (7–8) 6.5 (6–7) 5.7 (5–8)
turtlebot 14.0 (14–14) 12.5 (10–13) 13.0 (13–13) 8.0 (8–8) 14.0 (14–14) 13.0 (13–13)
umts-flaw 4.1 (4–5) 5.1 (5–6) 0.0 (0–0) 0.1 (0–1) 0.4 (0–4) 5.0 (5–5)
umts 48.0 (48–48) 45.5 (42–49) 44.2 (41–48) 43.8 (41–48) 41.5 (41–42) 45.7 (44–49)

TOTAL 143.8 (142–147) 181.7 (151–227) 172.0 (157–209) 171.6 (160–182) 131.7 (110–183) 187.7 (153–223)

Table 2: Number of problems solved by each planner, shown as: average (solved by all 20 runs - solved by at least one run).

time elapsed during planning affects search decisions. This
introduces noise due to multiple processes sharing the same
CPU, as well as features such as Intel Turbo Boost, which
vary the speed of the CPU according to load. Thus, in this
experiment we ran the planner 20 times on each planning
problem. Each run was limited to 200 seconds of CPU time.

Table 2 shows the (average) number of problems solved in
each domain for each planner. Each entry shows the average
number of problems solved in that domain by that planner
(averaging over the 20 runs). Furthermore, in parentheses
we give the number of problems solved by all 20 runs (of
the given planner in the given domain) and the number of
problems solved by at least one of the 20 runs (of the given
planner in the given domain). These numbers serve as a con-
fidence interval of sorts, as they indicate ease of replication,
thus we denote them by low bar and high bar, respectively.

Looking only at the DDA and baseline columns for now,
observe that DDA solves 38 more problems than the base-
line. Interestingly, the low bar of 151 for DDA is higher than
the high bar for the baseline – that is, there were 151 in-
stances that were solved by all 20 runs of DDA, compared
to 147 that were solved by at lease one run of the baseline.

Also note that the “noise” (the difference between the
high bar and the low bar) for DDA is much higher than
the baseline. This is because the baseline only uses elapsed
search time to prune search nodes, but otherwise keeps the
same ordering between nodes based on f -values. On the
other hand, DDA uses elapsed time to compute Q′, thus
changing the ordering between nodes.

However, looking at the total coverage could be mislead-
ing, as the numbers of problems in each domain are differ-
ent — and the number of solvable problem even more so
(varying from about 5 to almost 100). Thus, we also count in
how many domains DDA outperformed the baseline. DDA
beats the baseline in 4 domains: airport, RCLL (with 1 and
2 robots), trucks, and UMTS flaw, and loses only in 2 do-
mains: turtlebot and UMTS.

To further analyze this result, we exploited the fact that
we have 20 different runs for each planner on each prob-
lem. Thus, we can perform a statistical significance test on
the number of times each planner solved each problem, and
check whether DDA is statistically significantly better than
the baseline on each problem, whether the baseline is sta-
tistically significantly better than DDA, or whether there is
no statistically significantly difference. Specifically we used

the Mann-Whitney U-test (Mann and Whitney 1947), a non-
parametric test that checks if one variable is more likely to
have a higher value than another. Table 3 reports the number
of problems in each domain in which the baseline or DDA
were statistically significantly better than the other. The re-
sults here correspond well with the domains listed above,
and show that in total DDA is statistically significantly bet-
ter than the baseline on 3.5 times more problems.

5.2 DDA Ablation Studies

Having seen that DDA outperforms the previous work in sit-
uated temporal planning, we performed some ablation stud-
ies to test which of the features of DDA contribute the most
to its success. We considered the following planner variants:

DDA(nexp = 1) immediately starts with DDA, instead of
waiting 1000 node expansions for the estimates to stabilize.

DDA(γ = 0) uses γ = 0 to compute Q′(i), thus ignoring
the slope later component of Q′.

DDA(hs) uses standard heuristic search based on Q′, in-
stead of doing tu expansions in the chosen subtree.

In all of these variants, the other parameters were kept the
same as the default configuration. Table 2 also shows the re-
sults for these variants. The results show that, indeed, every
one of these features contributes somewhat to the success of
DDA, with the focused search leading to many more solved
problems. Interestingly, in the turtlebot domain, where DDA
loses to the baseline, the pure heuristic search variant solves
all the problems — the same as the baseline. This is likely
because there are dead ends in the domain (due to deadlines
expiring), and heuristic search does better at avoiding these.

5.3 Automated Parameter Tuning for DDA

The results we presented above were based on hand-chosen
default parameter setting for DDA. On the one hand, this is
only one point in a large space of possible parameter set-
tings, and thus DDA has the potential for even better per-
formance. On the other hand, there could be a concern that
these parameter settings were chosen based on their perfor-
mance on the problem domains being evaluated, and thus
there is overfitting in the process.

Therefore, we also show that it is possible to automati-
cally find good settings for each domain automatically, us-
ing SMAC – Sequential Model-Based Algorithm Configura-
tion (Hutter, Hoos, and Leyton-Brown 2011; Lindauer et al.



