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Abstract

The popularity of Ethereum decentralized applications
(Dapps) also brings in new security risks: it has been re-
ported that these Dapps have been under various kinds of
attacks from cybercriminals to gain profit. To the best of
our knowledge, little has been done so far to understand this
new cybercrime, in terms of its scope, criminal footprints
and attack operational intents, not to mention any efforts to
investigate these attack incidents automatically on a large
scale. In this paper, we performed the first measurement study
on real-world Dapp attack instances to recover critical threat
intelligence (e.g., kill chain and attack patterns). Utilizing
such threat intelligence, we proposed the first technique DE-
FIER to automatically investigate attack incidents on a large
scale. Running DEFIER on 2.3 million transactions from 104
Ethereum on-chain Dapps, we were able to identify 476,342
exploit transactions on 85 target Dapps, which related to 75
0-day victim Dapps and 17K previously-unknown attacker
EOAs. To the best of our knowledge, it is the largest Ethereum
on-chain Dapp attack incidents dataset ever reported.

1 Introduction

The rise of blockchain technologies has profoundly trans-
formed computing, bringing to the front a new type of de-
centralized applications on blockchain that facilitate transfer
of values across users without a third party. Such applica-
tions, dubbed Dapp, have already been widely deployed on
Ethereum to provide services ranging from cryptocurrency
management to voting and governance [17]. Online statistics
show that till Nov. 5, 2019, 3,137 Dapps on Ethereum are
serving 63.77K active users every day through over one mil-
lion transactions that involve 7.55 million USD [2]. However,
the boundless potentials Dapps have opened also come with
new security risks. It has been reported that cybercriminals
have fixed their gaze on Dapps and exploits on them, particu-
larly their blockchain back-end (i.e., smart contracts, see Sec-
tion 2), happening from time to time. A prominent example is
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the DAO attack that caused a loss over 50 million USD [39]
in 2016, resulting in the hard-fork in Ethereum. Also found in
our study is that miscreants took 14K Ethers from the victim
Dapps with most financial losses (i.e., Fomo3D, Section 4.5).
With this significant threat, the community’s understanding
about the new type of cybercrimes is still very limited: to
the best of our knowledge, no extensive forensic analysis
on Dapp attacks has ever been reported, nor has any cyber
threat intelligence (CTI) been collected from them to find out
the perpetrator’s strategy, capability and infrastructure, not to
mention to utilize the knowledge to mitigate the threat.

Understanding attacks on Dapps. In this paper, we present
the first study that analyzes and measures real-world at-
tacks on Ethereum Dapps based upon the forensic evidence
recorded on the blockchain, which brings new insights to this
emerging cybercrime. Our research leverages the informa-
tion logged by the Ethereum blockchain, an open, immutable
ledger recording the entire history of interactions between
Dapps and their users through their Ethereum user accounts
(i.e., Externally Owned Accounts or EOA, see Section 2).
Such interactions are performed through transactions, which
are logged in the data packages chained by Ethereum. Should
a Dapp be exploited, all forensic evidence, such as attack
traces, will be kept in related transactions, which can later be
used to analyze the attack.

However, it is nontrivial to identify attack traces from over
350 million Ethereum transactions. Finding related transac-
tions from published reports is inadequate at best, since they
tend to miss information about important actors and exploit
behaviors (such as exploit developers, Section 4), when their
EOAs are not included in the reports. Also absent are detailed
internal operations triggered by each transaction, in terms of
function calls between the target Dapps and EOAs or between
different EOAs (see Section 4). Such calls describe these par-
ties’ behaviors and are found to be critical for determining
their intents during the interactions. To address these chal-
lenges, we come up with a methodology that utilizes known
attack-related transactions (called exploit transactions in the
paper) and EOAs to find new ones and further analyze their ex-
ecution traces (by re-executing these transactions). In this way,
utilizing 25 Dapps related to 42 known attack incidents, we
identified 58,555 exploit transactions with 436,371 execution



traces, all linked to 56 Dapps, including 29 being exploited
but never reported before (called 0-day victim Dapps).

