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Abstract

For multilayer materials in thin substrate systems, interfacial failure is one of the
most challenges. The traction-separation relations (TSR) quantitatively describe the
mechanical behavior of a material interface undergoing openings, which is critical
to understand and predict interfacial failures under complex loadings. However,
existing theoretical models have limitations on enough complexity and flexibility to
well learn the real-world TSR from experimental observations. A neural network
can fit well along with the loading paths but often fails to obey the laws of physics,
due to a lack of experimental data and understanding of the hidden physical
mechanism. In this paper, we propose a thermodynamic consistent neural network
(TCNN) approach to build a data-driven model of the TSR with sparse experimental
data. The TCNN leverages recent advances in physics-informed neural networks
(PINN) that encode prior physical information into the loss function and efficiently
train the neural networks using automatic differentiation. We investigate three
thermodynamic consistent principles, i.e., positive energy dissipation, steepest
energy dissipation gradient, and energy conservative loading path. All of them
are mathematically formulated and embedded into a neural network model with a
novel defined loss function. A real-world experiment demonstrates the superior
performance of TCNN, and we find that TCNN provides an accurate prediction of
the whole TSR surface and significantly reduces the violated prediction against the
laws of physics.

1 Introduction

Traction-separation relations play a key role in understanding the mechanical behavior of a material
interface undergoing openings and predicting interfacial failures under complex loading conditions
[8, 14, 15, 16]. However, the entire process is tedious, complex, and unreliable due to three main
problems: (1) there has not been a universal and robust approach that can extract the TSR from
the cohesive zone using far-field measurements; (2) there has not been a unified approach to model
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TSR directly from the experimental data; and (3) the experimental design is typically pre-designed,
which cannot provide efficient coverage for the testing space [8]. Therefore, it is urgent to develop
a data-driven approach to model interfacial TSR, which allows us to effectively learn from sparse
experimental data and comply with thermodynamic consistency [13].

Deep learning has achieved remarkable success in diverse applications [3, 5] including computer
vision and natural language processing, but its use in real-world engineering fields with small data is
limited. For the TSR problem, a neural network can fit well along the loading paths but often fails to
obey physical laws, due to a lack of experimental data and understanding of the inherent mechanism.
To this end, we seek a physics-informed approach that enables us to encode physical laws as prior
information into deep learning models, which can mitigate the issue caused by a lack of data [20, 21].
Recent advances in physics-informed neural networks (PINN) [9, 10, 11] that have been used in a
wide range of engineering applications including fluid mechanics [7, 12], bio-medical engineering
[4], nanophotonics [1, 18] and computational materials science[6, 19], may bring an opportunity to
address this challenge. PINN aims at solving supervised learning tasks while respecting any given
law of physics described by general nonlinear PDE. The trained neural networks represent a class
of data-efficient approximators that naturally encode underlying physical laws as prior information.
This important feature of PINN enables solving inverse problems with limited data observations [17].
However, it is a non-trivial task to simply use the PINN for the TSR problem because there are three
challenges: (1) the law of physics hidden in TSR is complicated and can not be explicitly described by
PDE governing equations; (2) the thermodynamic consistency in TSR is more abstract and difficult to
be extracted than typical PDE-based governing equations, such as boundary conditions in PINN; and
(3) the prior information from thermodynamic consistency needs to be formulated and implemented
into neural network models in a rigorous and data-driven approach. To address these challenges, our
core contributions in this paper can be summarized as follows:

* We propose a novel thermodynamic consistent neural network (TCNN) approach to model the
material interface mechanics with sparse experimental data

* We extract three thermodynamic consistency principles, i.e., positive energy dissipation, steepest
energy dissipation gradient, and energy conservative loading path, from complex TSR problems

* We formulate the physical knowledge mathematically, encode the prior information as physics
constraints that are then embedded into a neural network model with a new loss function

2 Data-driven modeling of TSR using TCNN

Interfacial traction separation relations (TSR) For a 2-layer structure undergoing interfacial
fracture process as shown in Figure 1 (a), a cohesive layer in between these two evolved substrates
provides tractions. This cohesive layer is assumed to be homogeneous, which enables us to consider
it as an assembly of identical “springs” connecting the two layers. The interfacial fracture process is
then reproduced with the elongation and failure process of each “spring” along the interface. For a
stretched spring connecting the upper and lower layer, the normal and tangential tractions (o,,, o)
change correspondingly with the normal and tangential separations (J,,, d+), which are defined by the
change of the relative distances between the end points of the “spring”. Depending on the loading
and boundary conditions, the ratio between the tangential and normal separations (i.e., the mode-mix)
varies. To quantitatively describe this relation, the vectorial separation is defined as the Euclidean
norm of normal and tangential separation components, shown as |d| in Figure 1. The mode mix is
represented by the phase angle, which is defined as the arctangent of the ratio between normal and
tangential separations, shown as ¢ in Figure 1. Similarly, the vectorial traction is defined as |o| in
Figure 1. With these definitions, the relation between tractions (¢,,, o+) and separations (J,,, d;) is
defined as traction separation relation (TSR) which constitutes the interfacial mechanical property.

