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Abstract

We study a constrained contextual linear ban-
dit setting, where the goal of the agent is
to produce a sequence of policies, whose ex-
pected cumulative reward over the course of
multiple rounds is maximum, and each one
of them has an expected cost below a certain
threshold. We propose an upper-confidence
bound algorithm for this problem, called opti-
mistic pessimistic linear bandit (OPLB), and
prove a sublinear bound on its regret that
is inversely proportional to the difference be-
tween the constraint threshold and the cost of
a known feasible action. Our algorithm bal-
ances exploration and constraint satisfaction
using a novel idea that scales the radii of the
reward and cost confidence sets with differ-
ent scaling factors. We further specialize our
results to multi-armed bandits and propose
a computationally efficient algorithm for this
setting and prove a a regret bound that is
better than simply casting multi-armed ban-
dits as an instance of linear bandits and using
the regret bound of OPLB. We also prove a
lower-bound for the problem studied in the
paper and provide simulations to validate our
theoretical results. Finally, we show how our
algorithm and analysis can be extended to
multiple constraints and to the case when the
cost of the feasible action is unknown.

1 Introduction

A multi-armed bandit (MAB) (Lai and Robbins, 1985;
Auer et al., 2002; Lattimore and Szepesvári, 2019) is
an online learning problem in which the agent acts
by pulling arms. After an arm is pulled, the agent
receives its stochastic reward. The goal of the agent is
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to maximize its expected cumulative reward without
knowledge of the arms’ distributions. To achieve this
goal, the agent has to balance its exploration and ex-

ploitation: to decide when to explore and learn about
the arms, and when to exploit and pull the arm with
the highest estimated reward thus far. A stochastic

linear bandit (Dani et al., 2008; Rusmevichientong and
Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011) is a gener-
alization of MAB to the setting where each of (possibly)
infinitely many arms is associated with a feature vector.
The mean reward of an arm is the dot product of its fea-
ture vector and an unknown parameter vector, which is
shared by all the arms. This formulation contains time-
varying action (arm) sets and feature vectors, and thus,
includes the linear contextual bandit setting. These
models capture many practical applications spanning
clinical trials (Villar et al., 2015), recommendation sys-
tems (Li et al., 2010; Balakrishnan et al., 2018), wireless
networks (Maghsudi and Hossain, 2016), sensors (Wash-
burn, 2008), and strategy games (Ontanón, 2013). The
most popular exploration strategies in stochastic ban-
dits are optimism in the face of uncertainty (OFU) or
upper confidence bound (UCB) (Auer et al., 2002) and
Thompson sampling (TS) (Thompson, 1933; Agrawal
and Goyal, 2013a; Abeille and Lazaric, 2017; Russo
et al., 2018) that are relatively well understood in both
multi-armed and linear bandits (Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013b).

In many practical problems, the agent requires to sat-
isfy certain operational constraints while maximizing
its cumulative reward. Depending on the form of the
constraints, several constrained stochastic bandit set-
tings have been formulated and analyzed. One such
setting is what is known as knapsack bandits. In this
setting, pulling each arm, in addition to producing
a reward signal, results in a random consumption of
a global budget, and the goal is to maximize the cu-
mulative reward before the budget is fully consumed
(e.g., Badanidiyuru et al. 2013, 2014; Agrawal and De-
vanur 2014; Wu et al. 2015; Agrawal and Devanur 2016).
Another such setting is referred to as conservative ban-

dits. In this setting, there is a baseline arm or policy,
and the agent, in addition to maximizing its cumu-
lative reward, should ensure that at each round, its
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cumulative reward remains above a predefined fraction
of the cumulative reward of the baseline (Wu et al.,
2016; Kazerouni et al., 2017; Garcelon et al., 2020). In
these two settings, the constraint is history-dependent,
i.e., it applies to a cumulative quantity, such as budget
consumption or reward, over the entire run of the algo-
rithm. Thus, the set of feasible actions at each round
is a function of the history of the algorithm.

