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Abstract

Structure learning of Bayesian networks has always been a challenging problem. Nowadays,
massive-size networks with thousands or more of nodes but fewer samples frequently appear
in many areas. We develop a divide-and-conquer framework, called partition-estimation-
fusion (PEF), for structure learning of such big networks. The proposed method first
partitions nodes into clusters, then learns a subgraph on each cluster of nodes, and finally
fuses all learned subgraphs into one Bayesian network. The PEF method is designed in
a flexible way so that any structure learning method may be used in the second step to
learn a subgraph structure as either a DAG or a CPDAG. In the clustering step, we adapt
hierarchical clustering to automatically choose a proper number of clusters. In the fusion
step, we propose a novel hybrid method that sequentially adds edges between subgraphs.
Extensive numerical experiments demonstrate the competitive performance of our PEF
method, in terms of both speed and accuracy compared to existing methods. Our method
can improve the accuracy of structure learning by 20% or more, while reducing running
time up to two orders-of-magnitude.

Keywords: Bayesian network, conditional independence, directed acyclic graph, divide-
and-conquer, structure learning

1. Introduction

The structure of a Bayesian network for p random variables X7, ..., X, is represented by
a directed acyclic graph (DAG) G = (V, E). The node set V = {1,...,p} represents the
set of random variables, and E = {(j,i) € V x V : j — i} is the edge set, where j — i is a
directed edge in G. Let H? ={j €V :(j,i) € E} denote the parent set of node i. The joint
probability density function f of (Xi,...,X,) can be factorized according to the structure

of G:
p

f(xlv"'axp):Hf($i|7Ti)v (1)

i=1

where f(z;|m;) is the conditional probability density (CPD) of X; given Hig = 7;. Hereafter,
we may use X; and the node ¢ interchangeably.

The problem of structure learning of Bayesian networks from data has been an active
research area due to its wide applications in machine learning, statistical modeling, and
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causal inference (Spirtes et al., 1993; Pearl, 2000). There are a few different approaches
to this problem. The first one is the constraint-based approach, which determines the
existence of edges by a sequence of conditional independence tests. The PC algorithm
(Spirtes and Glymour, 1991) and its further developments (Tsamardinos et al., 2003; Kalisch
and Bithlmann, 2007; Colombo and Maathuis, 2014) are typical examples of constrained-
based methods. The second category is so-called score-based learning, which searches for
a graphical structure that optimizes a certain scoring function, such as early works in
Heckerman et al. (1995); Geiger and Heckerman (1994); Chickering (2002b); Chickering
and Meek (2002). Recently, fast algorithms have been developed to handle large and high-
dimensional datasets (Fu and Zhou, 2013; Xiang and Kim, 2013; Aragam and Zhou, 2015;
Ramsey et al., 2017; Zheng et al., 2018; Yuan et al., 2019). In addition, there are also hybrid
methods that combine the above two approaches. These methods first restrict the search
space using a constraint-based method, and then learn the DAG structure by optimizing a
score over the restricted search space (Tsamardinos et al., 2006; Gamez et al., 2011; Gasse
et al., 2012).

Despite these great efforts, structure learning of Bayesian networks remains challenging,
especially for datasets with a large number of variables. The DAG space grows super-
exponentially in the number of nodes p (Robinson, 1977), and learning Bayesian networks
has been shown to be an NP-hard problem in general (Chickering et al., 2004). Nowadays, it
is common to generate and collect data from thousands of variables or more. As p increases,
however, many of the aforementioned methods slow down dramatically and become much
less accurate, making them incompetent for large datasets. This motivates our development
of a divide-and-conquer method that can learn massive-size Bayesian networks efficiently
and accurately. Our method consists of three steps, Partition, Estimation and Fusion (PEF
for short):

1. P-step: Partition the p nodes into clusters based on a modified hierarchical clustering
algorithm.

2. E-step: Apply an existing structure learning algorithm to estimate a subgraph on
each cluster of nodes.

3. F-step: Develop a new hybrid method to merge the estimated subgraphs into a full
DAG on all nodes.

Note that the number of nodes in a cluster is usually much smaller than p. This greatly
speeds up structure learning in the estimation step, as most algorithms scale at least as
O(p*) for some k > 2, e.g. Kalisch and Biihlmann (2007). Moreover, this step can be
parallelized in an obvious way, leading to further improvement in computational efficiency.
The hybrid method in the fusion step first uses statistical tests to generate a candidate set
of node pairs between estimated subgraphs, and then minimizes a modified BIC score by
adding between-subgraph edges and updating within-subgraph edges. Since our conditional
independence tests are performed based on the structure of subgraphs, the number of tests
needed for our method is substantially smaller than a constraint-based method on a p-
node problem. Our method is designed with maximum flexibility. The user can apply any
structure learning algorithm in the second step as long as it outputs a partially directed
acyclic graphs (PDAG), including DAGs and completed PDAGs (CPDAGs) as special cases.
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Our PEF method works very well on Bayesian networks with a block structure to some
degree, having relatively weak connections between subgraphs. It is quite common for a
large network to show such a block structure, due to the underlying heterogeneity among
the nodes (Chin et al., 2015; Decelle et al., 2011; Abbe et al., 2016). From extensive nu-
merical comparisons with existing methods, we find that the PEF method can significantly
improve the accuracy of structure learning of Bayesian networks, while reducing computing
time substantially, up to two orders-of-magnitude for big graphs. On the other hand, our
numerical results show that, even for big networks with no block structure, our PEF method
can still significantly reduce computing time without losing much accuracy.

The remaining part of this paper is organized as follows. Section 2 contains a necessary
background review for our method. Section 3 describes the partition and the estimation
steps of the PEF method, while Section 4 develops the fusion step in detail. Section 5
provides numerical results of our method on real networks in comparison to other DAG
learning algorithms. Section 6 summarizes this work with a discussion of future directions.
Some technical details are deferred to an Appendix.

2. Review of Bayesian networks

In this section, we briefly review some concepts about Bayesian networks that are most
relevant to our method. The joint distribution P that factorizes according to the DAG
structure of a Bayesian network as in (1) satisfies so-called Markov properties (Lauritzen,
1996). Let X,Y € V and Z C V \ {X,Y}. If Z d-separates X from Y in DAG G, then
the random variables X and Y are conditionally independent given Z. Using Dg(X;Y|Z)
to denote d-separation in G and Zp(X;Y|Z) for conditional independence in P, the above
(global) Markov property says that Dg(X;Y|Z) = Zp(X;Y|Z).

2.1. Faithfulness

Note that the implication in a Markov property goes only in one direction. To estimate
the structure of a DAG, we need to infer edges from conditional independence statements
learned from data, which often requires the faithfulness assumption (Spirtes et al., 1993) to
build up the equivalence between the two.

Definition 1 (Faithfulness) Suppose G is a DAG and P is a joint probability distribution
over a set V' of random wvariables. Then G and P are faithful to each other if and only if

Ip(X;Y|Z) & Dg(X;Y|Z)
forany X)Y € V and Z CV\{X,Y}.

If (G, P) satisfies the faithfulness assumption, we can use conditional independence (CI)
test to infer d-separation in G. Theorem 2 provides a useful criterion to determine the
existence of an edge using CI tests.

Theorem 2 (Spirtes et al. (1993)) Suppose (G, P) satisfies the faithfulness assumption.
Then there is no edge between a pair of nodes X, Y € V if and only if there exists a subset
Z CV\A{X,Y} such that Ip(X;Y|Z).
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Consequently, faithfulness is commonly assumed in the development of many structure
learning algorithms, especially constraint-based and hybrid methods, such as the PC algo-
rithm and the MMHC algorithm (Spirtes et al., 1993; Tsamardinos et al., 2006).

2.2. Markov equivalence

Multiple DAGs may imply the same set of d-separations, and thus encode the same set of
CI statements, if they are Markov equivalent:

Definition 3 (Markov equivalence) Two DAGs G and G' defined on the same set of
nodes V' are Markov equivalent if Dg(X;Y|Z) < Dg(X;Y|Z) for any X,Y € V and
Z CV\{X,Y}.

As shown by Verma and Pearl (1990), two DAGs are Markov equivalent if and only if
they have the same skeletons and the same v-structures. A v-structure is a triplet {i, 7, k} C
V of the form ¢ — k < j, where ¢ and j are not adjacent, and the node k is called an
uncovered collider. DAGs that are Markov equivalent form an equivalence class in the
space of DAGs. A Markov equivalence class can be uniquely represented by a CPDAG
(Chickering, 2002a). An edge that must have the same orientation in all DAGs in an
equivalent class is called a compelled edge, and otherwise it is reversible. The CPDAG for
an equivalence class consists of directed edges for all compelled edges and undirected edges
for all reversible ones.

Since DAGs in the same equivalence class cannot be distinguished from observational
data, some structure learning algorithms (Chickering and Meek, 2002; Spirtes et al., 1993)
output a CPDAG, instead of a particular DAG in the equivalence class. Thus, depending
on which structure learning algorithm is used, the estimation step of our PEF method may
output a DAG, a CPDAG, or in general a PDAG, from each cluster of nodes. The fusion
step will merge these PDAGs into a full DAG as the final estimate.

