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Abstract

In this paper, we study the problem of constrained
min-max optimization in a black-box setting,
where the desired optimizer cannot access the gra-
dients of the objective function but may query
its values. We present a principled optimiza-
tion framework, integrating a zeroth-order (ZO)
gradient estimator with an alternating projected
stochastic gradient descent-ascent method, where
the former only requires a small number of func-
tion queries and the later needs just one-step de-
scent/ascent update. We show that the proposed
framework, referred to as ZO-Min-Max, has a sub-
linear convergence rate under mild conditions and
scales gracefully with problem size. We also ex-
plore a promising connection between black-box
min-max optimization and black-box evasion and
poisoning attacks in adversarial machine learn-
ing (ML). Our empirical evaluations on these
use cases demonstrate the effectiveness of our
approach and its scalability to dimensions that
prohibit using recent black-box solvers.

1. Introduction

Min-max optimization problems have been studied for mul-
tiple decades (Wald, 1945), and the majority of the proposed
methods assume access to first-order (FO) information, i.e.
gradients, to find or approximate robust solutions (Nesterov,
2007; Gidel et al., 2017; Hamedani et al., 2018; Qian et al.,
2019; Rafique et al., 2018; Sanjabi et al., 2018b; Lu et al.,
2019; Nouiehed et al., 2019; Lu et al., 2020; Jin et al., 2019).
Different from standard optimization, min-max optimiza-
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tion tackles a composition of an inner maximization problem
and an outer minimization problem. It can be used in many
real-world applications, which are faced with various forms
of uncertainty or adversary. For instance, when training a
ML model on user-provided data, malicious users can carry
out a data poisoning attack: providing false data with the
aim of corrupting the learned model (Steinhardt et al., 2017;
Tran et al., 2018; Jagielski et al., 2018). At inference time,
malicious users can evade detection of multiple models in
the form of adversarial example attacks (Goodfellow et al.,
2014; Liu et al., 2016; 2018a). Our study is particularly
motivated by the design of data poisoning and evasion ad-
versarial attacks from black-box machine learning (ML) or
deep learning (DL) systems, whose internal configuration
and operating mechanism are unknown to adversaries. We
propose zeroth-order (gradient-free) min-max optimization
methods, where gradients are neither symbolically nor nu-
merically available, or they are tedious to compute.

Recently, zeroth-order (ZO) optimization has attracted in-
creasing attention in solving ML/DL problems, where FO
gradients (or stochastic gradients) are approximated based
only on the function values (Liu et al., 2020). For example,
Z0 optimization serves as a powerful and practical tool for
generation of adversarial examples to evaluate the adver-
sarial robustness of black-box ML/DL models (Chen et al.,
2017; Ilyas et al., 2018; Tu et al., 2018; Ilyas et al., 2019;
Chen et al., 2018; Li et al., 2019). ZO optimization can
also help to solve automated ML problems, where the gradi-
ents with respect to ML pipeline configuration parameters
are intractable (Aggarwal et al., 2019; Wang & Wu, 2019).
Furthermore, ZO optimization provides computationally-
efficient alternatives of high-order optimization methods
for solving complex ML/DL tasks, e.g., robust training by
leveraging input gradient or curvature regularization (Finlay
& Oberman, 2019; Moosavi-Dezfooli et al., 2019), network
control and management (Chen & Giannakis, 2018; Liu
et al., 2018b), and data processing in high dimension (Liu
et al., 2018b; Golovin et al., 2019). Other recent applications
include generating model-agnostic contrastive explanations
(Dhurandhar et al., 2019) and escaping saddle points (Flokas
etal., 2019).
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Current studies (Ghadimi & Lan, 2013; Nesterov &
Spokoiny, 2015; Duchi et al., 2015; Ghadimi et al., 2016;
Shamir, 2017; Balasubramanian & Ghadimi, 2018; Liu et al.,
2018c; 2019) suggested that ZO methods for solving single-
objective optimization problems typically agree with the
iteration complexity of FO methods but encounter a slow-
down factor up to a small-degree polynomial of the problem
dimensionality. To the best of our knowledge, it was an
open question whether any convergence rate analysis can
be established for black-box min-max (bi-level) optimiza-
tion. In this paper, we develop a provable and scalable
black-box min-max stochastic optimization method by inte-
grating a query-efficient randomized ZO gradient estimator
with a computation-efficient alternating gradient descent-
ascent framework. Here the former requires a small number
of function queries, and the latter needs just one-step de-
scent/ascent update.