Another constrained bandit setting is where each arm
is associated with two (unknown) distributions, gener-
ating reward and cost signals. The goal is to maximize
the cumulative reward, while making sure that with
high probability, the expected cost of the arm pulled
at each round is below a certain threshold. Here the
constraint is stage-wise, and unlike the last two set-
tings, is independent of the history. Amani et al. (2019)
and Moradipari et al. (2019) have recently studied this
setting for linear bandits and derived and analyzed
explore-exploit (Amani et al., 2019) and Thompson
sampling (Moradipari et al., 2019) algorithms for it.

In this setting, each action has a context-dependent
(unknown) cost and only actions should be taken, whose
cost is below a certain threshold. This setting has many
applications, for example, a recommendation system
should not suggest an item to a customer that despite
high probability of click (high reward) reduces her
watch-time or her chance of coming back to the website
(bounded cost), or a drug that may help with a certain
symptom (high reward) should not have too many side-
effects (bounded cost). It is important to note that the
reward and cost in this setting can be viewed as different
objectives according to which a recommendation or a
medical diagnosis system are evaluated.

This setting is the closest to the one we study in this
paper. In our setting, we also assume two distribu-
tions for each arm, one for reward and for cost. At
each round the agent constructs a policy according
to which it takes its action. The goal of the agent
is to produce a sequence of policies with maximum
expected cumulative reward, while making sure that
the expected cost of the constructed policy (not the
pulled arm) at each round is below a certain threshold.
This is a linear constraint and can be easily extended
to more constraints by having more cost distributions
associated to each arm (one per each constraint). Com-
pared to the previous setting, our constraint is more
relaxed (from high-probability to expectation), and as
a result, it would be possible for us to obtain a solu-
tion with larger expected cumulative reward. We will
have a detailed discussion on the relationship between
these two settings and the similarities and differences of
our results with those reported in Amani et al. (2019)
and Moradipari et al. (2019) in Section 7.

As discussed above, the setting considered in this paper

is a relaxation of the high probability stage-wise con-
strained setting described earlier. In many constrained
or multi-objective problems, such as recommendation
and medical diagnosis systems, making sure that the
constraints are always satisfied or certain objectives
are always within certain thresholds would result in a
very conservative performance. A common solution to
balance performance and constraint satisfaction is to
replace conservative high probability constraints with
more relaxed expectation ones.

In this paper, we study the above setting for contextual
linear bandits. After defining the setting in Section 2,
we propose an OFU-style algorithm for it, called opti-

mistic pessimistic linear bandit (OPLB), in Section 3.

We prove an Õ( d
√
T

τ−c0
) bound on the T -round regret of

OPLB in Section 4, where d is the action dimension and
τ − c0 is the safety gap, i.e., the difference between the
constraint threshold and the cost of a known feasible
(safe) action. The action set considered in our contex-
tual linear bandit setting is general enough to include
MAB. However, in Section 5, we further specialize our
results to MAB and propose a computationally efficient
algorithm for this setting, called optimistic pessimistic

bandit (OPB). We show that in the MAB case, there
always exists a feasible optimal policy with probability
mass on at most m+1 arms, where m is the number of
constraints. This property plays an important role in
the computational efficiency of OPB. We prove a regret

bound of order Õ(
√
KT

τ−c0
) for OPB in K-armed bandits,

which is a
√
K improvement over the regret bound we

obtain by simply casting MAB as an instance of contex-
tual linear bandit and using the regret bound of OPLB.
We also prove a lower-bound for the constrained bandit
problem studied in the paper.

In our setting the learner interacts with arms whose
costs are unknown while required to satisfy an upper
bound on its policy’s expected cost. Since the learner
does not know the cost function in advance, she has to
balance three competing objectives: 1) collect reward,
2) satisfy the cost constraint and 3) learn about the cost
and reward functions. At any point in time and given
the learner’s knowledge of the reward and cost function,
objective 2) may prevent her from even considering to
execute the true optimal policy. This precludes the
use of algorithms based solely on the principle of opti-
mism. One of our main technical contributions is the
introduction of a general and simple technique based
on asymmetric confidence intervals that can be used to
easily develop algorithms for bandits or reinforcement
learning problems with unknown constraints.