2.3. Gaussian Bayesian networks

In this paper, we focus on Gaussian Bayesian networks for continuous data, in which the
conditional distributions are specified by a linear structural equation model,

X;=> ByXite, J=1,....p (2)
iety

where ¢; ~ ./\/'(O,JJQ») and f;; # 0 if and only if ¢ € H]g.. Let B = (fBij)pxp be an edge
coefficient matrix, which can be regarded as a weighted adjacency matrix for the DAG G,
with f3;; being the weight for the edge i — j. Put Q = diag(o?,..., Ug) as a p X p diagonal
matrix of error variances. Then the joint distribution of (Xj,...,X,) defined by (2) is a
multivariate Gaussian distribution A, (0, ) with covariance matrix ¥ = (I — B)~TQ(I —
B)~!, where I denotes the identity matrix.

Suppose we have observed an iid sample of size n, x = [x1]...|x,] € R"*P, from a

Gaussian Bayesian network parameterized by (B, (). Let B; be the jth column of B. Then
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the log-likelihood under this model is

P

n 1
(B.D) =Y | =5 log(0?) = 5 5% — xB 2| (3)
Jj=1 J

which forms the basis for score-based learning, subject to certain regularization or con-
straint on model complexity, e.g. the total number of edges in the DAG. For Gaussian
random variables, conditional independence is equivalent to zero partial correlation, which
is completely determined by the covariance matrix . Consequently, in constraint-based
methods, CI tests are performed based on sample partial correlations; see Appendix A.1 for
a brief description.

3. Partition and estimation

In this section, we describe the first two steps of our PEF method. Besides some modifi-
cations to meet our specific needs in learning large networks, these two steps follow quite
standard methods in clustering and structure learning. We will devote the entire Section 4
to the fusion step.

3.1. Partition

As we have mentioned in the introduction, the first step (P-step) of our method is to
partition nodes into clusters. Each node is associated with a data column x; € R" for
j=1,...,p. Let C;, i = 1,...,k, be the k clusters generated by the P-step, and S; = |C}|
the size of the ith cluster. Accordingly, the underlying DAG G is cut into k subgraphs. Let
Sw be the number of edges of G within a subgraph, and s, the number of edges between
subgraphs. In other words, s; is the number of edges in the partition-cut with respect to
the k clusters, which may be recovered later by the fusion step of our algorithm. In general,
we want to control s, to a small value so that our recovery of the DAG structure will be
more accurate. On the other hand, we wish that k is quite large and the cluster size is as
uniform as possible across the k clusters, which will lead to maximum savings in computing
time for parallel learning of subgraphs in the E-step.

To meet these specific needs for our problem, we propose a modified hierarchical clus-
tering with average linkage that automatically chooses the number of clusters k. Define the
distance between two nodes ¢ and j by

d(i,j) =1 = |rij| € 0,1], (4)

where 7;; = cor(x;,x;) is the correlation between x; and x; for i,j = 1,...,p. Hartigan
(1981) suggests that one should only consider clusters with at least 5% of the data points,
which will be referred to as “big clusters” hereafter.

Following this suggestion, we require the minimum cluster size be 0.05p. As a result,
there will be at most 20 clusters. Let kpax < 20 be the maximum number of clusters
specified by the user. For h = 0,1,...,p — 1, let C;, be the set of clusters formed at the
hth step of the hierarchical clustering that proceeds in a bottom-up manner (Figure 1). In
particular, Co = {{1},{2}, ..., {p}} consists of p singleton clusters and C,_1 = {{1,...,p}} is
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Figure 1: Example for determining k£ and ¢. Shown is the upper portion of a dendrogram.
Red clusters are big clusters with more than 0.05p nodes, and the grey ones are small
clusters. The level ¢ is marked by the red box, and in this case k = 3.

just one cluster of all p nodes. Let k; be the number of big clusters in C;. We choose

k = min {kmax, Ogr?gag(—lki} , (5)
which is the maximum number of big clusters subject to the user-specified kp.x. Let £ be
the highest level on the dendrogram with k big clusters, i.e.

¢ = argmax{i: k; = k}. (6)

0<i<p—1
Note that two big clusters will be merged at the next level (¢ + 1) by the hierarchical
clustering. Figure 1 shows an example of £ and ¢ on a dendrogram.
Relabel the clusters in Cy so that S; > Sa... > S,_y, where S; = |C;|. Then the first
k clusters are big clusters of interest. We assign the remaining small clusters to the k big

clusters by recursively merging two closest clusters if at least one of them is a small cluster.
An outline of our clustering algorithm is shown in Algorithm 1.

Algorithm 1 Modified hierarchical clustering

Hierarchical clustering given the dissimilarity matrix D = (d(1, 7))pxp-
Generate the dendrogram T'p of the hierarchical clustering.
Choose k by (5) and ¢ by (6).
Relabel clusters in C < Cy so that S1 > ... > S,_4.
while |C| > k do
(¢%,j*) < argmin; ;{d(C;, C;) : i < j and j > k}.
Cip +— Cyx U Cj*, C+C \ {O]*}
end while
Return C = {Cl, Cyy ..., Ci}.

Remark 4 In Line 1 of Algorithm 1, by default average linkage is used when merging clus-
ters. Note that in Line 6, minimum distance between clusters is calculated as in single
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linkage clustering. This is because the main purpose of Line 6 is to merge a singleton or
small cluster into its closest big cluster, for which finding the closest node is more appro-
priate than averaging over all nodes in the big cluster.

3.2. Estimation

In the estimation step (E-step) we learn the structure of each subgraph individually. Under
our PEF framework, this estimation step acts like a blackbox, and the user may use any
structure learning algorithm to estimate the subgraphs without knowing its technical details.
The output of this step is in general & PDAGs. Note that both DAGs and CPDAGs are
special cases of PDAGs.

In this work, we choose the CCDr algorithm (Aragam and Zhou, 2015) in the R package
sparsebn (Aragam et al., 2019), the PC algorithm in the R package pcalg (Kalisch et al.,
2012) and the MMHC algorithm (Tsamardinos et al., 2006) in the bnlearn package (Scutari,
2017) as examples for the E-step. CCDr is a score-based method that outputs a DAG,
the PC algorithm is constraint-based and outputs a CPDAG or PDAG, and MMHC is a
hybrid approach. As such, we can illustrate the performance of the PEF method with a
representative from each of the three structure learning approaches. We choose the CCDr
algorithm as a representative of score-based methods for two reasons: 1) It has competitive
performance in terms of accuracy for structure learning of DAGs on high-dimensional data,
which is our focus. 2) The way it is formulated and coded enables CCDr to learn quite
large graphs, allowing for manageable comparisons with PEF in terms of running time.

When the time complexity of a structure learning method grows faster than O(p?), the
running time of learning small subgraphs in the E-step will be much shorter than estimating
the full DAG as a whole. Furthermore, we can easily distribute the estimation step. Suppose
in the partition step we have divided nodes into k clusters C1, ..., Cj, and the running time
for learning a PDAG on Cj is t;. Learning k subgraphs on k cores in parallel will reduce
the time for the E-step to max{t;,i = 1,...,k}, which is usually determined by the size of
the largest cluster. As supported by our numerical experiments, we can save majority of
the computing time with the E-step.

4. Fusion

The fusion step (F-step) is a novel hybrid method developed to add edges between estimated
subgraphs from the E-step and to learn the full DAG structure. It proceeds in two stages.
First, we generate a candidate edge set A to restrict our search space. By using a sequence
of statistical tests, we identify a set A* of candidate edges between subgraphs. Then the
candidate edge set A consists of A* and all edges learned in each subgraph from the E-
step. Second, we minimize a modified BIC score to learn the DAG structure by sequentially
updating the edges in the set A. The final output of our PEF method is a DAG.

4.1. Candidate edge set

Recall that Theorem 2 provides a justification for using conditional independence tests to
infer edges of a DAG. In light of this result, we develop a method to produce a set A* of
candidate edges between the subgraphs estimated from the E-step. Let G,, = (Vin, En),
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m = 1,...,k, denote these subgraphs and z(i) € {1,...,k} the cluster label of node i. In
general, the subgraphs G, are PDAGs. We define the neighbors of a node i in the subgraph
Qz(z) as

Ni(2(i)) ={j € Vo) 1§ = i € By or (i,7) € By},

where j — i denotes a directed edge and (7,j) an undirected one. By Theorem 2, it is
sufficient to find any subset of nodes Z such that X; and X are conditionally independent
given Z to conclude that there is no edge between i and j. Unfortunately, for our problem
size it is impractical to search all possible subsets. To save calculation, we use the correlation
pij = cor(R;, R;), where R; is the residual after projecting X; onto its neighbors N;(z(i)) in
G.(), to filter out unlikely between-subgraph edges. More specifically, we produce an initial
candidate set

A* = {(4,7) : 2(i) # 2(j) and p;; = 0 is rejected at significance level a}, (7)

which will be refined further to define A*. This test is done using a z-test with Fisher
transformation on the correlation coefficient p;;. Proposition 5 shows that, under certain
conditions, A* will include all between-subgraph edges if the test against pij = 0 is perfect.
Its proof can be found in Appendix A.2.