Contribution. We summarize our contributions as fol-
lows. (i) We identify a class of black-box attack problems
which turn out to be min-max black-box optimization prob-
lems. (if) We propose a scalable and principled framework
(ZO-Min-Max) for solving constrained min-max saddle
point problems under both one-sided and two-sided black-
box objective functions. Here the one-sided setting refers
to the scenario where only the outer minimization problem
is black-box. (iif) We provide a novel convergence analy-
sis characterizing the number of objective function evalua-
tions required to attain locally robust solution to black-box
min-max problems (structured by nonconvex outer mini-
mization and strongly concave inner maximization). Our
analysis handles stochasticity in both objective function and
Z0 gradient estimator, and shows that ZO-Min-Max yields
O(1/T 4 1/b+ d/q) convergence rate, where 7' is number
of iterations, b is mini-batch size, ¢ is number of random
direction vectors used in ZO gradient estimation, and d is
number of optimization variables. (iv) We demonstrate the
effectiveness of our proposal in practical data poisoning and
evasion attack generation problems. !

2. Related Work

FO min-max optimization. Gradient-based methods
have been applied with celebrated success to solve min-max
problems such as robust learning (Qian et al., 2019), genera-
tive adversarial networks (GANs) (Sanjabi et al., 2018a; Lu
et al., 2019), adversarial training (Al-Dujaili et al., 2018b;
Madry et al., 2018), and robust adversarial attack generation
(Wang et al., 2019b). Some of FO methods are motivated by
theoretical justifications based on Danskin’s theorem (Dan-
skin, 1966), which implies that the negative of the gradient

'Source code is available at https://github.com/
KaidiXu/ZO-minmax

of the outer minimization problem at inner maximizer is a
descent direction (Madry et al., 2018). Convergence analysis
of other FO min-max methods has been studied under differ-
ent problem settings, e.g., (Lu et al., 2020; Qian et al., 2019;
Rafique et al., 2018; Sanjabi et al., 2018b; Nouiehed et al.,
2019). It was shown in (Lu et al., 2020) that a determinis-
tic FO min-max algorithm has O(1/T") convergence rate.
In (Qian et al., 2019; Rafique et al., 2018), stochastic FO
min-max methods have also been proposed, which yield the
convergence rate in the order of O(1/+/T) and O(1/T*/4),
respectively. However, these works were restricted to uncon-
strained optimization at the minimization side. In (Sanjabi
et al., 2018b), noncovnex-concave min-max problems were
studied, but the proposed analysis requires solving the maxi-
mization problem only up to some small error. In (Nouiehed
et al., 2019), the O(1/T) convergence rate was proved for
nonconvex-nonconcave min-max problems under Polyak-
Lojasiewicz conditions. Different from the aforementioned
FO settings, ZO min-max stochastic optimization suffers
randomness from both stochastic sampling in objective func-
tion and ZO gradient estimation, and this randomness would
be coupled in alternating gradient descent-descent steps and
thus make it more challenging in convergence analysis.

Gradient-free min-max optimization. In the black-box
setup, coevolutionary algorithms were used extensively to
solve min-max problems (Herrmann, 1999; Schmiedlechner
et al., 2018). However, they may oscillate and never con-
verge to a solution due to pathological behaviors such as
focusing and relativism (Watson & Pollack, 2001). Fixes to
these issues have been proposed and analyzed—e.g., asym-
metric fitness (Jensen, 2003; Branke & Rosenbusch, 2008).
In (Al-Dujaili et al., 2018c¢), the authors employed an evo-
lution strategy as an unbiased approximate for the descent
direction of the outer minimization problem and showed
empirical gains over coevlutionary techniques, albeit with-
out any theoretical guarantees. Min-max black-box prob-
lems can also be addressed by resorting to direct search and
model-based descent and trust region methods (Audet &
Hare, 2017; Larson et al., 2019; Rios & Sahinidis, 2013).
However, these methods lack convergence rate analysis and
are difficult to scale to high-dimensional problems. For ex-
ample, the off-the-shelf model-based solver COBYLA only
supports problems with 216 variables at maximum in SciPy
Python library (Jones et al., 2001), which is even smaller
than the size of a single ImageNet image.

The recent work (Bogunovic et al., 2018) proposed a robust
Bayesian optimization (BO) algorithm and established a the-
oretical lower bound on the required number of the min-max
objective evaluations to find a near-optimal point. However,
BO approaches are often tailored to low-dimensional prob-
lems and its computational complexity prohibits scalable
application. From a game theory perspective, the min-max
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solution for some problems correspond to the Nash equi-
librium between the outer minimizer and the inner maxi-
mizer, and hence black-box Nash equilibria solvers can be
used (Picheny et al., 2019; Al-Dujaili et al., 2018a). This
setup, however, does not always hold in general. Our work
contrasts with the above lines of work in designing and ana-
lyzing black-box min-max techniques that are both scalable
and theoretically grounded.

3. Problem Setup

In this section, we define the black-box min-max problem
and briefly motivate its applications. By min-max, we mean
that the problem is a composition of inner maximization and
outer minimization of the objective function f. By black-
box, we mean that the objective function f is only accessible
via functional evaluations. Mathematically, we have

min max
XEX yeEY

f(xy) (1)

where x and y are optimization variables, f is a differen-
tiable objective function, and X C R and Y C R% are
compact convex sets. For ease of notation, let d, = d,, = d.
In (1), the objective function f could represent either a deter-
ministic loss or stochastic loss f(x,y) = Ee~p [f(x,¥:€)],
where £ is a random variable following the distribution p.
In this paper, we cover the stochastic variant in (1).