Our findings. From the transactions collected, our forensic
analysis has recovered critical CTI about strategically, well
organized Dapp attacks, which have never been done before.
Such threat information (CTI) provides invaluable insights
for understanding the strategies, approaches and intentions of
real-world cybercriminals in attacking Dapps, and thus con-
tributes to mitigating the emerging threats. Most interesting
is the discovery about how the adversary systematically or-
chestrates an attack. More specifically, across different kinds
of exploits (weak randomness exploit, denial of services, inte-
ger overflow, reentrancy and authentication circumvention)
against different Dapps, we can see a general attack lifecycle
with four stages from the transaction sequences involved: at-
tack preparation, exploitation, propagation and completion.
These stages form a kill chain against Dapps, which has never
been reported before. The chain starts with repeated attempts
to probe the target Dapp from various sources for finding and
testing its vulnerable functions. That is, the adversary tests,
debugs the attack code to ensure it can successfully exploit
the particular target Dapp. This stage is followed by a series
of exploit transactions to profit from the target, which are con-
tinuously refined to improve efficiency. After that, the same
attack is often replayed to similar Dapps, with a sequence of
transactions produced to aim at different targets. The attack
is finalized with another sequence of transactions for termi-
nating attack contracts and transferring stolen funds. Across
different attack instances against real-world Dapps, this life-
cycle paradigm exhibits remarkable consistency, with each
stage characterized by a time series of similar, inter-dependent
transactions executed consecutively within a short time win-
dow. The series describes the adversary’s behaviors and thus
characterizes his intent at each stage. For example, continuous
probing transactions show the intent of finding weaknesses in
a target Dapp.

Further, our research reveals a hierarchical attack infras-
tructure with multiple roles working together to execute dif-
ferent types of exploits. These roles include exploit devel-
oper (testing an attack on vulnerable functions/Dapps), attack
operator (executing an exploit through attack transactions),
money mule (helping profit/attack cost transfers through an
anonymity channel [18]) and money manager (managing prof-
it/cost transfers). Each of them has well-defined tasks and
therefore behaves similarly across different attack types and
instances. This again makes their execution traces exhibit
some level of homogeneity at each attack stage.

Extended attack discovery and investigation. The CTI
(e.g., kill chain and operational intents) recovered in our study
can potentially lead to the exposure of unknown threats to
Dapps. To understand the values of our findings, we designed
an exploit discovery methodology, called DEFIER (Dapp Ex-
ploit Investigator), to find more attack instances, particularly
those never reported, so as to gain more insights into real-

world attacks on Dapps. DEFIER captures the adversary’s
strategies and intents, as demonstrated by the operations trig-
gered by the transaction time series at each stage. Given a
Dapp, our approach first gathers all its transactions recorded
on the blockchain and from them, further finds out other re-
lated transactions and EOAs. All these transactions are then
clustered based upon the similarity of their execution traces
in a graph form and organized into several time series. Af-
ter converting the execution traces of each transaction into a
vector through graph embedding, we run a Long Short-Term
Memory (LSTM) neural network to classify each time series,
which determines not only whether the series is related to an
exploit, but also its attack stage when it is.

Running DEFIER on 104 Dapps, we were able to dis-
cover 476,342 exploit transactions on 85 target (with a micro-
precision of 91.7%). In particular, DEFIER reported 75 0-day
victim Dapps (e.g., SpaceWar and SuperCard). Also surpris-
ingly, our study shows that a substantial portion (i.e., 26%)
of the transactions of these Dapps (on Ethereum) are attack-
related: e.g., 30% of Fomo3D’s transactions are attack-related
(from July 2018 to April 2019). This provides evidence that
indeed the attack lifecycle we discovered is general. Such
an attack lifecycle discovery tool can potentially be used to
disrupt exploits, sometimes even before damages are inflicted
(e.g., finding and stopping an attack at its preparation stage).
Contribution. The contributions of the paper are as follows:

e We performed the first measurement study and forensic anal-
ysis on real-world Dapp attacks, leveraging the open and im-
mutable transaction records kept by the Ethereum blockchain
to recover critical CTI. Particularly, our study has led to the
discovery of a general, unique lifecycle of Dapp attacks, with
the adversary showing similar behaviors in orchestrating at-
tack operations against different target Dapps, regardless of
low-level exploit techniques. Also we brought to light the ad-
versary’s attack infrastructures, campaigns they organized, as
well as the inadequacy of the current response by defenders.

e We demonstrate that our new understanding and CTI dis-
covered can help mitigate the threat to Dapps, using a new
methodology developed for finding new attacks at different
stages. Our approach leverages the similarity of attack behav-
iors exhibited by the transaction time series, which allows us
to accurately capture both known and unknown attacks. This
study shows that our findings could be leveraged to build a
protection system down the road, to disrupt an exploit even
before any damage has been caused.

2 Background

2.1 Ethereum and smart contract

Ethereum is a public blockchain-based distributed computing
platform and operating system featuring scripting functional-
ity. On the platform, there are two types of accounts: Exter-



nally Owned Accounts (EOAs) controlled by private keys (rep-
resenting persons or external servers), and Contract Accounts
controlled by code, which are known as smart contracts. The
Ethereum blockchain [49] is the most prominent framework
for smart contracts, where over 1 million contracts have been
deployed [11].

