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Abstract

Given a mixture between two populations of coins, “positive” coins that each have—unknown
and potentially different—bias ≥ 1

2 + ∆ and “negative” coins with bias ≤ 1
2 −∆, we consider

the task of estimating the fraction ρ of positive coins to within additive error ε. We achieve
an upper and lower bound of Θ( ρ

ε2∆2 log 1
δ ) samples for a 1 − δ probability of success, where

crucially, our lower bound applies to all fully-adaptive algorithms. Thus, our sample complexity
bounds have tight dependence for every relevant problem parameter. A crucial component of
our lower bound proof is a decomposition lemma (see Lemmas 17 and 18) showing how to
assemble partially-adaptive bounds into a fully-adaptive bound, which may be of independent
interest: though we invoke it for the special case of Bernoulli random variables (coins), it applies
to general distributions. We present simulation results to demonstrate the practical efficacy of
our approach for realistic problem parameters for crowdsourcing applications, focusing on the
“rare events” regime where ρ is small. The fine-grained adaptive flavor of both our algorithm
and lower bound contrasts with much previous work in distributional testing and learning.

∗We thank Tim Kraska and Yeounoh Chung for bringing these problems to our attention in the data analytics
setting, and for contributing to the simulation results in this work. We thank an anonymous reviewer for asking
about the δ dependence in lower bounds, which led to the current tight results. This work is partially supported by
NSF award IIS-1562657. In addition, Paul Valiant is partially supported by NSF award DMS-1926686, and indirectly
supported by NSF award CCF-1900460.
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1 Introduction

We consider a natural statistical estimation task, motivated by a practical setting, with an intriguing
adaptive flavor. We provide a new adaptive algorithm and a matching fully adaptive lower bound,
tight up to multiplicative constants.

In our problem setting, there is a universe of coins of two types: positive coins each have a
(potentially different) probability of heads that lies in the interval [1

2 + ∆, 1], while negative coins
lie in the interval [0, 1

2 −∆], where ∆ ∈ (0, 1
2 ] parameterizes the “quality” of the coins. Our only

access to the coins is by choosing a coin and then flipping it, without access to the true biases of the
coins. An algorithm in this setting may employ arbitrary adaptivity—for example, flipping three
different coins in sequence and then flipping the first coin 5 more times if and only if the results of
the first 3 flips were heads, tails, heads. The challenge is to estimate the fraction ρ of coins that are
of positive type, to within a given additive error ε, using as few coin flips (samples) as possible. We
assume because of the symmetry of the problem (between positive and negative coins) that ρ ≤ 1

2 .
This model arose from a collaboration with colleagues in data science and database systems,

about harnessing paid crowdsourced workers to estimate the “quality” of a database. Our model
is a direct theoretical analog of the following practical problem, where sample complexity linearly
translates into the amount of money that must be paid to workers, and thus even multiplicative
factors crucially affect the usefulness of an algorithm. Given a set of data and a predicate on the
data, the task is to estimate what fraction of the data satisfies the predicate—for example, esti-
mating the proportion of records in a large database that contain erroneous data. After automated
tools have labeled whatever portion of the data they are capable of dealing with, the remaining
data must be processed via crowdsourcing, an emerging setting that potentially offers sophisticated
capabilities but at the cost of unreliability. Namely, for each data item, one may ask many human
users/workers online whether they think the item satisfies the predicate, with the caveat that the
answers returned could be noisy. In the case that the workers have no ability to distinguish the
predicate, we cannot hope to succeed; however, if the histograms of detection probabilities for pos-
itive versus negative data have a gap between them (the gap is 2∆ in the model above), then the
challenge is to estimate ρ as accurately as possible, from a limited budget of queries to workers [15].

A key feature that makes this estimation problem distinct from many others studied in the
literature is the richness of adaptivity available to the algorithm. Achieving a tight lower bound in
this setting requires considering and bounding all possible uses of adaptivity available to an algo-
rithm; and achieving an optimal algorithm requires choosing the appropriate adaptive information
flow between different parts of the algorithm. Much of the previous work in the area of statistical
estimation is focused on non-adaptive algorithms and lower bounds; however see [7], and in par-
ticular, Sections 4.1 and 4.2 of that work, for a survey of several distribution testing models that
allow for adaptivity. In our setting there are two distinct kinds of adaptivity that an algorithm can
leverage: 1) single-coin adaptivity, deciding how many times a particular coin should be flipped—a
per-coin stopping rule—in terms of the results of its previous flips, and 2) cross-coin adaptivity,
deciding which coin to flip next in terms of the results of previous flips across all coins. Our final
optimal algorithm (Section 3) leverages both kinds of adaptivity. In our tight lower bound analysis
(Section 5), we overcome the technical obstacles presented by the richness of adaptivity by giving
a reduction (Section 5.1) from fully-adaptive algorithms that leverage both kinds of adaptivity to
single-coin adaptive algorithms that process each coin independently, valid for our specific lower
bound instance. We discuss the approaches and challenges of our lower bound in more detail in
Section 1.1.2.

The main algorithmic challenge in this problem is what we call “uncertainty about uncertainty”:
we make no assumptions about the quality of the coins beyond the existence of a gap 2∆ between
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biases of the coins of different types (centered at 1
2). If we relaxed the problem, and assumed

(perhaps unrealistically) that we know 1) the conditional distribution of biases of positive coins,
and 2) the same for negative coins, and 3) an initial estimate of the mixture parameter ρ between
the two distributions, then we show that it is easy—using mathematical programming techniques
in Section 7.1—to construct an estimation algorithm with sample complexity that is optimal by
construction up to a multiplicative constant (see Section 7.2). On the other hand, our algorithm
for the original setting has to return estimates with small bias, and be sample efficient at the
same time, regardless of the bias of the coins, be they all deterministic, or all maximally noisy as
allowed by the ∆ parameter, or some quality in between. While intuitively the hardest settings
to distinguish information theoretically involve coins with biases as close to each other as possible
(and indeed our lower bound relies on mixtures of only 1

2 ± ∆ coins), settings with biases near
but not equal to 1

2 ± ∆ introduce “uncertainty about uncertainty” challenges. The two kinds of
adaptivity available to the algorithm allow us to meet these challenges by trading off, optimally,
between 1) investigating a single coin to reduce uncertainty about its bias, and 2) apportioning
resources between different coins to reduce uncertainty about the ground truth fraction ρ, which is
the objective of the problem.

1.1 Our Approaches and Results

To motivate the new algorithms of this paper, we start by describing the straightforward analysis of
perhaps the most natural approach to the problem, which is non-adaptive, based on subsampling.

Example 1. Recall that it takes Ω( 1
∆2 ) samples to distinguish a coin of bias 1

2 − ∆ from a coin
of bias 1

2 + ∆. We can therefore imagine an algorithm that chooses a random subset of the coins,
and flips each coin Ω( 1

∆2 ) many times. Asking for Θ( 1
∆2 log 1

ε ) flips from each coin guarantees
that all but ε fraction of the coins in the subset will be accurately classified. Given an accurate
classification of m randomly chosen coins, we use the fraction of these that appear positive as an
estimate on the overall mixture parameter ρ. Estimating ρ to within error ε requires m = O( ρ

ε2
)

randomly chosen coins. Overall, taking Θ( 1
∆2 log 1

ε ) samples from each of m = Θ( ρ
ε2

) coins uses
Θ( ρ

ε2∆2 log 1
ε ) samples.

As we will see, the above straightforward algorithm is potentially wasteful in samples by up to a
log 1

ε factor, since it makes Θ( 1
∆2 log 1

ε ) flips for every single coin, yet—since Ω( 1
∆2 ) samples suffices

to label a coin with constant accuracy—each sample beyond the first Θ( 1
∆2 ) samples from a single

coin gives increasing certainty yet diminishing information-per-coin. If we can save on this log 1
ε

factor without sacrificing impractical constants, then our approach leads to significant practical
savings in samples, and thus monetary cost—in regimes, such as crowdsourcing, where gathering
data is by far the most expensive part of the estimation process.

1.1.1 Algorithmic Construction

We give two algorithmic constructions. Algorithm 2, which we call the Triangular Walk algorithm,
is single-coin adaptive, and is theoretically almost-tight in sample complexity. Second, Algorithm 5
has the optimal sample complexity, by combining the Triangular Walk algorithm with a new (and
surprisingly) non-adaptive component (Algorithm 3).

The Triangular Walk algorithm (Algorithm 2) is designed for the specific practical parameter
regime where ρ is small: in our earlier crowdsourcing example, practitioners typically preprocess
data items by using automated techniques and heuristics to classify a majority of the items, before
leaving to crowdsourced workers a small number of items that cannot be automatically classified.
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These automated filtering techniques usually flag significantly more “negative” items than “posi-
tive” items as “unclassifiable automatically”, resulting in a small fraction ρ of positive items among
the ones selected for crowdsourced human classification. The intuition behind our approach, then,
is to try to abandon sampling (frequent) negative coins as soon as possible, after Θ( 1

∆2 ) samples,
while being willing to investigate (infrequent) positive coins up to depth Θ( 1

∆2 log 1
ε ). Thus we

disproportionately bias our investment of resources towards the rare and valuable regime. Using
techniques from random walk theory, we design a linear estimator based on this behavior (Algo-
rithm 1), whose expectation across many coins yields a robust estimator, Algorithm 2, as shown in
Theorem 1 (restated and proved in Section 2).

Theorem 1. Given coins where a ρ fraction of the coins have bias ≥ 1
2 +∆, and 1−ρ fraction have

bias ≤ 1
2 −∆, then running Algorithm 2 on t = Θ( ρ

ε2
log 1

δ ) randomly chosen coins will estimate ρ
to within an additive error of ±ε, with probability at least 1− δ, with an expected sample complexity
of O( ρ

ε2∆2 (1 + ρ log 1
ε ) log 1

δ ).

The analysis of Algorithm 2 uses only standard concentration inequalities, and thus the big-
O notation for the sample complexity does not hide large constants. As further evidence of the
good practical performance of Algorithm 2, Section 6 shows simulation-based experimental results,
run on settings with practical problem parameters for crowdsourcing applications. These results
demonstrate the advantages of our algorithm as compared with the straightforward majority vote
algorithm as well as the state-of-the-art algorithm [15] (which does not enjoy any theoretical guar-
antees).

As for our second, optimal, algorithmic construction (Algorithm 5 in Section 3), we combine
the adaptive techniques from the Triangular Walk algorithm with a non-adaptive estimation com-
ponent. More concretely, in the regimes where Algorithm 2 is not optimal, Algorithm 5 uses
Algorithm 2 to first give a 2-approximation of ρ, before using this information to non-adaptively
estimate ρ much more accurately, while keeping the variance of the estimate small, to control the
sample complexity. The theoretical guarantees of Algorithm 5 are shown in Theorem 2 (restated
and proved in Section 3).

Theorem 2 (Informal). Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1− ρ

fraction have bias ≤ 1
2 −∆, then for large enough constant c, running Algorithm 5 on a budget of

B ≥ c ρ
∆2ε2

coin flips will estimate ρ to within an additive error of ±ε, with probability at least 2/3.
If the algorithm is repeated Θ(log 1

δ ) times, and the median estimate is returned, then the probability
of failure is at most δ.

1.1.2 Lower Bounds and Discussion

Complementary to our algorithm, we show a matching lower bound of Ω( ρ
ε2∆2 log 1

δ ) samples for a
success probability of 1− δ for the problem. Crucially, our bounds match across choices of all four
parameters, ρ, ε,∆, δ. To show the lower bound, we use the following setup: consider a scenario
where all positive coins have bias exactly 1

2 + ∆ and all negative coins have bias exactly 1
2 −∆.

The overall intuition for our lower bound is that, for each coin, even flipping it enough to learn
whether it is a positive or negative coin will tell us little about whether the true fraction of positive
coins is ρ versus ρ+ ε, and thus the flow of information to our algorithm is at most a slow trickle.
To capture this intuition, we aim to decompose the analysis into a sum of coin-by-coin bounds;
however, the key challenge is the cross-coin adaptivity that is available to the algorithm.

To demonstrate the challenge of tightly analyzing cross-coin adaptivity, consider the following
natural attempt at a lower bound.
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1. Consider flipping a fair coin S to choose between a universe with ρ fraction of positive coins,
versus ρ+ ε fraction.

2. The aim is to bound the amount of mutual information that the entire transcript of an
adaptive coin-flipping algorithm can have with the coin S.

3. Suppose this mutual information can be bounded by the mutual information of the sub-
transcript of the ith coin with S, summed over all i.

4. Thus consider and bound the amount of mutual information between the sub-transcript of
just coin i alone, with S; and sum these bounds over all coins at the end.

While one would intuitively expect the bounds of Step 4 to be small for each single coin, cross-coin
adaptivity allows for each single-coin sub-transcript to encode a lot of mutual information via its
length, which may be adaptively chosen by the algorithm in light of information gathered across all
other coins. The amount of mutual information about S in a sub-transcript may be linear in the
number of times other coins have been flipped, implying that summing up such mutual information
across all coins would yield a bound that uselessly grows quadratically with the number of flips,
instead of linearly.

Our approach: We show that no fully-adaptive algorithm can distinguish the following two
scenarios with probability at least 1 − δ, using o( ρ

ε2∆2 log 1
δ ) samples: 1) when a ρ fraction of the

coins are positive, and 2) when a ρ+ ε fraction of the coins are positive. This is formalized as the
following theorem (Theorem 3), and proved in Section 5.

Theorem 3. For ρ ∈ [0, 1
2) and ε ∈ (0, 1 − 2ρ], the following two situations are impossible to

distinguish with at least 1− δ probability using an expected o( ρ
ε2∆2 log 1

δ ) samples: A) ρ fraction of
the coins have probability 1

2 + ∆ of landing heads and 1 − ρ fraction of the coins have probability
1
2 −∆ of landing heads, versus B) ρ+ ε fraction of the coins have probability 1

2 +∆ of landing heads
and 1 − (ρ + ε) fraction of the coins have probability 1

2 − ∆ of landing heads. This impossibility
crucially includes fully-adaptive algorithms.

In Section 5.1, we capture rather generally via Lemmas 17 and 18 the above intuitive decom-
position of a many-coin adaptive algorithm into its single-coin contributions, but via a careful
simulation argument that precludes the kind of information leakage between coins that we de-
scribed above. More explicitly, instead of decomposing a single transcript into many (possibly
correlated) sub-transcripts, we relate an n-coin transcript to n separate runs of the algorithm (each
on freshly drawn random coins), where in the ith run, coin i is authentically sampled (from either
the ρ scenario or the ρ+ ε scenario), while all the remaining coins are simulated by the algorithm.
Crucially, since the remaining simulated coins do not depend on the “real” scenario, no cross-coin
adaptivity can leak any information about the real world to coin i, beyond the information gained
from flipping coin i itself.

Furthermore, Lemmas 17 and 18 apply to a broad variety of problem settings, where the pop-
ulation of random variables can be arbitrary and not necessarily Bernoulli coins. We believe these
lemmas are of independent interest beyond this work, and can be a useful tool for proving lower
bounds for other problem settings, for example a Gaussian variant of the current problem, where
instead of being input a noisy yes/no answer on the positivity of an item, we instead receive a
numerical Gaussian-distributed score with mean, say, > 1 for positive items and < 0 for negative
items.

Given the decomposition lemmas (Lemmas 17 and 18), completing the lower bound analysis
for the current problem requires upper bounding the squared Hellinger distance between running
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Upper Bound Lower Bound

Adaptive O( ρ
ε2∆2 log 1

δ ) (Algorithm 5) Ω( ρ
ε2∆2 log 1

δ ) (Section 5)

Non-adaptive
O( ρ

ε2∆2 log 1
ε log 1

δ ) (Trivial, Example 1)
O( 1

ε2∆2 log 1
δ ) (Algorithm 3 for ρ = Θ(1) )

Ω( ρ
ε2∆2 log 1

ρ) (For ρ ≥ ε2 and constant δ)

Table 1: Sample Complexity Upper and Lower Bounds

any single-coin adaptive algorithm on the two coin populations described earlier, with slightly
different positive-to-negative mixture ratios. This forms the bulk (and technical parts) of the proof
of Theorem 3.

Non-adaptive bounds: As motivation for the algorithmic results of this paper, it is reasonable to
ask, given Theorem 3’s lower bound of Ω( ρ

ε2∆2 log 1
δ ) on the number of samples for our problem, is

it possible that a non-adaptive algorithm can approach this performance, or is the adaptive flavor
of Algorithms 2 or 5 required? We briefly describe how the framework of the “natural attempt”
(the numbered list above) in fact yields a lower bound for non-adaptive algorithms that is a log 1

ρ

factor higher than that of Theorem 3, namely Ω( ρ
ε2∆2 log 1

ρ), when ρ ≥ ε2
Given a random variable S that uniformly chooses between scenarios “ρ” and “ρ+ε” respectively,

and a sample of size n from a coin that has bias 1
2 + ∆ with probability ρ or ρ + ε respectively,

and bias 1
2 − ∆ otherwise, what is the mutual information between the n observed flips (from a

single coin) and the scenario variable S? A non-adaptive algorithm must fix the number of queries
n independent of the observed outcomes from the coins, where the information about S is the sum
received from sampling each coin. Thus the optimal such algorithm chooses n that maximizes the
mutual information per sample. Estimates of this mutual information in the relevant cases are
not too difficult, as this is the mutual information between a univariate distribution that is the
mixture of two binomials, with a fair coin that determines the mixture probabilities. In terms of
∆, and ρ ≥ ε2, some calculation shows that the optimal value of n is Θ( 1

∆2 log 1
ρ), which yields the

above-claimed non-adaptive lower bound on sample complexity of Ω( ρ
ε2∆2 log 1

ρ). See Appendix A
for the complete calculations.

For the constant-ρ (and constant probability) regime, this lower bound is in fact tight. A major
component of our final algorithm, Algorithm 3, when run on a single constant quality (∆ = Ω(1) )
coin with the parameter f = f0(p) as defined in Definition 11, is a non-adaptive unbiased estimator
for the indicator function of the positivity of the coin, with small variance and constant sample
complexity. For a low quality coin (∆ = o(1) ), we can simulate a flip of a constant quality coin
by taking the majority result of Θ(1/∆2) low quality coin flips. Returning the mean of O( 1

ε2
)

repetitions of Algorithm 3 on different coins yields an ε-accurate estimate of ρ. The total sample
complexity is O( 1

ε2∆2 ), which matches the non-adaptive lower bound in the constant-ρ regime.
In summary, we have the adaptive and non-adaptive bounds in Table 1. As shown in Table 1,

the non-adaptive bounds match each other and the adaptive bounds only in the regime where
ρ = Θ(1) (and in the trivial ε = Θ(1) regime). In the non-constant ρ regime, the non-adaptive
lower bound is asymptotically larger than the adaptive lower bound, demonstrating the need for
adaptivity in the design of our final optimal algorithm.
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1.1.3 Practical Considerations

The keen-eyed reader might notice that the algorithmic results in Theorems 1 and 2 both depend
on the unknown ground truth ρ, so thus these bounds are not immediately invokable by a user.
We present two approaches to address this issue.

The first approach is to note that Algorithm 2 can be interpreted as an anytime algorithm: it
can produce an estimate at any point in its execution. As more coins are used in Algorithm 2,
the estimate simply gains accuracy. Section 2.1 discusses this approach in more detail, and our
experiments in Section 6 are also run using the same approach. Because of its simplicity, we
recommend this method in practice.

A complication arising from this approach is the fact the sample complexity bound of Theorem 1
is an expected sample complexity bound. Thus there are potential issues introduced by abruptly
stopping the algorithm after a fixed budget of samples, which might inadvertently introduce bias
to the estimate. Section 2.1 also shows how to analyze and address this issue.

The second, theoretically more interesting approach is to fix a total budget of allowable coin
flips, and have the algorithm “discover” the optimal achievable accuracy ε just from interacting
with the different coins. Our presentation and analysis of Algorithm 5, in Section 3, follows this
approach. We point out that Algorithm 2 can also be made to have this theoretical guarantee, as
demonstrated by the invocation of Algorithm 2 in Algorithm 5.

1.1.4 Designing Optimal Estimators when Coin Biases are Known

By contrast with the above results that analyze the “uncertainty about uncertainty” regime with
unknown populations of coins, we shed light on the algorithmic challenges of that regime by pro-
viding a tight analysis in the case where knowledge about the populations of coins can be leveraged
by the algorithm. In particular, we give a bootstrapping approach which takes some initial guess of
ρ along with knowledge of the coin population, and produces an optimal-by-construction estimator
that can be used improve on the initial estimate. Explicitly, consider the regime where we know
1) the distribution of coin biases conditioned on being a positive coin, 2) analogously for negative
coins and 3) also ρ itself, for bootstrapping purposes even though in practice we would only have a
guess. Suppose further that we are given 4) the constraint that we will invest at most nmax flips on
a single coin, controlling both the sample complexity but also the computational complexity we can
afford to computer the optimal estimator. In Section 7.1, we use quadratic and linear programming
techniques to find a single-coin adaptive algorithm, taking the form of a linear estimator, with the
minimum variance possible subject to the constraint that, even if our knowledge of ρ is wrong, the
estimator is still unbiased. This construction yields the following theorem.