‘We focus on two black-box scenarios:

(a) One-sided black-box: f is a white box w.r.t. y but a
black box w.r.t. x.

(b) Two-sided black-box: f is a black box w.r.t. both x and
y.

Motivation of setup (a) and (b). The formulation of the
one-sided black-box min-max problem can be used to design
the black-box ensemble evasion attack, where the attacker
generates adversarial examples (i.e., crafted examples with
slight perturbations for misclassification at the festing phase)
and optimizes its worst-case performance against an ensem-
ble of black-box classifiers and/or example classes. The
formulation of two-sided black-box min-max problem rep-
resents another type of attack at the fraining phase, known
as poisoning attack, where the attacker deliberately influ-
ences the training data (by injecting poisoned samples) to
manipulate the results of a black-box predictive model. Al-
though problems of designing ensemble evasion attack (Liu
et al., 2016; 2018a; Wang et al., 2019b) and data poison-
ing attack (Jagielski et al., 2018; Wang et al., 2019a) have
been studied in the literature, most of them assumed that the
adversary has the full knowledge of the target ML model,
leading to an impractical white-box attack setting. By con-
trast, we provide a solution to min-max attack generation
under black-box ML models. We refer readers to Section 6
for further discussion and demonstration of our framework

on these problems.

4. 7Z0-Min-Max: A Framework for
Black-Box Min-Max Optimization

Our interest is in a scalable and theoretically principled
framework for solving black-box min-max problems of the
form (1). To this end, we first introduce a randomized
gradient estimator that only requires a few number of point-
wise function evaluations. Based on that, we then propose a
ZO0 alternating projected gradient method to solve (1) under
both one-sided and two-sided black-box setups.

Randomized gradient estimator. In the ZO setting, we
adopt a randomized gradient estimator to estimate the gradi-
ent of a function with the generic form h(x) := E¢[h(x; &)]
(Gao et al., 2014; Berahas et al., 2019),

~ 9. dlh(x i &) — h(x; €.
Vxh(x):izz [h(x + pu ij) ( ‘EJ)]ui’ @)

where d is number of variables, Z denotes the mini-batch set
of b i.i.d. stochastic samples {£;}5_,, {w;}{_, are ¢ i.i.d.
random direction vectors drawn uniformly from the unit
sphere, and ;2 > 0 is a smoothing parameter. We note that
the ZO gradient estimator (2) involves randomness from
both stochastic sampling w.r.t. u; as well as the random
direction sampling w.r.t. §;. It is known from (Gao et al.,

2014, Lemma 2) that V, h(x) provides an unbiased estimate
of the gradient of the smoothing function of h rather than
the true gradient of h. Here the smoothing function of A is
defined by h,(x) = Ey[h(x + uv)], where v follows the
uniform distribution over the unit Euclidean ball. Besides
the bias, we provide an upper bound on the variance of (2)
in Lemma 1.

Lemma 1. Suppose that for all €, h(x;&) has Ly, Lips-
chitz continuous gradients and the gradient of h(x; &) is
upper bounded as ||Vh(x;€)||2 < n? atx € R Then

E [@xh(x)} = Vyh,(x), and

E[I9:xh(x) = Vahu()I3] < 0L b0 d), - (3)

where the expectation is taken over all randomness, and

9 _op? 4dn2+y2L2yd2
U(Lh,/.l/,b,q,d)—%‘f' q b=,

Proof: See Appendix A.2. ]

In Lemma 1, if we choose p < 1/ \v/d, then the variance
bound is given by O(1/b + d/q). In our problem setting
(1), the ZO gradients @xf(x, y) and ﬁyf(x7 y) follow the
generic form of (2) by fixing y and letting h(-) := f(-,y)
or by fixing x and letting h(-) := f(x, -), respectively.

Algorithmic framework. To solve problem (1), we al-
ternatingly perform ZO projected gradient descent/ascent
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Algorithm 1 ZO-Min-Max to solve problem (1)

1: Input: given x(¥) and y(?), learning rates a and 3, the
number of random directions ¢, and the possible mini-
batch size b for stochastic optimization

2: fort=1,2,...,T do

3:  x-step: perform ZO-PGD (4)

4:  y-step:

5. if f(x(®,y) is black box w.r.t. y then

6: perform ZO-PGA (5)

7. else

8: perform PGA using V f(x®), y¢=1) like (5)

9: endif

10: end for

method for updating x and y. Specifically, the ZO projected
gradient descent (ZO-PGD) is conducted over x

x® = proj, (X(Fl) —aVsf (X(t”),y(t*l))) , @

where ¢ is the iteration index, V f denotes the ZO gradient
estimate of f w.r.t. x, @ > 0 is the learning rate at the x-
minimization step, and proj , (a) signifies the projection of
aonto X, given by the solution to the problem minye x ||x—

a||3. For one-sided ZO min-max optimization, besides (4),
we perform FO projected gradient ascent (PGA) over y.
And for two-sided ZO min-max optimization, our update on
y obeys ZO-PGA

vy = projy, (y“*” + By f (x(t%y(t*”)) , G

where 5 > 0 is the learning rate at the y-maximization step,
and Vy f denotes the ZO gradient estimate of f w.r.t. y.
The proposed method is named as ZO-Min-Max; see the
pseudocode in Algorithm 1.