2 Problem Formulation

Notation. We adopt the following notation through-
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out the paper. We denote by 〈x, y〉 = x⊤y and
〈x, y〉A = x⊤Ay, for a positive definite matrix A ∈
R

d×d, the inner-product and weighted inner-product
of the vectors x, y ∈ R

d. Similarly, we denote by
‖x‖ =

√
x⊤x and ‖x‖A =

√
x⊤Ax, the ℓ2 and weighted

ℓ2 norms of vector x. For any square matrix A, we
denote by A†, its Moore-Penrose pseudo-inverse. We
represent the set of distributions with support over a
compact set S by ∆S . The set {1, . . . , T} is denoted

by [T ]. Finally, we use Õ for the big-O notation up to
logarithmic factors.

We study the following constrained contextual linear

bandit setting in this paper. In each round t, the agent
is given a decision set At ⊂ R

d from which it has to
choose an action xt. Upon taking action xt ∈ A, it
observes a pair (rt, ct), where rt = 〈xt, θ∗〉+ξrt and ct =
〈xt, µ∗〉+ξct are the reward and cost signals, respectively.
In the reward and cost definitions, θ∗ ∈ R

d and µ∗ ∈ R
d

are the unknown reward and cost parameters, and ξrt
and ξct are reward and cost noise, satisfying conditions
that will be specified in Assumption 1. The agent
selects its action xt ∈ At in each round t according to
its policy πt ∈ ∆At

at that round, i.e., xt ∼ πt.

The goal of the agent is to produce a sequence of
policies {πt}Tt=1 with maximum expected cumulative

reward over the course of T rounds, while satisfying
the stage-wise linear constraint

Ex∼πt
[〈x, µ∗〉] ≤ τ, ∀t ∈ [T ], (1)

where τ ≥ 0 is referred to as the constraint thresh-

old. Thus, the policy πt that the agent selects in each
round t ∈ [T ] should belong to the set of feasible poli-

cies over the action set At, i.e., Π∗
t = {π ∈ ∆At

:
Ex∼π[〈x, µ∗〉] ≤ τ}. Maximizing the expected cumu-
lative reward in T rounds is equivalent to minimizing
the T -round constrained pseudo-regret,1

RΠ(T ) =

T∑

t=1

Ex∼π∗
t
[〈x, θ∗〉]− Ex∼πt

[〈x, θ∗〉], (2)

where πt, π
∗
t ∈ Πt, for all t ∈ [T ], and π∗

t ∈
maxπ∈Π∗

t
Ex∼π[〈x, θ∗〉] is the optimal feasible policy

in round t. The terms Ex∼π[〈x, θ∗〉] and Ex∼π[〈x, µ∗〉]
in (1) and (2) are the expected reward and cost of
policy π, respectively. Thus, a feasible policy is the one
whose expected cost is below the constraint threshold
τ , and the optimal feasible policy is a feasible policy
with maximum expected reward. We use the short-
hand notations xπ := Ex∼π[x], rπ := Ex∼π[〈x, θ∗〉], and
cπ := Ex∼π[〈x, µ∗〉] for the expected action, reward,
and cost of a policy π. With these notations, we may
write the T -round regret as RΠ(T ) =

∑T
t=1 rπ∗

t
− rπt

.

1In the rest of the paper, we simply refer to the T -round
constrained pseudo-regret RΠ(T ) as T -round regret.

We make the following assumptions for our setting. The
first four assumptions are standard in linear bandits
and the fifth one is necessary for constraint satisfaction.

Assumption 1 (sub-Gaussian noise). For all t ∈ [T ],
the reward and cost noise random variables ξrt and ξct
are conditionally R-sub-Gaussian, i.e., for all α ∈ R,

E[ξrt | Ft−1] = 0, E[exp(αξrt ) | Ft−1] ≤ exp(α2R2/2),

E[ξct | Ft−1] = 0, E[exp(αξct ) | Ft−1] ≤ exp(α2R2/2),

where Ft is the filtration that includes all the events
(x1:t+1, ξ

r
1:t, ξ

c
1:t) until the end of round t.