Thermodynamic consistent principles We extract three principles and discuss them as follows:
» TCI: Positive energy dissipation. Damage mechanics at the interface is the foundation for cohesive

modeling and the cohesive zone can be represented as the partial fracture at the interface. The total
interfacial fracture resistant energy can then be described as a damaging manner
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Figure 1: Illustration of TSR problem: (a) Schematics of a double cantilever beam under end loaded
split experiment, (b) traction and separations for one spring and (c) a typical TSR curve.

where I is the total interfacial toughness, I',, and I'; are the normal and shear toughness for the
intact interface, d,, and d; are the damage parameters ranging from [0, 1], and can be defined by

dn(6p) =1 = J,(0,)/Thn, de(6¢) =1— J(6e) /T 2)

where I',, = max(J,,) and I'; = max(J;) are normal and tangential toughness respectively. J,,
and J; are normal and tangential J-integrals which are defined as
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For a monotonic loading during the experiment, the energy dissipation for the interfacial delamina-
tion should be positive

D =Tyd, +Tyd; > 0. 4)
This implies that the rate of the damage parameters should be positive for the monotonic loading,
od, ody
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* TC2: Steepest energy dissipation gradient. In addition to the energy dissipation, the dissipation
rate should reach the local maximum when the interfacial separation reaches local maximum,
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where d,,,« i the vecorial direction towards the largest increment of interfacial separation given
a mode-mix phase angle ¢ = arctan(d;/J,). This ensures the fastest energy dissipation follows
the fixed loading path. This can be illustrated by damage parameters versus the total separation
and the phase angle in Figure 2. The steepest descend will be guaranteed when the projected total
separation for each monotonic loading step is the largest, which is given by
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* TC3: Energy conservative loading path. The last physics constrain is the fulfillment of energy
conservation law, which is the energy dissipation along the vectorial path should equal to the sum
of energy dissipation in both normal and tangential direction, as shown in Figure 2. This requires
the ratio between the normal tangential stress should be equal to those of separations, i.e.,

Jtotal(0n70ta5n76t) = Jn(o—nvén)'f"]t(aty(st) (8)
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In review of all three thermodynamics consistent conditions, TC1 and TC2 are based on the irre-
versible nature of the energy dissipation as stated in the second law of thermodynamics, thus are the
stronger constrains. TC3 condition is a relatively weaker condition than TC1 and TC2, because it
is based on the assumption that the delamination occurs at the interface with no frictional energy
dissipation, which may not be true based on some of the experiment observations [15].
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Figure 2: Three thermodynamic consistent principles for modeling TSR

Thermodynamic consistent neural network (TCNN)  We propose a TCNN framework by em-
bedding the thermodynamic consistency principles as physical constraints into deep neural networks.
Figure 3 presents the schematic of a TCNN for solving TSR prediction with three thermodynamic
consistent constraints. The inputs of the DNN model are separation norm || and phase angle ¢
as defined in Figure 1, and the outputs are normal and tangential J-integrals (J,,, J;), as defined
in Eq. (3). The goal is to predict the J-integral surfaces using trained DNN model with collected
experimental data.

e Lyse: a regular expected MSE loss to measure the mismatch with the given data observations
Y* = (J%, J;), which is defined as

z
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where ¢ = 1, .., z is the number of data.

* Lrc,: TCI1 is imposed on constraint paths separately on normal and tangential output J-integral
surfaces. We use max function to compare the values so that only the positive part is added to the
loss,
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* L1c,: TC2 constraints the gradient vector direction along the fixed phase angle loading paths
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* Lrc,: Different from TC1 and TC2 constraints, TC3 condition is an equality constraint,
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* L: the total loss is defined by the weighted summation of each loss functions
L = MoLyse + MLrc, + A2Lre, + A3Lrc, (14)

where \;,7 = 0, 1, 2, 3 refer to the weights of the loss functions and satisfies Z?:O A= 1.

3 Experiments and results

We collected data from real-world experimental measurements where the normal and shear TSR for a
silicon/epoxy interface were determined over normal mode-mixes range from -53° to 87.5° using
non-symmetric end-loaded split (ELS) and end-notched flexure (ENF) specimens [15]. A total 10
loading paths with 236 TSR data points are feed to the TCNN model in which a neural network
model is constructed with two layers and there are 60 neurons for each layer, and we use tanh as
the activation function and Adam as the optimizer. The hyperparameters are tuned by trust-region
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Figure 3: Schematic of a thermodynamic consistent neural network (TCNN) for solving TSR
problems. The total loss consists of the loss from data observations and thermodynamic consistency.

Bayesian optimization [2]. Figure 4 and Figure 5 shows the performance of TCNN on TSR surface
using sparse experimental data. Note that the learned TSR model can capture the complex surface
even only limited data is given and the thermodynamic violations of interfacial fracture toughness is
around 5% that is much lower than the cases without encoding thermodynamic constraints (typically
20% - 40%).
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Figure 4: TCNN performance on TSR data: predicted TSR surface using experimental data

Thermodynamics violations of interfacial fracture toughness
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Figure 5: Thermodynamics violations of predicted interfacial fracture toughness. Note that the red
color represents the thermodynamic violations, blue color means no violations.

4 Conclusion

In this paper, we propose a thermodynamic consistent neural network method for solving the traction
separation relation problems in material interactial mechanics. Three thermodynamic consistency
principles are formulated as physics constraints and mathematically imposed to a deep neural network
model with a novel loss function. By introducing these prior physical knowledge into the deep
learning model, we demonstrate that the TCNN enables to well predict the entire traction surface,
and significantly reduce the violated prediction against the laws of thermodynamics.
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