Transaction. During its operations, the Ethereum blockchain
tracks every account’s state: once value has been transferred
between accounts, the blockchain’s state is also changed ac-
cordingly [27], which is recorded in a transaction. A trans-
action is a signed data package storing a message to be sent
from an EOA to another account, which carries the follow-
ing information: to (the recipient), from (sender’s signature),
value (the amount of money transferred from the sender to
the recipient), data (the input for a contract), gasprice (the
fee required to successfully conduct a transaction, i.e., gas,
which is paid by the sender), etc. In Ethereum, all transactions
are written onto a cryptographically-verified ledger [49], with
a copy kept by every Ethereum client.

There are three types of transactions supported on
Ethereum: Ether transfer, and contract call, contract cre-
ation [48]. The type of transactions can be determined based
on the transaction format: an Ether transfer transaction trans-
fers between two parties the amount of Ether as indicated by
its value field; The contract call transaction is used to interact
with an existing smart contract, with its data field specifying
the method to call (e.g., the methodID of run() or kill()) and
call arguments, and its value field carrying the amount of
Ether to deposit in the contract (if the contract accepts Ether).

A contract creation transaction has its to field set to empty,
and its input data field contains the bytecode of the contract.
A typical bytecode is composed of the creation code, runtime
code and swarm code, where the creation code determines the
initial states of the contract, the runtime code indicates the
functionality of the contract, and the swarm code is used for
the deployment consistency proof and not for execution pur-
pose. Typically, the creation code ends with the operation se-
quence: PUSH 0x00, RETURN, STOP, 0x6000£3000, and
the swarm code begins with LOG1 PUSH 6 in bytecode. This
can be used to split the bytecode and identify the runtime code.
In our research, we leveraged the contract creation transaction
to recover the runtime code of the self-destructed contracts
(Section 3.1).

Each executed transaction creates a receipt, keeping
track of such information as the created contract address
(contractAddress, as shown in Appendix Figure 11(e)) and
the transaction execution status (0 for failure and 1 for success,
as shown in the status field).

Smart contract concept and execution. A smart contract is
used to facilitate, verify, and enforce the negotiation or perfor-
mance of an agreement. As mentioned earlier, on Ethereum,
such a contract can be created, executed and destructed by
a transaction issued by an account. On reception of a trans-
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Figure 1: Example of transaction execution traces. O: exploit
contract, %: contract generated in execution, @: Dapp, <:
EOA.

action, a contract is run by the Ethereum Virtual Machine
(EVM) on every node in the network. During the execution,
the contract may communicate internally with other EOAs
and contracts. Note that, to understand what data has been
modified or what external contracts have been invoked, the
transaction execution needs to be traced via re-executing a
transaction under all historical states it accesses.

Figure 1 illustrates the execution traces (@-@) of a contract-
call transaction, which is sent from 0x73* to call the function
execute() of the contract 0x54* with a 0.01 ETH transfer.
The transaction has triggered a set of execution traces, such
as an internal call airDropPot_() from 0x54* to Oxa6* (@),
followed by another call to airDropTracker_() from 0x54* to
0xa6™* (©).

In our research, we model the set of the transaction’s
execution traces e, at time t as a sequence of 4-tuples
(1,0,B,T),ie.,e={(I;,0:,B;,T;)|i = 1...n}, where [; is the
address triggering the behavior B; (the function invoked and
its parameters) on the recipient address O;, together with a
money transfer 7; (a transaction field recording the Ethers
transferred from the issuer of the transaction to its recipient)
at the step i.

In our study, we collected 11,960,145 execution traces
of 2,350,779 transactions from Bloxy [13], and further con-
structed a directed and weighted graph for transaction analysis
(Section 3).

2.2 Ethereum Dapps

Ethereum Dapps are public de-centralized applications that
interact with the Ethereum blockchain, providing services
such as gambling, online voting, token system, cryptocurrency
exchange, etc. Such an application utilizes a set of smart
contracts as its on-chain back-ends, for the purposes such
as encoding task logic and maintaining persistent storage
of its consensus-critical states [17], while also contains off-
chain components such as its front-end (e.g., a website) for
communicating with users. As an example, the Ethereum
Dapp Fomo3D, a lottery game, is powered by a smart contract
that handles the transactions for different actions, like buying
keys, withdrawing from vault, picking a vanity name, etc.

Note that in addition to acting as the back-end of a Dapp,



a smart contract can serve other purposes such as offering
an on-chain library, and is also used to call a Dapp. In our
research, we focus on the on-chain threats to the Dapp’s back-
end, a set of related contracts supporting the service of the
application. These contracts are invoked by EOAs through
other contracts or transactions. Below we also use the term
“Dapp” to refer to the back-end smart contract(s) of a Dapp.