Assumption 2 (bounded parameters). There is a
known constant S > 0, such that ‖θ∗‖ ≤ S and ‖µ∗‖ ≤
S.2

Assumption 3 (bounded actions). The ℓ2-norm of
all actions is bounded, i.e., maxt∈[T ] maxx∈At

‖x‖ ≤ L.

Assumption 4 (bounded rewards and costs). For all
t ∈ [T ] and x ∈ At, the mean rewards and costs are
bounded, i.e., 〈x, θ∗〉 ∈ [0, 1] and 〈x, µ∗〉 ∈ [0, 1].

Assumption 5 (safe action). There is a known safe
action x0 ∈ At, ∀t ∈ [T ] with known cost c0,
i.e., 〈x0, µ∗〉 = c0 < τ .

Remark 1. Knowing a safe action x0 is absolutely
necessary for solving the constrained contextual linear
bandit problem studied in this paper, because it requires
the constraint to be satisfied from the very first round.
However, the assumption of knowing the expected cost
of the safe action c0 can be relaxed. We can think of
the safe action as a baseline policy, the current strategy
(e.g., resource allocation of a company), whose cost is
known and reasonable, but its reward may still be im-
proved. We will discuss how our proposed algorithm will
change if c0 is unknown in Section 3 and Appendix B.4.

Notation. We conclude this section with introducing
another set of notations that will be used in describing
our algorithm and its analysis. We define the nor-
malized safe action as e0 := x0/‖x0‖ and the span of
the safe action as Vo := span(x0) = {ηx0 : η ∈ R}.
We denote by V⊥

o , the orthogonal complement of Vo,
i.e., V⊥

o = {x ∈ R
d : 〈x, y〉 = 0, ∀y ∈ Vo}.3 We

define the projection of a vector x ∈ R
d into the sub-

space Vo, as xo := 〈x, e0〉e0, and into the sub-space
V⊥
o , as xo,⊥ := x − xo. We also define the projection

of a policy π into Vo and V⊥
o , as xo

π := Ex∼π[x
o] and

xo,⊥
π := Ex∼π[x

o,⊥], respectively.

2The choice of the same upper-bound S for both θ∗ and
µ∗ is just for simplicity and convenience.

3In the case of x0 = 0 ∈ R
d, we define Vo as the empty

subspace and V⊥
o as the whole R

d.
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Algorithm 1 Optimistic-Pessimistic Linear Bandit

1: Input: Horizon T , Confidence Parameter δ, Regular-
ization Parameter λ, Constants αr, αc ≥ 1

2: for t = 1, . . . , T do

3: Compute regularized least-squares estimates θ̂t and
µ̂o,⊥
t (Eqs. 3 to 5)

4: Construct sets Cr
t (αr) and Cc

t (αc) (Eq. 7)
5: Observe the action set At and construct the feasible

(safe) policy set Πt (Eq. 13)
6: Compute policy

(πt, θ̃t) = argmaxπ∈Πt, θ∈Cr
t
(αr)

Ex∼π[〈x, θ〉]
7: Take action xt ∼ πt and observe reward and cost

(rt, ct)
8: end for

3 Algorithm

In this section, we propose a UCB-style algorithm for
the setting described in Section 2. We call our al-
gorithm optimistic-pessimistic linear bandit (OPLB)
because it maintains a pessimistic assessment of the
set of available policies, while acting optimistically
within this set. Algorithm 1 contains the pseudo-code
of OPLB. The novel idea in OPLB is to balance explo-
ration and constraint satisfaction by asymmetrically

scaling the radii of the reward and cost confidence sets
with different scaling factors αr and αc. This will prove
crucial in the regret analysis of OPLB. We now describe
OPLB in details.