Theorem 4. Suppose we are given 1) the distribution of coin biases conditioned on being a positive
coin, 2) the analogous distribution for negative coins and 3) the mixture parameter ρ (which, again,
is a circular assumption but useful for a bootstrapping approach). Suppose further that we are given
4) the parameter nmax, which controls the maximum depth of the triangular walk.

Then, following the method described in Section 7.1, we can find the linear estimator for ρ that
minimizes variance, subject to a) the expected output of the estimator on input a random positive
coin is 1 and b) the analogous expected output for a random negative coin is 0.

Moreover, if the objective of the linear program in Figure 4 is U , then the expected sample
complexity of the constructed linear estimator is O( 1

Uε2
log 1

δ ), which will estimate ρ to within an
additive error of ε with probability at least 1− δ.

We further show in Section 7.2 that this linear estimator construction is in fact optimal in
sample complexity, up to constant multiplicative factors, in the regime of constant probability
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success and subject to the same constraint that each coin can only be flipped at most nmax times.
The following theorem captures the exact guarantees.

Theorem 5. Suppose we are given the 4 pieces of data as in Theorem 4 above.
The linear estimator produced from solving the linear program in Figure 4, as described in

Theorem 4, has total expected sample complexity that is within a constant factor of any optimal
fully-adaptive algorithm with ≥ 2

3 probability of success, subject to the same constraint that no coin
is flipped more than nmax many times.

The proof of this theorem—like our main lower bound of Theorem 3—also relies on Lemma 17
to relate fully-adaptive algorithms to single-coin-adaptive algorithms; and constant-factor tightness
comes from the fact that the linear programs minimizing the variance of a linear estimator versus
maximizing squared Hellinger distance are within a constant factor of each other.

1.2 Related Work

A related line of work considers the scenario where all positive coins have identical bias (not
necessarily greater than 1/2), and negative coins also have identical bias (strictly less than the
positive coins’ bias), with the ultimate goal of identifying any single coin that is positive (or
“heavy” in the terminology of these works). The problem has been studied and solved optimally
in the context where the biases and positive-negative proportions are known [13], and also when
none of this information is known [26, 21]. Such problems may be seen as a special case of bandit
problems.

Another related line of work concerns the learning of distributions of (e.g. coin) parameters
over a population, which arises in various scientific domains [24, 25, 27, 28, 16, 3]. In particular,
the works of Lord [24], and Kong et al. [33, 36] consider a model similar to ours, with the crucial
difference that each coin is sampled a fixed number t many times—instead of allowing adaptive
sampling as in the current work—with the objective of learning the distribution of biases of the
coins in the universe.

Since an earlier version of this paper was posted on arXiv, more recent work by Brennan et al. [6]
considers a generalization of our setting, but because of different motivation and parameterization,
both their upper and lower bounds are not directly comparable with ours.

Our problem also sits in the context of estimation and learning tasks with noisy or uncalibrated
queries. The noiseless version of our problem would be when ∆ = 1

2 and thus 1
2 ±∆ equals either

0 or 1. That is, all coins are either deterministically heads or deterministically tails, and thus
estimating the mixture parameter ρ is equivalent to estimating the parameter of a single coin with
bias ρ, which has a standard analysis. Prior works have considered noisy versions of well-studied
computational problems, such as (approximate) sorting and maximum selection under noisy access
to pairwise comparisons [19, 17] and maximum selection under access to uncalibrated numerical
scores that are consistent with some global ranking [37].

Furthermore, our problem can be interpreted as a special case of the “testing collections of dis-
tributions” model introduced by Levi, Ron and Rubinfeld [22, 23], modulo the distinction between
testing and parameter estimation. In their model, a collection of m distributions (D1, . . . , Dm)
(over the same domain) is given to the tester, and the task is to test whether the collection satisfies
a particular property, where a property in this case is defined as a subset of m-tuples of distribu-
tions. In the query access model, one is allowed to name an index i ∈ {1, . . . ,m} and get a fresh
sample from the distribution Di. Our problem can be analogously phrased in this model, where
the distributions are over the domain {0, 1}, and the property in question is whether the fraction
ρ of distributions in the collection having bias ≥ 1/2 is greater than some threshold τ .
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We highlight other distribution testing models that allow for adaptive sampling access. For
example, in testing contexts, conditional sampling oracles have been considered [12, 8, 11, 10, 18, 1],
where a subset of the domain is given as input to the oracle, which in turn outputs a sample from
the underlying unknown distribution conditioned on the subset. Evaluation oracles have also been
considered [29, 2, 20, 9], where the testing algorithm has access to an oracle that evaluates the
probability mass function or the cumulative mass function of the underlying distribution. See the
survey by Canonne [7] for detailed comparisons between the different standard and specialized
access models, along with a discussion of recent results.

Adaptive lower bounds of problems related to testing monotonicity of high-dimensional Boolean
functions have a somewhat similar setup to ours, where binary decisions adaptively descend a
decision tree according to probabilities that depend both on the algorithm and its (unknown)
input that it seeks to categorize [4, 14]. Lower bounds in these works rely on showing that the
probabilities of reaching any leaf in the decision tree under the two scenarios that they seek to
distinguish are either exponentially small or within a constant factor of each other. This proof
technique is powerful yet does not work in our setting, as many adaptive algorithms have high-
probability outcomes that yield non-negligible insight into which of the two scenarios we are in.
By contrast, our proof technique involves showing that, while such “insightful” outcomes may be
realized with high probability, in these cases we must pay a correspondingly high sample complexity
cost somewhere else in the adaptive tree.

A crucial part of our lower bound proof, Lemma 18, involves carefully “decomposing” fully-
adaptive (multi-coin) algorithms into their single-coin components. Work by Braverman et al. [5]
gives a data processing inequality in the context of communication lower bounds, whose proof uses
similar ideas to how we prove Lemma 18.

As described at the beginning of the introduction, results of this work have practical applica-
tions in crowdsourcing algorithms in the context of data science and beyond. Theoretical studies
with similar aims to our own have been undertaken on handling potentially noisy answers from
crowdsourced workers due to lack of expertise [32, 30], (including this work); in practice it is also
crucial to understand how to incentivize workers to answer truthfully [31]. Our work also addresses
directly the practical problem proposed by Chung et al. [15], to issue queries to potentially unre-
liable crowdsourced workers in order to estimate the fraction of records containing “wrong” data
within a database; here adaptive queries are a natural capability of the model.

2 The Triangular Walk Algorithm

In this section, we present the Triangular Walk algorithm (Algorithm 2) for the problem, in the
regime where both ρ and the coin biases are unknown. This is an important subroutine of our main,
optimal algorithm; and the Triangular Walk algorithm itself can be used as an estimator in its own
right. We demonstrate later in Section 6, with simulation results, that this algorithm offers practical
advantages over the straightforward majority vote estimator mentioned in the introduction, as well
as the state-of-the-art method used in practice.

The Triangular Walk algorithm leverages only single-coin adaptivity, and makes no use of cross-
coin adaptivity. At the heart of our algorithm is an estimator (Algorithm 1) that works coin-by-coin,
in the regime ∆ ≥ 1

4 ; subsequently we show how to use this estimator to solve the general problem,
with an arbitrary (but known) ∆.

We describe an asymmetric estimator (Algorithm 1) that, given sampling access to a single coin
of bias p, returns a real number whose expectation is in [1 ± ε

2 ] if p ≥ 3
4 , and whose expectation

is in [± ε
2 ] if p ≤ 1

4 . The estimator is asymmetric in the sense that it will quickly “give up on”
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coins with p ≤ 1
4 , taking only a constant number of samples from them in expectation, while it will

more deeply investigate the rare and interesting case of p ≥ 3
4 . Below, c will be a constant that

emerges from the analysis, where c log 1
ε coin flips suffice to yield an empirical fraction of heads

within poly(ε) of the ground truth, p.

Algorithm 1 Single-coin estimate

Given: a coin of bias p, error parameter ε

1. Let n← 0 (representing the total number of coin flips so far)

2. Let k ← 0 (representing the total number of observed heads so far)

3. Repeat:

(a) Flip the coin, and increment n← n+ 1

(b) If heads, increment k ← k + 1

(c) If 2k ≤ n, return 0 and halt (majority of flips are tails, evidence that p is small)

(d) If n = c log 1
ε , return min(4, n

2k−n) and halt (enough flips for concentration)

Our overall algorithm robustly combines estimates from running Algorithm 1 on many coins
via the standard median-of-means technique. To deal with the general case when ∆ might be much
smaller than 1

4 , we “simulate a 1
4 -quality coin” by running Algorithm 1 not on individual flips, but

rather on the majority vote of blocks of Θ( 1
∆2 ) flips; this majority vote will convert a coin of bias

≤ 1
2 −∆ to a simulated coin of bias ≤ 1

4 , and symmetrically, convert a coin of bias ≥ 1
2 + ∆ to a

simulated coin of bias ≥ 3
4 .

Algorithm 2 Triangular walk algorithm

Given: t coins, quality parameter ∆, error parameter ε, and failure probability parameter δ

1. For each coin: simulate a new “virtual” coin by computing the majority of Θ( 1
∆2 ) flips each

time a “virtual” flip is requested; run Algorithm 1 on each virtual coin, using, inputting ε
unchanged, and record the returned estimates.

2. Partition the returned estimates into Θ(log 1
δ ) groups and compute the mean of each group.

3. Return the median of the Θ(log 1
δ ) means, or 0 if any of the groups in step 2 are empty.

Theorem 1. Given coins where a ρ fraction of the coins have bias ≥ 1
2 +∆, and 1−ρ fraction have

bias ≤ 1
2 −∆, then running Algorithm 2 on t = Θ( ρ

ε2
log 1

δ ) randomly chosen coins will estimate ρ
to within an additive error of ±ε, with probability at least 1− δ, with an expected sample complexity
of O( ρ

ε2∆2 (1 + ρ log 1
ε ) log 1

δ ).

The rest of this section concerns the (relatively straightforward) proof of Theorem 1, via an
analysis of Algorithms 1 and 2; Section 4 instead formulates a more general algorithmic framework
that adds some perspective to Algorithm 1, and whose abstractions will be crucial to the lower
bound analysis in Section 5.

Intuition and analysis of Algorithm 1: Recall that Algorithm 1 is designed to work for coins
of constant noise-quality ∆, namely, coins have bias either ≤ 1

4 or ≥ 3
4 , and nothing in between.

Algorithm 1 halts under two conditions: either the majority of observed flips have been tails—
Step 3(c)—or our budget of coin flips (for that coin) is exhausted—Step 3(d). The first stopping
condition is designed to make it more likely to halt early for negative coins (coins with bias p ≤ 1

4),
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even though all coins may have a significant chance of halting early. Importantly, the chance of
Algorithm 1 halting early depends on the coin’s bias p, which is a priori unknown. The output
coefficients in Step 3(d) are designed so that the expected output, given any negative coin (of bias
≤ 1

4), is close to 0, and similarly close to 1 given a positive coin (of bias ≥ 3
4). Furthermore, the

output coefficients are all bounded by a constant, which gives a constant bound on the variance of
the estimate.

Lemma 6 captures the guarantees we need from Algorithm 1 in order to analyze the triangular
walk algorithm, Algorithm 2.

Lemma 6. If Algorithm 1 is run with a sufficiently large universal constant c, then the following
statements hold.

1. Given an arbitrary negative coin (having bias p ≤ 1
4), the output of Algorithm 1 has expectation

in [± ε
2 ] and variance upper bounded by ε2. Furthermore, the expected sample complexity in

this case is upper bounded by a constant.

2. Given an arbitrary positive coin (having bias p ≥ 3
4), the output of Algorithm 1 has expectation

in [1± ε
2 ] and variance upper bounded by a constant. The expected sample complexity in this

case is (trivially) upper bounded by c log 1
ε .

The overall expected sample complexity, when the fraction of positive coins is ρ, is O(1 + ρ log 1
ε ).

Proof. Consider running Algorithm 1 on a coin of bias p, and let nmax = c log 1
ε be the number of

coin flips after which the algorithm always halts in Step 3(d). Consider running Algorithm 1 on
a sequence of nmax flips of the coin (even if the algorithm may halt early before exhausting the
sequence of flips). If the sequence is majority-tails, then the algorithm must halt early via Step
3(c) at some point, and thus return 0.

For a negative coin, namely with bias p ≤ 1
4 , the chance of observing majority-heads after c log 1

ε

coin flips is εO(c), and we choose c so that this probability is O(ε2), so that (given that estimates
returned by Algorithm 1 are always bounded by 4), for negative coins, the expected estimate of
Algorithm 1 is in [0, ε2 ] and the variance is at most ε2.

By contrast, for a positive coin, with bias p ≥ 3
4 , the fraction of observed heads after c log 1

ε
flips will concentrate around p ≥ 3

4 . The challenge is to choose nonzero output coefficients in Step
3(d) of Algorithm 1 that will average out to 1 in expectation, despite the fact that many of these
sequences of coin flips will lead Algorithm 1 to terminate early in Step 3(c) and output 0. Moreover,
as mentioned earlier, the proportion of sequences that will halt early depends on p itself, which is
a priori unknown.

The key idea, from standard results on random walks, is that, conditioned on k out of nmax flips
landing heads, the probability of reaching nmax flips—without ever halting in Step 3(c) by having a
temporary majority of tails—is independent of p, and is in fact expressed by the formula 2k−nmax

nmax
.

Conditioned on k out of nmax flips being heads, whether Algorithm 1 halts early depends only on
the permutation of the coin flips, and each such permutation of k heads out of nmax flips is equally
likely. We thus apply the following standard random walk result to derive the aforementioned
formula—where heads is interpreted as a +1 step in a 1-D random walk, tails is interpreted as a
−1 step, and observing k out of n heads is analogous to reaching position v = 2k−n in the random
walk.

Fact 7 (The Ballot Theorem). Consider a 1-D walk that starts at the origin, and moves one step
in either the positive or negative direction at each time. The number of paths from the origin that
end at v at time nmax, which do not revisit the origin, is a |v|

nmax
fraction of the total number of

paths from the origin to v at time nmax.
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Algorithm 1, in Step 3(d), returns min(4, nmax
2k−nmax

), which equals nmax
2k−nmax

when k ≥ 5
8nmax.

In light of Fact 7, in Algorithm 1, conditioned on k ≥ 5
8nmax out of nmax coin flips being heads,

the nonzero coefficient nmax
2k−nmax

will be output in Step 3(d) with probability 2k−nmax
nmax

, and thus the

conditional expected output is exactly 1. For p ≥ 3
4 , the probability of k ≥ 5

8nmax flips being heads

is 1− εO(c) by our choice of nmax. The expected output of Algorithm 1 will therefore be within ε/2
of 1 for a sufficiently large choice of the constant c.

The variance of Algorithm 1 given a positive coin is clearly upper bounded by a constant, simply
because the output coefficients are bounded by 4.

We lastly analyze the expected sample complexity of Algorithm 1, run on negative and positive
coins. For positive coins, we can simply upper bound the sample complexity by nmax = Θ(log 1

ε ),
which is tight if the coin has bias p = 1. For negative coins, even ignoring the halting conditions,
the probability of getting > n

2 heads after n coin flips decreases exponentially in n. Since the
algorithm halts if it ever observes majority-tails, proceeding for many flips becomes exponentially
unlikely. Thus the expected number of flips of the algorithm is bounded by a constant in the case
of a negative coin.

Analyzing Algorithm 2: We conclude by proving Theorem 1, which analyzes Algorithm 2.

Proof of Theorem 1. For this proof, we assume that ρ = Ω(ε2). Otherwise, the case is handled in
Step 3 of Algorithm 2, which returns the valid estimate of 0.

At a high-level, Algorithm 2 runs Algorithm 1 repeatedly on independently chosen coins.
Observe that in Step 1 of Algorithm 2, for each coin we simulate a new “virtual” coin, by using

the majority vote of Θ(1/∆2) coin flips to compute each requested coin flip. By Chernoff bounds,
if each given coin has bias either p ≤ 1

2 −∆ or p ≥ 1
2 + ∆, then the corresponding virtual coin will

have bias p ≤ 1
4 and p ≥ 3

4 respectively. Therefore, by Lemma 6, the output of Step 1 for each
coin is a random variable with expectation in [ρ ± ε

2 ]. As for the variance of the output, we do
the following calculation. Let X0 denote the random variable that is the output of Algorithm 1
when given a random negative coin, and similarly X1 for a random positive coin. The output of
Algorithm 1, which we call Y , is thus distributed as X1 with ρ probability and as X0 with 1 − ρ
probability. The variance of Y is

Var[Y ] = ρVar[X1] + (1− ρ) Var[X0] + Var
i←Bernoulli(ρ)

[E[Xi]]

≤ O(ρ) + (1− ρ)ε2 + ρ(E[X1])2 + (1− ρ)(E[X0])2

≤ O(ρ) + ε2 +O(ρ) +O(ε2)

= O(ρ)

Steps 2 and 3 of Algorithm 2 are the median-of-means method for estimating the mean of
a (real-valued) random variable. Using t = Θ( ρ

ε2
log 1

δ ) coins, each of the Θ(log 1
δ ) groups will

have Θ( ρ
ε2

) coins and hence outputs from Algorithm 1. By Chebyshev’s inequality, with constant

probability, the sample mean of each group’s estimates will be within O(
√

ε2

ρ ) standard deviations

of the expected output of Algorithm 1. The estimation error is therefore equal to O(ε), with a
multiplicative constant that can be made arbitrarily small by adjusting the constant in the choice
of the number of coins t. Step 3 computes the median of Θ(log 1

δ ) such sample means, which boosts
the success probability from constant to 1− δ, via standard uses of Chernoff bounds.

Lastly, the total expected sample complexity is the product of 1) the choice of t in the theorem
statement, 2) Θ(1/∆2) which is the number of coin flips used for each majority vote in Step 1, and 3)
the sample complexity of Algorithm 1 as stated in Lemma 6, yielding O( ρ

ε2∆2 (1+ρ log 1
ε ) log 1

δ ).
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While Theorem 1 gives ε as input to Algorithm 2 and then asks how many coins are needed to
achieve this ε error, it will be useful as a preliminary step of our optimal Algorithm 5 to consider
the performance of Algorithm 2 where these two roles for ε are decoupled. Explicitly, how many
coins or samples does it take for Algorithm 2 to achieve error ε1, when Algorithm 2 is given ε2 as
input? We will use this result in the regime where the failure probability for Algorithm 2 should
be a constant, and thus for simplicity we omit δ from the following statement.

Corollary 8. Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1 − ρ fraction

have bias ≤ 1
2 − ∆, then, for parameters ε1, ε2 > 0, running Algorithm 2 on t = Θ( ρ

ε21
) randomly

chosen coins with parameter ε = ε2 will estimate ρ to within an additive error of ±ε1, with failure
probability at most 0.1+O(t ·poly(ε2)), with an expected sample complexity of O( ρ

ε21∆2 (1+ρ log 1
ε2

)).

Note that the degree of the polynomial term (in ε2) in the failure probability can be made arbitrarily
high, by choosing a large constant c in Step 3(d) of Algorithm 1.

Proof. (Sketch) The proof is essentially the same as that of Theorem 1.
The crucial difference is that, instead of interpreting the ε parameter of Algorithm 2 as an

(additive) error parameter for the produced estimate, we interpret ε (which we parameterize as ε2
in the corollary statement) as a “coin misclassification probability”. We explain this in more detail.

As shown in the proof of Theorem 1, with nmax = Θ(log(1/ε2)), the probability that Algorithm 1
produces a non-0 estimate for a negative coin is poly(ε2). As for a positive coin, based on the
analysis using Fact 7, the probability that nmax flips of a positive coin resulting in fewer than
k = 5

8nmax heads is also poly(ε2). Conditioned on such failure not happening, the expected value
of Algorithm 1 on a positive coin is exactly 1.