In our study, to identify Dapp among smart contracts, we
utilize Dapp aggregation website [1] to recognize the Dapp
names with their corresponding contract addresses and cate-
gories (e.g., gambling, game, finance, exchange). In this way,
we identify 1,169 Dapps with 5,786 contract addresses and
18 categories. Note that Ethereum does not distinguish Dapp
contract and non-Dapp contract naturally: if a Dapp has never
been recorded by those websites, we cannot build the Dapp
name-contract mapping.

Attacks on Dapps. As the largest Dapps market, Ethereum
has seen quite a few high-impact real-world attacks on
Dapps [36], resulting in losses of millions of dollars. Table |
lists the types of attacks ever reported from 2016 to 2019 and
the number of attack incidents. In our study, we utilize these
published reports as seed to recover critical CTI on Ethereum
Dapp attacks.

Here we present a real-world example of the Ethereum
Dapp attack that exploits a weak randomness vulnerability
in the airdrop() method of Fomo3D (see Table 1) for profit.
Fomo3D is a highly-popular Ethereum gambling game with
over 150,000 transactions a day and a prize pool of around $3
million in 2018 [42]. In the game, a player has a chance to win
a prize from the airdrop pot airDropPot_ when purchasing
keys through buyXid(). More specifically, when buyXid() is
being called, the Dapp first runs isHuman() to ensure that
the caller is an EOA, not a contract, and then produces a ran-
dom number through the pseudo-random number generator
(PRNG) airdrop() to determine whether the player wins. The
airdrop() method utilizes the parameters airDropTracker_,
message sender address and block information (e.g., times-
tamp, difficulty, gaslimit, number, etc.) for generating pseudo-
random number. During the attack, as shown in the execution
traces of the exploit transaction in Figure 1, the attacker cre-
ates multiple contracts, e.g., 0xf7*(®), from different message
sender addresses. Since these contracts can get all parame-
ters of the PRNG, they can implement their own airdrop()
to find out whether they will win, and only the winning con-
tract, e.g., 0xf7* (@), purchases a key (@). After that, the
contract runs suicide() to transfer the prize to the attacker
0x73* (@). Note that this attack circumvents the protection
of isHuman(), buying a key through a contract instead of an
EOA. This is because the implementation of isHuman() de-
termines whether an address is an EOA or a contract from the
size of the code associated with the address. This is unreliable
since the contract under construction [40] could bypass the
restriction (@@). We elaborate on this attack in Section 3.

2.3 Threat Model

In our research, we consider miscreants who launch attacks
on Ethereum Dapps for profit. For this purpose, the miscre-
ants could conduct several types of attacks on Dapps’ con-
tract vulnerabilities, such as exploiting weak randomness of
a pseudo-random number generator (PRNG) in a gambling
Dapp to win a prize, or performing integer overflow/underflow
to manipulate money transfer, etc. We did not consider the
attack in which the miscreants utilize a single EOA address to
generate a single exploit transaction during the attack, which
though possible, is rare in the wild (see Section 3).

3 Understanding Dapp Attacks in the Wild

In our analysis of Dapp attacks, we leveraged a variety of
vantage points, including historical transactions and transac-
tion execution traces, to reconstruct real-world Dapp attack
incidents. Given the comprehensive transactions and their ex-
ecution traces for each attack incident, we aim at identifying
adversaries’ end-to-end footprints and understanding their
operational intents. Below we first describe the methodology
we used to reconstruct the attack, and then elaborate on our
findings and their security implications.

3.1 Data Collection and Derivation

Here we elaborate the design and implementation of a method-
ology that extends limited information collected from tech-
nical blogs and reports to tens of thousands of transactions
related to Ethereum Dapp attack incidents (i.e., exploit trans-
actions), and further analyzes the attack operations from these
transactions. More specifically, our approach first reconstructs
real-world Ethereum Dapp attack incidents, as documented
by technical blogs, news posts, and the security reports from
blockchain security companies, by recovering all transactions
issued by attacker EOAs or exploit contracts, even when the
transactions are not publicly disclosed. Then, to understand
attack operations related to the exploit transactions, we model
their fine-grained execution behaviors using their execution
traces, and further determine their coarse-grained operational
semantics by clustering the exploit transactions based upon
the similarity and timings of their execution traces.