Why estimates gradient rather than distribution of func-
tion values? Besides ZO optimization using random gra-
dient estimates, the black-box min-max problem (1) can also
be solved using the Bayesian optimization (BO) approach,
e.g., (Bogunovic et al., 2018; Al-Dujaili et al., 2018a). The
core idea of BO is to approximate the objective function
as a Gaussian process (GP) learnt from the history of func-
tion values at queried points. Based on GP, the solution to
problem (1) is then updated by maximizing a certain reward
function, known as acquisition function. The advantage
of BO is its mild requirements on the setting of black-box
problems, e.g., without the need of differentiability. How-
ever, BO usually does not scale beyond low-dimensional
problems since learning the accurate GP model and solving
the acquisition problem takes intensive computation cost
per iteration. By contrast, our proposed method is more
efficient, and mimics the first-order method by just using
the random gradient estimate (2) as the descent/ascent di-
rection. In Figure A1, we compare ZO-Min-Max with the

BO based STABLEOPT algorithm proposed by (Bogunovic
et al., 2018) through a toy example shown in Appendix B
and a poisoning attack generation example in Sec. 6.2. We
can see that ZO-Min-Max not only achieves more accurate
solution but also requires less computation time.

Why is difficult to analyze the convergence of ZO-Min-
Max? The convergence analysis of ZO-Min-Max is more
challenging than the case of FO min-max algorithms. The
stochasticity of the gradient estimator makes the conver-
gence analysis sufficiently different from the FO determinis-
tic case (Lu et al., 2020; Qian et al., 2019), since the errors
in minimization and maximization are coupled as the algo-
rithm proceeds.

Moreover, the conventioanl analysis of ZO optimization
for single-objective problems cannot directly be applied to
Z0-Min-Max. Even at the one-sided black-box setting, ZO-
Min-Max conducts alternating optimization using one-step
Z0O-PGD and PGA with respect to x and y respectively.
This is different from a reduced ZO optimization problem
with respect to x only by solving problem minye v h(x),
where h(x) := maxycy f(x,y). Here acquiring the solu-
tion to the inner maximization problem could be non-trivial
and computationally intensive. Furthermore, the alternating
algorithmic structure leads to opposite optimization direc-
tions (minimization vs maximization) over variables x and
y respectively. Even applying ZO optimization only to one
side, it needs to quantify the effect of ZO gradient estima-
tion on the descent over both x and y. We provide a detailed
convergence analysis of ZO-Min-Max in Sec. 5.

5. Convergence Rate Analysis

We first elaborate on assumptions and notations used in
analyzing the convergence of ZO-Min-Max (Algorithm 1).

Al: In (1), f(x,y) is continuously differentiable, and is
strongly concave w.r.t. y with parameter v > 0, namely,
givenx € X, f(x,y1) < f(x,y2) + Vy f(x,y2)" (y1 —
y2) — 2[ly1 — y2l* for all points y1,y> € Y. And f
is lower bounded by a finite number f* and has bounded
gradients |V f(x, y: €)]| < n? and [V f(x,y: €)]| < n?
for stochastic optimization with £ ~ p. Here ||-|| denotes the
{5 norm. The constraint sets X', ) are convex and bounded
with diameter R.

A2: f(x,y) has Lipschitz continuous gradients, i.e., there
exists Ly, Ly, > Osuchthat ||V f(x1,y)—Vxf(x2,¥)|| <
Ly||x1 —x2| for Vxi,x2 € X, and ||Vy f(x1,y) —
Vyf(xo,y) < Lylxa—xa| and [[Vyf(x,y1) —
Vyfxy)ll < Lyllyy =y | forVy,,y, € V.

We remark that A1 and A2 are required for analyzing the

convergence of ZO-Min-Max. They were used even for
the analysis of first-order optimization methods with single
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rather than bi-level objective functions (Chen et al., 2019;
Ward et al., 2019). In A1, the strongly concavity of f(x,y)
with respect to y holds for applications such as robust learn-
ing over multiple domains (Qian et al., 2019), and robust
adversarial attack generation shown in Section 6. In A2, the
assumption of smoothness (namely, Lipschitz continuous
gradient) is required to quantify the descent of the alter-
nating projected stochastic gradient descent-ascent method.
For clarity, we summarize the problem and algorithmic pa-
rameters used in our convergence analysis in Table A1 of
Appendix A.1.