Therefore, we can interpret Algorithm 2 as follows. Taking a union bound over the probabilities
of the aforementioned failure modes, there is at most O(t · poly(ε2)) probability that any of the t
coins are “misclassified”. Conditioned on that not happening, Algorithm 1 is just a (meta-)Bernoulli
coin that flips positive with probability ρ and negative with probability 1 − ρ, in expectation.
Explicitly, assuming (as happens with probability 1 − O(t · poly(ε2)) that none of the t coins are
“misclassified”), each negative coin will yield an output of exactly 0, and each positive coin will
yield an output of expectation exactly 1 and constant variance. Thus, given that a ρ fraction of
coins from the underlying distribution are positive, the output will be exactly ρ in expectation
(except with O(t · poly(ε2)) misclassification probability) and has O(ρ) variance. By Chebyshev’s
inequality, the mean output over t = Θ( ρ

ε21
) coins will be within ±ε1, except with probability 0.1

(choosing the multiplicative constant in the definition of t appropriately), as desired.
The variance of Algorithm 1 has already been bounded by O(ρ) as in Theorem 1, and so

the performance of Algorithm 2 can be analyzed by a straightforward application of Chebyshev’s
inequality, yielding the accuracy part of the corollary statement, as well as the 0.1 probability term
in the failure probability.

2.1 Implementing Algorithm 2

Later in Section 6, we give experimental results to demonstrate the performance of Algorithm 2
in practice. Here we address other concerns regarding the practical implementation and use of the
algorithm.

The first concern is the fact that ρ, the ground truth that we are trying to estimate, appears
in the sample complexity bound. We note that, once we fix an error parameter ε and the constant
c in Algorithm 1, the overall algorithm of Algorithm 2 is an anytime algorithm: it can produce an
estimate given any number of samples/coin flips, and the estimate simply gets more accurate (until
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it is as small as ε) as it gets a larger sample size. Crucially, the algorithm execution does not depend
on the value of ρ itself. Thus, the fact that ρ appears in the sample complexity has no bearing
on the execution on the algorithm. In Section 3, we present our final algorithm (Algorithm 5)
in a form where, given a budget B of coin flips, the algorithm “discovers” the correct ε based on
the unknown answer ρ and the tight sample complexity formula. Algorithm 2 can enjoy the same
guarantee following its invocation in Algorithm 5. The key insight is that, instead of fixing an ε for
Algorithm 1, we use the budget B to derive a cutoff for the maximum number of flips we invest in
a single coin.

The second issue is on the practical parameter regime of the noise parameter ∆. In this work,
we study the asymptotics of the sample complexity as ∆→ 0, but in practice, the quality of yes/no
questions being asked will have at least constant correlation with the truth. To run our algorithms,
then, we would ignore Step 1 of Algorithm 2, namely simulating “virtual” coins from real coins,
and use real coin flips directly in Algorithm 1.

The third practical concern is on the non-zero output coefficients in Algorithm 1, in Step
3(d). In the algorithm and its subsequent analysis, we gave coefficients with a simple form of
min(4, n

2k−n), which allowed for a straightforward analysis with Chernoff bounds. However, these
output coefficients may not be the best possible, recalling that the objective of these coefficients
is to make sure that the expected output of any underlying coin of bias p ≥ 3

4 is as close to 1
as possible. A simple observation is that the expected output of Algorithm 1 is in fact a smooth
polynomial in p with coefficients determined by the output coefficients in the algorithm. Therefore,
in practice, once we fix the constant c (or the entire quantity c log 1

ε ) in the algorithm description
(Step 3(d) again), we can run a local search/gradient-based method to find output coefficients
that make the expected output polynomial as close to 1 as possible, with initial coefficients being
the ones given in Algorithm 1. These new output coefficients are reusable in practice as long as
the noise parameter ∆ in practice is not lower than the ∆ for which the output coefficients were
generated.

The fourth and last concern we address here is related to the first concern and the “anytime
algorithm” implementation of Algorithm 2. The concentration results were phrased in terms of the
number of coins that need to be sampled, namely the number of times Algorithm 1 is called by
Algorithm 2. Each run of Algorithm 1 then flips each coin an a priori unknown number of times to
produce estimates. Since the sample complexity of a single triangular walk (Algorithm 1) is random,
the concentration results only give an expected overall sample complexity for the algorithm. On the
other hand, in practice one may wish to impose a fixed budget for sample complexity and simply
use the entire budget. Such an approach introduces the issue that the triangular walk started last
will probably not have finished by the time the budget is exhausted. How then can we aggregate the
estimates obtained from the completed triangular walks without introducing bias in subtle ways?

Here we show the surprising result that the most natural algorithm does in fact work as is:
that is, we take the average estimate of all the completed walks, ignoring the incomplete walk in
progress. As an example, to demonstrate that this success is unintuitive and nontrivial, if we instead
separately run two executions of Algorithm 2 with separate budgets, and averaged the estimates of
all completed walks across both executions, this average would be biased; but if we computed the
average of those walks completed under each budget, separately, then—by the main result of this
section—each average would be unbiased, and we could average these averages together to yield an
unbiased estimator.

To show that this “budgeted estimator” is unbiased, we view it as the following two-stage
estimator: 1) We estimate without bias the distribution over states (n, k) that the triangular walk
(Algorithm 1) terminates at, when given a randomly chosen coin from the universe, namely the
numbers {αn,k(ρh+

n,k + (1 − ρ)h−n,k)} (using notation defined in Definition 13). 2) We simply take
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the dot product of this distribution with the corresponding output values {vn,k} (as defined in
Algorithm 1).

In order to perform step 1), that is to estimate the distribution of termination over the states,
we use the estimator i(n,k)/

∑
m,j i(m,j) where i(n,k) is the number of observed walks that terminated

at (n, k), ignoring incomplete walks. The following proposition shows that the estimation in step
1) is unbiased, from which it follows that the entire estimator is indeed also unbiased.

Proposition 9. Given a budget T > 0, and suppose we repeatedly run an adaptive algorithm A
on a single coin until we have flipped the coin T times in total. Given a set of outcomes for the
algorithm A, indexed by k ∈ {1, . . . ,K}, let pk be a probability distribution over outcomes, and let
tk denote the number of coin flips taken to reach this outcome. When an outcome using t coin flips
is drawn, if t is less than or equal to the remaining budget, then t is subtracted from the remaining
budget; and otherwise the most recent outcome is discarded as “over budget” and the algorithm
terminates. Let ik be the number of times that outcome k is drawn. Then ik/

∑
j ij is an unbiased

estimator of pk.

Proof. Given the coin budget T , the possible sequences of samples can be classified into the following
cases. Either 1) the sequence ends exactly at time T , or 2) the sequence ends with a time interval
of length tm for some m, which in turn ends after time T . For a vector i, whose kth index denotes
the number of times outcome k occurs, the dot product with vector t counts the total number of
coin flips used by this sequence. Thus, if i · t = T , then the probability of i occurring equals(

i1 + · · ·+ iK
i1; · · · ; iK

)
pi11 · · · p

iK
K

This expression captures all cases where we use exactly our budget T . In the remaining cases,
there is a final (discarded) outcome m that goes “over budget”. In this case, i·t ∈ [T−tm+1, T−1],
and the probability of observing i and discarding m equals(

i1 + · · ·+ iK
i1; · · · ; iK

)
pi11 · · · p

iK
K · pm

Therefore, the expectation of ik/
∑

j ij can be written as∑
vector i

s.t. i·t=T

(
i1 + · · ·+ iK
i1; · · · ; iK

)
pi11 · · · p

iK
K ·

ik
i1 + · · ·+ iK

+
∑
m

∑
vector i

s.t. i·t∈[T−tm+1,T−1]

(
i1 + · · ·+ iK
i1; · · · ; iK

)
pi11 · · · p

iK
K · pm ·

ik
i1 + · · ·+ iK

Now observe that(
i1 + · · ·+ iK
i1; · · · ; iK

)
ik

i1 + · · ·+ iK
=

(
i1 + · · ·+ (ik − 1) + · · ·+ iK

i1; · · · ; ik − 1; · · · ; iK

)
meaning that, letting the vector i′ equal the vector i with its kth entry decreased by 1, the expec-
tation can be rewritten and simplified as

pk

 ∑
i′

s.t. i′·t=T ′

(
i′1 + · · ·+ i′K
i′1; · · · ; i′K

)
p
i′1
1 · · · p

i′K
K +

∑
m

∑
i′

s.t. i′·t∈[T ′−tm+1,T ′−1]

(
i′1 + · · ·+ i′K
i′1; · · · ; i′K

)
p
i′1
1 · · · p

i′K
K · pm


where T ′ = T − tk. The term inside the square brackets sums to 1, as we observed at the beginning
of the proof, but substituting T ′ for T . Thus the expectation is pk, as desired.
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3 The Main Algorithm

Here we present our main algorithm, Algorithm 5, analyzed in Theorem 2, which uses O( ρ
ε2∆2 log 1

δ )
samples, matching the fully-adaptive lower bound we prove in Section 5.

Algorithm 5 uses the Triangular Walk estimator as a subroutine and has a hybrid flavor, com-
bining both (single-coin) adaptive and non-adaptive techniques, where the algorithm is increasingly
adaptive for smaller values of ρ. Crucially, in the adaptive component of Algorithm 5, we use the
Triangular Walk estimator to provide a 2-approximation to ρ, and a variant of the algorithm to
“filter” out most negative coins such that we get a constant ratio of positive vs negative coins, to
reduce variance. The coins “surviving” the filter are then fed into a new, non-adaptive algorithm
(Algorithm 3) that we call “refined sampling”, which like Algorithm 1 flips different coins a different
number of times, yet the number of flips is chosen non-adaptively ; the information from different
coins is combined in a subtle way.

As a general motivation, consider taking t coins, flipping them n times each, and trying to
estimate the fraction of positive coins. For a slightly different setting that may have cleaner intu-
ition, consider having sample access to many univariate Gaussian distributions of bounded variance,
some of which have mean ≤ 0 and some of which have mean ≥ 1, where the goal is to estimate the
fraction of “positive” Gaussians with as few samples as possible. If we take n samples from a given
distribution, then testing whether the sample mean is > 1

2 lets us correctly determine its identity
with probability 1 − exp(−n), incentivizing us to choose a large n. However, for a fixed budget
on the total number of samples across all distributions, choosing many samples per distribution
means we can only sample from a limited number of distributions, introducing sampling errors
across distributions (as opposed to within each distribution), and thus introducing a variance into
our estimate inversely proportional to the number of coins sampled, and thus O(n/T ) for a total
budget of T . This is the classic bias-variance tradeoff, where larger n induces a better bias but
worse variance.

While in many settings, one might try to find an optimal n that balances these two concerns,
the right answer here is instead to combine the two approaches: sample some distributions many
times, to get a low-bias signal, and also sample many distributions a few times, to get a low-variance
signal; and combine these two signals with care. Explicitly, the coefficients in Step 3 of Algorithm 3
are carefully chosen so that their contributions “telescope” in expectation between distributions
sampled different numbers of times, allowing, essentially, all the high-variance terms to cancel out
without worsening the bias.

We first present the non-adaptive component (Algorithm 3) of Algorithm 5 for estimating
smooth functions f on the underlying coin bias p, which has constant expected sample complexity,
with zero bias, at the cost of O(1) variance instead of O(ρ) variance as in Algorithm 2. This will
be combined with a single-coin adaptive “filtering” component such that only an O(ρ) fraction of
coins will be used in running Algorithm 3, giving an overall O(ρ) variance in Algorithm 5.

Think of the function f as being analogous to the output coefficient n
2k−n of Algorithm 1—

correcting for a probabilistic filtering mechanism, such that the expected output of f for those
coins that survive filtering will be essentially 0 for negative coins (p ≤ 1

4), 1 for positive coins
(p ≥ 3

4), and smoothly transitions between 0 and 1 in between. See later in Definition 11 for the
precise instantiation of f(p) we need.

Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias p
outputs k.

The sum in Step 3 of the algorithm is omitted if the power of 2 chosen for the number of
coin flips is n = 1, in which case

(
n/2
i

)
would be undefined. We now describe the properties of

Algorithm 3 in Lemma 10.
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Algorithm 3 Refined Sampling

Input: sample access to a coin of bias p; target function f : [0, 1]→ R

1. Choose a number of coin flips n that is a power of 2, choosing 2i with probability
√

8−1√
8

(2i)−1.5,

where
√

8−1√
8

is the normalizing constant so that the probabilities sum to 1.

2. Flip the coin n times, and let k be the number of observed heads.

3. Return n1.5
√

8√
8−1

(
f( kn)−

∑n/2
i=0 f( i

n/2) ·
(
n/2
i

)(n/2
k−i
)
/
(
n
k

))

Lemma 10. Given a coin of bias p, and given a function f : [0, 1] → R that is bounded by a
universal constant, and has 2nd derivative bounded by a universal constant, then Algorithm 3 will
return an estimate of f(p) that has bias 0, variance O(1), and uses O(1) samples in expectation.

Proof. The expected number of coin flips taken by Algorithm 3 is the sum of a fixed geometric
series, and is thus O(1) as desired.

We bound the variance of the algorithm by showing that, for each depth n, the values returned
in Step 3 will have magnitude O(n0.5). Consider the sum in the second term of the expression of

Step 3. The expression
(
n/2
i

)(n/2
k−i
)
/
(
n
k

)
can be interpreted as: given a sequence of n coin tosses of

which k were heads, if a random subsequence of length n/2 is chosen, what is the probability that
i heads are chosen. This distribution has expectation k

2 , and variance < n. Since f has second

derivative bounded by a constant, the difference of f from f( kn) is upper and lower bounded by

quadratics centered at k
n . Thus the difference between f( kn) and the expected value of f( i

n/2) when i

is drawn from the distribution with pmf
(
n/2
i

)(n/2
k−i
)
/
(
n
k

)
is bounded by a constant times the variance

of the random variable i
n/2 , namely O( 1

n). Therefore, when multiplied by n1.5
√

8−1
, the output of Step

3 will be bounded by O(n0.5) as desired. Since in Step 1, n is chosen with probability
√

8−1
n1.5 , the

contribution to the variance from a particular n is at most
√

8−1
n1.5 O(n0.5)2 = O(n−0.5); summing

this bound over all n that are powers of 2 yields a constant, O(1), variance, since geometric series
converge.

To analyze the expectation of the values returned in Step 3 of Algorithm 3, we show that it
telescopes across the different depths n. Namely, consider the expected contribution just of the

second (sum) term at level n, −
∑n

k=0 Bin(n, p, k)
∑n/2

i=0 f
(

i
n/2

)
·
(
n/2
i

)(n/2
k−i
)
/
(
n
k

)
. The coefficient

in this expression of a given f( i
n/2) equals −

∑n
k=0 Bin(n, p, k)

(
n/2
i

)(n/2
k−i
)
/
(
n
k

)
; from the discussion

at the start of the proof, the kth term of this sum can be reinterpreted as the probability that,
in n tosses of a coin of bias p, we have k heads total, and i heads among the first n/2 tosses;
summed over all k this is clearly just the probability that i heads will be observed among n/2
tosses, namely Bin(n2 , p, i). Thus the expected value of the sum term of Step 3 at level n is

−
∑n/2

i=0 Bin(n2 , p, i)f( i
n/2), which is exactly the negation of the expectation of the first term of Step

3, at level n/2. (The multiplier n1.5
√

8√
8−1

in Step 3 is exactly canceled out by the probability of

choosing n in Step 1.)
Thus the expected output of the algorithm, considering only contributions up to some depth

n = 2i, collapses to just the expectation of the first term of Step 3 at the deepest level, n. This
expected output is thus

∑n
k=0 f( kn)·Bin(n, p, k), namely the expected value of f( kn) when k is drawn

from a binomial distribution with n trials and bias p. Since the binomial distribution Bin(n, p, ·) has
expectation pn and variance < n, and since f has 2nd derivative bounded by a constant, we have
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that this expectation converges to f(p) for large n; namely, |f(p)−
∑n

k=0 f( kn)·Bin(n, p, k)| = O( 1
n).

Thus, as n goes to infinity, we see that the expected output of Algorithm 3 converges to f(p), as
claimed.

We now give a new non-adaptive algorithm, Algorithm 4, in order to motivate the choice of
f(p) that we use for Algorithm 3 within Algorithm 4. Algorithm 4 will be a major component of
our final algorithm, Algorithm 5.

Algorithm 4 Optimal Algorithm given an estimate ρ̂

Given: A total budget B of coin flips, quality parameter ∆, and an estimate ρ̂ that is within a
factor of 2 of ρ

1. Run the following on t = Θ(∆2B) randomly drawn coins. For each coin: simulate a new
“virtual” coin by computing the majority of Θ( 1

∆2 ) flips each time a “virtual” flip is requested,
so that each virtual coin will have probability either p ≤ 1

4 or p ≥ 3
4 .

(a) For each virtual coin, flip it at most d = Θ(log 1
ρ̂) times but stop if at any point the

majority of flips are tails.

(b) If the previous step did not stop early, then run Algorithm 3 for the function fd(p) of
Definition 11.

2. Return 1
t times the sum of all the values output by Algorithm 3 in Step 3(b).

As mentioned above, the choice of f(p) is a correction for the filtering mechanism. Concretely,
in Algorithm 4, Step 2(a) will stop early on negative coins with probability that is increasingly high
for smaller ρ, significantly reducing the number of coin flips; and in Step 2(b) we exactly compensate
for this (a priori) unknown early stopping probability by running the unbiased Algorithm 3 on an
appropriately chosen function fd(p) that is exactly the inverse of this early stopping probability,
for positive coins, and 0 for negative coins:

Definition 11. Given a depth d, let fd(p) : [0, 1] → R be defined to equal 0 for p ≤ 1
4 ; and for

p ≥ 3
4 , let fd(p) equal 1 divided by the probability that a sequence of d flips of a coin of bias p

never has a majority-tails initial sequence; for 1
4 < p < 3

4 , let fd(p) be chosen so as to smoothly
connect the regions p ≤ 1

4 and p ≥ 3
4 so that fd(p) has second derivative bounded by a universal

constant (independent of d).

With this choice of f(p), we state and prove Proposition 12, which gives the soundness and
sample complexity bounds for Algorithm 4.

Proposition 12. On input 1) a budget B = O( ρ
ε2∆2 ) of coin flips, 2) the quality parameter ∆ and

3) a 2-approximation ρ̂ of ρ, Algorithm 4 returns an estimate of ρ that has additive error at most
ε with probability at least 0.99, using at most B coin flips.

Proof. We first show the expected output of Algorithm 4 equals ρ. For each positive coin, Step
1 transforms it into a “virtual” coin of probability p ≥ 3

4 ; this coin will “survive” Step 1(a) with
probability exactly 1/fd(p), by definition of fd(p) in Definition 11. Thus Algorithm 3 will return an
estimate of fd(p), with bias 0. Multiplying through by the survival probability 1/fd(p), and by the
probability ρ that a positive coin will be drawn, we see that, over t coins, the expected contribution
to the estimate from Step 2 of the positive coins will be ρ. For each negative coin, by definition
fd(p) = 0, so the expected contribution from these coins, added over all ≤ t of them, and scaled by
1
t in Step 2, will be 0.
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To bound the variance of the output of Step 2, we note that at most a 2ρ fraction of the coins
reach Step 1(b): a ρ fraction of the coins are positive; meanwhile, negative coins, where p ≤ 1

4 ,
have exp(−d) probability of surviving Step 1(a), which can be made ≤ ρ since d = Θ(log 1

ρ̂).

Thus the output returned in Step 2 is 1
t times the sum of t independent trials of a process that,

with probability ≤ 2ρ outputs a random variable whose expected squared magnitude is bounded
by a constant (by Lemma 10). For t = Θ( ρ

ε2
), the expected squared magnitude—and hence the

variance—of the output of the algorithm is thus bounded by O( tρ
t2

) = O(ε2). Thus by Chebyshev’s
inequality, Step 2 will return an estimate accurate to within O(ε), with constant probability.

Lastly, we need to verify that Step 1 will exceed the coin flip budget only with small constant
probability. It suffices, using a Markov’s inequality argument, to bound the expected number of coin
flips used in the steps. We consider the number of (“virtual”) flips from Step 1(a), and also Step
1(b), and then multiply by Θ( 1

∆2 ) as described in Step 1. For a negative coin, the expected number
of flips until a majority-tails initial sequence is observed in Step 1(a) is constant by standard random
walk analysis, leading to an O(∆2B) term; for positive coins, there are on average O(ρ∆2B) of
them, so we could afford to flip each O(1

ρ) times, but Step 1(a) uses only at most d = Θ(log 1
ρ̂) flips.

Step 1(b) is run on an expected ≤ 2ρ fraction of the coins, as explained above; and by Lemma 10,
Algorithm 3 takes O(1) expected samples, for a total bound of O(ρ∆2B) virtual flips from Step
1(b). (Algorithm 3 could thus afford to take up to O(1

ρ) samples on average, so, interestingly, there
is a lot of slack here.)

Thus in total we use O(∆2B) = O( ρ
ε2

) virtual flips, each requiring Θ(1/∆2) real flips, corre-
sponding to expected sample complexity of O(B) = O( ρ

ε2∆2 ).