Exploit transaction collection. We first searched the Inter-
net to collect real-world Ethereum Dapp attack incidents. In
particular, we investigate three types of incident reporting
sources, including technical blogs, news posts, and annual
security reports from blockchain security companies. From
these sources, we further manually picked out those related
to Ethereum Dapp attacks. Details of these incident reports
are presented in Table 14 in Appendix. Then, we reviewed
these incident reports to identify immutable attack-related
information (in the following called the seed attack set Dy),
including victim Dapp addresses, exploit contract addresses,
attacker EOAs, and exploit transaction hashes. In this way, we



Table 1: Real-world Dapp attacks

Attack type

Definition

# attack incidents

Bad randomness

adversary predicts the random value produced by the Dapp running a weak
pseudo-random number generator (PRNG) to gain advantage (e.g., in a game)

6

Denial of service

adversary seeks to prevent legitimate invocations of a smart contract, through
exhaustion of gas (constrained by block gas limit [41]) or improper check of
exceptional conditions [47]

Integer overflow and underflow

an incorrect arithmetic operation that causes its result to exceed the maximum
size of the integer type or go below its minimum value that can be represented

26

a contract calls an external contract that unexpectedly calls back to the calling

Reentrancy attack

contract, rendering it operate in an inconsistent internal state [37]

Improper authentication

adversary exploits the authentication process that a Dapp uses to verify the
ownership of resources, to enforce a behavioral workflow or to access a variable.
It could be caused by typographical errors in contract implementation or missing
protection on critical variables

15

Table 2: Known Dapp attacks. Dj is the set of data collected from the reports, and D, includes those derived.

ransaction traces:

Attack type # of Dapps | # of exploit contracts | # of attacker EOAs | # of attack transactions
Ds | D, | Dy D, Dy D, D, D,
Bad randomness 4 14 9 19 9 27 14 40,766
DoS 4 6 3 3 5 88 4 17,088
Integer overflow/underflow | 13 32 1 2 28 53 47 591
Reentrancy 2 2 2 3 2 4 2 30
Improper authentication 12 18 6 18 17 60 34 575
Unique total [25] 56 [ 20 ] 45 [ 48 ] 227 [ 77 ] 58,555
identified 42 Dapp attack incidents from 2016 to 2018, which ......9 DataCollection _ ©_Measurement
consist of 25 victim Dapps, 20 exploit contract addresses, 48 ‘ Q — B = ——X ' ! @ Analyzing Exploit |
. . ! D, D, on 1! - :
attacker EOAs, and 77 exploit transaction hashes. Table 2 5 ereu | t oxconton meing | S Tansactons |
. . : : - - \ E @ Analyzing |
summarizes attack information we collected from the reports. P | l Lo &) Wiacker£ons |
To reconstruct the reported incidents, we will look into all i Incident reports. | S% - g
P . . . 1 : | \ s8> Analyzing Dapp !
transactions, which were issued by attacker EOAs or exploit | Missing EORs nd | Evplot transacton] | QB intervention !

contracts to interact with the victim Dapps. However, such
EOAs and exploit contracts may not be fully documented by
the reports (see Table 2). Here we elaborate a methodology
for finding the missing EOAs and exploit contracts.

First, to identify other EOAs in an attack incident, we in-
clude in the attack set all the EOAs that have created, called or
transferred fund into known exploit contracts, or have trans-
ferred fund to known attacker EOAs. More specifically, we
examine the transactions, whose to or from fields contain
reported attacker EOAs or exploit contracts. Here we con-
sider an address to be an EOA but not a contract if no code
is associated with it. For this purpose, we use the function
w3.eth.getCode() in python to get the size of the associated
EVM code. A problem is that a self-destructed contract also
reports a zero code size. In this case, to determine whether an
address belongs to a self-destructed contract, we search for its
creation transaction, the one whose contractAddress field
contains that address (see Section 2).

Further we expand the seed attack set D by adding the con-
tracts that are similar to the exploit one and have been called
by attacker EOAs. More specifically, we extract the contract
addresses, which were called by attacker EOAs, within a time
window (1 day in our study) before and after the exploit
transactions. Then we analyze the similarity of the extracted
contracts and the exploit contract. In particular, we convert

. {exploit contracts finding,/ clustering J

Figure 2: Workflow of the measurement approach.

the bytecodes into opcodes using Octopus [6], and then cal-
culate their Jaccard similarity [29]. When they come close
(Jaccard similarity > 0.9), we consider them to be similar
and the extracted one to be an exploit contract. Note that
the adversary can use suicide operations or self-destructive
operations to conceal his exploit contracts. In this case we
recover the runtime code of a self-destructed contract from
the contract’s creation transaction (see Section 2).