We measure the convergence of ZO-Min-Max by the prox-
imal gradient (Lu et al., 2020; Ghadimi et al., 2016; Lin
et al., 2020),

(1/a) (x —proj, (x —aVx f(x,y)))

5x9) = [ (1]6) (s prosty sovatenh) |+ ©

where (x,y) is a first-order stationary point of (1) iff

19, y)Il = 0.

Descent property in x-minimization. In what follows,
we delve into our convergence analysis. Since ZO-Min-Max
(Algorithm 1) calls for ZO-PGD for solving both one-sided
and two-sided black-box optimization problems, we first
show the descent property at the x-minimization step of
Z0O-Min-Max in Lemma 2.

Lemma 2. (Descent lemma in minimization) Under A1-A2,
let (x®),y (")) be a sequence generated by ZO-Min-Max.

When f(x,y) is black-box w.r.t. X, then we have following
descent property w.r.t. X:

1 L,
E[f(x(t+1),y(t))] §E[f(x(t)7y(t))] _ (a _ 7) E||A§ct+l)||2

+ ozai + Ly u2 @)

where ALY = x®) —x(t=1) and 0% = 0%(Ly, j1,b,q,d)
defined in (3).

Proof: See Appendix A.3.1. O

It is clear from Lemma 2 that updating x leads to the re-
duced objective value when choosing a small learning rate .
However, ZO gradient estimation brings in additional errors
in terms of a2 and L, u?, where the former is induced by
the variance of gradient estimates in (3) and the latter is
originated from bounding the distance between f and its
smoothing version; see (24) in Appendix A.3.

Convergence rate of ZO-Min-Max by performing PGA.
We next investigate the convergence of ZO-Min-Max when
PGA is used at the y-maximization step (Line 8 of Al-
gorithm 1) for solving one-sided black-box optimization
problems.

Lemma 3. (Descent lemma in maximization) Under A1-A2,
let (X(t), y ) be a sequence generated by Algorithm 1 and

define the potential function as

P(x(t>, y(t)7 Ag,t)) :E[f(x(t),y(t))]
A4+ 4B2LE —TBY ()2
TEHAy [ )
where Ag,t) = y® —y(=D When f(x,y) is black-box
w.r.t. X and white-box w.r.t. y, then we have the following
descent property w.r.t. y:

P(X(t+1),y(t+l),A§t+1)) < P(x(t+1),y(t),A§,t))

1 2L} 2 B
_ _ ENAG+TD 2 P 2RIAGHD 12
©)

Proof: See Appendix A.3.2. ]

It is shown from (9) that when g is small enough, then the
term (1/(28) — 2L§/7)E||A§f+1) |2 will give some descent
of the potential function after PGA, while the last term in
(9) will give some ascent to the potential function. How-
ever, such a quantity will be compensated by the descent
of the objective function in the minimization step shown by
Lemma 2. Combining Lemma 2 and Lemma 3, we obtain
the convergence rate of ZO-Min-Max in Theorem 1.

Theorem 1. Suppose that AI-A2 hold, the sequence
(x®),y1) over T iterations is generated by Algorithm 1
in which learning rates satisfy 3 < 1/(4L%) and o <
min{l{Lw,l/(Lm/Q + 2L2/(v*B) + BL2/2)}. When
f(x,y) is black-box w.rt. x and white-box w.r.t. 'y, the
convergence rate of ZO-Min-Max under a uniformly and

randomly picked (x"), y(")) from {(x), y (D)}, is given
by

(P1 — f*—vR?)

c caag cL, ;f
¢ T

E[Gx",y)* < ¢

(10
where ( is a constant independent on the parameters L,
b, ¢ d and T, Py = P(x(t),y(t),Agt)) given by (8),
¢ = max{L, + 3/a,3/8}, v = min{4 + 45°L} —
787,0}/(28%7), 02 is variance bound of ZO gradient es-
timate given in (7), and f*, R, vy, Ly and L, have been
defined in AI-A2.

Proof: See Appendix A.3.3. (|

To better interpret Theorem 1, we begin by clarifying the
parameters involved in our convergence rate (10). First,
the parameter ( in the denominator of the derived conver-
gence error is non-trivially lower bounded given appropriate
learning rates « and 3 (as will be evident in Remark 1).
Second, the parameter c is inversely proportional to o and
B. Thus, to guarantee the constant effect of the ratio ¢/¢,
it is better not to set these learning rates too small; see
a specification in Remark 1-2. Third, the parameter v is
non-negative and appears in terms of —vR2, thus, it will
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not make convergence rate worse. Fourth, P; is the initial
value of the potential function (8). By setting an appropriate
learning rate /3 (e.g., following Remark 2), P; is then upper
bounded by a constant determined by the initial value of
the objective function, the distance of the first two updates,
Lipschitz constant L, and strongly concave parameter .
We next provide Remarks 1-3 on Theorem 1.