Having analyzed Algorithm 4, we can now present our final optimal algorithm, stated as Algo-
rithm 5. The theoretical guarantees are given in Theorem 2, restated and proved below.

We stress again that, in our presentation of Algorithm 5, the error parameter ε (of Theorem 2)
is not known, since it depends on the budget B and the unknown ground truth ρ, yet the returned
estimate will have this optimal ε accuracy regardless. This is achieved by Algorithm 5’s calls to
Algorithm 2 and Algorithm 4, which collectively cover all regimes of how ρ and ε relate to each
other, yielding optimal error guarantees in each case.

Algorithm 5 Optimal Algorithm

Given: A total budget B of coin flips and quality parameter ∆

1. Use Algorithm 2 in Section 2 on O(∆2B) many coins (a small fraction of B), using an “ε”
that is Θ(1/(∆2B)), and a constant δ. Let ρ̂ be the returned estimate of ρ.

(a) If Algorithm 2 ever tries to use more thanB/4 coin flips total, then terminate Algorithm 2
and move onto the next step.

(b) Otherwise, return the estimate produced by Algorithm 2.

2. Use Algorithm 2 on Θ(
√

∆2B) freshly drawn coins, using again an “ε” that is Θ(1/(∆2B)),
and a constant δ. The returned estimate ρ̂ will be a 2-approximation to ρ. If in this step,
Algorithm 2 tries to use more than B/4 coin flips, terminate and fail, which happens only
with small constant probability.

3. Run Algorithm 4 on input B/2, ∆, and ρ̂, and return its answer.

4. (If a sub-constant failure probability δ is desired, then repeat the entire algorithm Θ(log 1
δ )

times and return the median of the outputs, ignoring invocations that failed.)
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Theorem 2. Given coins where a ρ fraction of the coins have bias ≥ 1
2 + ∆, and 1 − ρ fraction

have bias ≤ 1
2 −∆, then running Algorithm 5 on a budget of B coin flips will estimate ρ to within

an additive error of ±ε, with probability at least 2/3, where ε is implicitly defined by the relation
B = Θ( ρ

∆2ε2
) based on the unknown ground truth ρ. If the algorithm is repeated Θ(log 1

δ ) times,
and the median estimate is returned, then the probability of failure is at most δ.

Proof. Given the fixed total sample complexity budget of B coin flips, and fixing the unknown
ground truth ρ, the target additive error parameter ε is defined by the sample complexity equation
B = Θ( ρ

ε2∆2 ). There are two cases, either log 1
ε ≤ c/ρ for some sufficiently small universal constant

c (in which case we show that, with high probability, Step 1 will output a correct answer and then
halt), or the inequality is in the opposite direction (in which case, with high probability, either Step
1 still produces a correct answer and halts, or Steps 2 and 3 will output a correct answer).

In the case where log 1
ε ≤ c/ρ, we use Corollary 8 with parameters ε1 = ε and ε2 = Θ( 1

∆2B
) =

Θ(1
t ): Algorithm 2 will have error ±ε, except with failure probability 0.1 + O(t · poly(ε2)) =

0.1 + O(t · poly(1
t )), where, as noted in Corollary 8, we may make the polynomial superlinear to

make this failure probability 0.1+o(1). Further, the expected sample complexity is O( ρ
ε21∆2 ) = O(B)

in the case where log 1
ε ≤ c/ρ, so by Markov’s inequality, for appropriate constants we can ensure

that Algorithm 2 uses ≤ B/4 samples with high constant probability. Thus in this case, the
algorithm will correctly terminate in Step 1(b) with high probability.

Next, we analyze the case where log 1
ε ≥ c/ρ. By Corollary 8, as above, if Step 1(b) is reached

then its answer will be ε-accurate except with some small constant probability. Otherwise, since
Steps 2 and 3 are statistically independent of Step 1, we can just analyze these steps for the case
log 1

ε ≥ c/ρ, ignoring what happened in Step 1.
We first claim that Step 2 will return a 2-approximation ρ̂ of ρ with high constant probability.

As before, we use Corollary 8 with ε2 = ε; since (from the algorithm and the parameters of the

theorem) this step uses t = Θ(
√

∆2B) = Θ(
√
ρ
ε ) coins, solving the equation t = Θ( ρ

ε21
) of the

Corollary yields ε1 = Θ(
√
ε
√
ρ) = O(

√
ε). Since we are in the regime where log 1

ε ≥ c/ρ, we have

that ε1 = O(
√
ε) ≤ O(e−c/ρ) � ρ/2 for sufficiently small ρ, meaning that we will approximate

ρ to within ±ρ/2, giving us a 2-approximation. The failure probability is 0.1 + o(1) as above.
From Corollary 8, the expected sample complexity, in our case log 1

ε ≥ c/ρ will be O( ρ
ε21∆2 ρ log 1

ε2
);

substituting in the definitions of ε1, ε2 yields O(ρ
3/2

ε∆2 log 1
ε ). Since ρ = O(1) and log 1

ε = o(1
ε ) this

expected sample complexity is thus O( ρ
ε2∆2 ) = O(B) and Markov’s inequality implies the algorithm

exceeds its sample bound in Step 2 with an arbitrarily small constant probability.
We conclude by invoking Proposition 12 to show that the estimate returned in Step 3 by

Algorithm 4 is accurate to within additive error ε except with small constant probability.

4 Characterizing Single-Coin Algorithms

As a crucial first step towards the lower bounds of Section 5 that analyze how information from
many different coins may interact, in this section we describe a unified framework for characterizing
(adaptive) algorithms that flip only a single coin. Section 5.1 will then show a general structural
result describing how any adaptive multi-coin algorithm may be broken into single-coin subroutines
that may then be analyzed in light of the characterization of this section.

The most general form of an adaptive single-coin algorithm is a decision tree, where each node
is a coin flip, and has two outgoing edges denoting the outcome of the coin flip, heads or tails; the
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current node captures the outcome of the entire sequence of coin flips so far, and thus for each
node, a generic algorithm specifies a probability of halting, versus continuing from that node.

Via a (standard) symmetrization argument, instead of considering the state of the algorithm
to be an arbitrary sequence of coin flips, we instead aggregate this information into a pair (n, k)
representing the number of coin flips, and the number of heads observed so far. In outline, one may
prove by induction on the number of coin flips n that any such decision tree may be “symmetrized”
so that its stopping probability at each node (n′ ≤ n, k) depends only on n′ and k, while preserving,
for any underlying coin bias p, the total probability of hitting the set of decision tree nodes that
represent observing k total heads out of n′ flips. The inductive step relies on the fundamental
property that, conditioned on observing exactly k heads out of n′ coin flips, the distribution over
all such sequences of coin flips is independent of the coin bias p, and depends only on the stopping
probabilities along each of the

(
n
k

)
paths in the decision tree. This is a direct generalization of

the analogous observation in the triangular walk algorithm section (Section 2), and is analyzed in
slightly different form in Equation 1 below.

We thus consider single-coin algorithms as random walks (Algorithm 6) on the structure of the
Pascal Triangle, in which the states are represented by pairs (n, k), where n is the total number of
flips of the coin so far, and k ≤ n is the number of “heads” responses. At each state (n, k), the
algorithm terminates with some probability γn,k, else the algorithm may request a further coin flip
and continue the walk. The collection of parameters γn,k we call a stopping rule, and specifies that
algorithm’s behavior.

Algorithm 6 Triangular Walk

Input: a coin of bias p

1. Initialize state (n, k) to (0, 0).

2. Repeat until termination:

(a) With probability γn,k, terminate and output (n, k).

(b) Otherwise, sample one more coin flip. Increment n, and increment k by the result of the
flip (0 or 1).

This formulation of single-coin algorithms, which we call a triangular walk, reveals structure
that will be useful to the rest of the analysis of this paper. In particular, since the overall objective
of running an adaptive coin-flipping algorithm is to recover information about the bias p of the coin
(while minimizing expected sample complexity), it is fortuitous (as we will see) that the outcome of
such an algorithm depends on p in an unexpectedly transparent way. This is given in Definition 13.

Definition 13. Given a stopping rule {γn,k}, we define coefficients {αn,k}, {βn,k}, and {ηn,k},
so that, for any p ∈ [0, 1], the triangular walk with stopping rule {γn,k} on a coin of bias p, the
coefficients have the semantics: αn,kp

k(1−p)n−k represents the probability that the walk terminates
at (n, k), with all such probabilities summing to 1; βn,kp

k(1− p)n−k represents the probability that
the triangular walk encounters (n, k), whether or not it terminates there, and ηn,kp

k(1−p)n−k is the
probability that the triangular walk encounters (n, k) but does not terminate there. Each of these
reparameterizations of the stopping rule may be derived from {γn,k} using the following relations.

β0,0 = 1 (1)

βn+1,k+1 = βn,k+1 · (1− γn,k+1) + βn,k · (1− γn,k)
αn,k = βn,k · γn,k
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ηn,k = βn,k − αn,k ( = βn,k · (1− γn,k) ).

Consider the original setting, where one has a universe of (different) coins; one might repeatedly
run a single-coin algorithm on coins drawn from the universe, and somehow combine their outputs
into a final answer. There are many conceivable ways of aggregating the outputs of single-coin
algorithms into an estimate, and the lower bounds of Section 5 consider them all. However, a
particularly natural and powerful approach is to construct a linear estimator, namely to have the
single-coin algorithm output a real number coefficient vn,k at each termination node, with the
overall algorithm estimating the expected output of the single-coin algorithm, across the coins in
the universe. Algorithm 2 works this way, using the median-of-means method (instead of taking
the sample mean) to estimate the expected output of Algorithm 1. Such linear estimators are
surprisingly flexible, and are known to be optimal in certain classes of estimation tasks [35].

5 Fully-Adaptive Lower Bounds

We show in this section that Algorithm 5 is optimal in all four problem parameters ρ, ε, ∆ and δ,
even when compared to all fully-adaptive algorithms that are adaptive across different coins. In
particular, we show the following indistinguishability result (Theorem 3).

Theorem 3. For ρ ∈ [0, 1
2) and ε ∈ (0, 1 − 2ρ], the following two situations are impossible to

distinguish with at least 1− δ probability using an expected o( ρ
ε2∆2 log 1

δ ) samples: A) ρ fraction of
the coins have probability 1

2 + ∆ of landing heads and 1 − ρ fraction of the coins have probability
1
2 −∆ of landing heads, versus B) ρ+ ε fraction of the coins have probability 1

2 +∆ of landing heads
and 1 − (ρ + ε) fraction of the coins have probability 1

2 − ∆ of landing heads. This impossibility
crucially includes fully-adaptive algorithms.

With the algorithmic result of Theorem 2, this lower bound is therefore tight to within a constant
factor. We note that the restrictions ρ < 1

2 and ε ≤ 1 − 2ρ reflect the symmetry of the problem,
where the pair ρ, ρ+ε is exactly as hard to distinguish as the pair 1−ρ−ε, 1−ρ, yielding analogous
results for the symmetric parameter regime.

Example 2. Even in the constant failure probability regime, the Ω( ρ
ε2∆2 ) lower bound requires

significant analysis, forming the bulk of the remainder of this paper, but two special cases have direct
proofs. When ∆ = Θ(1) we can prove a Ω( ρ

ε2
) lower bound without the ∆ dependence: consider the

case where all coins are unbiased and perfect, meaning that the only source of randomness is from
the mixture of coins, which is itself a Bernoulli distribution of bias either ρ or ρ + ε. We quote
the standard fact that, in order to estimate a Bernoulli coin flip of bias ρ to up to additive ε, we
need Ω( ρ

ε2
) samples to succeed with constant probability; this can be proven by a standard (squared)

Hellinger distance argument. On the other hand, it is also straightforward to prove a 1
∆2 lower

bound (covering the regime where ρ and ε are constant): consider the easiest regime for ρ and ε,
where ρ = 0 and ε = 1; thus coins either all have 1

2 + ∆ bias or all have 1
2 −∆ bias. To distinguish

whether we have access to positive coins or negative coins requires Ω( 1
∆2 ) samples.

In order to show Theorem 3, we use the Hellinger distance and KL-divergence between proba-
bility distributions as proxies for bounding the total variation distance.

Definition 14 (Hellinger Distance). Given two discrete distributions P and Q, the Hellinger
distance H(P,Q) between them is

1√
2

√∑
i

(
√
pi −

√
qi)2 =

√
1−

∑
i

√
piqi
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Definition 15 (KL-divergence). Given two discrete distributions P and Q, the KL-divergence
DKL(P ||Q) between them is ∑

i

pi log
pi
qi

The following facts capture how the Hellinger distance and KL-divergence can be used to show
sample complexity lower bounds.

Fact 16 (Chapter 2.4, [34]). For any two distributions P and Q over the same domain, we have

`1(P,Q) ≤
√

2H(P,Q)

and furthermore, for any event E,

P (E) +Q(Ē) ≥ 1

2
e−DKL(P ||Q)

The second inequality is also known as the high-probability Pinsker inequality.

Recall from the introduction that, the main challenge in proving a general lower bound for our
problem lies in analyzing the two kinds of adaptivity that algorithms may employ that were both
absent in the special cases of Example 2. Explicitly, when taking samples from a given coin, we
can choose whether to ask for another sample based on A) previous results of this coin, and also
B) previous results of all the other coins. This first kind of adaptivity, “single-coin adaptivity”, is
crucially used in the algorithms presented in the rest of the paper (e.g. the “shape” of the stopping
rule for our triangular-walk algorithms); in Proposition 20 we analyze the best possible performance
of such triangular stopping rules. The most interesting part of the proof of Theorem 3 consists of
showing that the second kind of adaptivity (cross-coin adaptivity) cannot help in the lower bound
setting, which we analyze via general Hellinger distance/KL-divergence inequalities (Lemmas 17
and 18) in Section 5.1.

5.1 Reduction to Single-Coin Adaptive Algorithms

In this section, we give two related but distinct reductions to single-coin adaptive algorithms. The
first is a general decomposition (“direct sum”) inequality that decomposes the squared Hellinger
distance of running a fully-adaptive algorithm on two different coin populations into the sum of
squared Hellinger distances of running single-coin adaptive algorithms on the two coin populations.
This inequality will lead to a constant probability sample complexity lower bound. The second in-
equality instead decomposes the KL divergence into (a constant times) a sum of squared Hellinger
distances, however with an additional slight restriction that the two coin populations being con-
sidered must be very close to each other. The upside to using this second inequality is that, an
upper bound on the KL divergence combined with the high probability Pinsker inequality allows
us to obtain a high probability sample complexity lower bound, which in particular is tight in all
parameters of the problem, up to a multiplicative constant.

Both of the following inequalities are applicable to populations of variables beyond Bernoulli
coins. We believe that the general inequalities are of independent interest to the community, since
they would be applicable and useful for proving lower bounds on a variety of scenarios involving,
for example, a Gaussian variant of the current problem, where instead of getting yes/no answers
on the positivity of an item, one gets a real-valued score which correlates with the positivity of the
item.
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We phrase both lemmas as upper bounds on distances between distributions of the transcript of
an algorithm, which when combined with the data processing inequality immediately yields upper
bounds on distances between distributions of the algorithm’s output. See, for example, the very
end of the proof of Theorem 3.

Lemma 17. Consider a problem setting where there is a collection of random variables, and an
adaptive algorithm can draw variables from the collection and draw independent samples from the
drawn variables. Now consider an arbitrary algorithm that iteratively samples from random vari-
ables drawn from the collection, choosing each subsequent variable to sample in an arbitrary adaptive
manner based on the results of previous sample outcomes. Suppose the algorithm terminates almost
surely. Consider two arbitrary collections of random variables, denoted by distributions A and B
over the set of possible random variables. Let H2

full be the squared Hellinger distance between the
transcript of a single run of the algorithm where 1) the random variables are drawn from A versus
where 2) the random variables are drawn from B. Furthermore, let H2

i be the squared Hellinger
distance between the two scenarios, but instead of running the algorithm as is, we only use random
variable i (as drawn either from A or B depending on the scenario) and simulate all other random
variables as independent random variables that are themselves drawn from the mixture distribution
A
2 + B

2 . Then

H2
full ≤

∑
variable i

H2
i

Proof. It suffices to prove the result for deterministic algorithms, since squared Hellinger distance is
linear with respect to mixtures of distributions with distinct outcomes, and a randomized algorithm
is simply a mixture of deterministic algorithms which also records which of the algorithms the
random coins picked. Furthermore, the following proof is phrased in terms of the special case
where the collection of random variables are Bernoulli coins (which is the setting considered in this
paper). Barring measure-theoretic formalization issues that we do not discuss, the proof generalizes
directly to populations of arbitrary random variables.

A deterministic fully-adaptive algorithm is a decision tree, where each node is labeled by the
identity of the coin the algorithm chooses to flip next conditioned on reaching this node, and each
edge out of a node is labeled by a heads or tails result for this coin. We can view a run of the
algorithm as follows: 1) first draw all the random coins from either A or B depending on the
scenario, and then 2) flip these coins according to this fully-adaptive algorithm—we view choosing
the coins from A or B as happening at the beginning since all these samples are free and only
the coin flips themselves are counted. After step 1, fixing the bias of each coin, the probability of
ending up at the ith leaf of the decision tree is simply the probability (over coin flips) that every
edge along the path from the root to that leaf is followed. Note that each edge is a probabilistic
event depending on only one coin. Therefore, this probability can be factored into a product of
probabilities, one term for each of the coins. For example, suppose the path to leaf i involves coin
j returning 5 heads in a row, then getting some particular sequence from flipping some other coins,
then coin j returning another 2 heads followed by 3 tails. Then, if coin j has bias pj , it contributes
p5+2
j (1− pj)3 to the probability product.

We denote by qAj,i the expected contribution of coin j to the probability product for leaf i,

over the randomness of A on the bias of coin j. In the previous example, qAj,i would be equal to

Ep←A[p7(1 − p)3]. We similarly define qBj,i. Explicitly, for leaf i and coin j, qAj,i is the expectation
(over p drawn from A) of p to the exponent of the number of “heads” edges on the path from the
root to node i in the decision tree, times (1− p) to the exponent of the number of “tails” edges on
this path.
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Using this notation, the probability of the algorithm reaching leaf i, when the coins are sampled
from distribution A, would be

∏
coin j q

A
j,i, since each coin is sampled from A independently; let∏

coin j q
B
j,i be the respective probability for sampling from B.

Since the total probability of reaching all leaves i must equal 1, this expression yields the
immediate corollary, that for any distribution A over [0, 1],∑

leaf i

∏
coin j

qAj,i = 1 (2)

We can now express the squared Hellinger distance with this notation. For any two distributions
a and b, 1 minus their squared Hellinger distance can be rewritten as

∑
i

√
aibi. In our context,

the summation is over leaves i, and thus the squared Hellinger distance between the two scenarios
in question is

H2
full = 1−

∑
leaf i

√ ∏
coin j

qAj,i
∏

coin j

qBj,i (3)

Since qAj,i and qBj,i are both non-negative, we simplify the summand as√ ∏
coin j

qAj,i
∏

coin j

qBj,i

=

 ∏
coin j

qAj,i + qBj,i
2

 ∏
coin j

2
√
qAj,iq

B
j,i

qAj,i + qBj,i


≥

 ∏
coin j

qAj,i + qBj,i
2

1−
∑

coin j

1−
2
√
qAj,iq

B
j,i

qAj,i + qBj,i


(4)

where the inequality holds because each
2
√
qAj,iq

B
j,i

qAj,i+q
B
j,i

is less than or equal to 1 by the AM-GM inequality

(and at least 0), and therefore we can apply the union bound by treating each term as a probability—
namely, for any xj ∈ [0, 1] we have

∏
j xj ≥ 1−

∑
j(1− xj).

Observe that our definition of q, being an expectation, is thus linear in the distribution in its

superscript, and thus 1
2(qAj,i + qBj,i) = q

A
2

+B
2

j,i , and therefore the right hand side of the inequality can
be rewritten as  ∏

coin j

q
A
2

+B
2

j,i

1−
∑

coin j

1−

√
qAj,iq

B
j,i

q
A
2

+B
2

j,i

 (5)

Thus the sum of Equation 5 over all leaves is at most 1−H2
full. We simplify the summation by

changing the summation variable in Equation 5 from j to k, and distributing the initial product
so as to form three additive terms (the “j 6= k” in the bounds of the last product below is because
the j = k term gets canceled by the denominator from the last term in Equation 5):∑

leaf i

∏
coin j

q
A
2

+B
2

j,i

− ∑
coin k

∑
leaf i

∏
coin j

q
A
2

+B
2

j,i


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−
∑

coin k

∑
leaf i

 ∏
coin j 6= k

q
A
2

+B
2

j,i

√qAk,iqBk,i


We know by Equation 2 that

(∑
leaf i

∏
coin j q

A
2

+B
2

j,i

)
= 1, and so the sum can be written as

1−
∑

coin k

1−
∑
leaf i

 ∏
coin j 6= k

q
A
2

+B
2

j,i

√qAk,iqBk,i


which by definition of Hk is equal to 1−
∑

coin kH
2
k : by Equation 3, 1 minus the squared Hellinger

distance between the view of the algorithm when the kth coin is from A versus from B, where all

remaining coins are drawn from the mixture A2 + B
2 equals

∑
leaf i

(∏
coin j 6= k q

A
2

+B
2

j,i

)√
qAk,iq

B
k,i.