In this way, we built an expanded dataset D,, which con-
tains 45 exploit contract addresses, and 227 attacker EOAs.
We consider the exploit transactions to be (1) all those re-
lated to exploit contracts, and (2) those related to attack EOAs
and issued within a 1-day window of a known exploit trans-
action. Altogether, we gathered 58,555 exploit transactions
from 2016/01/29 to 2019/01/07, which involve in 56 victim
Dapps (29 have never been reported before). To the best of
our knowledge, this is the largest dataset for on-chain victim
Dapp attack incidents that have ever been reported. We will
release it on publishing this paper.

Transaction execution modeling. To understand attack op-



erations, we analyzed the executions triggered by the exploit
transactions. In particular, we model a transaction’s execution
traces using a execution trace graph 7'G.

A transaction’s execution trace graph 7'G is a directed and
weighted graph as illustrated in Figure 1, in which each node
is an account (i.e., EOA or contract address), and each directed
and weighted edge describes an operation from one account
to another.

Definition 1. A TG is a directed and attributed graph TG =
(V,E,W,t) in a node attribute space Q, where:

1. V is a node set, with each node being an account (i.e.,
EOA or contract);

2. Each node is assigned one of five attribute labels in Q:
Dapp, EOA, self-destructed contract, Dapp related con-
tract and other contract.

3. Directed and weighted edge set EC V x Vx Wis a set
of operations between accounts, where W is a set of call
functions and parameters, e.g., execute() in Figure 5.

4. Time ¢ is the timestamp of the transaction (when it is
created).

Given a set of execution traces of a transaction e =
{(I;, 0;,B;,T;)|i = 1...n} (see Section 2), an attribute graph
T G can be constructed: here, the node set V is the collection
of I; and O, E is the set of edges from /; to O; if (I;, O;, B;) ex-
ists with the edge weights of the call functions and parameters
related to B;. In our research, we gathered 436,371 execution
traces for 58,555 transactions using Bloxy API [13] .

Exploit transaction clustering. To understand the semantics
of the exploit transactions, for each attack incident, we clus-
tered transactions based upon their execution traces’ similarity
and timings (within a given time window). This is essentially
a between-graph clustering problem [9], which we solved
using a k-Means algorithm and a TG distance.

Definition 2. A TG distance D(g1,g2) is a distance between
two transaction graphs g; and g, that measures both their
structure similarity and timing closeness, as follows:

k

D(g1, =0 min c(o;) + PAt 1
(81,82) (017-"701()60(81782); (o) P M

where, O(g1,g2) is a set of graph edits (e.g., vertex or edge’s
insertion, deletion and substitution) that transform g; to g,
¢(0;) is the cost for each edit, Az is the time difference (with
the unit of hour) between two graphs and o, 3 are the weights.

In our implementation, we used & = 0.9, 3 = 0.1, ¢() = 1,
adapted a python library GMatch4py [5] to compute D, and
set the number of iterations for k-Means to 3. In Appendix 7.2,
we present an analysis of the clustering performance and the
discussion on the rationale for threshold selection. In this way,
we gathered 126 transaction clusters related to 42 real-world
Dapp attack incidents from 2016 to 2019.

Table 3: Reported contracts under different parameter settings
(s: Jaccard Similarity; t: time window; TP: true positive)

Parameter # reported Parameter # reported
contracts (TP) contracts (TP)
s=0.9 45 (45) t=1 45 (45)
s=0.7 86 (50) t=3 58 (46)
s=0.5 126 (54) =5 77 (48)

Discussion. The aforementioned methodology can only serve
as a measurement tool to derive exploit transactions and
gain insight into the Dapp attack footprints, instead of a full-
fledged detection system. Hence, to construct the expanded
dataset D,, we set the thresholds (i.e., time window, the Jac-
card similarity of opcodes) for achieving a high precision,
which might however miss some exploit transactions. To esti-
mate the coverage, we lower down the threshold to improve
the recall at the expense of precision to compare the findings
with those reported with the original threshold.

Table 3 lists the number of reported contracts under differ-
ent parameter settings of opcode Jaccard similarity and time
windows. For the threshold of the similarity, when it is 0.9,
we observe that all 45 reported contracts are indeed exploit
contracts; when it becomes 0.5, our approach report 81 new
contracts. We manually investigate all those newly-reported
contracts and found only 9 exploit contracts (false negative),
while the remaining 72 were all false positives, associated
with 1,174 wrongly-reported transactions. Taking a close look
at these 15 missing cases, we find that all of them are the
evolved exploit contracts of the reported ones to optimize the
functionality (Section 3.2).

Similarly, with the threshold of time windows increasing
from 1 to 5, our approach report 32 more contracts associated
with 127 transactions. After manually analyzing all newly-
reported contracts, we found that only three are the exploit
contracts (false negative), where the attacker took a long time
interval (5 days) before using the same exploit contract to
launch the attack on the same Dapp again. It might be because
the attacker wants to test the original exploit on the patched
Dapp.