Proposition 5 Suppose the joint Gaussian distribution of (X1,...,X,) defined by (2) is
faithful to the DAG G. Let Ri.p = X; —E(X; | X4) be the residual after regressing X; onto
Xa:=(Xi)kea. If there is an edge X; — X; in G, then R4 and Rj.p are correlated for
any disjoint A, B C V \ {i,j} as long as R;.4 is independent of X given Xp.

Since R;. 4 is the residual after projecting X; onto X 4, by definition it is always inde-
pendent of X 4. So the conclusion of the above proposition holds if R;. 4 and X4 do not
become dependent after conditioning on Xp. Our rule (7) could produce false positive
statements: X; and X; may become independent conditioning on other subsets. Therefore,
we develop a sequential way to screen A* and define the final candidate edge set A* be-
tween subgraphs, described in Line 9 to Line 14 of Algorithm 2: We go through each node
pair (i,7) € A* and run conditional independence test given the union of their updated
neighbors, N;(z(i)) U N;(z(j)) U P;j, where

Py ={v:(v,i) € A" or (v,j) € A"} (8)

is the set of neighbors of ¢ or j in the current candidate set A* between subgraphs.

We use an example to illustrate the key steps in Algorithm 2, in which the true DAG
shown in Figure 2 has six edges (solid arrows in the figure). Suppose the P-step has divided
the nodes into two clusters, C; = { X1, X2, X3, X4} and Co = { X5, X6, X7}. As a result, the
two edges Xo — X5 and X9 — X7 between the two clusters are cut by this step. Assume
the E-step with enough data has estimated the following edges: X; — X3, Xy — Xs,
X3 = X9, X5 — X7, and X7 — Xg. Note that X5 — X7 is a false positive edge in Ca,
caused by the missing common parent X3 due to the P-step. Take the node pair (X3, X7)
as an example to illustrate how we include between-subgraph pairs in the candidate set A*.
First regressing X3 onto {X1, X4} and X7 onto {X5}, we calculate the residuals Rg.(; 4)
and Ry.5), respectively. Then we test if cor(Rs3.q1 43, R7.q53) = 0 (Line 4 of Algorithm 2).
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Algorithm 2 Find candidate edge set A

1: Input data matrix x and estimated subgraphs G, ..., Gg.
2: Set /Nl* = 0.

3: for all pairs (4, j) such that z(i) # z(j) do

4: if pi; = 0 is rejected at level a then

5: A* — A* U (4, 7).

6 end if

7: end for

8: Set A* = ().

9: for all (i,5) € A* do

10: Let Z = N;(2(i)) U N;(2(j)) U P;j, where Pj; is defined in (8).
11: if Zp(Xi; X;|Z) is rejected at level o then

12: A* — AU (4, 7).
13: end if
14: end for

15: Return A = A* U SK(G).

Figure 2: An example DAG for fusion step illustration. Solid edges are the true edges, while
the dashed arrow X5 — X7 is a false positive generated in the estimation step. The two
dashed boxes indicate the clustering result.

Assume the null hypothesis is rejected so that we include (X3, X7) € A*. Next consider
the loop through Line 9 to Line 14. Suppose we have added the pair (X5, X7) to A* before
the test for Zp(X3; X7|Z), where the conditioning set Z = {Xi, X9, X4, X5} as defined
in Line 10. Since X3 1 X7 | Z implied by d-separation of the true DAG, the test will be
accepted (in the large-sample limit) and consequently the pair (X3, X7) will not be included
in the set A*.

Remark 6 In Algorithm 2, node pairs are added to A* sequentially (Line 12) and thus,
the result depends on the order we go through A*. In our implementation, we sort the node
PALTS in A* in the ascending order of their p-values in testing against p;; = 0 (Line 4). In
this way, node pairs that are more significant will have a higher priority to be included in
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the set A*. Similarly, we also sort the node pairs in A* according to their p-values calculated
i Line 11.

Remark 7 Algorithm 2 will introduce some false positives (FPs) to the candidate set A*.
Here, a false positive refers to a node pair (i,j) € A* that is non-adjacent in the true DAG.
Let T be the set of tests performed in Line 4 of Algorithm 2, and |T| the number of tests.
Assuming there are no edges between the subgraphs, the expected number of false positives
in the set A* is a|T|. Due to the additional tests in Line 11, A* C A* and thus o|T| serves
as an upper bound for the expected number of FPs in A*. Because the tests in Line 11 and
Line J are not independent, it is in general hard to calculate a tighter FP upper bound for
A*. When there are edges between clusters, more false positives may be present in A* due
to the cut of these between-subgraph edges. This is the reason why we include the additional
tests in Line 11, which are designed to remove false positives by adding potential parents
in other subgraphs to the conditioning set Z. Note that the purpose of A* is to restrict
the search space for the fusion step, which uses a modified BIC to further decide whether
an edge between (i,7) € A* exists in the DAG. Most of the false positive pairs in A* will
not be connected by an edge, so that the final accuracy of our method is quite satisfactory.
We provide simulation results in supplemental material to calculate the actual number of
false positives in the candidate set A*. The empirical results show that the number of false
positives in A* is less than «|T| for more than 75% of the datasets. See supplemental
material for more detailed results and discussion.

Breaking a full DAG into subgraphs not only might introduce false negatives, i.e. the
cut edges between two subgraphs, but also it could result in false positive edges within a
subgraph. Suppose two non-adjacent nodes 7 and j share a common parent v in the full
DAG, but the P-step has put v into a different cluster than ¢ and j. Then in the subgraph
containing ¢ and j, there will be an edge (7, ) in the estimated skeleton since they are not
independent without conditioning on v. By cutting some of the edges in the P-step, we have
changed the structure of a subgraph by adding such false positive edges. Figure 2 shows
an example of this situation. Although X5 and X7 are conditionally independent given X5
in the full DAG, they will be connected in the subgraph on Cs (the dashed arrow in the
figure) because their common parent X is not in this cluster. To fix this problem, we will
revisit all edges learned in the E-step and remove some of them based on the new edges
added between subgraphs, using a score-based approach (Section 4.2). Let G = (V, E) be
the PDAG consisting of disconnected subgraphs learned from the E-step and SK(G) be the
(undirected) edge set in the skeleton of G, i.e.,

SK(G)={(i,j): (i,j) € Eori— j € E}.

Our candidate edge set A is formed by attaching SK(G) to the end of A* (Line 15 in
Algorithm 2). The edges of our final output DAG will be restricted to a subset of A. The
complete algorithm for finding the candidate edge set A is summarized in Algorithm 2.

4.2. Learning full DAG structure

The last stage in the fusion step is to determine, for each node pair (i,7) € A, whether
there is an edge and its orientation if an edge does exist. This is done by minimizing a

10
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modified BIC score, called the risk inflation criterion (RIC) (Foster and George, 1994),
over the candidate edge set in a sequential manner. The RIC score has two components, a
log-likelihood part to measure how good a graph G fits the data and a regularization term

to enforce sparsity: R
RIC(G) = —2((B, Q| G) + Ad(9), (9)

where £(- | G) is the log-likelihood (3) evaluated at the MLE (B, Q) given the DAG G, d(G)

is the number of edges, and A = 2logp. We use this score when the number of nodes is

large with p > y/n. When p < /n, we switch back to the regular BIC score, i.e. A = logn.
For each (i,7) € A, we need to compare three models:

My : no edge between ¢ and 7,
M; : i is a parent of 7, (10)

M, : j is a parent of 7,

while holding other edges in G fixed. Since the RIC score (9) is decomposable, this compar-
ison reduces to comparing the score difference for the involved child nodes (see Appendix
A.3). If there is a true edge between the two nodes i and j, both M; and M, will have a
lower RIC score than My in the large-sample limit, due to the nonzero partial correlation
between X; and X; given any other set of variables. Thus, we will add an edge between
(i,7) if and only if

max {RIC(M;), RIC(Ms2)} < RIC(M,), (11)

where RIC(M) is the RIC score for model M. If criterion (11) is met, we will further decide
the edge orientation. To enforce acyclicity, if the edge i — j (or j — 4) induces a directed
cycle, we add j — i (or i — j). If neither direction induces a directed cycle, we choose the
model with a smaller RIC following a default tie-breaking rule. See Appendix A.3 for more
technical details.

The full fusion step is shown in Algorithm 3, which cycles through A iteratively until
the structure of G does not change. Denote by N;(G) the neighbors of node 7 in the current
G. At any iteration, if Zp(X;; X;|N;(G) UN;(G)) according to the conditional independence
test (Line 8), we will remove the pair (7, j) from A permanently. This rule is again justified
by Theorem 2 under faithfulness. In order to reduce the number of false positive edges for
large p, the significance level for all tests, including the a in Algorithm 2, is set to 0.001 in
our implementation.