Summarizing, we have shown that 1−H2
full ≥ 1−

∑
coin kH

2
k , from which the lemma statement

follows.

We now give the KL-divergence decomposition lemma (Lemma 18) which will yield a tight high
probability sample complexity lower bound, but makes a further assumption than Lemma 17 that
the two coin populations are close to each other. As a note, the definition of H2

i is slightly different
in this lemma from the definition in Lemma 17, and is not a typographical mistake.

Lemma 18. Consider an arbitrary algorithm that iteratively flips coins from a collection of coins,
choosing each subsequent coin to flip in an arbitrary adaptive manner based on the results of previous
flips. Suppose the algorithm terminates almost surely. Consider two arbitrary mixtures of coins,
denoted by distributions A and B over the coin bias [0, 1]. Let Dfull be the KL-divergence between
the transcript of a single run of the algorithm where 1) the coins are drawn from the mixture
ρA+ (1− ρ)B versus where 2) the coins are drawn from (ρ+ ε)A+ (1− ρ− ε)B, where ρ ∈ [0, 1

2),
ε ∈ (0, 1 − 2ρ] and ε < ρ. Furthermore, let H2

i be the squared Hellinger distance between the two
scenarios, but instead of running the algorithm as is, we only use coin i (as drawn either from the
ρ-fraction mixture or the (ρ+ ε)-fraction mixture depending on the scenario) and simulate all other
coins as independent coins drawn from the ρ-fraction mixture. Then

Dfull = O

(∑
coin i

H2
i

)

The proof of Lemma 18 is similar to that of Lemma 17 by viewing algorithms as decision
trees, with the crucial difference that, rather than using the AM-GM inequality, Lemma 18 instead
bounds the KL-divergence via a quadratic bound log(1 + x) ≥ x− x2, valid for x ∈ [−1

2 , 1].

Proof. (For the following proof, the set-up up to and including Equation 6 is essentially the same
as that in the proof of Lemma 17, analogously, up to and including Equation 2. For completeness,
we include the context for the specific notation we use in this proof.)

It suffices to prove the result for deterministic algorithms, since both squared Hellinger distance
and KL-divergence are linear with respect to mixtures of distributions with distinct outcomes, and
a randomized algorithm is simply a mixture of deterministic algorithms which also records which
of the algorithms the random coins picked.

A deterministic fully-adaptive algorithm is a decision tree, where each node is labeled by the
identity of the coin the algorithm chooses to flip next conditioned on reaching this node, and
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each edge out of a node is labeled by a heads or tails result for this coin. We can view a run
of the algorithm as follows: 1) first draw all the random coins from either ρA + (1 − ρ)B or
(ρ + ε)A + (1 − ρ − ε)B depending on the scenario, and then 2) flip these coins according to this
fully-adaptive algorithm. After step 1, fixing the bias of each coin, the probability of ending up at
the ith leaf of the decision tree is simply the probability (over coin flips) that every edge along the
path from the root to that leaf is followed. Note that each edge is a probabilistic event depending on
only one coin. Therefore, this probability can be factored into a product of probabilities, one term
for each of the coins. For example, suppose the path to leaf i involves coin j returning 5 heads in
a row, then getting some particular sequence from flipping some other coins, then coin j returning
another 2 heads followed by 3 tails. Then, if coin j has bias pj , it contributes p5+2

j (1− pj)3 to the
probability product.

We denote by qAj,i the expected contribution of coin j to the probability product for leaf i,

over the randomness of A on the bias of coin j. In the previous example, qAj,i would be equal to

Ep←A[p7(1 − p)3]. We similarly define qBj,i. Explicitly, for leaf i and coin j, qAj,i is the expectation
(over p drawn from A) of p to the exponent of the number of “heads” edges on the path from the
root to node i in the decision tree, times (1− p) to the exponent of the number of “tails” edges on
this path.

To simplify notation, we also denote by qρj,i as the above probability product for coin j and
leaf i when coin j is drawn from the ρ-mixture, namely ρA + (1 − ρ)B. Note that, by definition,
qρj,i = ρqAj,i + (1− ρ)qBj,i. We use analogous notation for the (ρ+ ε)-mixture.

Using this notation, the probability of the algorithm reaching leaf i, when the coins are sampled
from distribution A, would be

∏
coin j q

A
j,i, since each coin is sampled from A independently, with∏

coin j q
B
j,i being the respective probability for sampling from B. The observation holds similarly

for coin distribution that are the ρ-mixture or (ρ+ ε)-mixture of A and B.
Since the total probability of reaching all leaves i must equal 1, this expression yields the

immediate corollary, that for any collection of distributions Cj over [0, 1] indexed by coin j (imagine
Cj each being one of A, B, the ρ-mixture of the two or the (ρ+ ε)-mixture of the two)∑

leaf i

∏
coin j

q
Cj
j,i = 1 (6)

We can now express the KL-divergence with the above notation.

Dfull = −
∑
leaf i

 ∏
coin j

qρj,i

 log

(∏
coin k q

ρ+ε
k,i∏

coin k q
ρ
k,i

)

= −
∑
leaf i

 ∏
coin j

qρj,i

 ∑
coin k

log

(
1 + ε

qAk,i − qBk,i
ρqAk,i + (1− ρ)qBk,i

)

where the second line follows from the definition of qρk,i = ρqAk,i + (1− ρ)qBk,i. Further observe that
the multiplier to ε in the second line is upper bounded by 1/ρ in magnitude. Since Taylor’s theorem
gives that log(1 + x) = x−Θ(x2) for x ≤ 1, we have when ε/ρ ≤ 1, that

Dfull = −
∑
leaf i

 ∏
coin j

qρj,i

 ∑
coin k

(
ε
qAk,i − qBk,i

qρk,i
−Θ(ε2)

(qAk,i − qBk,i)2

(qρk,i)
2

)
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We can further simplify the expression by observing that for any fixed coin k,

∑
leaf i

 ∏
coin j

qρj,i

 qAk,i
qρk,i

=
∑
leaf i

 ∏
coin j 6= k

qρj,i

 qAk,i = 1

where the second equality is by Equation 6. This observation holds also when we replace the
mixture A with the mixture B. Therefore, we have

∑
leaf i

 ∏
coin j

qρj,i

 ∑
coin k

ε
qAk,i − qBk,i

qρk,i
= 0

meaning that

Dfull = Θ(ε2)
∑
leaf i

 ∏
coin j

qρj,i

 ∑
coin k

(qAk,i − qBk,i)2

(qρk,i)
2

=
∑

coin k

Θ(ε2)
∑
leaf i

 ∏
coin j

qρj,i

 (qAk,i − qBk,i)2

(qρk,i)
2

It remains to show that the right hand side is bounded by
∑

coin kH
2
k , where, as in the lemma

statement, H2
k is the squared Hellinger distance between a single run of the algorithm when coin

k is drawn either from the ρ-mixture of A and B or the (ρ + ε)-mixture, and all other coins are
simulated and simply drawn from the ρ-mixture. To see this, we write out what H2

k is, using the
definition of squared Hellinger distance:

H2
k =

∑
leaf i

√qρk,i ∏
coin j 6= k

qρj,i −
√
qρ+ε
k,i

∏
coin j 6= k

qρj,i

2

=
∑
leaf i

 ∏
coin j 6= k

qρj,i

(√qρk,i −√qρ+ε
k,i

)2

=
∑
leaf i

 ∏
coin j 6= k

qρj,i

 qρk,i

1−

√√√√qρ+ε
k,i

qρk,i

2

=
∑
leaf i

 ∏
coin j 6= k

qρj,i

 qρk,i

1−

√√√√1 + ε
qAk,i − qBk,i

ρqAk,i + (1− ρ)qBk,i

2

where the last line is again by definition that qρk,i = ρqAk,i + (1−ρ)qBk,i. By reasoning we used above,
as long as ε < ρ, we have this expression being equal to

H2
k =

∑
leaf i

 ∏
coin j 6= k

qρj,i

 qρk,i

(
Θ(ε)

qAk,i − qBk,i
ρqAk,i + (1− ρ)qBk,i

)2

= Θ(ε2)
∑
leaf i

 ∏
coin j 6= k

qρj,i

 qρk,i
(qAk,i − qBk,i)2

(qρk,i)
2

= Θ(ε2)
∑
leaf i

 ∏
coin j

qρj,i

 (qAk,i − qBk,i)2

(qρk,i)
2

which is exactly the term in the sum over coin k for Dfull, showing the lemma.
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For the lower bound proof at hand, we show Corollary 19 in the next subsection, which upper
bounds the squared Hellinger distance for single-coin adaptive algorithms by a quantity that is
proportional to the expected number of samples taken by the algorithm.

Corollary 19. Consider an arbitrary single-coin adaptive algorithm. Let H2 be the squared
Hellinger distance between a single run of the algorithm where 1) a coin with bias 1

2 + ∆ is used
with probability ρ and a coin with bias 1

2 − ∆ is used otherwise, versus a run of the algorithm
where 2) a coin with bias 1

2 + ∆ is used with probability ρ + ε and a coin with bias 1
2 −∆ is used

otherwise. Furthermore, let Eρ[n] and Eρ+ ε
2
[n] be the expected number of coin flips during a run

of the algorithm where we use a 1
2 + ∆ coin with probability ρ and ρ+ ε

2 respectively, and a 1
2 −∆

coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller than some universal absolute constant, then

max

[
H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
Using Corollary 19 and Lemma 18, we now complete the proof of the main high probability

indistinguishability result (Theorem 3) for fully-adaptive algorithms. We note again that Lemma 17,
which is applicable to more general coin populations with fewer restrictions than Lemma 18, can
be used to derive a constant probability sample complexity lower bound with essentially the same
proof as follows, with the exception that we would use the Hellinger distance inequality in Fact 16
instead of the high-probability Pinsker inequality.

Proof of Theorem 3. Letting A of be a population of coins that all have 1
2 + ∆ probability, with B

a population of coins that all have 1
2 −∆ probability, our goal is to show the indistinguishability of

ρA+ (1− ρ)B from (ρ+ ε)A+ (1− ρ− ε)B. We apply Lemma 18 and use the lemma’s conclusion,
that Dfull = O

(∑
coin iH

2
i

)
.

Next, for each i, the quantity H2
i of Lemma 18 describes the squared Hellinger distance between

an induced single-coin algorithm run on a single coin from scenario A versus B respectively (with
the remaining coins being simulated, from scenario A with a ρ-fraction mixture). We thus bound
H2
i from Corollary 19. As in the corollary, let Ei,ρ[n] denote the expected number of samples from

coin i when running the induced algorithm (for coin i) on a mixture that uses a 1
2 + ∆ coin with

probability ρ and a 1
2 − ∆ coin otherwise. Thus Corollary 19 yields that H2

i = O( ε
2∆2

ρ ) · Ei,ρ[n].
Summing, combined with the result from Lemma 18 above, yields

Dfull ≤ O
(
ε2∆2

ρ

)
·
∑

coin i

Ei,ρ[n]

Crucially, the sum (over choice of coin i) of the expected number of flips Ei,ρ[n] (when running
the algorithm induced for coin i) can be viewed in a different way: the ith term is exactly the
expected number of times that coin i is flipped when running the overall algorithm where every
coin is drawn from the ρ-fraction mixture in scenario A. Namely, this sum counts the total expected
number of coin flips (across all coins i), for the algorithm run in the setting where all coins are drawn
from the ρ-fraction mixture. Thus, for an algorithm that uses o( ρ

ε2∆2 log 1
δ ) flips in expectation, we

conclude that

Dfull ≤ O
(
ε2∆2

ρ

)
· o
(

ρ

ε2∆2
log

1

δ

)
= o

(
log

1

δ

)
We conclude by using the high-probability Pinsker inequality. In the notation of the inequality,

given an algorithm that attempts to classify whether it is in scenario A or B, let P,Q respectively be
the distributions of its output in scenarios A,B respectively; let E be the event that the algorithm
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outputs “scenario B”. Then the probability that the algorithm is wrong is P (E) + Q(Ē). By the
high-probability Pinsker inequality this failure probability is at least 1

2e
−DKL(P ||Q) ≥ 1

2e
−Dfull ≥

1
2e
−o(log 1

δ
) = 1

2δ
o(1) � δ as desired, where the first inequality is the data processing inequality for

KL-divergence.

5.2 Upper Bounding the Squared Hellinger Distance for Single-Coin Adaptive
Algorithms

In this section, we prove Corollary 19, though significant technical details are deferred to the
appendix. Explicitly, we analyze a simplified scenario in Proposition 20, after discussing why each
of the simplifying assumptions does not give up generality, and cannot affect the key “squared
Hellinger distance per sample” quantity by more than a constant factor.

1. Consider a single-coin algorithm. We restrict our attention to algorithms that only stop once
they have seen a number of coin flips that is exactly a power of 2. Any stopping rule S that
potentially stops in between powers of 2 could be converted into an almost-equivalent rule
S′ by collecting coin flips up to the next power of 2 and discarding them as necessary so as
to simulate S: this will sacrifice at most a factor of 2 in sample complexity, and can only
increase our Hellinger distance (since discarding data is a form of “data processing” and thus
we may apply the data processing inequality). Thus the new S′ will have “squared Hellinger
distance per sample” at least half that of S.

2. By standard symmetrization arguments, a single-coin algorithm can always be implemented
such that decisions only depend on the number of flips for a coin as well as the number of
observed “heads”, as opposed to the explicit sequence of heads/tails observations. Thus we
restrict our attention to stopping rules in the sense of Algorithm 6, specified in full generality
by a triangle of stopping coefficients {γn,k}.

3. There is in some sense a “phase change” once an algorithm has received Ω( 1
∆2 ) samples from

a single coin: after this point, the algorithm might have good information about whether the
coin is of type 1

2 +∆ versus type 1
2−∆, and might productively make subtle adaptive decisions

after this point. We restrict our analysis to the regime where no coin is flipped more than
10−8/∆2 times: formally, we show an impossibility result in the following stronger setting,
where we assume that whenever a single coin is flipped 10−8/∆2 times, then the coin’s true
bias (either 1

2 + ∆ or 1
2 −∆) is immediately revealed to the algorithm. Thus any coin flips

beyond 10−8/∆2 that an algorithm desires can instead be simulated at no cost.

Formally, an impossibility result in this setting with “advice” (Proposition 20) implies the
analogous result in the original setting (Corollary 19) by the data processing inequality for
Hellinger distance (since Hellinger distance is an f -divergence): simulating additional coin
flips in terms of “advice” is itself “data processing”, and thus can only decrease the Hellinger
distance. Thus the setting without advice has smaller-or-equal Hellinger distance, and uses
greater-or-equal number of samples, and hence the bound on their ratio in Proposition 20
implies the corresponding bound in Corollary 19.

Proposition 20. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that
are powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops if it reaches
10−8/∆2 coin flips. Suppose that given a coin, after a random walk on the Pascal triangle according
to the stopping rule, the position (n, k) that the walk ended at is always revealed, and furthermore,
if n = 10−8/∆2, then the bias of the coin is also revealed. Let H2 be the squared Hellinger distance
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between a single run of the above process where 1) a coin with bias 1
2 + ∆ is used with probability

ρ and a coin with bias 1
2 − ∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with
probability ρ+ ε and a coin with bias 1

2 −∆ is used otherwise. Furthermore, let Eρ[n] and Eρ+ ε
2
[n]

be the expected number of coin flips during a run of the algorithm where we use a 1
2 + ∆ coin with

probability ρ and ρ+ ε
2 respectively, and a 1

2−∆ coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller
than some universal absolute constant, then

max

[
H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
It remains to prove Proposition 20. For the rest of the section, we shall use the notation

h+
n,k = (1

2 + ∆)k(1
2 −∆)n−k and h−n,k = (1

2 −∆)k(1
2 + ∆)n−k for convenience. The proofs for upper

bounding H2

Eρ[n] and H2

Eρ+ ε
2

[n] are essentially the same, and here we give the high-level outline of the

proof for bounding the latter, with calculations and details in Appendix B.
The first step in the proof is the following lemma that writes out the squared Hellinger distance

induced by a given stopping rule {γn,k}, whose proof can be found in the appendix. The expression
in Lemma 21 avoids square roots and in other ways simplifies aspects of the squared Hellinger
distance by estimating terms to within a constant factor, which is folded into a multiplicative “big-
Θ” term at the start of the expression. The two lines in the expression below capture the different
forms of the Hellinger distance for stopping before the last row versus at the last row—recall that
we prove impossibility under the stronger model where, upon reaching the last row the algorithm
receives the true bias of the coin (as “advice”). Thus the squared Hellinger distance coefficients
from elements of the last row are typically much larger than for other rows, capturing the cases
when this advice is valuable. Recall from Definition 13 that {αn,k} is defined from the stopping rule
{γn,k}, so that when multiplied by h+

n,k or h−n,k respectively, it equals the probability of encountering
(n, k) without necessarily stopping there, in the cases of positive and negative bias respectively.

Lemma 21. Consider the two probability distributions in Proposition 20 over locations (n, k) in
the Pascal triangle of depth 10−8/∆2 and bias p ∈ {1

2 ±∆}, generated by the given stopping rule
{γn,k} in the two cases 1) a coin with bias 1

2 + ∆ is used with probability ρ and a coin with bias
1
2 −∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with probability ρ+ ε and a coin
with bias 1

2 −∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared
Hellinger distance between these two distributions can be written as

Θ(ε2)

[ ∑
n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

+
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

]

Intuitively, Lemma 21 breaks up the squared Hellinger distance into its contributions from each
location (n, k) in the triangle, with the coefficient αn,k depending on the stopping rule (proportional
to the algorithm’s probability of stopping at location (n, k) ), and the remaining portion of the
expression depending only on n, k,∆, ρ, with the ε dependence already factored out in the initial
Θ(ε2) term.
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The rest of the analysis uses the above tools to upper bound the squared Hellinger distance
per sample. For concrete details and calculations, please refer to Appendix B. The high level idea
of the analysis is to split the expression of Lemma 21 for the total squared Hellinger distance per
sample into three components, with the contribution from each location (n, k) assigned to either

1) the last row n = 10−8

∆2 , 2) a “high discrepancy region” where h+
n,k/h

−
n,k ≥ 1/ρ0.1 which is towards

the right of the triangle, potentially contributing large amounts to the squared Hellinger distance
and 3) a “central” region that is the rest of the triangle. The last row, because of the nature
of “advice”, clearly needs its own analysis. As for the rest of the triangle, we divide it into the
“central” and “high discrepancy” regions, and bound their contributions to the squared Hellinger
distance per sample using different strategies. For the central region, the key insight is that the
squared Hellinger distance term is bounded by a well-behaved quadratic function in that region.
On the other hand, for the high discrepancy region, the key observation is that the region is defined
such that it is a large number of standard deviations away from where a non-stopping random walk
on the Pascal triangle should concentrate, and thus it is very unlikely for the algorithm to enter that
region. We take additional care to show that, for any stopping rule used by any algorithm, it cannot
sufficiently skew the distribution of where the walk ends up—for example, while the distribution
might skew to the right if the algorithm stops whenever it enters the “left” side of the triangle, we
show that this cannot significantly save on expected sample complexity nor substantially increase
the squared Hellinger distance per sample. The analysis for the high discrepancy region makes
crucial use of our simplifying assumption that the stopping rule only stops at powers of 2 coin flips,
letting us analyze large sequences of coin flips at a time, where we may take advantage of the tight
concentration of the Binomial distribution over sufficiently many coin flips to bound the effect of
any skewing-towards-the-right that can be introduced by the stopping rule.

Propositions 33, 26 and 24 in Appendix B assert that for each of the respective regions, their
contribution to the squared Hellinger distance, divided by the expected sample complexity, is at
most O(ε2∆2/ρ). Summing up the three terms is an upper bound on the total squared Hellinger
distance per expected sample of O(ε2∆2/ρ), completing the proof of Proposition 20.