Line 3 of OPLB: At each round t ∈ [T ], given the
actions {xs}t−1

s=1, rewards {rs}t−1
s=1, and costs {cs}t−1

s=1

observed until the end of round t− 1, OPLB first com-
putes the ℓ2-regularized least-squares (RLS) estimates

of θ∗ and µo,⊥
∗ (projection of the cost parameter µ∗

into the sub-space V⊥
o ) as

θ̂t = Σ−1
t

t−1∑

s=1

rsxs, µ̂o,⊥
t = (Σo,⊥

t )−1
t−1∑

s=1

co,⊥s xo,⊥
s , (3)

where λ > 0 is the regularization parameter, and

Σt = λI +

t−1∑

s=1

xsx
⊤
s , Σo,⊥

t = λIV⊥
o
+

t−1∑

s=1

xo,⊥
s (xo,⊥

s )⊤,

(4)

co,⊥s = cs −
〈xt, e0〉
‖x0‖

c0, IV⊥
o

= Id×d − 1

‖x0‖2
x0x

⊤
0 . (5)

In (4), Σt and Σo,⊥
t are the Gram matrices of actions

and projection of actions into the sub-space V⊥
o . Note

that Σo,⊥
t is a rank deficient matrix, but with abuse of

notation, we use (Σo,⊥
t )−1 to denote its pseudo-inverse

throughout the paper. In (5), IV⊥
o

is the projection of

the identity matrix, I, into V⊥
o , and co,⊥s (∀s ∈ [t− 1])

is the noisy projection of the cost cs into V⊥
o , i.e.,4

co,⊥s = 〈xo,⊥
s , µo,⊥

∗ 〉+ ξcs = 〈xs, µ∗〉 − 〈xo
s, µ

o
∗〉+ ξcs

= cs − 〈xo
s, µ

o
∗〉 = cs −

〈xs, e0〉
‖x0‖

c0. (6)

Line 4: Using the RLS estimates θ̂t and µ̂o,⊥
t in (3),

OPLB constructs the reward and cost confidence sets

Cr
t (αr) =

{
θ ∈ R

d : ‖θ − θ̂t‖Σt
≤ αrβt(δ, d)

}
, (7)

Cc
t (αc) =

{
µ ∈ V⊥

o : ‖µ− µ̂o,⊥
t ‖Σo,⊥

t

≤ αcβt(δ, d− 1)
}
,

where αr, αc ≥ 1 and βt(δ, d) in the radii of these
confidence ellipsoids is defined by the following theorem,
originally proved in Abbasi-Yadkori et al. (2011).

Theorem 1. [Thm. 2 in Abbasi-Yadkori et al. 2011]

Let Assumptions 1 and 2 hold, θ̂t, µ̂
o,⊥
t , Σt, and Σo,⊥

t

defined by (3) and (4), and Cr
t (·) and Cc

t (·) defined
by (7). Then, for a fixed δ ∈ (0, 1) and

βt(δ, d) = R

√
d log

(1 + (t− 1)L2/λ

δ

)
+

√
λ S, (8)

with probability at least 1− δ and for all t ≥ 1, it holds
that θ∗ ∈ Cr

t (1) and µo,⊥
∗ ∈ Cc

t (1).

Since αr, αc ≥ 1, for all rounds t ∈ [T ], the sets Cr
t (αr)

and Cc
t (αc) also contain θ∗, the reward parameter, and

µo,⊥
∗ , the projection of the cost parameter into V⊥

o ,
with high probability.

Given these confidence sets, we define the optimistic

reward and pessimistic cost of any policy π in round t
as

r̃π,t := max
θ∈Cr

t (αr)
Ex∼π[〈x, θ〉], (9)

c̃π,t :=
〈xo

π, e0〉c0
‖x0‖

+ max
µ∈Cc

t (αc)
Ex∼π[〈x, µ〉]. (10)

We provide closed-form expressions for r̃π,t and c̃π,t in
the following proposition that we report its proof in
Appendix A.1.

Proposition 1. We may write (9) and (10) in closed-
form as

r̃π,t = 〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1

t

, (11)

c̃π,t =
〈xo

π, e0〉c0
‖x0‖

+ 〈xo,⊥
π , µ̂o,⊥

t 〉 (12)

+ αcβt(δ, d− 1)‖xo,⊥
π ‖(Σo,⊥

t )−1 .