5. Numerical experiments

In this section, we test our PEF method on Gaussian data generated from real networks. We
choose to use three different structure learning algorithms in the E-step: 1) a score-based
method, the CCDr algorithm, which estimates a DAG; 2) a constraint-based method, the
PC algorithm, which outputs a PDAG; 3) a hybrid method, the MMHC algorithm, which
outputs a DAG. We will call the three implementations PEF-CCDr, PEF-PC, and PEF-
MMHC hereafter. Accordingly, we compare the results from the PEF methods with those
from the CCDr algorithm, the PC algorithm, and the MMHC algorithm applied on the
whole data, which will demonstrate the advantages of our divide-and-conquer strategy in
learning large networks.
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Algorithm 3 Fuse subgraphs

1: Input data matrix x and estimated subgraphs G, ..., Gg.
2: Run Algorithm 2 to generate candidate edge set A.

3: Initialize G to be the PDAG consisting of G, ..., Gg.

4: for all (i,7) € A do

5 if 7, j are adjacent in G then

6: remove the edge from G.

7 end if

8 if IP(XZ,X]|NZ(Q) UN](Q)) then
9 A AN{(,)).

10: else

11: RICax = max (RIC(M;), RIC(My)).

12: if RICax < RIC(Mjp) then

13: if adding edge ¢ — j induces a cycle then

14: add j —»ito G

15: else if adding edge j — 4 induces a cycle then
16: addi —>jto G

17: else

18: choose the direction that leads to a smaller RIC.
19: end if

20: end if

21: end if

22: end for

23: Repeat 4 to 22 until the structure of G does not change and return G.

Zeng and Poh (2004) also developed a divide-and-conquer method for structure learning
of Bayesian networks, but their approach is quite different from ours. A big difference is
that they partition the full network into overlapping sub-networks. Their algorithm learns
the structure of the overlap parts first, and then use the v-structures learned in the overlaps
as constraints for each sub-network. Their algorithm is purely constraint-based, while ours
is a hybrid method that can use any existing structure learning algorithm in the E-step.
They only tested their method on a small network with < 40 nodes, while our PEF method
is designed mainly for big networks with hundreds or thousands of nodes. Since the two
methods have very different scopes, we did not include their method in the comparison.

5.1. Data generation

All network structures were downloaded from the repository of the R package bnlearn
(Scutari, 2010, 2017). The networks used in this work are: PATHFINDER, ANDES, DIA-
BETES, PIGS, LINK, and MUNIN, with the number of nodes p = 135, 223, 413, 441, 724,
1041 and the number of edges squp, = 195, 338, 602, 592, 1125, 1397. In order to generate
large DAGs, we replicate each network k times and randomly add some edges between copies
of the network. For easy reference, define Net(k, ¢) to be the DAG composed of k replicates
of Net with ¢ - ks, edges added between subgraphs, where ¢ > 0 is a constant and Net

12
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is one of the above six networks. Let s,, = ksgyp be the number of within-subgraph edges
and s, be the number of between-subgraph edges. Then ¢ = s3/s,, is the ratio between
the numbers of the two types of edges. For example, ANDES(5,0.1) refers to a network
constructed by 5 copies of the ANDES network with s, = 0.1s,, edges added between the 5
sub-networks. Denote the number of true edges in a DAG by sg = s, + sp. We have three
network generation schemes:

i. Net(5,¢) for ¢ € {0,0.1} and Net € {PATHFINDER, ANDES, DIABETES, PIGS,
LINK}. In total, ten networks were generated by this scheme.

ii. Mixed networks: We combined networks PATHFINDER, ANDES, DIABETES, PIGS,
LINK to build a DAG with k = 5 different subgraphs. Similar to scheme (i), we ran-
domly added s, = cs,, edges between subgraphs for ¢ € {0,0.1}. We refer to these
two networks as Mix(5, ¢).

iii. MUNIN(k,0) for £ = 1,...,10: MUNIN is the largest network available on the
bnlearn repository. We did not add any edges between the subgraphs. So the number
of edges for each DAG generated here was sg = Sy = kSgub-

Data sets from the above DAGs were generated according to the linear structural equa-
tion model in (2). We first drew ;; uniformly from [—1,—0.5] U [0.5,1] if (,5) € E and
set 3;; = 0 otherwise. The error variances 032, j = 1,...,p were sampled uniformly from
[0,1]. After sampling each data column (data for one node), we rescaled it so that all data
column had the same mean and standard deviation. As a result, the f3;; after rescaling
was no longer in the same interval. The number of observations in the simulated data sets
ranged between n = 1,000 to 10,000. For each network generated by schemes (i) and (ii),
we simulated 10 data sets. Networks in scheme (iii) were mainly used to test the limit of
structure learning algorithms, so only five data sets were generated from each DAG.

5.2. Accuracy metrics

We propose a few metrics to evaluate the accuracy of PDAGs learned by structure learning
algorithms. As DAGs can be regarded as a special class of PDAGs, metrics defined here can
be used to assess the quality of estimated DAGs as well. Since we are using observational
data, structure learning algorithms may not determine all edge orientations due to Markov
equivalence (Definition 3). In our assessment, we take v-structures and compelled edges
into account in the following definitions of structural accuracy metrics:

- T, the number of edges in the true graph.
- P, the number of predicted edges by a structure learning algorithm.

- E, the number of expected edges. We define an estimated directed edge to be expected
if it meets either of the following two criteria: (1) This edge is in the true DAG with
the correct orientation; (2) The edge coincides after converting the estimated DAG
and the true DAG to CPDAGs. An estimated undirected edge is considered expected
if it satisfies condition 2.

13
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- R, the number of reversed edges. This is the number of predicted edges in the true
skeleton, excluding expected edges.

- FP =P — E — R, the number of false positive edges.

- SHD = R + M + FP, the structural Hamming distance between the estimated and
the true graphs, where M = T — E — R is the number of missing edges.

- JI=E/(T + P — E), the Jaccard index, i.e. the ratio of the number of common edges
over the size of the union of the edge sets of two graphs.

In particular, SHD and JI are overall accuracy metrics. Small SHD and/or high JI indicate
high accuracy in structure learning. Furthermore, we also use the BIC and test data likeli-
hood of an estimated DAG as metrics to quantify its accuracy in estimating the underlying
joint distribution.

5.3. Comparison with the CCDr algorithm

We will first show the improvement in speed of our PEF-CCDr method compared to the
CCDr algorithm. Then we will show that the PEF-CCDr method actually improves the
accuracy of the CCDr algorithm. For all the experiments, we ran CCDr provided in the R
package sparsebn. The CCDr algorithm outputs a solution path with an increasing number
of edges. In order to enforce sparsity, we simply chose the DAG along the solution path
with around 1.5p edges, and stopped running CCDr when the number of estimated edges
on the path became greater than 2p by setting edge.threshold = 2p. Note that we used
exactly the same settings for CCDr applied to learn the full graph and in the E-step of the
PEF method.

5.3.1. TIMING COMPARISON

Figure 3 reports the log;; running times of the two algorithms on data with n = 1,000.
Figure 3(a) illustrates how the two methods scaled when the size of the subgraphs increased,
tested on the networks Net(5,0) for Net € {PATHFINDER, ANDES, DIABETES, LINK,
MUNIN}. Figure 3(b) illustrates how the two methods scaled when the number of subgraphs
increased, using the networks MUNIN(%,0) for & = 1,...,10. Table 1 reports the total
running time (T) of CCDr and PEF-CCDr, as well as the running time of each step (P,
E, F) of PEF-CCDr for all 22 networks (Section 5.1). For the E-step in our PEF-CCDr
method, we report the time for parallel estimation of multiple subgraphs.

From Figure 3(a) we see that when the number of subgraphs stayed the same and the size
of the sub-graphs became larger, the running time of PEF-CCDr increased monotonically.
The scalability of the E-step depends on the CCDr algorithm. Therefore, the running time
of the E-step of our PEF-CCDr method increased with the size of the subgraphs, in a
similar pattern as the CCDr algorithm did. As reported in Table 1, for the largest network
MUNIN(5,0) included in Figure 3(a), PEF-CCDr was 37 times faster than CCDr.