6 Experimental Results

We give simulation results to demonstrate the practical efficacy of our proposed algorithm. In our
experimental setups, we compare the convergence rates of 1) our algorithm (“T-WALK (15)” on
the plots), 2) the natural majority vote method mentioned in the Introduction (“VOTING” on the
plots) and 3) the “SWITCH” method proposed in previous work by Chung et al. [15] which has been
observed to perform well in practice, but does not have a theoretical analysis. For our algorithm,
we choose the maximum number of flips for a single coin to be 15 (= c log 1

ε ) in Algorithm 1. We
also make the assumption that the noise parameter satisfies ∆ ≥ 0.3, meaning that we can use
Algorithm 1 directly instead of using Algorithm 2 to simulate virtual coins before feeding them
into Algorithm 1. To further improve the practical performance of Algorithm 1, we ran a local
search method to improve on the non-zero output coefficients in Step 3(d) of Algorithm 1, using
the assumption that ∆ ≥ 0.3. Concretely, recall that we output a non-zero coefficient when the
maximum number of coin flips (15) has occurred and the majority of coin flips has been heads.
Thus for k ∈ {8, . . . , 15}, we output 8: 0, 9: 6.913, 10: 5.032, 11: 2.101, 12: 0.636, 13: 1.965,
14: 1.016, 15: 1.009. We note again that these coefficients are reusable in practice, as long as the
∆ ≥ 0.3 assumption can be made.

Figure 1 presents the experimental results, for “coin quality” ∆ = 0.3 or 0.4, and ground truth
fraction of positive coins ρ taking representative values 0.005, 0.01, 0.03, or 0.1. For each plot, the
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Figure 1: Experimental Results

x-axis corresponds to the number of coin flips, with all algorithms eventually converging to the
ground truth for enough coin flips. Standard deviation bars are computed over 10 runs of each
different setting. The estimates, given a strict budget of coin flips as given by the x-coordinate, are
computed according to Section 2.1.

In all cases, our algorithm (plotted in yellow) performs close to the ground truth (horizontal
black line), while the alternative algorithms take longer to converge, or have high variance, as
depicted by the error bars. In particular, as discussed in the introduction, our adaptive methods
have the most potential for improvement in the more challenging and more practical regime where
ρ is small (top few plots), and where ∆ is smaller (left column).
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7 Algorithm for Known Conditional Distributions of Coins

We now present our algorithms for the scenario where we know 1) the conditional distribution h+

of the biases of positive coins, 2) analogously the distribution h− for the negative coins, as well as,
for now circularly 3) the mixture parameter ρ itself. In practice, of course, we would only have an
estimate ρ for the mixture parameter itself, with the goal being to refine the estimate. Assuming for
the sake of analysis that our knowledge of the two conditional distributions as well as the mixture
parameter are perfect (even if in practice they are only guesses), we derive a simple method based
on linear and quadratic programming tools for computing the triangular walk linear estimator (an
instantiation of Algorithm 6 in Section 4) with the minimum variance subject to the constraints
that 1) the estimator has expected output exactly 0 when given a randomly chosen negative coin,
and 2) expected output exactly 1 for a randomly chosen positive coin. That is, we enforce that the
estimator is unbiased no matter what the true mixture parameter is, but we optimize its variance
given our (assumed to be perfect) knowledge of the mixture parameter.

This method is practically relevant as a bootstrapping approach. If our estimates of the con-
ditional distributions and mixture parameter are indeed close to the ground truth, then it is easy
to show bounds on the decrease in the estimator’s performance as our estimates deviate from the
truth. As such, we focus on the analysis of the method when our knowledge of the parameters are
assumed to be perfect. The sample complexity of our algorithm is given in Theorem 4.

To complement the above upper bound result, we show that the linear estimator constructed
from perfect knowledge of the relevant parameters is essentially an optimal estimator (Theorem 5)
up to constant factors in sample complexity, under those exact same parameters. This gives strong
evidence for the unique algorithmic challenges presented by the “uncertainty about uncertainty”
regime of our problem, as discussed at the beginning of the paper.

7.1 A Quadratic+Linear Programming Approach

In this section we shall use extensively the notations αn,k, βn,k and γn,k defined in Definition 13.
We now give an overview on the steps required to derive the minimum variance unbiased esti-

mator (in the form of Algorithm 6), as described at the beginning of the section. First, we assume
that we are given a fixed stopping rule, and derive output coefficients for the corresponding linear
estimator that has minimum variance. We formulate a quadratic program (Figure 7.1) with the
output coefficients {vn,k} as the variables, fixing αn,k as constants. The quadratic program can
be solved analytically, which allows us to derive for {vn,k} closed form expressions that makes an
unbiased estimator with minimum variance assuming the given stopping rule, as well as perfect
knowledge of the conditional distribution of biases and the mixture parameter. Furthermore, the
objective value (a function in αn,k) of the quadratic program turns out (Lemma 22) to be the
reciprocal of a linear function in terms of αn,k. With this representation of the objective, then, we
can use the structural observations in Section 4 to formulate a linear program that solves for the
optimum stopping rule given the conditional distributions of biases (conditional on a positive coin,
or a negative coin) and mixture parameter. In practice, the linear program is first solved to give
the stopping rule, then the output coefficients can be calculated from the first step in the analysis.

Having the above overview in mind, we describe the details of the derivation. To simplify
notation, let h−n,k be shorthand for Ep←h−

(
pk(1− p)n−k

)
(a generalization of the notation from

Section 5), and similarly for h+
n,k. Thus αn,kh

−
n,k is the probability that if we randomly choose

a negative coin, executing the triangular walk with that coin will stop at state (n, k). Similarly,
αn,kh

+
n,k is the analogous probability using a randomly chosen positive coin instead.

The quadratic program mentioned above is given in Figure 7.1. We use variables {ṽn,k}, con-
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minimize
∑

n,k αn,k

(
ρh+

n,k + (1− ρ)h−n,k

)
ṽ2
n,k

subject to
∑

n,k αn,kh
+
n,kṽn,k = 1 +

∑
n,k αn,kh

−
n,kṽn,k

Figure 2: A QP formulation for computing the output coefficients in terms of the stopping rule

straining them such that the expected output over a randomly chosen positive coin (from distri-
bution h+) has value 1 greater than that over a randomly chosen negative coin (from distribution
h−). Under this constraint, we minimize the second moment of the output when items are drawn
from the mixture ρh+ + (1− ρ)h−. Any optimal solution to this optimization will choose the vari-
ables {ṽn,k} such that the expected output of an item drawn from the universe is 0, implying that∑

n,k αn,kh
+
n,kṽn,k = 1−ρ and

∑
n,k αn,kh

−
n,kṽn,k = −ρ Therefore, we can compute {vn,k} using {ṽn,k}

by setting vn,k = ṽn,k + ρ. As a consequence,
∑

n,k αn,kh
+
n,kvn,k = 1 and

∑
n,k αn,kh

−
n,kvn,k = 0,

satisfying the unbiasedness requirement as desired.
The quadratic program in Figure 7.1 can be solved analytically using Langrange multipliers.

We give the results as Lemma 22, and defer the calculations to the appendix.

Lemma 22. For the quadratic program in Figure 7.1, the optimal assignments to {ṽn,k} are

ṽn,k =

h+
n,k−h

−
n,k

ρh+
n,k+(1−ρ)h−n,k∑

m,j αm,j
(h+
m,j−h

−
m,j)

2

ρh+
m,j+(1−ρ)h−m,j

(and we choose vn,k = ṽn,k + ρ), giving an objective value of

1∑
n,k αn,k

(h+
n,k−h

−
n,k)2

ρh+
n,k+(1−ρ)h−n,k

As mentioned at the beginning of the section, the optimal objective value of the quadratic
program, namely the minimum variance achievable given a stopping rule, is the reciprocal of a
linear function in {αn,k}. Note that the total sample complexity of the linear estimator, if we
use the median-of-means method to estimate its expectation, is proportional to product of the
variance of the linear estimator and the expected sample complexity of one run of the random
walk. Therefore, if we fix the expected sample complexity of one run to be n0, we can in fact
optimize the total sample complexity by minimizing the variance over all possible stopping rules
with the expected sample complexity of n0. Observe that the reciprocal of the variance, divided
by n0, is simply the reciprocal of the total sample complexity of the stopping rule, that we would
therefore like to maximize. Moreover, such function is a linear function in {αn,k}. Thus, we can write
the optimization problem as the linear program in Figure 3, by taking the objective to maximize
the reciprocal of the quadratic program solution, divided by n0. The program includes (slightly
adapted versions of) the recurrence relations introduced in Equation 1 as constraints. Moreover,
in order to control the sample complexity of the algorithm, the program also contains constraints
enforcing that 1) the expected number of responses solicited for a random item is bounded by n0

and 2) the maximum depth of the triangle is bounded by some parameter nmax. In addition to the
interpretation as the maximum amount of resources we would ever invest on a single coin/item,
the maximum depth constraint can also be interpreted as a computational constraint on how much
time we can spend on computing the description of the linear estimator.
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maximize 1
n0

∑
n,k

(h+
n,k−h

−
n,k)2

ρh+
n,k+(1−ρ)h−n,k

αn,k

subject to β0,0 = 1
βn+1,k+1 = βn,k+1 − αn,k+1 + βn,k − αn,k
αn,k ≤ βn,k
αnmax,k = 1 for all k (Max depth constraint)∑

n,k n · αn,k(ρh
+
n,k + (1− ρ)h−n,k) ≤ n0 (Bounding expected sample complexity)

where αn,k, βn,k ≥ 0

Figure 3: An LP formulation for finding the best stopping rule given an expected sample complexity

maximize
∑

n,k

(h+
n,k−h

−
n,k)2

ρh+
n,k+(1−ρ)h−n,k

αn,k

subject to βn+1,k+1 = βn,k+1 − αn,k+1 + βn,k − αn,k
αn,k ≤ βn,k
αnmax,k = β0,0 for all k (Max depth constraint)∑

n,k n · αn,k(ρh
+
n,k + (1− ρ)h−n,k) ≤ 1

where αn,k, βn,k ≥ 0

Figure 4: An LP formulation for finding the best stopping rule independent of the expected sample
complexity for a single coin

Since, ultimately, we wish to optimize over all possible values in n0, such a linear program
formulation (in Figure 3) cannot be used directly. However, consider the following rewriting of the
program. We can always divide the {αn,k, βn,k} variables by n0 and not change the meaning of
the program, if we rescale the constraints and objective correspondingly. This modification has the
following effects: it 1) changes the n0 in the objective and the fifth constraint into 1, 2) preserves
the second and third constraints as well as the non-negativity constraints and 3) changes the first
and fourth constraints into “variable = 1/n0”. The first and fourth constraints are now the only
components in the new program that depend on n0, and since we ultimately wish to optimize over
all possible n0, we can replace these constraints with the weaker constraint that they all equal
to each other without specifying what they are equal to. This results in the linear program in
Figure 4, which by the above reasoning is equivalent to optimizing the total sample complexity for
a stopping rule.

To obtain the optimal stopping rule {γn,k}, we solve the linear program in Figure 4, rescale
every variable such that β0,0 = 1, and calculate γn,k = αn,k/βn,k. If the solution to the linear
program (in Figure 4) is 1/S, then the expected sample complexity is O( S

ε2
log 1

δ ) to estimate ρ to
within an additive ε with probability at least 1 − δ. This can be achieved by taking the median-
of-means of O(log 1

δ ) groups of samples of size O(S/ε2), each of which has a constant probability
concentration to within additive ε by Chebyshev’s inequality. Summarizing the above gives the
following theorem.

Theorem 4. Suppose we are given 1) the distribution of coin biases conditioned on being a positive
coin, 2) the analogous distribution for negative coins and 3) the mixture parameter ρ (which, again,
is a circular assumption but useful for a bootstrapping approach). Suppose further that we are given
4) the parameter nmax, which controls the maximum depth of the triangular walk.

Then, following the method described earlier in this section, we can find the linear estimator
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for ρ that minimizes variance, subject to a) the expected output of the estimator on input a random
positive coin is 1 and b) the analogous expected output for a random negative coin is 0.

Moreover, if the objective of the linear program in Figure 4 is 1/S, then the expected sample
complexity of the constructed linear estimator is O( S

ε2
log 1

δ ), which will estimate ρ to within an
additive error of ε with probability at least 1− δ.

7.2 Optimality of such linear estimators

In this section, we show that in fact, the linear estimators produced by the linear program in
Figure 3 are optimal compared with any single-coin adaptive but possibly non-linear estimators,
subject to the same maximum depth constraints.

Our approach for lower bounding the sample complexity is to fix the distributions h+ and h−

of positive and negative coin biases respectively, and show that with a small number of samples, it
is impossible to distinguish the case between A) a ρ and (1 − ρ) mixture of positive and negative
coins and B) a (ρ + ε) and (1 − ρ − ε) mixture. To show indistinguishability, we again use the
notion of Hellinger distance. Since each stopping rule induces different distribution on the Pascal
triangle, under randomly chosen coins from each of the A and B scenarios, we will upper bound
the (squared) Hellinger distance between the scenarios.

Lemma 23 shows that the squared Hellinger distance is in fact a linear function in {αn,k} and
furthermore, in the regime where ε � ρ, is within a constant factor of the objective in the linear
program in Figure 4. The coincidence will allow us to show matching lower bounds.

Lemma 23. Consider an arbitrary stopping rule {γn,k} giving coefficients {αn,k}. If ε/ρ is smaller
than some universal constant, then the squared Hellinger distance between 1) a coin randomly chosen
as in case A (described in the paragraphs above) inducing a distribution on the Pascal triangle given
the stopping rule and 2) a coin randomly chosen as in case B instead, is

Θ(ε2)
∑
n,k

(h+
n,k − h

−
n,k)

2

ρh+
n,k + (1− ρ)h−n,k

αn,k

We defer the proof and calculations to Appendix C, but it is completely analogous to that of
Lemma 21.

With Lemma 23, we now prove Theorem 5.

Theorem 5. As in Theorem 4, suppose we are given 1) the distribution of coin biases conditioned
on being a positive coin, 2) the analogous distribution for negative coins, 3) the mixture parameter
ρ, as well as the parameter nmax, which controls the maximum depth of the triangular walk.

The linear estimator produced from solving the linear program in Figure 4, as described in
Theorem 4, has total expected sample complexity that is within a constant factor of any optimal
single-coin adaptive algorithm with ≥ 2

3 probability of success, subject to the same maximum depth
constraint.

Combining with a corollary of Lemma 17, restricted to fully-adaptive algorithms that invests
at most nmax flips on any single coin, this shows that our linear estimator in fact has sample
complexity within a constant factor of any fully-adaptive algorithm satisfying the maximum depth
constraint for every single coin.

Proof. Given an arbitrary stopping rule, if it induces a squared Hellinger distance of H2 between
the two cases with a single random walk, then we can lower bound the number of random walks
needed in the single-coin adaptive algorithm in order to solve the distinguishing task with constant
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probability of success, by Θ(1/H2), using the subaddivity of squared Hellinger distance, and that
the total Hellinger distance needs to be at least constant to solve the distinguishing task. Thus, if
n0 is the expected number of coin flips for a random walk, the overall expected sample complexity
is lower bounded by Ω(n0/H

2). Since we need to find a lower bound that applies to all single-coin
adaptive algorithms, we need to find the smallest n0/H

2 over all the possible stopping rules (subject
to the same max-depth constraint), or equivalently, maximize H2/n0 (which can alternatively be
interpreted as the squared Hellinger distance per expected sample). Lemma 23 tells us that we can
replace H2 with the expression in the lemma and lose no more than multiplicative constants. Thus,
if we fix n0, finding the best lower bound up to multiplicative constants is equivalent to solving
the optimization problem that is exactly the one in Figure 3, except for an extra factor of Θ(ε2)
in the objective. We again wish to maximize the H2/n0 over all possible choices of n0 as well, and
therefore, following the same reasoning as before, we arrive at the linear program that is essentially
the one in Figure 4, again except for the factor of Θ(ε2) in the objective. This linear program has
no n0 dependency, and has objective that is Θ(ε2) times that of the one in Figure 4, which is the
reciprocal of the (expected) total sample complexity of the optimal linear estimator produced as
described in Section 7.1. Summarizing, if the solution to the linear program in Figure 4 is 1/S,
then the maximum H2/n0 over all possible stopping rules would be within a constant factor of
ε2/S, giving a lower bound of Ω(S/ε2) on the expected sample complexity (under case A) for a
constant probability of success in the task of distinguishing between case A and case B. This lower
bound matches the upper bound of O(S/ε2) on the total sample complexity of the linear estimator
we produce according to Theorem 4.

As given in the theorem statement, combining this result with a corollary of Lemma 17 shows
that our linear estimator is in fact competitive to within a constant factor in sample complexity
with fully-adaptive algorithms that invest at most nmax flips on any single coin.
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A Non-Adaptive Lower Bound

Here we give the remaining calculations for the non-adaptive lower bound of O( ρ
ε2∆2 log 1

ρ).
Recall that, to show a non-adaptive lower-bound, consider a random variable S that uniformly

chooses between scenarios “ρ” and “ρ + ε” respectively, where coins will have bias 1
2 + ∆ with

probability ρ or ρ+ ε respectively depending on the outcome of S, and bias 1
2 −∆ otherwise. We

will show that the mutual information between n flips of a single coin and the scenario variable S
is at most O(n ε2∆2

ρ log(1/ρ)), and thus that, even when combining information from several coins, at

least Ω( ρ
ε2∆2 log 1

ρ) samples are needed to distinguish the two scenarios with constant probability.
Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias p has

value k.
The mutual information is exactly represented as

1
2

∑n
k=0(ρBin(n, 1

2 + ∆, k) + (1− ρ)Bin(n, 1
2 −∆, k)) log

(ρBin(n, 1
2

+∆,k)+(1−ρ)Bin(n, 1
2
−∆,k))

((ρ+ ε
2

)Bin(n, 1
2

+∆,k)+(1−ρ− ε
2

)Bin(n, 1
2
−∆,k))

+ ((ρ+ ε)Bin(n, 1
2 + ∆, k) + (1− ρ− ε)Bin(n, 1

2 −∆, k)) log
((ρ+ε)Bin(n, 1

2
+∆,k)+(1−ρ−ε)Bin(n, 1

2
−∆,k))

((ρ+ ε
2

)Bin(n, 1
2

+∆,k)+(1−ρ− ε
2

)Bin(n, 1
2
−∆,k))

Claim is that, for x, y ≥ 0, we have x log x
(x+y)/2 + y log y

(x+y)/2 ≤
(x−y)2

x+y .

Letting x be ρBin(n, 1
2 + ∆, k) + (1− ρ)Bin(n, 1

2 −∆, k) and y be the ρ+ ε mixture analogue,
the mutual information is less than or equal to:

ε2

4

n∑
k=0

(Bin(n, 1
2 + ∆, k)− Bin(n, 1

2 −∆, k))2

((ρ+ ε
2)Bin(n, 1

2 + ∆, k) + (1− ρ− ε
2)Bin(n, 1

2 −∆, k))

≤ ε2
n∑
k=0

(Bin(n, 1
2 + ∆, k)− Bin(n, 1

2 −∆, k))2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 −∆, k))

Since (x− y)2 ≤ 2(x2 + y2), and 1
x+y ≤ min{ 1

x ,
1
y}, we also have

n∑
k=0

(Bin(n, 1
2 + ∆, k)− Bin(n, 1

2 −∆, k))2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 −∆, k))

≤ 2

n∑
k=0

Bin(n, 1
2 + ∆, k)2 + Bin(n, 1

2 −∆, k)2

(ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 −∆, k))

≤ 2 min

{
n∑
k=0

Bin(n, 1
2 + ∆, k)2

ρBin(n, 1
2 + ∆, k))

,
n∑
k=0

Bin(n, 1
2 + ∆, k)2

Bin(n, 1
2 −∆, k))

}
+ 2

n∑
k=0

Bin(n, 1
2 −∆, k)2

Bin(n, 1
2 −∆, k))

= 2 min

{
1

ρ
,

(
1 + 12∆2

1− 4∆2

)n}
+ 2

For ∆ bounded below by any universal positive constant, this last expression isO(min{1
ρ , e

O(∆2n)}).
Since the components of the minimum are 1) equal for n = O( 1

∆2 log 1
ρ) and 2) constant and convex

in n respectively, we can bound the minimum by a linear function that goes through this intersec-
tion point: for n ≥ 1

∆2 the minimum is bounded by O(n ∆2

ρ log 1
ρ

). Multiplying by ε2 gets a bound

on the mutual information, and dividing by n gets a bound on mutual information per sample of
O( ε2∆2

ρ log 1
ρ

).

For the remaining regime of n ≤ 1
∆2 :
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n∑
k=0

(Bin(n, 1
2 + ∆, k)− Bin(n, 1

2 −∆, k))2

ρBin(n, 1
2 + ∆, k) + Bin(n, 1

2 −∆, k)
≤

n∑
k=0

(Bin(n, 1
2 + ∆, k)− Bin(n, 1

2 −∆, k))2

Bin(n, 1
2 −∆, k)

=

(
1 + 12∆2

1− 4∆2

)n
−1

This last expression is O(∆2n) for n ≤ 1
∆2 , and thus we can bound the mutual information per

sample by O(ε2∆2) here.