Line 5: After observing the action set At, OPLB
constructs its feasible (safe) policy set as

Πt = {π ∈ ∆At
: c̃π,t ≤ τ}, (13)

4In the derivation of (6), we use the fact that 〈xs, µ∗〉 =
〈xo

s + xo,⊥
s , µo

∗ + µo,⊥
∗ 〉 = 〈xo

s, µ
o
∗〉+ 〈xo,⊥

s , µo,⊥
∗ 〉.
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where c̃π,t is the pessimistic cost of policy π in round t
defined by (12). Note that Πt is an approximation to
Π∗

t and that Πt is not empty since π0, the policy that
plays the safe action x0 with probability (w.p.) 1, is
always in Πt. This is because xo

π0
= x0, x

o,⊥
π0

= 0, and
〈xo

π0
,e0〉c0

‖x0‖ = c0. In the following proposition, whose

proof is reported in Appendix A.2, we prove that all
policies in Πt are feasible with high probability.

Proposition 2. With probability at least 1− δ, for all
rounds t ∈ [T ], all policies in Πt are feasible.

Line 6: The agent computes its policy πt as the one
that is safe (belongs to Πt) and attains the maximum

optimistic reward. We refer to θ̃t as the optimistic re-

ward parameter. Thus, we write the optimistic reward
of policy πt as r̃πt,t = 〈xπt

, θ̃t〉.
Line 7: Finally, the agent selects an action xt ∼ πt

and observes the reward-cost pair (rt, ct).

Computational Complexity of OPLB. As shown
in Line 6 of Algorithm 1, in each round t, OPLB solves
the following optimization problem:

max
π∈∆At

〈xπ, θ̂t〉+ αrβt(δ, d)‖xπ‖Σ−1

t

(14)

s.t.
〈xo

π, e0〉c0
‖x0‖

+ 〈xo,⊥
π , µ̂o,⊥

t 〉

+ αcβt(δ, d− 1)‖xo,⊥
π ‖(Σo,⊥

t )−1 ≤ τ.

However, solving (14) can be challenging. The bottle-
neck is computing the safe policy set Πt, which is the
intersection between ∆At

and the ellipsoidal constraint.

Main Challenge in Regret Analysis. The main
challenge in obtaining a regret bound for OPLB is to en-
sure that optimism holds in each round t ∈ [T ], i.e., the

solution (πt, θ̃t) of (14) satisfies r̃πt,t = 〈xπt
, θ̃t〉 ≥ rπ∗

t
.

This is not obvious, since the safe policy set Πt might
have been constructed such that it does not contain the
optimal policy π∗

t . Our main algorithmic innovation is
the use of asymmetric confidence intervals Cr

t (αr) and

Cc
t (αc) for θ∗ and µo,⊥

∗ , which allows us to guarantee
optimism, by appropriately selecting the ratio αr/αc.
Of course, this comes at the cost of scaling the regret
by the same ratio. As we will show in our analysis
in Section 4, αr/αc depends on the inverse safety gap
1/(τ−c0), which indicates that when τ−c0 is small (the
cost of the safe arm is close to the constraint threshold),
the agent will have a difficult time to identify a safe
arm and to compete against the optimal feasible policy
π∗
t . We will formalize this in Lemma 4.

Unknown c0. If the cost of the safe arm c0 is un-
known, we start by taking the safe action x0 for T0

rounds to produce a conservative estimate δ̂c of the

safety gap τ − c0 that satisfies δ̂c ≥ τ−c0
2 . We warm

start our estimators for θ∗ and µ∗ using the data col-
lected by playing x0. However, instead of estimating
µo,⊥
∗ , we build an estimator for µ∗ over all its directions,

including e0, similar to what OPLB does for θ∗. We
then set αr

αc
= 1/δ̂c and run Algorithm 1 for rounds

t > T0 (see Appendix B.4 for more details).

4 Regret Analysis

In this section, we prove the following regret bound for
our OPLB algorithm.

Theorem 2 (Regret of OPLB). Let αc = 1 and αr =
2+τ−c0
τ−c0

. Then, with probability at least 1−2δ, the regret
of OPLB satisfies

RΠ(T ) ≤
2L(αr + 1)βT (δ, d)√

λ

√
2T log(1/δ) (15)

+ (αr + 1)βT (δ, d)

√
2Td log(1 +

TL2

λ
).