From the lower panel of Table 1 as well as Figure 3(b), we see that as k increased,
improvement of our PEF method in speed became more substantial. The number of clusters
our PEF-CCDr method identified (k) is shown in Table 1. The PEF-CCDr method identified
the correct number of subgraphs for £ > 3, and therefore the running time of the E-step

14
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Table 1: Timing comparison (in minutes) between CCDr and PEF-CCDr

| CCDr | PEF-CCDr |
Network p| T| T P E F| k|
PATHFINDER(5, 0) 545 | 0.24 (0.0 0.01 0.01 0.08| 50| 2.40
PATHFINDER(5, 0.1) 545 | 0.23|0.10 0.01 0.01 0.08 | 50| 2.30
ANDES(5, 0) 1115 | 093|024 002 002 020| 95| 3.88
ANDES(5, 0.1) 1115 | 059 | 0.38 0.02 002 0.34| 84| 1.55
MIX (5, 0) 1910 | 4.65 | 0.46 0.06 0.08 0.32| 86| 10.11
MIX (5, 0.1) 1910 | 251 [ 0.67 0.06 016 045| 7.2| 3.75
DIABETES(5, 0) 2065 | 7.38 053 0.06 0.09 0.38| 81| 13.92
DIABETES(5, 0.1) 2065 | 4.73 [ 0.60 0.05 0.08 047 | 82| 7.88
PIGS(5, 0) 2205 | 10.84 | 0.64 0.07 0.16 0.41 | 58| 16.94
PIGS(5, 0.1) 2205 | 6.60 | 0.74 0.07 0.4 053 | 6.2 | 8.92
LINK(5, 0) 3620 | 9.19 | 1.17 0.17 0.6 084 | 81| 7.85
LINK(5, 0.1) 3620 | 9.90 | 1.59 0.16 0.17 1.26 | 9.2 | 6.23
MUNIN(L, 0) 1041 | 093|048 002 020 027] 70| 1.94
MUNIN(2, 0) 2082 | 742 |1.22 0.07 0.79 036 | 42| 6.08
MUNIN(3, 0) 3123 | 22.32 | 2.03 0.2 1.04 087 | 3.0 | 11.00
MUNIN(4, 0) 4164 | 56.42 | 2.21 0.22 113 086 | 4.0 | 25.53
MUNIN(5, 0) 5205 | 114.85 | 3.11 0.34 1.21 157 | 5.0 | 36.93
MUNIN(6, 0) 6246 | 204.93 | 3.18 0.46 1.28 1.44 | 6.0 | 64.44
MUNIN(7, 0) 7287 | 311.59 | 3.71 0.64 1.28 1.79 | 7.0 | 83.99
MUNIN(S, 0) 8328 | 440.02 | 4.42 0.82 1.26 2.33 | 8.0 | 99.55
MUNIN(9, 0) 9369 | 542.56 | 5.15 1.04 1.33 2.78 | 9.0 | 105.35
MUNIN(10, 0) 10410 | NA | 594 132 139 323|100| NA

Note: p is the number of nodes, T is the total running time, P, E, and F are the running
times for the P-step, the E-step, and the F-step, respectively, k is the average number of
estimated clusters in the P-step, and 7 is the ratio of total running time of CCDr over
that of PEF-CCDr.
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Figure 3: Logig running time for different size of DAGs. The line with -C- is for CCDr and
the line with -P- for PEF-CCDr.

stayed comparable to the running time of CCDr on a single MUNIN network (around 1
minute). When the number of subgraphs & = 3, PEF-CCDr was 11 times faster than
CCDr, and when k£ = 9, it was 105 times faster. When k was increased to 10, our device for
running the tests, MacBook Pro with 3.1 GHz Intel Core i7 processor, ran out of memory for
the CCDr algorithm. Our PEF-CCDr method, on the other hand, took only 5.94 minutes
to run MUNIN(10, 0). This example shows the huge advantage of our PEF-CCDr method
in terms of computational efficiency for learning big Bayesian networks.

5.3.2. SCALABILITY WITH SAMPLE SIZE n

So far, we have seen that the PEF method scales well as p grows, while fixing the sample
size to n = 1,000. In this section, we examine the scalability of the PEF method with
respect to the sample size n. Figure 4(a) plots the running times on data sets simulated
from DIABETES(5, 0.1), with n increased from 1,000 to 10,000. From the plot, we see that
the running time of PEF-CCDr increased linearly in n, and it finished within two minutes
on data sets consisting n = 10,000 data points. In addition, we applied PEF-CCDr on
datasets of size n = 5,000 from 12 networks with p € (500,4000) to get a general sense
of how our method performs with bigger data sets. As reported in Figure 4(b), runtime
ratios 7 of CCDr over PEF-CCDr ranged between 1.5 and 13, with more detailed results
in supplemental material. We see that PEF-CCDr was still much faster than CCDr and
that even for the biggest networks LINK(5) PEF-CCDr finished within three minutes.

5.3.3. ACCURACY COMPARISON

Next, we compare the accuracy between the PEF-CCDr method and the CCDr algorithm.
Table 2 reports the summary of accuracy for the two methods on ten networks generated
by the first two schemes (Section 5.1). In this and subsequent tables, Net(5) refers to
either Net(5,0) or Net(5,0.1) with the value of ¢ implicitly given by (so, ss). We see from
Table 2 that for all cases the SHD of PEF-CCDr was much smaller than CCDr, and the
JI was higher than CCDr. BIC scores were quite comparable between the two methods.
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Figure 4: Running time comparison with different sample size n. (a) Running time of
PEF-CCDr as n increases; (b) Runtime ratio r¢ of CCDr over PEF-CCDr for n = 5000.

For networks with ¢ = 0 (s, = 0), CCDr tends to have a smaller BIC, while for Net(5,0.1)
PEF-CCDr tends to have a smaller BIC. For PATHFINDER(5) with p = 545 < n = 1000,
the advantage of our PEF-CCDr method was not as obvious as the rest of the big networks.
For all other networks where p > n, the number of expected edges of our PEF-CCDr method
increased more than 15% compared to CCDr in most of the cases, while the reversed edges
and the false positives decreased more than 20%. The overall metrics SHD decreased more
than 20% and the JI increased over 35% for all cases.

The number of edges between subgraphs, s; in Table 2, did not show a substantial
impact on the accuracy of PEF-CCDr. This is because when we fuse DAGs from clusters
we also correct their structures learned in the E-step. Therefore, even if we cut some edges
in the P-step, which may alter the subDAG structures, we can still correct them in the
F-step. Therefore, our PEF-CCDr method has some tolerance for errors in the first two
steps. Even if the full DAG does not have a clear block structure, in which case many
edges will be cut in the P-step, PEF-CCDr can still recover a reasonable amount of these
edges. This is demonstrated by the comparable performance of our method on DAGs with
a different s; in the table. See Section 5.7 for more results with regard to this aspect.

On the other hand, performance of PEF-CCDr clearly depends on the structure learning
algorithm plugged in the E-step. In the final F-step, we only remove or flip within-subgraph
edges, so the missing edges within any subgraph introduced in the E-step will never be added
back in the fusion step. In addition, the learned subgraph structures may also affect our
choice for the candidate set A (Section 4.1) and thus the final accuracy.

5.3.4. RECOVERY RATE OF THE FUSION STEP

To examine the role of the fusion step, we compare DAGs learned by our full PEF method
with DAGs learned from the first two steps only, i.e. the partition step and the estimation
step. We call the latter PE-CCDr, whose results are also reported in Table 2. It is clear
from the results that the fusion step always improved the structure of an estimated DAG
with increased E, JI and decreased R, FP, SHD. The fusion step also decreased the BIC
score for majority of the cases.
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Table 2: Accuracy comparison with CCDr

(50, 5b) Method P E R FP  SHD J  BIC
PATHFINDER(5), p = 545

(975,0) CCDr 823.0 2527 149.6  420.7 1143.0 0.164 9724
PE-CCDr 8184 250.6 1464 421.4 11458 0.163 976.9
PEF-CCDr  660.4 254.7 1224  283.3 1003.6 0.186 1039.1
(1073,98)  CCDr 838.0 3295 1234 3851 1128.6 0.209 938.4
PE-CCDr  830.0 275.0 1343  420.7 1218.7 0.169  989.2
PEF-CCDr 7685 3612 119.1  288.2 1000.0 0.245 1013.8

ANDES(5), p = 1115
(1690,0)  CCDr 1586.0 931.4  447.0 207.6 966.2 0.397 2322.2
PE-CCDr  1652.0 873.3 456.4 3223 1139.0 0.354 2358.7
PEF-CCDr 1563.0 1187.7 224.3 151.0 653.3 0.576 2273.4
(1859,169) CCDr 1721.8 1051.6  452.1 2181 1025.5 0.416 2247.3
PE-CCDr  1691.8 860.5 452.3 379.0 1377.5 0.320 2377.4
PEF-CCDr 1766.1 1406.1 186.6 173.4  626.3 0.634 2169.5

DIABETES(5), p = 2065

(3010,0)  CCDr 3166.3 1327.3 1067.9 771.1 2453.8 0.274 3834.3
PE-CCDr  3119.5 1281.3 1050.6 787.6 2516.3 0.264 3888.1
PEF-CCDr 2779.8 1580.2 779.1  420.5 1850.3 0.376 3868.9
(3311,301) CCDr 3069.6 1499.4 978.9 591.3 2402.9 0.307 3827.6
PE-CCDr  3058.5 1256.6 994.6 807.3 2861.7 0.246 4048.3
PEF-CCDr 3202.7 2010.1  702.4 490.2 1791.1 0.447 3721.8