Combining the two bounds, we conclude the mutual information per sample is at most O( ε2∆2

ρ log 1
ρ

)

for all n, and thus its inverse, O(
ρ log 1

ρ

ε2∆2 ) lower-bounds the number of non-adaptive samples needed
for our task.

B Proof of Proposition 20

This appendix proves Proposition 20, which upper bounds the squared Hellinger distance per
sample for any single-coin algorithm of (without loss of generality) a particular form stated in the
proposition. We state the proposition again for the reader’s convenience, as well as Lemma 21 that
is introduced in Section 5.2, which simplifies the expression of the squared Hellinger distance by
sacrificing a constant factor.

Proposition 20. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that
are powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops if it reaches
10−8/∆2 coin flips. Suppose that given a coin, after a random walk on the Pascal triangle according
to the stopping rule, the position (n, k) that the walk ended at is always revealed, and furthermore,
if n = 10−8/∆2, then the bias of the coin is also revealed. Let H2 be the squared Hellinger distance
between a single run of the above process where 1) a coin with bias 1

2 + ∆ is used with probability
ρ and a coin with bias 1

2 − ∆ is used otherwise versus 2) a coin with bias 1
2 + ∆ is used with

probability ρ+ ε and a coin with bias 1
2 −∆ is used otherwise. Furthermore, let Eρ[n] and Eρ+ ε

2
[n]

be the expected number of coin flips during a run of the algorithm where we use a 1
2 + ∆ coin with

probability ρ and ρ+ ε
2 respectively, and a 1

2−∆ coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller
than some universal absolute constant, then

max

[
H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)

As mentioned in Section 5.2, the proofs for bounding H2

Eρ[n] and H2

Eρ+ ε
2

[n] are essentially identical,

so here we present the proof only for the latter.

Lemma 21. Consider the two probability distributions in Proposition 20 over locations (n, k) in
the Pascal triangle of depth 10−8/∆2 and bias p ∈ {1

2 ±∆}, generated by the given stopping rule
{γn,k} in the two cases of 1) a coin with bias 1

2 + ∆ is used with probability ρ and a coin with bias
1
2 −∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with probability ρ+ ε and a coin
with bias 1

2 −∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared
Hellinger distance between these two distributions can be written as

Θ(ε2)

[ ∑
n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2
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+
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

]

We perform separate analyses on three regions of the Pascal triangle: 1) the last row n = 10−8

∆2 ,
2) a “high discrepancy region” where h+

n,k/h
−
n,k ≥ 1/ρ0.1 which is towards the right of the triangle,

potentially contributing large amounts to the squared Hellinger distance and 3) a “central” region
that is the rest of the triangle. We shall show that each region contributes small squared Hellinger
distance per sample, and thus their sum bounds the total squared Hellinger distance per sample,
completing the proof of Proposition 20.

We present the three analyses in the order of central region (Section B.1), high discrepancy
region (Section B.2) and the last row (Section B.3).

B.1 “Central” Region

For the purposes of this section, define bn,k,ρ+ ε
2

to equal ((ρ + ε
2)h+

n,k + (1 − ρ − ε
2)h−n,k), so that

αn,kbn,k,ρ+ ε
2

is the probability of reaching and stopping at location (n, k) under a ρ+ ε
2 mixture of the

two coin types. Further, let Rn,k,ρ be defined to equal
(h+
n,k−h

−
n,k)2

(ρh+
n,k+(1−ρ)h−n,k)2

, which is the contribution

of location (n, k) to the squared Hellinger distance per unit of probability mass that stops there.
By Lemma 21, the contribution to the squared Hellinger distance from the central region of the

triangle is bounded by the sum, over this region, of ε2αn,kbn,k,ρ+ ε
2
Rn,k,ρ.

Proposition 24. For an arbitrary stopping rule, the contribution of the central region to the squared
Hellinger distance, divided by the (total) expected sample complexity Eρ+ ε

2
[n] of the walk using a

ρ+ ε
2 mixture of 1

2 ±∆ coins, is at most O(ε2∆2/ρ). Explicitly, with notation for b and R defined
in the previous paragraphs, we have

ε2
∑

n< 10−8

∆2 ,k s.t.
h+
n,k

h−
n,k

< 1
ρ0.1

αn,kbn,k,ρ+ ε
2
Rn,k,ρ = O

(
ε2∆2

ρ

)
Eρ+ ε

2
[n]

Proof. We upper bound this quantity here by instead 1) replacing Rn,k,ρ by a similar quantity

R̂n,k,ρ that is an upper bound on R in the central region, and 2) summing over the entire triangle

instead of just the central region. Let R̂n,k,ρ = 2

(
min

(
h+
n,k

h−n,k
, 1
ρ0.1

)
− 1

)2

. This bounds R in the

region where h+
n,k/h

−
n,k ≤ 1/ρ0.1: in this regime, R̂ =

2(h+
n,k−h

−
n,k)2

(h−n,k)2
. The numerator of R is at most

1
2 of the numerator of R̂, and the denominator of R is at least 1

2 of the denominator of R̂.
Thus we instead prove the related fact that

ε2
∑

n≤ 10−8

∆2 , k∈[0..n]

αn,kbn,k,ρ+ ε
2
R̂n,k,ρ = O

(
ε2∆2

ρ

)
Eρ+ ε

2
[n] (7)

We prove this by induction on a row i, where we define Ain,k to be the stopping probabilities
(corresponding to the product αn,kbn,k,ρ+ ε

2
) for the variant of the given stopping rule where we

force the rule to stop at row i if it reaches this row; analogously define Eiρ+ ε
2
[n] to be the expected
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number of samples taken by this rule. We consider how both the left hand side and Eiρ+ ε
2
[n] change

as we increase i by 1, and show that the ratio of their change is O
(
ε2∆2

ρ

)
.

See Lemma 25 for a proof of this fact. The proof of the lemma rely on the concrete definitions
of bn,k,ρ+ ε

2
and Rn,k,ρ, and so both the lemma statement and the proof write out the expressions

for purposes of calculations.
As a proof sketch of the ground covered by Lemma 25: if for some location (i, k) some amount

of probability mass m continues down to row i + 1 instead of stopping here, then the expected
number of samples increases by exactly m. Meanwhile, this probability mass m will end up split
between locations (i+ 1, k) and (i+ 1, k+ 1), where for a coin of bias p (that will be 1

2 ±∆), we will

have m(1−p) mass going left and mp mass going right, contributing to Ai+1
i+1,k and Ai+1

i+1,k+1 entries
respectively. The change in the left hand side of Equation 7 induced by sending mass m down to
level i + 1 is thus expressed as a linear combination of 3 evaluations of the function R̂n,k,ρ. Since

R̂n,k,ρ is essentially a quadratic function of the ratio
h+
n,k

h−n,k
, this linear combination evaluates to the

difference between a quadratic evaluated at 1 point, versus the weighted average of the quadratic
at 2 surrounding points, and is bounded by m ·O( ∆2

ρ0.2 ) essentially because of the second derivative
of the quadratic in the central region.

Lemma 25. For any (n, k),

ε2ηn,k

((ρ+
ε

2
)h+
n+1,k+1 + (1− ρ− ε

2
)h−n+1,k+1)× 2

(
min

(
h+
n+1,k+1

h−n+1,k+1

,
1

ρ0.1

)
− 1

)2

+ ((ρ+
ε

2
)h+
n+1,k + (1− ρ− ε

2
)h−n+1,k)× 2

(
min

(
h+
n+1,k

h−n+1,k

,
1

ρ0.1

)
− 1

)2


≤ ε2ηn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

2

(
min

(
h+
n,k

h−n,k
,

1

ρ0.1

)
− 1

)2

+O

(
∆2

ρ0.2

)
Proof. It suffices to show that the left hand side of the inequality is upper bounded by the right
hand side, substituting in both options for the minimum. For the 1/ρ0.1 case, since both summands
on the left hand side are upper bounded by the 1/ρ0.1 case of their expressions, the inequality follows
trivially and in fact without the excess term of O(∆2/ρ0.2).

We now prove the other case, for which it is sufficient to show that

ε2ηn,k

((ρ+
ε

2
)h+
n+1,k+1 + (1− ρ− ε

2
)h−n+1,k+1)× 2

(
h+
n+1,k+1

h−n+1,k+1

− 1

)2

+ ((ρ+
ε

2
)h+
n+1,k + (1− ρ− ε

2
)h−n+1,k)× 2

(
h+
n+1,k

h−n+1,k

− 1

)2


≤ ε2ηn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

2

(
h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
when h+

n,k/h
−
n,k ≤ 1/ρ0.1.
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In turn, we can break this inequality into a conjunction of two inequalities, that

h+
n+1,k+1

(
h+
n+1,k+1

h−n+1,k+1

− 1

)2

+ h+
n+1,k

(
h+
n+1,k

h−n+1,k

− 1

)2

≤ h+
n,k

(h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
and

h−n+1,k+1

(
h+
n+1,k+1

h−n+1,k+1

− 1

)2

+ h−n+1,k

(
h+
n+1,k

h−n+1,k

− 1

)2

≤ h−n,k

(h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
again assuming that h+

n,k/h
−
n,k ≤ 1/ρ0.1.

For the first inequality, observe that

h+
n+1,k+1

h−n+1,k+1

=
1
2 + ∆
1
2 −∆

h+
n,k

h−n,k
and

h+
n+1,k

h−n+1,k

=
1
2 −∆
1
2 + ∆

h+
n,k

h−n,k

and also h+
n+1,k+1 = h+

n,k(
1
2 + ∆) and h+

n+1,k = h+
n,k(

1
2 −∆). We therefore factor out and drop the

h+
n,k on both sides, simplify, and reduce to showing that

(
1

2
+ ∆

)( 1
2 + ∆
1
2 −∆

h+
n,k

h−n,k
− 1

)2

+

(
1

2
−∆

)( 1
2 −∆
1
2 + ∆

h+
n,k

h−n,k
− 1

)2

≤

(
h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
The left hand side is(

1

2
+ ∆

)( 1
2 + ∆
1
2 −∆

h+
n,k

h−n,k
− 1

)2

+

(
1

2
−∆

)( 1
2 −∆
1
2 + ∆

h+
n,k

h−n,k
− 1

)2

=

(
h+
n,k

h−n,k

)2(
(1

2 + ∆)3

(1
2 −∆)2

+
(1

2 −∆)3

(1
2 + ∆)2

)
− 2

h+
n,k

h−n,k

(
(1

2 + ∆)2

1
2 −∆

+
(1

2 −∆)2

1
2 + ∆

)
+ 1

=

(
h+
n,k

h−n,k

)2

(1 +O(∆2))− 2
h+
n,k

h−n,k

(
(1

2 + ∆)2

1
2 −∆

+
(1

2 −∆)2

1
2 + ∆

)
+ 1

≤

(
h+
n,k

h−n,k

)2

(1 +O(∆2))− 2
h+
n,k

h−n,k
+ 1

=

(
h+
n,k

h−n,k
− 1

)2

+O(∆2)

(
h+
n,k

h−n,k

)2

≤

(
h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
where the last inequality holds again because we have h+

n,k/h
−
n,k ≤ 1/ρ0.1 by our case analysis.

For the second inequality, via similar reasoning as above, we only need to show that(
1

2
−∆

)( 1
2 + ∆
1
2 −∆

h+
n,k

h−n,k
− 1

)2

+

(
1

2
+ ∆

)( 1
2 −∆
1
2 + ∆

h+
n,k

h−n,k
− 1

)2

≤

(
h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
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The left hand side is(
1

2
−∆

)( 1
2 + ∆
1
2 −∆

h+
n,k

h−n,k
− 1

)2

+

(
1

2
+ ∆

)( 1
2 −∆
1
2 + ∆

h+
n,k

h−n,k
− 1

)2

=

(
h+
n,k

h−n,k

)2(
(1

2 + ∆)2

1
2 −∆

+
(1

2 −∆)2

1
2 + ∆

)
− 2

h+
n,k

h−n,k

(
1

2
+ ∆ +

1

2
−∆

)
+ 1

≤

(
h+
n,k

h−n,k

)2

(1 +O(∆2))− 2
h+
n,k

h−n,k
+ 1

=

(
h+
n,k

h−n,k
− 1

)2

+O(∆2)

(
h+
n,k

h−n,k

)2

≤

(
h+
n,k

h−n,k
− 1

)2

+O

(
∆2

ρ0.2

)
with reasoning as in the previous inequality, thus completing the proof of the lemma.

B.2 “High Discrepancy” Region

Proposition 26. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that are
powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops after 10−8/∆2

coin flips. Let

H2
disc = Θ(ε2)

∑
n< 10−8

∆2 ,k s.t.
h+
n,k

h−
n,k

≥ 1
ρ0.1

αn,k

(
(ρ+

ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k

) (h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

be the contribution to the squared Hellinger distance by the “high discrepancy” region. Furthermore,
again let Eρ+ ε

2
[n] be the expected number of coin flips on this random walk, where we use a 1

2 + ∆

coin with probability ρ+ ε
2 (instead of ρ or ρ+ ε), and a 1

2 −∆ coin otherwise. If all of ρ, ε, ∆ and
ε/ρ are smaller than some universal absolute constant, then

H2
disc

Eρ+ ε
2
[n]

= O

(
ε2∆2

ρ

)
The key observation for this section is that the “high discrepancy” region is in fact at least

Ω(log 1
ρ) standard deviations away from where a random walk on the triangle (without a stopping

rule) would concentrate; and thus it is very unlikely for the random walk to enter the region.
However, the existence of a stopping rule could potentially skew the distribution of the random
walk on each row towards the “high discrepancy” side of the triangle, while saving on sample
complexity by stopping early whenever the walk enters the other side of the triangle. In this
section, we essentially show that this cannot happen.

The analysis in this section relies on our assumption that the stopping rule only stops at rows
that are powers of 2 (unlike the analysis of the previous section). Intuitively, if the random walk
ends up very far to the right, then there must be a single region of rows [2i..2i+1] where, without
any stopping rule on intermediate rows to guide it, the walk still somehow makes unlikely progress
to the right. More explicitly, if the distribution of reaching-and-not-stopping-at row 2i+1 is skewed
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significantly far to the right of the distribution of reaching-and-not-stopping-at row 2i (despite
the intervening process being strictly a binomially distributed random walk), then the only way
this could have occurred is if an overwhelming fraction of the probability mass reaching row 2i+1

stops there. Namely, if probability mass m emerges below row 2i+1 and skewed far to the right,
the potential Hellinger distance gains this induces will be more than counterbalanced by the huge
addition to sample complexity induced by the overwhelming (relative to m) probability of stopping
at row 2i+1.

We utilize the following fact, essentially a consequence of a Binomial distribution being upper
bounded by a corresponding Gaussian.

Fact 27. Let Bin(n, p, k) denote the probability that a Binomial distribution with n trials and bias
p has value k. If ∆ is sufficiently small, then there exists some absolute constant C such that for
all n ≥ 1, and for both 1

2 + ∆ and 1
2 −∆ substituted in the expression “1

2 ±∆” below,

∑
k∈[0..n]

e
(k−( 1

2±∆)n)2

n Bin(n,
1

2
±∆, k) ≤ C

The sum of the pointwise products of the Binomial pmf and the inverse Gaussian can instead
be re-expressed as the evaluation of a convolution between corresponding functions evaluated at a
single point. We express this straightforward corollary below, and use it crucially in this section
and the next.

Fact 28. Consider the sequences f+
n,k(m) = e

(k−( 1
2 +∆)n−m)2

n for m ∈ Z, and f−n,k(m) = e
(k−( 1

2−∆)n−m)2

n

for m ∈ Z. Let Bin(n, p) be the pmf of the Binomial distribution with n trials and bias p. If ∆ is
sufficiently small, then there exists some absolute constant C such that for all n ≥ 1 and all k,

(f+
n,k ∗ Bin(n,

1

2
+ ∆))(k) ≤ C

and

(f−n,k ∗ Bin(n,
1

2
−∆))(k) ≤ C

To start lower bounding the expected sample complexity of the random walk, we start with the
following two lemmas stating that if there is probability c of reaching a right tail on a particular
power-of-2 row, then there must be a tail on the previous power-of-2 row that the walk has high
probability reaching. These are formalized as Lemma 29 and 30 for 1

2 + ∆ coins and 1
2 −∆ coins

respectively. The crux of the arguments are (weighted) averaging arguments based on Fact 28.

Lemma 29. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers
of 2. For a coin with bias 1

2 + ∆, suppose at row 2j there is some position k ∈ [(1
2 + ∆)2j ..2j ] such

that the total probability mass of the random walk reaching positions ≥ k at row 2j is at least c.
Then, there must be some position k′ ∈ [0..2j−1] at row 2j−1 such that the probability of reaching

positions ≥ k′ at that row is at least c
C · f

+
2j−1,k

(k′) = c
C · e

(k−( 1
2 +∆)2j−1−k′)2

2j−1 , where the constant C

and the function f+
n,k are defined in Fact 28.

Proof. Let us denote by D↓n the vector (over k ∈ [0..n]) of probabilities that the random walk using
a coin of bias 1

2 + ∆ reaches but does not stop at the location (n, k). Similarly, let us denote by
Dn the vector (over k′ ∈ [0..n]) of probabilities that the random walk using a 1

2 + ∆ coin reaches
the location (n, k) (and can either stop at or leave the location).
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Consider the vector I that is 1 for all coordinates ≤ 0, and 0 otherwise. Then for any vector v,
(v ∗ I)(k) =

∑
i≤k v(k), using “∗” to denote convolution.

Assume for the sake of contradiction that the statement is false, namely that for all k′ ∈ [0..2j−1],

(D2j−1 ∗ I)(k′) < c
C · f

+
2j−1,k

(k′). Then, since D↓
2j−1 ≤ D2j−1 pointwise, we have for all k′ ∈ [0..2j−1],

(D↓
2j−1 ∗ I)(k′) < c

C · f
+
2j−1,k

(k′). Observe that D↓
2j−1 ∗ I is constant for all coordinates ≤ 0, and

that f+
2j−1,k

is a decreasing function in the same region if k ∈ [(1
2 + ∆)2j ..2j ] (as in the lemma

assumption), and therefore D↓
2j−1 ∗ I < f+

2j−1,k
also for that region since the inequality holds at

coordinate 0. As for coordinates > 2j , D↓
2j−1 ∗ I is 0, whilst f+

2j−1,k
is strictly positive. It follows

that the inequality also holds for coordinates > 2j , and thus it holds everywhere.
From this, using the commutativity of convolution, we have

D2j ∗ I =

(
D↓

2j−1 ∗ Bin(2j−1,
1

2
+ ∆)

)
∗ I

= (D↓
2j−1 ∗ I) ∗ Bin(2j−1,

1

2
+ ∆)

< f+
2j−1,k

∗ Bin(2j−1,
1

2
+ ∆)

which holds pointwise, in particular at coordinate k. However, (D2j ∗ I)(k) = c by assumption, but
f+

2j−1,k
∗ Bin(2j−1, 1

2 + ∆)(k) ≤ c by Fact 28, which is a contradiction.

Lemma 30. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers
of 2. For a coin with bias 1

2 −∆, suppose at row 2j there is some position k ∈ [(1
2 −∆)2j ..2j ] such

that the total probability mass of the random walk reaching positions ≥ k at row 2j is at least c.
Then, there must be some position k′ ∈ [0..2j−1] at row 2j−1 such that the probability of reaching

positions ≥ k′ at that row is at least c
C · f

−
2j−1,k

(k′) = c
C · e

(k−( 1
2−∆)2j−1−k′)2

2j−1 , where the constant C

and the function f−n,k are defined in Fact 28.

Proof. The proof is completely analogous to that of Lemma 29.

In order to conclude the sample complexity lower bound corresponding to a particular row, we
need the following lemma saying that, if we repeatedly apply Lemma 29 (or Lemma 30), then some
row 2j will have a large probability of stopping at that row, which will contribute a large amount to
the overall sample complexity. Further, when 2j is smaller (corresponding to fewer samples taken
before stopping), the probability bound induced by the following lemma will be correspondingly
higher, so that the product of the row and its stopping probability (i.e., a lower bound on total
sample complexity) will be high for the j produced by the lemma.

Lemma 31. Consider an arbitrary sequence of numbers {gj}j∈[0..J ] such that
∑

j gj = K. Let rj be

chosen arbitrarily such that rj ≥ 1
C e

g2
j /2

j

, where C is the constant in Fact 28 and let πj =
∏J
i=j ri.