Remark 1. Recall that ¢ = min{cy, c2} (Appendix B.2.3),
where ¢; = 1/(28) — 2L /yand ¢y = L — (% + iﬁg +
g ;i ). Given the fact that L,, and L,, are Lipschitz constants
and ~ is the strongly concavity constant, a proper lower
bound of ( thus relies on the choice of the learning rates «

and 3. By setting 3 < ﬁ and o < 1/(Lw+4§% +ﬁL2) it

. . 2L2
is easy to verlfy thatc; > —% and ¢y > L

2
Lo 4 71 Thus, we obtain that( > mln{ 7' 7}
Th1s justifies that ¢ has a non-trivial lower bound, which
will not make the convergence error bound (10) vacuous
(although the bound has not been optimized over « and f3).

Remark 2. It is not wise to set learning rates « and 3 to
extremely small values since c is inversely proportional to «a

and 3. We could choose 8 = 8L2 andov=1/(Ly + 2 25 +

BL2) in Remark 1 to guarantee the constant effect of ¢/(.

Remark3 By setting 2 < min{1/v/d,1/v/T}, we obtain
02 = O(1/b+d/q) from Lemma 1, and Theorem 1 implies
that ZO-Min-Max yields O(1/T +1/b+ d/q) convergence
rate for one-sided black-box optimization. Compared to the
FO rate O(1/T) (Lu et al., 2020; Sanjabi et al., 2018a), ZO-
Min-Max converges only to a neighborhood of stationary
points with O(1/T') rate, where the size of the neighbor-
hood is determined by the mini-batch size b, the problem
size d, and the number of random direction vectors ¢ used
in ZO gradient estimation. It is worth mentioning that the
stationary gap also exists in the ZO projected stochastic
gradient descent even for solving single-objective minimiza-
tion problems (Ghadimi et al., 2016). The rate is worse than
Z0 optimization methods for solving simpler unconstrained
non-stochastic problems (Nesterov & Spokoiny, 2015).

As shown in Remark 3, a large mini-batch size b or number
of random direction vectors g can improve the iteration
complexity of ZO-Min-Max. However, this requires O(bq)
times more function queries per iteration from (2). It implies
the tradeoff between iteration complexity and function query
complexity in ZO optimization.

Convergence rate of ZO-Min-Max by performing ZO-
PGA. The previous convergence analysis of ZO-Min-Max
is served as a basis for analyzing the more general two-
sided black-box case, where ZO-PGA is used at the y-
maximization step. In Lemma4, we examine the descent

property in maximization by using ZO gradient estimation.

Lemma 4. (Descent lemma in maximization) Under A1-A2,

let (X(t), y®)) be a sequence generated by Algorithm 1 and
define the potential function as

P (x®,y® AW

) =E[f(x',y")]
LAt 4(3L; +2)B% — 7By
B2y
When function f(x,y) is black-box w.r.t. both x and y, we
have the following descent w.r.t. y:

E[[AP(P. (1)

P/ D, gD AUDY < Y ((tHD) 40 AW
- (- L) mageope
n (652 35;3) E[AGHD )2 + 78%~° +6i857+ 12 o2
+ 5jﬂj4 2d*L2, (12)
where 3 := 0%(Ly, j1,b, q, d) given in (3).
Proof: See Appendix A.4.1. g

Lemma4 is analogous to Lemma 3 by taking into account
the effect of ZO gradient estimate Vy, f(x, y) on the poten-
tial function (11). Such an effect is characterized by the
terms related to 05 and ,quQL?QJ in (12).

Theorem 2. Suppose that AI-A2 hold, the sequence
(x, y )Y over T iterations is generated by Algorithm 1
in which learning rates satisfy 8 < ~/(4(3L2 + 2)) and
a <min{L,,1/(L,/2 +6L2/(v*B) + 38L2/2)}. When
f(x,y) is black-box w.r.t. both x and 'y, the convergence
rate of ZO-Min-Max under a uniformly and randomly picked

(x(7),y(") from {(x), y )}, is given by

<£7’{ff*71/R2 ca o

=C T [

cb cb
+(C—,1+dL> +(C—,2+2>aj,
where (' is a constant independent on the parameters [,
b, q dand T, P, := P'(x®,y®), A(t)) in (11), ¢ has

2 2
been defined in (10), v/ = _ min{d 4L, +2)8 ~767.0} by =

[32
2
L, Jrid Ly (4+57) and by = 7752"’2"'22674‘12, o2 and O'y have

been mtroduced in (7) and (12), a71d f* R, v, Ly and Ly
have been defined in AI1-A2.

E[G(x",y")|?

Proof: See Appendix A.4.2. (]

Following the similar argument in Remark 1 of Theorem 1,
one can choose proper learning rates « and 3 to obtain valid
lower bound on ¢’. However, different from Theorem 1,
the convergence error shown by Theorem 2 involves an
additional error term related to o2 and has worse dimension-
dependence on the term related to ©2. The latter yields a
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more restricted choice of the smoothing parameter p: we
obtain O(1/T + 1/b + d/q) convergence rate when p <
1/(avT).