PIGS(5), p = 2205
(2960,0)  CCDr 3285.6 1677.4  832.0 776.2 2058.8 0.367 4310.6
PE-CCDr  3290.1 1632.7 834.7 822.7 2150.0 0.354 4355.0
PEF-CCDr 2809.9 1933.5 541.6 334.8 1361.3 0.504 4371.0
(3256,296) CCDr 3262.5 1874.0 800.8 587.7 1969.7 0.404 4243.2
PE-CCDr  3312.9 1574.7 8254  912.8 2594.1 0.315 4472.9
PEF-CCDr 3182.1 2308.3 489.9 383.9 1331.6 0.559 4192.0

LINK(5), p = 3620
(5625,0)  CCDr 5329.4 2640.6 1421.7 1267.1 4251.5 0.318 7113.3
PE-CCDr  5432.8 2514.9 1432.3 1485.6 4595.7 0.294 7215.8
PEF-CCDr 5021.9 32114 972.6 837.9 3251.5 0.432 7162.0
(6188,563) CCDr 5799.6 3096.9 1436.5 1266.2 4357.3 0.348 6928.1
PE-CCDr  5471.0 24229 1459.3 1588.8 5353.9 0.262 7447.1
PEF-CCDr 5849.9 4018.3 878.1 953.5 3123.2 0.501 6849.7

Mix(5), p = 1910
(2852,0)  CCDr 2893.1 1423.4  766.4 703.3 2131.9 0.329 3695.5
PE-CCDr  2848.1 1330.9 765.6 751.6 2272.7 0.305 3775.5
PEF-CCDr 2620.2 1685.9 526.2 408.1 1574.2 0.446 3724.7
(3138,286) CCDr 2923.5 1564.6  766.0 592.9 2166.3 0.348 3657.5
PE-CCDr  2880.4 1313.1 779.1 788.2 2613.1 0.279 3852.4
PEF-CCDr 2965.3 2005.0 497.5 462.8 15958 0.489 3613.9
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The results in Table 2 show that as s, increased, the fusion step recovered an increas-
ing number of expected edges. The number of expected edges recovered by the fusion
step can reach 60% of that recovered in the first two steps, such as for ANDES(5,0.1),
DIABETES(5,0.1) and LINK(5,0.1). In addition, we see that our fusion step not only
recovered expected edges, but also was able to remove reversed and false positive edges.
Across different cases, the F-step reduced 30% to 60% FPs and 10% to 60% Rs, which
substantially improved the structure learning accuracy.

All these observed improvements in accuracy demonstrate the critical role of the fusion
step. Not only does it add edges cut by the P-step back to the full DAG, but also gets rid of
false positive edges produced by the E-step. This suggests that the fusion step can largely
correct the mistakes made by the first two steps, and thus our PEF method may handle
networks with a moderate number of between-subgraph edges, relaxing to some degree the
assumption of a block structure on the true DAG.

5.4. Comparison with the PC algorithm

In this section, we test our PEF framework with the PC algorithm used for the E-step,
which we call PEF-PC. The PC algorithm is a well-known constraint-based method that
outputs a PDAG in general. This will complement our comparison with CCDr in the
previous subsection, which estimates a DAG via a score-based approach.

In our experiments, we used the PC algorithm in the pcalg package (Kalisch et al.,
2012) in the E-step. An important tuning parameter of PC is the significance level « for
conditional independence tests, which controls the sparsity of an estimated graph: The
smaller the «, the sparser the estimated graph and the faster the algorithm. With the
default setting o = 0.05, PC took too long, more than 24 hours, to learn some DAGs like
the PATHFINDER(5) networks. Furthermore, for high-dimensional data, a big « usually
results in too many false positive edges in the graph learned by the PC algorithm. In order
to make an informative comparison, we set o = 10~ so that the PC algorithm can produce
quite accurate PDAGs within a reasonable amount of time. Another tuning parameter
is the maximal size (m.max) of the conditioning sets that are considered in a conditional
independence test. The default value of this parameter is infinity, but with this default
value, it took up to 6 hours to run PC on a single data set. Thus, in our experiment, we
limited this value to 3. We also tried increasing m.max to 5, and got similar results with
slightly lower accuracy but much longer running time. The same data for the comparisons
in Tables 1 and 2 were used in this experiment. The parameter choices for PC in our E-step
were the same as those for running PC on full data.

Table 3 compares the running time between PC and PEF-PC with paralleling the E-
step. As described above, we did fine tuning on the parameters of PC to improve its speed,
and consequently, the algorithm ran very fast on these data sets. Even though, PEF-PC
was usually 2 to 8 times faster. Similar to Table 2, timing data reported for the PEF-PC
algorithm in this table were calculated by assuming there exist enough cores to estimate all
sub-networks simultaneously in the E-step. The running time improvement here was not
as substantial as that for the CCDr algorithm, probably because of the different ways these
two algorithms scale with the graph size.
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Table 3: Timing comparison (in minutes) with PC and MMHC

Network D PC PEF-PC rr | MMHC PEF-MMHC rT
PATHFINDER(5, 0) 545 | 3.50 1.89 1.85 0.28 0.04  7.00
PATHFINDER(5, 0.1) 545 | 3.54 1.64 2.16 0.33 0.09  3.67
ANDES(5, 0) 1115 | 0.52 0.32 1.63 1.94 0.20 9.70
ANDES(5, 0.1) 1115 | 0.59 0.39 1.51 1.99 0.24 8.29
DIABETES(5, 0) 2065 | 2.67 0.57 4.68 10.74 0.44 24.41
DIABETES(5, 0.1) 2065 | 2.82 0.67 4.21 11.34 0.60 18.90
PIGS(5, 0) 2205 | 4.33 1.01 4.29 12.15 0.55 22.09
PIGS(5, 0.1) 2205 | 4.87 0.96 5.07 12.71 0.60 21.18
LINK(5, 0) 3620 | 8.37 1.12  7.47 54.40 1.49 36.51
LINK(5, 0.1) 3620 | 9.00 1.36 6.62 57.06 1.75 32.61
MIX(5, 0) 1910 | 3.05 1.82 1.68 8.01 0.44 18.20
MIX(5, 0.1) 1910 | 3.70 1.75 211 8.43 0.82 10.28

(See Table 1 for the definitions of T, P, E, F, and r7.)
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Figure 5: Runtime ratios of Parallel-PC and PC over PEF-PC

There is a parallelized version of the PC algorithm in the R package, ParallelPC,
developed recently by Le et al. (2015). With the same tuning parameters, the parallelized
PC algorithm will produce exactly the same output as the regular PC algorithm. To
compare the speed between parallel PC and PEF-PC, we ran both methods on a machine
with two physical computing cores. The runtime ratios r7 of parallel PC over PEF-PC are
shown in Figure 5 for 12 networks. We see that our PEF-PC was faster than parallel PC for
all but the smallest networks, PATHFINDER(5) with p = 545, and the speed improvement
can be two to four folds for larger networks (p > 2,000).

Next, we compare the estimation accuracy between PC and PEF-PC. To confirm the
effect of the fusion step in our method, we also compare with PE-PC, which only includes
the first two steps of our PEF framework. Table 4 reports the overall accuracy metrics,
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while omitting the detailed metrics of E, R and FP to save space. Similar to the results
in the comparison with CCDr, we observe significant improvement in accuracy of PEF-PC
over PC. For all the networks tested, the Jaccard index of PEF-PC was much higher and
the SHD and BIC of PEF-PC was much lower than PC. Consistent with Table 2, the fusion
step of PEF-PC substantially improved the results from the P-step and the E-step, by
recovering more expected edges and correcting many reversed edges. Take the ANDES(5)
network with s, = 0 as an example. Our PEF method found 30% more expected edges,
while reducing reversed edges by more than 80%, compared to the other two competitors.

Remark 8 Comparing the results in this section with those in Section 5.8, it appears that
the PEF-PC method outperformed the PEF-CCDr method in terms of accuracy for most of
the networks except PATHFINDER(5). This is because the PC algorithm had higher accu-
racy than the CCDr algorithm on these data. Such differences match our expectation that
performance of the PEF framework will depend on the algorithm used in the E-step. On
the other hand, our PEF framework showed substantial advantages over both algorithms,
demonstrating the robustness of our divide-and-conquer strategy regardless of the perfor-
mance of the DAG learning algorithm used in the E-step.

5.5. Comparison with the MMHC algorithm

In this section, we test our PEF framework with the MMHC algorithm used for the E-step,
which we call PEF-MMHC. The MMHC algorithm is a hybrid method which first uses the
constraint-based MMPC algorithm (Tsamardinos et al., 2003) to restrict the search space
and then applies a score-based hill climbing algorithm to learn a DAG structure. This
comparison will demonstrate how the PEF method works with a hybrid method in the
E-step.

We used the MMHC algorithm in the bnlearn package (Scutari, 2010; Scutari and
Denis, 2014; Nagarajan and Scutari, 2013; Scutari, 2017). Similar to the PC algorithm, the
MMPC algorithm also has two important tuning parameters: the significance level (alpha)
and the maximum size of a conditioning set (max.sx). With its default values of alpha
(0.05) and max.sx (unlimited), the algorithm estimated too many false positives and took
a very long time to finish. Therefore, we set alpha = 0.001 and max.sx = 3. Data sets
used in this section were the same as those in Tables 1 and 2.