Furthermore suppose that K2 ≥ 100 log(2C) · 2J . Then there exists j ∈ [0..J ] such that πj2
j−J ≥

e0.01K2/2J .

Proof. Taking logarithms and rearranging, we see that it suffices to show the existence of j such

that (j − J − 1) log(2C) +
∑J

i=j

g2
j

2j
≥ 0.01K

2

2J
.

The sequence K
5 · 0.8

J−j for j ∈ [0..J ] sums up to less than K. Since
∑

j gj = K, there must

exist a j such that gj ≥ K
5 0.8J−j . Therefore,

g2
j

2j
≥ K2

25
0.64J−j

2j
= K2

25
1.28J−j

2J
.
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It suffices to show that K2

25
1.28J−j

2J
≥ 0.01K

2

2J
+ (J − j + 1) log(2C). It is easy to check that a

sufficient condition is K2/2J ≥ 100 log(2C), as assumed in the lemma statement; thus we conclude
the above inequality for all j ∈ [0..J ].

Now we use Lemmas 29, 30 and 31 to prove the sample complexity lower bound corresponding
to a particular row (Lemma 32). Afterwards we shall combine these bounds across all possible
power-of-2 rows to prove Proposition 26.

Lemma 32. Consider an arbitrary stopping rule {γn,k} that is non-zero only for n that are powers
of 2. For a mixture coin that has bias 1

2 +∆ with probability ρ+ ε
2 and bias 1

2−∆ otherwise, suppose
at row 2J+1 there is some position k ∈ [(1

2 + ∆)2J+1..2J+1] such that the probability mass of the

random walk reaching positions ≥ k at row 2J+1 is c. If k ≥ (1
2 + ∆)2J+1 +

√
100 log(2C)2

J
2 + 1,

then the expected sample complexity of a single random walk using the above mixture coin is at least
2J−1 · c · e0.01(k−( 1

2
+∆)2J+1)2/2J .

We point out that the restriction on k (that it lies at least a constant number of standard
deviations to the right of its mean) includes the entire high discrepancy region, as analyzed in this
section, and further includes all of the larger yet analogous region for the analysis of the last row
in the next section.

Proof of Lemma 32. The probability of the random walk reaching positions ≥ k at row 2J+1 using
a mixture coin is the sum of ρ+ ε

2 times such probability of the random walk using a 1
2 +∆ coin and

1− ρ− ε
2 times such probability of the random walk using a 1

2 −∆ coin. Since the total probability
of this walk reaching positions ≥ k equals c, at least half this probability must come from one of
the two coin types. Explicitly, at least one of the following two statements has to be true: 1) the
probability that the random walk using a coin with 1

2 + ∆ bias reaches positions ≥ k at row 2J+1 is
at least c/(2ρ+ε), or 2) the same probability but using a 1

2−∆ coin instead is at least c/(2−2ρ−ε).
For case 1, we repeatedly apply Lemma 29 to generate a sequence of {kj} from j = J backwards

(and kJ+1 = k), until kj∗ < (1
2 +∆)2j

∗
or j∗ = 0. By induction, the probability of reaching positions

≥ kj at row 2j is at least c
2ρ+ε ·

∏J
i=j

1
C e

(ki+1−( 1
2 +∆)2i)−ki)

2

2i . We would now apply Lemma 31 with

gi = ki+1−ki− (1
2 +∆)2i for i ≥ j∗, and gi = 0 for i < j∗, noting that K in that lemma that we get

is K =
∑J

i=j∗ ki+1− ki− (1
2 + ∆)2i ≥ kJ+1− kj∗ −

∑J
i=j∗(

1
2 + ∆)2i > kJ+1(= k)− (1

2 + ∆)2J+1− 1

since kj∗ < (1
2 +∆)2j

∗
if j∗ > 0 and k0 ≤ 1 when j∗ = 0. Since we assumed in the lemma statement

that k ≥ (1
2 + ∆)2J+1 +

√
100 log(2C)2

J
2 + 1, we have K2/2J ≥ 100 log(2C).

Therefore, as a result of applying Lemma 31, we know that there exists j such that

2j−J
J∏
i=j

1

C
e

(ki+1−( 1
2 +∆)2i)−ki)

2

2i ≥ e0.01(k−( 1
2

+∆)2J+1)2/2J

Thus in case 1, we multiply the left hand side by c/(2ρ + ε)2J to give a lower bound on the
expected sample complexity of the random walk, using a 1

2 +∆ coin. We thus use the above inequal-

ity to conclude a lower bound of 2J c
2ρ+εe

0.01(k−( 1
2

+∆)2J+1)2/2J for the expected sample complexity

conditioned on a 1
2 + ∆ coin. Since the mixture coin has probability ρ+ ε

2 of being a 1
2 + ∆ coin,

the lemma statement follows.
The proof for case 2 is completely analogous, using Lemma 30 instead of Lemma 29, and noting

that k − (1
2 −∆)2J+1 ≥ k − (1

2 + ∆)2J+1 ≥ 0.

Equipped with Lemma 32, we prove Proposition 26.
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Proof of Proposition 26. The general strategy is to show using Lemma 32 that, for each row (from
1 to 10−8/∆2), if there is some probability cJ for the random walk to reaching the high discrepancy
region, then: 1) the total expected sample complexity must be large, and 2) by Lemma 21, if
there is probability cJ of reaching the high discrepancy region at row 2J , then the contribution
to the squared Hellinger distance by the high discrepancy region at row 2J is upper bounded by
Θ(cJε

2/ρ2). Thus the squared Hellinger distance per sample complexity for the high discrepancy
region of each row is small, and our bounds are in fact strong enough for us to simply take a union
bound over the rows and lose by no more than a constant factor. We now formalize the above
argument.

Consider the rows 2J+1 for J ∈ [−1..(log2
10−8

∆2 ) − 1]. Recall that the high discrepancy region
consists of coordinates k ∈ [0..2J+1] such that h+

2J+1,k
/h−

2J+1,k
≥ 1/ρ0.1. Observe that

h+
2J+1,k

h−
2J+1,k

=

(
1 + 2∆

1− 2∆

)2k−2J+1

and therefore the high discrepancy region consists of k such that 2k − 2J+1 ≥
.1 log 1

ρ

log 1+2∆
1−2∆

, implying

that

k ≥ 2J +
.1 log 1

ρ

log 1+2∆
1−2∆

≥ 1

2
2J+1 +

.099 log 1
ρ

4∆

Furthermore, since J ≤ (log2
10−8

∆2 ) − 1, we have 2J ≤ 0.01
2∆2 , which for sufficiently small ρ and ∆

(both smaller than some absolute constant, with no requirements on how they depend on each

other) means that
.099 log 1

ρ

4∆ ≥ ∆2J+1 +
√

100 log(2C)2
J
2 + 1. Thus the coordinates k in the high

discrepancy region always satisfy the precondition of Lemma 32.
Now note that for sufficiently small ρ (smaller than some absolute constant),(

k −
(

1

2
+ ∆

)
2J+1

)2

≥

(
.098 log 1

ρ

4∆

)2

≥
10−8(log 1

ρ)2

∆2

Therefore, if the probability of the random walk using a random coin reaches the high discrepancy
region at row 2J+1 is cJ+1, then by Lemma 32, the total expected sample complexity of the random

walk must be at least 2J−1 · cJ+1 · e0.01
10−8(log 1

ρ )2

∆2·2J .
We can now upper bound the ratio between the high discrepancy region contribution to the

squared Hellinger distance and the total expected sample complexity of the random walk by∑
J∈[−1..(log2

10−8

∆2 )−1]
Θ
(
ε2

ρ2

)
cJ+1

Eρ+ ε
2
[n]

= Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

cJ+1

Eρ+ ε
2
[n]

≤ Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

cJ+1

2J−1 · cJ+1 · e0.01
10−8(log 1

ρ )2

∆2·2J

= Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

ρ
0.02·log 1

ρ
· 10−8

2∆2·2J

2J−1
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≤ Θ

(
ε2

ρ2

) ∑
J∈[−1..(log2

10−8

∆2 )−1]

2
− 10−8

2·∆2·2J ρ
0.02·log 1

ρ

2J−1
since for sufficiently small ρ, we have ρ

0.02·log 1
ρ <

1

2

= Θ

(
ε2∆2ρ

0.02 log 1
ρ

ρ2

)
as the sum is bounded by O(ρ

0.02·log 1
ρ∆2)

= O

(
ε2∆2

ρ

)

B.3 The Last Row

We lastly analyze the squared Hellinger distance contribution from the last row of the triangle.

Proposition 33. Consider an arbitrary stopping rule {γn,k} that 1) is non-zero only for n that are
powers of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the random walk always stops after 10−8/∆2

coin flips. Let

H2
last = Θ(ε2)

∑
n= 10−8

∆2 ,k∈[0..n]

αn,k

(
(ρ+

ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k

) h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

be the contribution of the squared Hellinger distance from the last row of the triangle, namely row
10−8/∆2. Furthermore, again let Eρ+ ε

2
[n] be the expected number of coin flips on this random walk,

where we use a 1
2 +∆ coin with probability ρ+ ε

2 (instead of ρ or ρ+ε), and a 1
2−∆ coin otherwise.

If all of ρ, ε, ∆ and ε/ρ are smaller than some universal absolute constant, then

H2
last

Eρ+ ε
2
[n]

= O

(
ε2∆2

ρ

)
The squared Hellinger distance contribution from the last row has a different form from the rest

of the triangle, and can be large even outside the previously “high discrepancy” region. While the

term (
h+
n,k

ρ + h−n,k)/(ρh
+
n,k + (1 − ρ)h−n,k) is still upper bounded by 1/ρ2 everywhere, it may be as

large as Θ(1/ρ) even in when h+
n,k/h

−
n,k = Θ(1). The intuition for this section is again that despite

having a stopping rule that may have subtle effects on the distribution, it is impossible to skew the
distribution of the random walk so much that it appears mostly in the “high discrepancy” side of
the triangle. We shall use Lemma 32 again along with a case analysis and a weighted averaging
argument to show sample complexity lower bounds, which lets us upper bound the squared Hellinger
distance contribution per expected sample, as required.

Proof. We separate the last row again into a “high discrepancy” region and a “central” region, but
with a different criterion: whether

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

≥ C

ρ

where C is the constant specified in Fact 28. The criterion can be equivalently stated as whether
h+
n,k/h

−
n,k ≥ r for some r = Θ(1).
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For the “central” region, suppose there is probability cn,k of reaching position (n, k) in that
region for the random walk that uses a ρ + ε

2 mixture random coin. Consider an alternate form
of the squared Hellinger distance contribution that is within a constant factor of that presented in
the proposition statement, assuming that ε/ρ is small:

Θ(ε2)
∑

n= 10−8

∆2 ,k∈[0..n]

αn,k

(
h+
n,k

ρ
+ h−n,k

)

This approximation holds since ρh+
n,k + (1 − ρ)h−n,k and (ρ + ε

2)h+
n,k + (1 − ρ − ε

2)h−n,k are within

constant factors of each other. Note that cn,k = αn,k((ρ + ε
2)h+

n,k + (1 − ρ − ε
2)h−n,k), and so

when h+
n,k/h

−
n,k ≤ r = Θ(1), we have both αn,kh

+
n,k = O(c) and αn,kh

−
n,k = O(c). Thus the

squared Hellinger contribution of this location is upper bounded by O(cε2/ρ), yet the total sample
complexity is lower bounded by Ω(cn) = Ω(c/∆2), giving a fraction that is O(ε2∆2/ρ).

For the “central” region, recall that it consists of the locations where

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

(8)

ranges from C
ρ to 1

ρ2 . We separate this region into O(log 1
ρ) buckets delimited by consecutive powers

of 2.
Suppose there is probability cdisc of the ρ + ε

2 mixture coin random walk entering the “high
discrepancy” region in the last row. Note that the geometric sequence 1, 0.8, 0.64, . . . converges to
5, and therefore the sequence { cdisc

5 0.8i}i sums to cdisc. If we took only the first O(log 1
ρ) many

terms, they sum to strictly less than cdisc. By a standard averaging argument, there must exist
a bucket such that the probability of reaching locations in that bucket i is greater than cdisc

5 0.8i.
Note that the values (Equation 8) inside bucket i range from C ·2i/ρ to 2 ·C ·2i/ρ. It is possible to
calculate that the locations k within bucket i satisfy k ≥ n

2 + 1
16
i logC

∆ , where n again is 10−8/∆2.

For a sufficiently small ∆, this lower bound in location is at least (1
2 + ∆)n+

√
100 log(2C) · n+ 1,

and therefore we can apply Lemma 32.
Furthermore, the locations are also at least (i · 10−2 logC)/∆ away from (1

2 + ∆)n, and so

Lemma 32 guarantees a sample complexity of at least Θ(1/∆2)× cdisc
5 0.8i×e0.01((i·10−2 logC)/∆)2·∆2×108 ≥

Θ(1/∆2)× cdisc
5 0.8i×e100(i logC)2 ≥ Ω(2icdisc/∆

2), where the last inequality is true because the large
exponential term has a logarithm that is quadratic in i and with a base that is a lot greater than
1/0.8.

The squared Hellinger distance contribution from the “high discrepancy” region in the last
row is upper bounded by O(cdiscε

22i/ρ), and we have shown a sample complexity lower bound of
Ω(2icdisc/∆

2). We therefore conclude a fraction of O(ε2∆2/ρ) for the squared Hellinger distance
per expected sample, for contributions from the “high discrepancy” region in the last row.

Summarizing, both the “high discrepancy” and “central” region contribute no more than
O(ε2∆2/ρ) times Eρ+ ε

2
[n] to H2

last. Therefore, the proposition follows from summing the two con-
tributions.

C Remaining Proofs/Calculations of Results

Lemma 21. Consider the two probability distributions in Proposition 20 over locations (n, k) in
the Pascal triangle of depth 10−8/∆2 and bias p ∈ {1

2 ±∆}, generated by the given stopping rule
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{γn,k} in the two cases of 1) a coin with bias 1
2 + ∆ is used with probability ρ and a coin with bias

1
2 −∆ is used otherwise versus 2) a coin with bias 1

2 + ∆ is used with probability ρ+ ε and a coin
with bias 1

2 −∆ is used otherwise. If ε/ρ is smaller than some universal constant, then the squared
Hellinger distance between these two distributions can be written as

Θ(ε2)

[ ∑
n< 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

∑
n= 10−8

∆2 ,k∈[0..n]

αn,k((ρ+
ε

2
)h+
n,k + (1− ρ− ε

2
)h−n,k)

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

]

Proof. For n < 10−8/∆2, the probability of that the location (n, k) is revealed, for the two distribu-
tions we consider in Proposition 20, are αn,k(ρh

+
n,k+(1−ρ)h−n,k) and αn,k((ρ+ε)h+

n,k+(1−ρ−ε)h−n,k)
respectively. Thus, the contribution by these locations to the squared Hellinger distance is propor-
tional to:∑

n,k

(
√
αn,k(ρh

+
n,k + (1− ρ)h−n,k)−

√
αn,k((ρ+ ε)h+

n,k + (1− ρ− ε)h−n,k))
2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

√√√√(ρ+ ε)h+
n,k + (1− ρ− ε)h−n,k

ρh+
n,k + (1− ρ)h−n,k

2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

√√√√1 + ε
h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

1 +
1

2
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

+ Θ

(ε h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

)2
2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1

2
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

+ Θ

(ε h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

)2
2

Note that the multiplier to ε is upper bounded by 1/ρ, and therefore if ε/ρ is sufficiently small, we
have the last line being equal to

∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

(
Θ

(
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

))2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k) Θ

(
ε2

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

)

= Θ(ε2)
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

Finally, note that is ε/ρ is a small constant, then ρ and 1−ρ are respectively within a small constant
factor of ρ + ε

2 and 1 − ρ − ε
2 , meaning that (ρh+

n,k + (1 − ρ)h−n,k) is within a constant factor of

((ρ+ ε
2)h+

n,k + (1− ρ− ε
2)h−n,k).
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For n = 10−8/∆2, the probability that ((n, k), 1
2 +∆) is revealed is αn,k ρ h

+
n,k and αn,k(ρ+ε)h+

n,k

for the two scenarios respectively. A similar calculation above gives a squared Hellinger distance
contribution of

Θ(ε2)αn,k

(
ρ+

ε

2

) h+
n,k

ρ

As for the contribution from the revealing of ((n, k), 1
2−∆, the respective probabilities are αn,k (1−

ρ)h−n,k and αn,k(1−ρ−ε)h−n,k, and similar calculations give a squared Hellinger distance contribution
of

Θ(ε2)αn,k h
−
n,k

which with algebraic manipulation and approximations as in the n < 10−8/∆2 case completes the
proof of the lemma.

Lemma 22. For the quadratic program in Figure 7.1, the optimal assignments to {ṽn,k} are

ṽn,k =

h+
n,k−h

−
n,k

ρh+
n,k+(1−ρ)h−n,k∑

m,j αm,j
(h+
m,j−h

−
m,j)

2

ρh+
m,j+(1−ρ)h−m,j

(and we choose vn,k = ṽn,k + ρ), giving an objective value of

1∑
n,k αn,k

(h+
n,k−h

−
n,k)2

ρh+
n,k+(1−ρ)h−n,k

Proof. We use the method of Lagrangian multiplier to find the optimal assignment to {ṽn,k}.
The Lagrangian of the program is

L =
∑
m,j

αm,j(ρh
+
m,j + (1− ρ)h−m,j)ṽ

2
m,j + λ

∑
m,j

αm,j(h
+
m,j − h

−
m,j)ṽm,j

− 1


where λ is the Lagrange multiplier.

We need to find assignments to {ṽn,k} and λ such that ∇{ṽn,k},λL = 0. Computing the partial
derivatives gives the following system of equations:

2αn,k(ρh
+
n,k + (1− ρ)h−n,k)ṽn,k + λαn,k(h

+
n,k − h

−
n,k) = 0 for all n, k (9)∑

m,j

αm,j(h
+
m,j − h

−
m,j)ṽm,jd = 1 (10)

Rearranging Equation 9 gives

ṽn,k =
−λ(h+

n,k − h
−
n,k)

2(ρh+
n,k + (1− ρ)h−n,k)

(11)

and substituting this into Equation 10 gives

−λ
∑
m,j

αm,j(h
+
m,j − h

−
m,j)

2

2(ρh+
m,j + (1− ρ)h−m,j)

= 1
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which lets us solve for λ

λ = −1/
∑
m,j

αm,j(h
+
m,j − h

−
m,j)

2

2(ρh+
m,j + (1− ρ)h−m,j)

which when substituted back into Equation 11 gives

ṽn,k =

h+
n,k−h

−
n,k

ρh+
n,k+(1−ρ)h−n,k∑

m,j

αm,j(h
+
m,j−h

−
m,j)

2

ρh+
m,j+(1−ρ)h−m,j

as desired.
The optimal value of the program can be calculated by substituting the assignment to the

objective function.

Lemma 23. Consider an arbitrary stopping rule {γn,k} giving coefficients {αn,k}. The squared
Hellinger distance between 1) a random coin drawn in case A inducing a distribution on the Pascal
triangle given the stopping rule and 2) a random coin drawn in case B instead, is

Θ(ε2)
∑
n,k

(h+
n,k − h

−
n,k)

2

ρh+
n,k + (1− ρ)h−n,k

αn,k

assuming that ε/ρ is smaller than some universal constant.

Proof. In scenario 1, the distribution induced by a random coin on the Pascal triangle is

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

and similarly for scenario 2,

αn,k((ρ+ ε)h+
n,k + (1− ρ− ε)h−n,k)

The squared Hellinger distance is therefore proportional to∑
n,k

(
√
αn,k(ρh

+
n,k + (1− ρ)h−n,k)−

√
αn,k((ρ+ ε)h+

n,k + (1− ρ− ε)h−n,k))
2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

√√√√(ρ+ ε)h+
n,k + (1− ρ− ε)h−n,k

ρh+
n,k + (1− ρ)h−n,k

2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

√√√√1 + ε
h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1−

1 +
1

2
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

+ Θ

(ε h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

)2
2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

1

2
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

+ Θ

(ε h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

)2
2
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Note that the multiplier to ε is upper bounded by 1/ρ, and therefore if ε/ρ is sufficiently small, we
have the last line being equal to

∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k)

(
Θ

(
ε

h+
n,k − h

−
n,k

ρh+
n,k + (1− ρ)h−n,k

))2

=
∑
n,k

αn,k(ρh
+
n,k + (1− ρ)h−n,k) Θ

(
ε2

(h+
n,k − h

−
n,k)

2

(ρh+
n,k + (1− ρ)h−n,k)

2

)

= Θ(ε2)
∑
n,k

(h+
n,k − h

−
n,k)

2

ρh+
n,k + (1− ρ)h−n,k

αn,k
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