We start the proof of Theorem 2, by defining the fol-
lowing event that holds w.p. at least 1− δ:

E =
{
‖θ̂t − θ∗‖Σt

≤ βt(δ, d) ∧ (16)

‖µ̂o,⊥
t − µo,⊥

∗ ‖Σo,⊥

t

≤ βt(δ, d− 1), ∀t ∈ [T ]
}
.

The regret RΠ(T ) in (2) can be decomposed as

RΠ(T ) =
T∑

t=1

rπ∗
t
− r̃πt,t

︸ ︷︷ ︸
(I)

+
T∑

t=1

r̃πt,t − rπt

︸ ︷︷ ︸
(II)

. (17)

where r̃πt,t is the optimistic reward defined by (9)
and (11). We first bound (II) in (17). To bound (II),
we further decompose it as

(II) =

T∑

t=1

〈xπt
, θ̃t〉 − 〈xt, θ̃t〉

︸ ︷︷ ︸
(III)

(18)

+

T∑

t=1

〈xt, θ̃t〉 − 〈xt, θ∗〉
︸ ︷︷ ︸

(IV)

+

T∑

t=1

〈xt, θ∗〉 − 〈xπt
, θ∗〉

︸ ︷︷ ︸
(V)

.

In the following lemmas, we first bound the sum of
(III) and (V), and then bound (IV).

Lemma 1. On event E defined by (16), for any γ ∈
(0, 1), with probability at least 1− γ, we have

(III) + (V) ≤ 2L(αr + 1)βT (δ, d)√
λ

·
√
2T log(1/γ) .
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Proof. We write (III) + (V) =
∑T

t=1〈xπt
− xt, θ̃t −

θ∗〉. By Cauchy-Schwartz, we have |〈xπt
− xt, θ̃t −

θ∗〉| ≤ ‖xπt
−xt‖Σ−1

t

‖θ̃t− θ∗‖Σt
. Since θ̃t ∈ Cr

t (αr), on

event E , we have ‖θ̃t − θ∗‖Σt
≤ (αr + 1)βt(δ, d). Also

from the definition of Σt, we have Σt - λI, and thus,
‖xπt

− xt‖Σ−1

t

≤ ‖xπt
− xt‖/

√
λ ≤ 2L/

√
λ. Hence,

Yt =
∑t

s=1〈xπs
− xs, θ̃s − θ∗〉 is a martingale sequence

with |Yt−Yt−1| ≤ 2L(αr+1)βt(δ, d)/
√
λ, for all t ∈ [T ].

By the Azuma–Hoeffding inequality and since βt is an
increasing function of t, i.e., βt(δ, d) ≤ βT (δ, d), for all
t ∈ [T ], w.p. at least 1 − γ, we have P

(
YT ≥ 2L(αr +

1)βT (δ, d)
√

2T log(1/γ)/λ
)
≤ γ, which concludes the

proof.

Lemma 2. On event E, we have (IV) ≤ (αr +

1)βT (δ, d)
√
2Td log

(
1 + TL2

λ

)
.

Proof. We report the proof in Appendix B.1.

After bounding all the terms in (II), we now process the
term (I). Before stating the main result for this term
in Lemma 4, we need to prove the following lemma.

Lemma 3. For any policy π, the following holds:

‖xo,⊥
π ‖(Σo,⊥

t )−1 ≤ ‖xπ‖Σ−1

t

. (19)

Proof. We report the proof in Appendix B.2.

In the following lemma, we prove that by appropri-
ately setting the scaling parameters αr and αc, we can
guarantee that at each round t ∈ [T ], OPLB selects
an optimistic policy, i.e., a policy πt, whose optimistic
reward, r̃πt,t, is larger than the reward of the optimal
policy rπ∗

t
, given the event E . This means that with

our choice of parameters αr and αc, the term (I) in (17)
is always non-positive.

Lemma 4. On the event E, if we set αr and αc, such
that αr, αc ≥ 1 and 1 + αc ≤ (τ − c0)(αr − 1), then for
any t ∈ [T ], we have r̃πt,t ≥ rπ∗

t
.