The results on timing and accuracy are reported in Table 3 and Table 4. Table 3
shows the detailed timing data for PEF-MMHC and MMHC. Clearly, PEF-MMHC made
a significant improvement in speed: For the biggest network, LINK(5), PEF-MMHC was
over 30 times faster than MMHC. Table 4 compares the accuracy among the two algorithms
and PE-MMHC, where the F-step is omitted. Overall, PEF-MMHC algorithm achieved a
comparable accuracy, in terms of SHD and JI, with MMHC, while it always had a lower BIC
score (better in terms of model selection). This comparison shows that our PEF framework
can significantly improve the speed of the MMHC algorithm with comparable accuracy.
Similar to previous results, the F-step played an important role in our framework, seen
from the fact that PEF-MMHC outperformed PE-MMHC with respect to all three overall
accuracy metrics.
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Table 4: Accuracy comparison with PC and MMHC

| M = PC | M = MMHC
(50, 5b) Method | P SHD JI  BIC| P SHD JI  BIC
PATHFINDER(5), p = 545
(975,0) M 438.0 913.7 0.123 1265.8 | 281.6 8729 0.144 1289.8

PE-M 436.9 913.3 0.123 1255.5 | 280.0 8724 0.143 1289.9
PEF-M | 4349 813.3 0.222 1141.0 | 290.6 882.8 0.142 1289.8
(1073,98) M 521.9  966.3 0.148 1235.5 | 342.8 926.2 0.165 1271.7
PE-M 492.0 1020.3 0.127 12455 | 341.3 1008.3 0.131 1275.1
PEF-M | 660.8 948.4 0.247 1072.3 | 579.5 1099.1 0.156 1206.1

ANDES(5), p = 1115

(1690, 0) M 1483.0  567.1 0.564 2540.8 | 1269.3  679.8 0.534 2415.3
PE-M 1398.4  680.1 0.516 2569.1 | 1223.2  774.9 0.487 2453.9
PEF-M | 1520.7  315.3 0.796 2255.0 | 1382.0  688.7 0.546 2383.4
(1859,169) M 1635.4  649.9 0.544 2510.8 | 1337.7 762.6 0.535 2368.1
PE-M 1387.8  925.9 0.441 2593.3 | 1222.6  973.0 0.440 2469.5
PEF-M | 1714.3  347.1 0.801 2155.2 | 1618.1 669.2 0.610 2262.8

DIABETES(5), p = 2065

(3010, 0) M 2563.0 1151.6 0.507 4422.5 | 2328.3 1542.7 0.393 4132.0
PE-M 2506.2 1247.7 0.487 4438.7 | 22789 1605.4 0.381 4165.8
PEF-M | 2601.1 874.0 0.641 3873.1 | 2401.4 1570.3 0.397 4110.0
(3311,301) M 2850.5 1267.9 0.507 4389.4 | 2516.2 1572.7 0.439 4051.4
PE-M 2466.4 1744.3 0.409 4527.1 | 2247.0 2050.8 0.333 4284.8
PEF-M | 3009.5 929.9 0.669 3721.2 | 2927.0 1673.2 0.448 3925.0

PIGS(5), p = 2205

(2960, 0) M 2556.6 1114.9 0.519 4968.5 | 2203.9 1552.5 0.404 4774.1
PE-M 2497.2 1211.5 0.492 4992.1 | 2145.8 1624.0 0.385 4815.6
PEF-M | 2586.6  771.4 0.686 4429.3 | 2263.9 1600.1 0.399 4762.2
(3256,296) M 2859.6 1175.1 0.530 4861.5 | 2380.9 1591.7 0.442 4684.6
PE-M 2525.8 1693.5 0.415 50564.7 | 2197.3 1995.8 0.354 4866.8
PEF-M | 2989.4  790.5 0.720 4235.9 | 2771.4 1615.8 0.467 4540.1

LINK(5), p = 3620

(5625, 0) M 4752.8 2301.4 0.505 7951.1 | 3897.5 2972.8 0.419 7726.2
PE-M 4510.0 2671.5 0.458 8066.9 | 3715.4 3243.2 0.384 7827.2
PEF-M | 4734.4 1394.9 0.730 7184.0 | 4164.2 3081.4 0.416 7652.0
(6188,563) M 5244.1 2490.0 0.502 7848.0 | 4197.2 3105.7 0.448 7593.6
PE-M 4361.3 3627.6 0.372 8162.3 | 3716.4 3972.7 0.338 7940.0
PEF-M | 5434.0 1545.6 0.735 6900.2 | 5153.6 3072.1 0.486 7261.1

Mix(5), p = 1910
(2852,0) M 2376.6 1203.1 0.486 4229.8 | 20042 1509.5 0.409 4064.3
PE-M | 22515 1386.3 0.442 4279.6 | 1927.5 1644.3 0.377 4117.6
PEF-M | 2409.1 8264 0.673 3759.5 | 2164.5 1544.6 0.416 4017.6
(3138,286) M 2621.5 1329.3 0.483 4204.4 | 2136.6 1655.1 0.415 4027.6

PE-M 2280.3 17725 0.388 4324.4 | 1968.0 1992.5 0.339 4160.8
PEF-M | 2766.3 941.1 0.676 3641.9 | 2626.0 1676.6 0.452 3861.6
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5.6. Test data likelihood

Test data likelihood is another objective accuracy metric for an estimated DAG, which
quantifies its accuracy in estimating the joint distribution encoded by the DAG. To this
end, we generated 50 test datasets for each network, and calculated test data likelihood
under an estimated DAG. Given the estimated DAG, we applied least-squares regression of
a child node X; onto its parents to estimate the edge coefficients ;; and noise variances ’a\?
for j =1,...,p from training data. Then test data log-likelihood was calculated with these
estimated parameters. For the PC algorithm, of which an estimated graph is a CPDAG,
we first converted it into a DAG in the equivalence class before calculating test data log-
likelihood.

Figure 6 shows the boxplots for test data log-likelihood values for all networks with
weak connection (¢ = 0.1). Note for each test dataset, we computed its likelihood under
the estimated DAG from each of the 10 training datasets generated from the same network.
So a boxplot in the figure reports the distribution of 50 x 10 = 500 log-likelihood values.
When comparing CCDr with PEF-CCDr, PC with PEF-PC, MMHC with PEF-MMHC,
we see our PEF method had a significantly higher test data log-likelihood for most of the
networks, indicating that its estimated DAGs were more accurate in predictive modeling
for a joint distribution. Test data likelihood comparison for networks with ¢ = 0, provided
in the supplemental material, shows a quite consistent pattern as that observed in Figure 6.

5.7. Networks with no block structure

The above numerical results have demonstrated that our PEF framework may achieve
significant speed improvement over standard structure learning methods, with higher or
comparable estimation accuracy, for networks with a clear block structure. Of course, there
are many real-world networks without any block structures (Olesen and Madsen, 2002).
Although not designed specifically for such networks, it is worth testing our method on
these networks to provide a complete spectrum of its performance.

To do this, we chose four networks: two real networks, LINK and MUNIN, and two
simulated small-world networks with p = 2000 and p = 5000. Note that LINK and MUNIN
were not duplicated in this experiment so there were no block structures. Small-world
networks were generated by the R package igraph (Csirdi and Nepusz, 2006) using the
Watts-Strogatz model (Watts and Strogatz, 1998). For each network, 10 datasets of size
n = 1000 were generated. We applied all six methods (CCDr, PEF-CCDr, PC, PEF-PC,
MMHC, PEF-MMHC) on these datasets with the same parameter settings as in previous
comparisons. Reported in Tables 5 and 6 are, respectively, the timing and the accuracy
results.

No matter whether the true DAG has a block structure or not, our partition step will
cluster the nodes to several small clusters. The number of clusters & ranged from 6 to 11
for the networks in this comparison. In general, our PEF framework scaled much better
than the standard structure learning algorithms used in the E-step, showing significant
speed improvement without losing much accuracy. It is seen from Table 5 that PEF was
always faster (rp > 1) than the competitors, except for the smallest network LINK when
compared with CCDr. The improvement in speed was especially significant for large small-
world networks with r > 20. In terms of estimation accuracy (Table 6), PEF-CCDr always

23



GU AND ZHOU
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Figure 6: Boxplots of test data log-likelihood for networks with weak between-subgraph
connections (¢ = 0.1).

outperformed CCDr substantially, achieving lower SHD and higher JI. Consistent with what
we have seen for networks with a block structure in Section 5.5, PEF-MMHC showed a quite
comparable performance with the MMHC algorithm. The PEF-PC algorithm was more
accurate than the PC algorithm for MUNIN, but less accurate for small-world networks.
Cutting a connected DAG into subgraphs will introduce substantial changes in the CI
structures, as we discussed in Section 4.1. This could have more substantial impact on
the PEF method when the E-step is done by a constraint-based method that performs a
large number of CI tests. This is the reason for the observed degraded performance of the
PEF-PC algorithm on small-world networks.