Domain baseline DDA

airport 0 1
pw-nt 0 0
rcll 1 7 48
rcll 2 0 4
sat cmplx 0 0
sat tw 0 0
trucks 0 2
turtlebot 2 0
umts-flaw 0 1
umts 7 1

TOTAL 16 57

Table 3: Statistically significant wins

baseline DDA
Domain 0.25 0.5 2 4 0.25 0.5 2 4

airport 19.0 19.0 19.0 19.0 20.0 20.0 20.0 20.0
pw-nt 0.0 0.0 9.0 12.1 0.0 0.0 10.0 12.2
rcll 1 4.2 9.0 39.4 46.3 10.1 35.8 70.7 72.6
rcll 2 0.0 0.0 1.0 2.0 0.6 0.2 5.4 8.4
sat cmplx 0.0 0.0 5.0 5.0 0.0 0.0 5.0 5.0
sat tw 0.0 0.0 6.0 7.0 0.0 0.0 6.0 7.4
trucks 0.0 0.0 7.0 13.0 0.0 0.0 9.1 13.0
turtlebot 0.0 4.1 14.0 14.0 0.0 4.0 14.0 14.0
umts-flaw 0.0 4.8 4.3 2.2 3.5 5.5 5.0 5.0
umts 16.0 33.7 42.0 42.0 16.0 35.4 42.9 42.0

TOTAL 39.2 70.6 146.7 162.6 50.2 100.9 188.1 199.6

Table 4: Coverage with different TIL multipliers

2017). To avoid overfitting, we divided each domain into 2
folds – the evenly numbered problems and the odd num-
bered problems (this was done to try to maintain the same
distribution of problem sizes in both folds). We then used
SMAC — specifically, Bayesian Optimization and Hyper-
Band (Falkner, Klein, and Hutter 2018; Li et al. 2017) — to
find the best configuration for each fold. This configuration
was then used to evaluate the other fold. The results reported
here use the configuration trained on the even problems to
measure the performance of DDA on the odd problems, and
vice versa — thus avoiding overfitting.

We gave SMAC 72 hours to find the best configuration.
We fixed the values of minpf and β, as well as the decision
to use the subtree-focused search. Thus we searched for val-
ues for the remaining parameters: γ was limited to values
between -10 and 10, tu to values between 10 and 1000 (on a
logarithmic scale), and nexp to values between 1 and 10,000
(also on a logarithmic scale). The score for each run was the
total search time in seconds (if the problem was solved), or
231 if the problem was not solved. To overcome noise, each
problem was run 3 times, and the average score was used.

Table 2 also reports the results of DDA tuned for each
domain (these are the combined results from both configu-
rations in each domain). Overall, the domain-tuned version
of DDA outperforms DDA in coverage. However, in a few
domains, performance is actually worse. Notably, these are
the domains where DDA solves very few problems to begin
with (up to 7), and thus the signal for training is rather weak.
On the other hand, in domains where DDA already solved
10 or more problems, the domain-specific parameter tuning
helped improve performance. We believe this problem could
be alleviated by using a random problem generator, but this
is beyond the scope of this paper.

5.4 Evaluating the Impact of Tight Deadlines

We conclude the empirical evaluation by examining more
closely when DDA outperforms the baseline. First, note that
when the deadlines are very loose, there should be no differ-
ence between DDA and the baseline, as they will both have
time to explore the search space. Second, when the dead-
lines are very tight, both approaches are likely to fail to find
a solution before the deadline — in fact, this is the case

in pipesworld-no-tankage (pw-nt). Thus, we expect DDA
to outperform the basline in the “Goldilocks” zone, where
deadlines are tight, but not too tight.

To evaluate this claim empirically, we ran the baseline and
DDA on the same problem instances as before, modified by
multiplying the TILs in the problem by a factor. We tried
factors of 0.25 and 0.5 (for tighter deadlines) and 2 and 4
(for looser deadlines). The number of problems solved by
each planner in each domain is shown in Table 4, where the
number in each cell is the average of 10 runs.

First, observe that DDA outperforms the baseline overall
for all multipliers. Second, looking at the pipesworld domain
(pw-nt), we can see the phenomenon we described above.
For multiplier of 0.25 and 0.5, both approaches solve 0 (and
from Table 2, for a multiplier of 1, both solve 4). When the
multiplier is 2, DDA solves 1 more problem than the base-
line, but when the multiplier is 4 (and deadlines are now
very loose), the difference becomes only 0.1. A similar phe-
nomenon occurs in rcll 2 and in trucks.

6 Discussion

We advanced a formal metareasoning approach for situated
temporal planning. We note that optimizing the time alloca-
tion in an algorithm portfolio with known probabilistic per-
formance profiles is a special case where there is a com-
mon deadline by which all processes must deliver the result,
namely the (usually) known time limit per instance. Despite
using rather crude estimates, the enhanced planner empiri-
cally outperforms previous work. This is an important step in
making situated temporal planning practical. It also demon-
strates the enduring power of metareasoning as a productive
perspective on rational resource-bounded problem-solving.

We assumed here that the plan must be completed be-
fore execution. However, with very tight deadlines, it may
be necessary to start execution before a complete plan is
found. We intend to expand the metareasoning scheme to a
(more complicated) model which supports execution of ac-
tions while still searching for a plan. Finally, we mean to en-
rich OPTIC with other metareasoning schemes (Shperberg
et al. 2020) tailored for the problem of minimizing expected
cost (rather than trying to maximize the probability of find-
ing a solution).
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