6. Applications & Experiment Results

In what follows, we evaluate the empirical performance of
Z0-Min-Max on two applications of adversarial exploration:
a) design of black-box ensemble evasion attack against deep
neural networks (DNNs), and b) design of black-box poi-
soning attack against a logistic regression model.

6.1. Ensemble attack via universal perturbation

A black-box min-max problem formulation. We con-
sider the scenario in which the attacker generates a universal
adversarial perturbation over multiple input images against
an ensemble of multiple classifiers (Liu et al., 2016; 2018a).
Considering I classes of images (the group of images within
a class 7 is denoted by €2;) and J network models, the goal
of the adversary is to find the universal perturbation x addi-
tive to I classes of images against J models. The proposed
black-box attack formulation mimics the white-box attack
formulation (Wang et al., 2019b)

J 1
minimize maximize f(x,w) := E
xeX wew —

[wij Fij (%;4)]
=1 i=1

—Alw —1/(I7)|5, (13)

where x € R? and w € R!’ are optimization variables,
w;; denotes the (4, j)th entry of w corresponding to the
importance weight of attacking the set of images at class ¢
under the model j, X denotes the perturbation constraint,
e.g., X = {x||x]lo <€ Vz e U;Q;}, and W is the proba-
bilistic simplex W = {w | 17w = 1,w > 0}. In problem
(13), F;; (x;;) is the attack loss for attacking images in
); under model 7, and A > 0 is a regularization parameter
to strike a balance between the worse-case attack loss and
the average loss (Wang et al., 2019b). We note that {F}; }
are black-box functions w.r.t. x since the adversary has
no access to the internal configuration s of DNN models
to be attacked. Accordingly, the input gradient cannot be
computed by back-propagation. This implies that problem
(13) belongs to the one-sided black-box optimization prob-
lem (white-box objective w.r.t. w). We refer readers to
Appendix C for more details on (13).

Implementation details. We consider J = 2 DNN-based
classifiers, Inception-V3 (Szegedy et al., 2016) and ResNet-
50 (He et al., 2016), and I = 2 image classes, each of
which contains 20 images randomly selected from ImageNet
(Deng et al., 2009). In (13), we choose A = 5. In Algo-
rithm 1, we set the learning rates by o = 0.05 and 8 = 0.01.
Also, we use the full batch of image samples and set ¢ = 10
in gradient estimation (2), where we set 4 = 5 x 1073, The
function query complexity is thus g (= 10) times more than

the number of iterations.

Baseline methods for comparison. In experiments, we
compare ZO-Min-Max with (a) FO-Min-Max, (b) ZO-PGD
(Ghadimi et al., 2016), and (c) ZO-Finite-Sum, where
the method (a) is the FO counterpart of Algorithm 1, the
method (b) performs single-objective ZO minimization
under the equivalent form of (13), minygex h(x) where
h(x) = maxwew f(x,w), and the method (c) performs
ZO-PGD to minimize the finite-sum (average) loss rather
than the worst-case (min-max) loss. We remark that the
baseline method (b) calls for the solution to the inner max-
imization problem maxweyy f(x, w), which is elaborated
on Appendix C. It is also worth mentioning that although
Z0O-Finite-Sum tackles an objective function different from
(13), it is motivated by the previous work on designing
the adversarial attack against model ensembles (Liu et al.,
2018a), and we can fairly compare ZO-Min-Max with ZO-
Finite-Sum in terms of the attack performance of obtained
universal adversarial perturbations.

1]
o 10 —— ZO-Min-Max
g 1001 FO-Min-Max
21071
g o2
§ 1079
@ 10734
]
10—4,
0.00 025 050 075 1.00 1.25 150 175 2.00
Number of iterations led
(a)
6 ; B
—— ZO-Min-Max, M1C1 —-- FO-Min-Max, M1C1
w5 Z0-Min-Max, M1C2 FO-Min-Max, M1C2
o4 Z0O-Min-Max, M2C1 FO-Min-Max, M2C1
ok Z0-Min-Max, M2C2 FO-Min-Max, M2C2
©
2
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Figure 1: ZO-Min-Max vs. FO-Min-Max in attack generation. (a)
Stationary gap; (b) attack loss at each model-class pair.

Results. In Figure 1, we demonstrate the empirical con-
vergence of ZO-Min-Max, in terms of the stationary gap
|G (x,y)||2 given in (6) and the attack loss corresponding to
each model-class pair MjC:. Here M and C represents net-
work model and image class, respectively. For comparison,
we also present the convergence of FO-Min-Max. Figure 1-
(a) shows that the stationary gap decreases as the iteration
increases, and converges to an iteration-independent bias
compared with FO-Min-Max. In Figure 1-(b), we see that
Z0-Min-Max yields slightly worse attack performance (in
terms of higher attack loss at each model-class pair) than
FO-Min-Max. However, it does not need to have access to
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Figure 2: Comparison of attack losses achieved by ZO-Min-Max
and ZO-PGD.

the configuration of the victim neural network models.