This comparison suggests that our proposed PEF framework works quite well for general
types of networks. This greatly enlarges the scope of the applicability of our method, as it
can efficiently learn a reliable estimated graph without the assumption that the true DAG
has a block structure. We leave it as future work how to further improve its accuracy,
especially for constraint-based learning on DAGs with no block structures.
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Table 5: Timing comparison on networks with no block structure

M = CCDr M = PC M = MMHC
Network (p) k M PEF-M T M PEF-M rT M PEF-M TP
LINK (724) 8.3 0.12 0.21  0.57 | 0.35 0.20 1.75 0.58 0.13 4.46
MUNIN (1041) 6.9 0.82 0.35 234 | 0.78 0.55 1.42 1.58 0.45 3.51
Small-world (2000) 10.3 | 4.00 0.50  8.00 | 2.17 0.54 4.02 | 10.92 0.50 21.84
Small-world (5000) 11.0 | 57.06 2.33 24.49 | 22.80 1.91 11.94 | 194.10 3.07 63.22

Table 6: Accuracy comparison on networks with no block structure

(p, s0) method P E R FP SHD JI BIC
LINK CCDr 1071.0 5439 2764  250.7 831.8 0.330 1428.8
(724,1125) PEF-CCDr 1109.6  711.8 1949 2029 616.1 0.468 1410.3
PC 1102.8  841.3  230.0 31.5  315.2 0.607 1556.3
PEF-PC 995.0  825.7  103.7 65.6 364.9 0.638 1582.6
MMHC 778.2  561.6  189.8 26.8  590.2 0.419 1553.6
PEF-MMHC  962.7 625.6 199.8 137.3 636.7 0.429 1500.1
MUNIN CCDr 15344  696.5 380.9 457.0 1157.5 0.312 2003.2
(1041,1397) PEF-CCDr 1380.0 839.2 243.8 297.0 854.8 0.433 2005.9
PC 1230.8  918.0 2125 100.3  579.3 0.537 2308.8
PEF-PC 1201.2  963.8 1242 113.2 546.4 0.590 2313.3
MMHC 1056.0  743.0  250.9 62.1 716.1 0.435 2161.4
PEF-MMHC 11214 754.6  251.1  115.7 758.1 0.428 2148.0
Small-world  CCDr 3006.0 1205.2 1108.5  692.3 3487.1 0.208 3388.7
(2000,4000) PEF-CCDr 3323.9 1427.7 11569 739.3 3311.6 0.242 3307.9
PC 3002.7 1968.7  815.0 219.0 2250.3 0.392 3871.8
PEF-PC 3025.0 1494.9 1205.6  324.5 2829.6 0.270 3839.4
MMHC 2764.8 1461.1 11099 193.8 2732.7 0.276 3487.1
PEF-MMHC 3195.2 1580.1 1175.0 440.1 2860.0 0.281 3380.8
Small-world ~ CCDr 7529.0 3061.2 2784.6 1683.2 8622.0 0.212 8534.6
(5000, 10000) PEF-CCDr 8224.8 3618.5 2835.8 1770.5 8152.0 0.248 8355.6
PC 7526.0 5039.5 1921.2  565.3 5525.8 0.404 9729.1
PEF-PC 7558.3 3773.5 2969.8 815.0 7041.5 0.274 9655.1
MMHC 6920.9 3660.4 2754.7 505.8 6845.4 0.276 8793.3

PEF-MMHC 7932.0 4014.7 2862.6 1054.7 7040.0 0.288 8530.9

6. Discussion

We have developed a divide-and-conquer framework for structure learning of big Bayesian
networks from continuous data. The key novel step in our method is the fusion step, which
merges the subgraphs learned from subsets of nodes partitioned by a modified clustering
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algorithm. Our numerical results suggest that this fusion step can correct and fix the DAG
structure damaged by the partition step, so that the overall accuracy of the PEF method
is usually comparable to or even higher than the structure learning algorithm used in the
estimation step. We also observed quite significant boost in speed, ranging from a few folds
to orders-of-magnitude.

There are certain limitations of our current design and implementation of the PEF
method. First of all, in the partition step, we need to calculate and store the dissimilarity
matrix for all pairs of nodes. When the number of nodes p is really large, this becomes
memory-intensive. A promising potential solution to this issue is to borrow ideas from the
subsample clustering method for big data (Marchetti and Zhou, 2016). We may subsample
a small fraction of the nodes for clustering, and then assign the remaining large number of
nodes based on the clustering of the subsample, which can be implemented in a sequential
way. For the fusion step, our current implementation takes as input the correlation matrix
of the data columns. Again, when the number of nodes is too big, we may implement the
algorithm to calculate correlations whenever needed, instead of pre-computing all correla-
tions. Our current fusion step was implemented with the Rcpp package Armadillo. If we
code it in pure C++4, the speed of the fusion step may be further improved.

At a conceptual level, it seems straightforward to generalize the PEF method to discrete
Bayesian networks. For discrete data, one can still use our clustering method, with a suitable
similarity measure, for the partition step, and plug in an appropriate structure learning
algorithm in the estimation step. As for the fusion step, the conditional independence test
is no longer for zero partial correlations, instead we may use the G? test for discrete data
as in the PC algorithm. Finally we may substitute linear regression with the multinomial
logistic regression as used in Gu et al. (2019) for BIC-based edge selection (Section 4.2).
This is left as future work.
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Appendix A.
A.1. Partial correlation

The partial correlation between X and Y given Z, pxy.z, can be calculated using their
covariance matrix. Let m be the size of Z, ¥ be the covariance matrix of (X,Y, Z), and
Q= (Wij)(m+2)x(m+2) = ¥~! be the precision matrix. Then the partial correlation

w12

Vwr1wag

PXY.Z = —
and for Gaussian random variables,
IP(X;Y‘Z) — pxy.z = 0.

In order to test the hypothesis Hy : pxy.z = 0, we apply the Fisher z-transformation,

1 1+ pxy.
X Y12) = jog (107,
2 1—-pxv.z
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where pxy.z is the estimated partial correlation calculated from sample covariance matrix
of (X,Y, Z). Given a significance level a, we reject the null hypothesis Hy if

Vn—m—=3-12(X,Y|Z)| > &1 (1 -a/2),

where n is the number of observations and ® is the cdf of A (0,1).

A.2. Proof of Proposition 5

By properties of a joint Gaussian distribution, we can write

Xi = BriXp + Ria, (A.1)
keA

where R;.4 L X4 (independence). Similarly, regressing X; onto X 4 Bu{i}, We arrive at
Xj= > BuXn+BiXi+5, (A.2)
kEAUB
with €; L Xaupugy and thus €; | R;a. Plugging (A.1) into (A.2) to eliminate X;, we have
Xj= > AwXe+ByRia+5, (A.3)
ke AUB

for some 7;’s after rearranging terms in the summation. Denote by R; 4.p the residual of
regressing R;. 4 onto Xp. Since R;.4 L X4 | Xp by assumption, the coefficient

E(Rj-BRi-A-B) . E(R]BRZA) . COV(Rj.B,Ri.A)

bij = E(RiaB)?  E(Riap)?  var(Rian)

where the second equality is due to Rj.p L E(R;.4 | Xg). By Theorem 2, Eij # 0, because
otherwise Zp(X;; X;|Xaun), and thus cov(R;.p, R;.4) # 0. The proof is complete.
A.3. RIC for model selection

Recall we want to compare three models, My, M7, Ms, defined in (10). Suppose the current
DAG is G, which has no edge between ¢ and j. Now consider the following two linear models

Xi =85 X;+ Y BriXk + &, (A.4)
kel

Xj ZIBZ]Xz + Z ,Bk]Xk +€5. <A5)
kemy

Then, My is equivalent to 3;; = B;; = 0, My equivalent to §;; # 0 and B;; = 0, and M>
equivalent to §8;; = 0 and 3;; # 0. Note that when undirected edges exist, we consider all
neighbors as the parents.

In order to choose from the three models, we calculate their RIC scores. In our im-
plementation, we find least-squares estimates (LSEs) of the regression coefficients for (A.4)
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and (A.5). Let ¢;; be the log-likelihood evaluated at the LSE under the linear model (A.4),
and lo; the log-likelihood under (A.4) when (;; = 0. Similarly, ¢;; denotes the log-likelihood
at the LSE for the linear model (A.5), and £y; the log-likelihood when §;; = 0. Since the
structure of G is identical except for the node pair (i, 7), these four likelihood scores are suf-
ficient for comparing My, My and My. Let ¢(M;) be the log-likelihood of M; for i = 0,1, 2.
Then we have ¢(My) = lo; + Loj, £(M1) = Loi + i5, and €(Ma) = £j; + {o;. Thus, the RIC
selection criterion (11) is equivalent to 2min{¢;; — lo;,¢j; — Loi} > A, where A is the penalty
parameter in (9). The motivation for this criterion is to add an edge between ¢ and j only
when i / j|TIY and i / j|HJg (Theorem 2).
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