Here we provide a proof sketch for Lemma 4. The
detailed proof is reported in Appendix B.3.

Proof Sketch. We divide the proof into two cases de-
pending on whether in each round t, the optimal policy
π∗
t belongs to the set of feasible policies Πt, or not.

Case 1. If π∗
t ∈ Πt, then its optimistic reward is

less than that of the policy πt selected at round t
(by the definition of πt on Line 6 of Algorithm 1),
i.e., r̃π∗

t ,t
≤ r̃πt,t. This together with the fact that the

optimistic reward of any policy π is larger than its
expected reward, i.e., r̃π,t ≥ rπ, gives us the desired
result that r̃πt,t ≥ rπ∗

t
.

Case 2. If π∗
t .∈ Πt, then we define a mixture policy

π̃t = ηtπ
∗
t+(1−ηt)π0, where π0 is the policy that always

selects the safe action x0 and ηt ∈ [0, 1] is the maximum
value of η for which the mixture policy belongs to the
set of feasible policies, i.e., π̃t ∈ Πt. Conceptually, we
can think of ηt as a measure for safety of the optimal
policy π∗

t . Mathematically, ηt is the value at which
the pessimistic cost of the mixture policy equals to the
constraint threshold, i.e., c̃π̃t,t = τ . In the rest of the
proof, we first write c̃π̃t,t in terms of the pessimistic cost
of the optimal policy as c̃π̃t,t = (1−ηt)c0+ηtc̃π∗

t ,t
(c0 is

the expected cost of the safe action x0), and find a lower-
bound for ηt (see Eq. 26 in Appendix B.3). We then
use the fact that since π̃t ∈ Πt, its optimistic reward
is less than that of πt, i.e., r̃πt,t ≥ r̃π̃t,t, and obtain a
lower-bound for r̃π̃t,t as a function of rπ∗

t
(see Eq. 27 in

Appendix B.3). Finally, we conclude the proof by using
this lower-bound and finding the relationship between
the parameters αr and αc for which the desired result
r̃πt,t ≥ rπ∗

t
is obtained, i.e., 1+αc ≤ (τ−c0)(αr−1).

Proof of Theorem 2. The proof follows from the fact
that the term (I) is negative (Lemma 4), and by combin-
ing the upper-bounds on the term (II) from Lemmas 1
and 2, and setting γ = δ.

5 Constrained Multi-Armed Bandits

In this section, we specialize our results for contex-
tual linear bandits to multi-armed bandits (MAB) and
show that the structure of the MAB problem allows a
computationally efficient implementation of our OPLB
algorithm and an improvement in its regret bound.

In the MAB setting, the action set consists of K arms
A = {1, . . . ,K}. Each arm a ∈ [K] has a reward
and a cost distribution with means r̄a, c̄a ∈ [0, 1].
In each round t ∈ [T ], the agent constructs a pol-
icy πt over A, pulls an arm at ∼ πt, and observes
a reward-cost pair (rat

, cat
) sampled i.i.d. from the

reward and cost distributions of arm at. Similar to
the constrained contextual linear case, the goal of the
agent is to produce a sequence of policies {πt}Tt=1 with
maximum expected cumulative reward over T rounds,
i.e.,

∑T
t=1 Eat∼πt

[r̄at
], while satisfying the stage-wise

linear constraint Eat∼πt
[c̄at

] ≤ τ, ∀t ∈ [T ]. Moreover,
arm 1 is assumed to be the known safe arm, i.e., c̄1 ≤ τ .

Optimistic Pessimistic Bandit (OPB) Algo-
rithm. Let {Ta(t)}Ka=1 and {r̂a(t), ĉa(t)}Ka=1 be the
total number of times that arm a has been pulled
and the estimated mean reward and cost of arm a
up until round t. In each round t ∈ [T ], OPB relies
on the high-probability upper-bounds on the mean
reward and cost of the arms, i.e., {ur

a(t), u
c
a(t)}Ka=1,

where ur
a(t) = r̂a(t) + αrβa(t), u

c
a(t) = ĉa(t) + αcβa(t),
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