In Figure 2, we compare the attack loss of using ZO-Min-
Max with that of using ZO-PGD, which solves problem
(13) by calling for an internal maximization oracle in w
(see Appendix C). As we can see, ZO-Min-Max converges
slower than ZO-PGD at early iterations. That is because
the former only performs one-step PGA to update w, while
the latter solves the w-maximization problem analytically.
However, as the number of iterations increases, ZO-Min-
Max achieves almost the same performance as ZO-PGD.

In Appendix C, we have provided additional comparisons on
Z0O-Min-Max versus ZO-Finite-Sum, and versus per-image
PGD attack (Madry et al., 2018).

6.2. Black-box data poisoning attack

Data poisoning against logistic regression. Let D =
{z;,t;}7, denote the training dataset, among which n/ <
n samples are corrupted by a perturbation vector x, leading
to poisoned training data z; + x towards breaking the train-
ing process and thus the prediction accuracy. The poisoning
attack problem is then formulated as

Iﬂi)‘(‘icglizeeminiemize g(x,0) := {Fi.(x,0; Do) + \||0]|3}, (14)
where x and 6 are optimization variables, F,(x,8;Dy)
denotes the training loss over model parameters 8 at the
presence of data poison x, and A > 0 is a regularization
parameter. Note that problem (14) can be written in the form
of (1), miny, maxg —g(x, 8). Clearly, if F, is a convex loss,
e.g., logistic regression or linear regression (Jagielski et al.,
2018)), then —g is strongly concave in 8. In (14), we assume
that the adversary knows the form of the classification loss
(cross entropy), however, the expression of the classifier
(logistic regression model) is not known. Thus, g(x, 0) is
a two-sided black-box function in both x and 6 from the
adversary’s perspective.

Implementation & Baseline. In problem (14), we set the
poisoning ratio n//n = 15% and A = 103 for problem
(14), where the sensitivity of A is studied in Figure A4. More
details on the specification of problem (14) are provided in
Appendix D. In Algorithm 1, unless specified otherwise we
choose b = 100, ¢ = 5, a = 0.02, 8 = 0.05, and T =
50000. We report the empirical results averaged over 10
independent trials with random initialization. We compare
our method with FO-Min-Max and the state-of-the-art BO-
based method STABLEOPT (Bogunovic et al., 2018).

In Figure 3, we present the convergence of ZO-Min-Max
to generate data poisoning attack and validate the result-
ing attack performance in terms of testing accuracy of the
logistic regression model trained on the poisoned dataset.
Figure 3-(a) shows the stationary gap of ZO-Min-Max under
different number of random direction vectors in gradient
estimation (2). As we can see, a moderate choice of ¢ (e.g.,
g > 5 in our example) is sufficient to achieve near-optimal
solution compared with FO-Min-Max. However, it suf-
fers from a convergence bias, consistent with Theorem 2.
Figure 3-(b) demonstrates the testing accuracy (against it-
erations) of the model learnt from poisoned training data,
where the poisoning attack is generated by ZO-Min-Max
(black-box attack) and FO-Min-Max (white-box attack). As
we can see, ZO-Min-Max yields promising attacking perfor-
mance comparable to FO-Min-Max. We can also see that by
contrast with the testing accuracy of the clean model (94%
without poison), the poisoning attack eventually reduces the
testing accuracy (below 70%). Furthermore In Figure 3-(c),
we compare ZO-Min-Max with STABLEOPT (Bogunovic
et al., 2018) in terms of testing accuracy versus computa-
tion time, where the lower the accuracy is, the stronger the
generated attack is. We observe that STABLEOPT has a
poorer scalability while our method reaches a data poison-
ing attack that induces much lower testing accuracy within
500 seconds. In Appendix D, we provide additional results
on the model learnt under different data poisoning ratios.

7. Conclusion

This paper addresses black-box robust optimization prob-
lems given a finite number of function evaluations. In partic-
ular, we present ZO-Min-Max: a framework of alternating,
randomized gradient estimation based ZO optimization algo-
rithm to find a first-order stationary solution to the black-box
min-max problem. Under mild assumptions, ZO-Min-Max
enjoys a sub-linear convergence rate. It scales to dimen-
sions that are infeasible for recent robust solvers based on
Bayesian optimization. Furthermore, we experimentally
demonstrate the potential application of the framework on
generating black-box evasion and data poisoning attacks.
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Figure 3: Empirical performance of ZO-Min-Max in design of poisoning attack: a) stationary gap versus iterations b) testing accuracy
versus iterations (the shaded region represents variance of 10 random trials), and ¢) comparison between ZO-Min-Max and STABLEOPT

on testing accuracy versus optimization time.
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