3.2 Analyzing Exploit Transactions

Our data collection and derivation method reconstructs 42
real-world Dapp attack incidents, consisting of 126 semantic-
similar transaction clusters with 58,555 transactions. Based
on these transaction clusters, we manually annotated them
and further performed a measurement study to understand the
criminal footprints and operational intents of Dapp attacks.

Overview: attack footprints. Before coming to the details
of our findings, we here first summarize the footprints of a
typical Dapp attack discovered in our research, which con-
sists of four stages: attack preparation, exploitation, attack
propagation and mission completion, as illustrated in Fig-
ure 3. In the attack preparation stage, a Dapp attack starts
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Figure 3: Example of Dapp criminal footprints, which consists
of a four-stage attack lifecycle: attack preparation (@-@);
exploitation (@ -@ ); attack propagation (@ -@ ) and mission
completion (@ -@ ).

with several transactions for calling the victim Dapp from ex-
ploit developers to test their exploit codes (@) before the full
attack is launched on the target (®). Meanwhile, we observe
several transactions through which money managers transfer
attack cost (gas fee or ticket fee) into the exploit contracts (©).
This is done through money mules to conceal the managers’
EOAs (@). Then, in the exploitation stage, multiple attack
operators from different EOAs invoke the exploit contracts
(@) to attack the victim Dapp (@) and gain profit (@). After
the attack, in the attack propagation stage, we found that the
operators either reuse or further adjust the exploit contract
(through update) (@) to exploit other similar Dapps (@) to
gain more profit (@). During the mission completion stage,
the attack operators destruct the exploit contracts (@) and
withdraw attack profit (@). The profit is then transferred from
the attack operators or the exploit contract to the exchange ser-
vice through several money mules (@). Below we elaborate
on our measurement study and forensic analysis on real-world
Dapp attacks.

Attack preparation. We first analyzed how the attacker boot-
straps an attack. To this end, for each attack incident, we
looked at all transaction clusters executed before the attacker
continuously gains profit. More specifically, for each transac-
tion, we evaluated whether the attacker profits by calculating
the difference between his attack cost (i.e., money transferred
from the attacker EOA or the exploit contract to the Dapp)
and his attack gain (i.e., money transferred from the Dapp
to the attacker EOA or the exploit contract). If the attacker
continuously made profits from all of the transactions in a
cluster, we considered that he has successfully launched an
attack. Meanwhile, the clusters of the transactions executed
before the attack were marked as being associated with attack
preparation. In this way, we found the presence of such a
preparation stage in 85% of attack incidents with the average
number of transactions being 23. Also, the related prepara-
tion transactions were discovered within 81 days after the
target Dapp was released. Surprisingly, we found that the
weak randomness attacks were prepared in just 9 days after
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Figure 4: Balance of victim Dapps when miscreants started
the attacks. The bar in the figure indicated the time difference
between the Dapp launch time and the attack launch time.

the appearance of the target Dapps. This might be because
those Dapps usually share a similar vulnerable PRNG (see
Section 2), and can thus be easily attacked once the PRNG
has been exploited in one Dapp. Such attacks can be prepared
by the miscreants once the target Dapp has some balance after
launched (3461.5 Eths on average as observed in our study).
Figure 4 illustrates the balance of the victim Dapps.

When manually investigating operational intents of the
transactions in the preparation stage, we found that the at-
tacker’s transactions mainly serve two purposes: (1) testing
their exploit contracts and (2) transferring fund to bootstrap
their attacks (e.g., paying the gas fee). As an example, before
attacking the vulnerabilities in the two Fomo3D functions
isHuman() and airdrop() through an exploit contract (0x7d*),
the attacker 0x85* created two test contracts 0x56* and 0x80*
to evaluate these functions repeatedly. Apparently, the ad-
versary performed his own software integration testing to
ensure that all attack components worked smoothly together
before executing the attack. In total, we found that 78% of
the transactions at the attack preparation stage were used for
such integration testing, with 8 testing contracts deployed
and 96 transactions executed for this purpose in an attack
incident. Furthermore, from the execution traces of these
transactions, we identified 36 Dapp functions being tested.
79% of them were later attacked at the exploitation or the
attack propagation stage. This indicates that by identifying
the preparation stage, we could predict the vulnerable func-
tions to be exploited and stop an attack before it occurs (see
Section 4).

Attacks on Dapps come at a cost. For example, the attacker
may need to purchase a ticket for playing a game Dapp before
he can exploit its vulnerable functions, or pay a gas fee to
launch exploit transactions. In our research, 324 transactions
were discovered to transfer Ethers from EOAs or Ethereum
exchange services to exploit contract addresses or attacker
EOAs. As an example, in the attacks on Fomo3D, some at-
tacker EOAs got inflows of Ethers from one EOA Oxbf*,
through a set of intermediary EOAs (such as 0x2c*, Oxa7*



and Ox4c*) that were sequentially linked together to form
money flow chains. Note that those intermediary EOAs as-
sociated with only two types of transactions, either receiving
fund from a source or transferring it to another address. Al-
though acting as a money mule, intermediary EOA shows
a poor characteristic regarding anonymity, which is aligned
with the findings in the Bitcoin laundry [20].

Exploitation. As mentioned before, we determine the trans-
actions executed at the exploitation stage when the attacker
continuously makes profits from one Dapp. On average 1,394
exploit transactions from 6 attacker EOAs were observed
per incident. These transactions were used to either directly
invoke vulnerable Dapp functions, or deploy or trigger an
exploit contract to automate an attack. In total, we found
from our dataset 232 transactions for calling vulnerable func-
tions, and 22,269 transactions for triggering exploit contracts.
Particularly, attacks on weak randomness and improper au-
thentication, along with DoS, tend to utilize exploit contracts,
since in these attacks, each exploit transaction call only brings
in a small profit (e.g., prize per one guess), so the adversary
needs to run an exploit contract to continuously invoke the
target Dapp. On the other hand, in a reentrancy or an inte-
ger overflow/underflow attack, attacker EOAs usually directly
exploit the vulnerable functions in the target.

To better understand the operational intents of the attackers
at the exploitation stage, we analyzed the execution traces
of their transactions. Of particular interest is the observation
that the adversary tends to rapidly evolve his strategies during
an attack, to improve its effectiveness (e.g., more revenue or
less cost). Specifically, attackers were found to update their
exploits via delegatecall(), or creating new contracts. For ex-
ample, in the bad randomness attack on Fomo3D, as shown in
Figure 5, we observed the presence of three exploit contract
versions: since the airdrop function in Fomo3D heavily relies
on the calling contract’s block information (such as times-
tamp) to determine the winner, the first exploit version simply
creates many new contracts to predict the function’s output
using the block information and the public logic of airdrop
before invoking it; improving on the first version, the second
one evaluates existing contracts’ blocks through nonce(), and
utilizes the contract on the winning block to generate a tem-
porary contract (which still use its creator contract’s block) to
trigger airdrop, so as to save the cost for contract creation; the
last version collects all information from existing contracts
and makes the prediction off-chain before commanding the
most promising contract to invoke airdrop. With the evolution,
our research shows that the execution traces of these attack
versions turn out to be similar (average TG distance = 0.4).
This allows our tool DEFIER to uncover a new exploit version
never reported before (Figure 5(d)).

Attack propagation. Given the existence of many copycat
Dapps sharing the same vulnerabilities, our research shows
that attackers tend to reuse their exploit on one target to infect
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other similar Dapps. In particular, for the transaction clusters
that ran after the exploitation stage, we discovered the trans-
actions associated with the attack (i.e., continuously makes
profits) but involved in the Dapps different from the one at
the exploitation stage.

Looking into these transactions, we found that the adver-
sary reuses his exploit contract through either creating a new
contract with most its content copied from the old one or del-
egatecall() to invoke external code to run in the original con-
tract’s context. delegatecall() allows the adversary to simply
adjust the external code to aim the exploit contact at different
targets. For instance, at the propagation stage of the Fomo3D
attack, the attacker EOA 0x82* deployed a new contract (the
external code) to feed new vulnerable Dapp addresses to an
existing exploit contract through delegatecall(). In this way,
the attacker was able to reuse the exploit against 8 more Dapps
simultaneously, including Fomo Lightning, Fomo Short, etc.

This attack propagation stage is found to come right after
the exploitation stage, just 3.5 days apart on average. The
bad randomness attack and integer overflow/underflow attack
tend to have an aggressive propagation stage, with at least
four more Dapps victimized per attack incident. For example,
an integer overflow attack on Rocket Coin was propagated to
another 17 Dapps.

Also we found that the adversary could scan Dapps’ func-
tion names or runtime codes for the new targets carrying the
same vulnerability as the victim Dapp. This is based upon the
observation that 51% of the Dapps exploited at the propaga-
tion stage share the exactly same vulnerable function name
or function bytecode with the Dapp attacked at the exploita-
tion stage. Table 4 and 5 list the functions and the variables



Table 4: List of vulnerable functions

Functions #Dapp Attack type Jaccard sim.
transferFrom 16 Integer overflow/underflow 0.64
airDrop 8 Bad randomness 0.99
transfer 7 Integer overflow/underflow 0.78
transferProxy 6 Integer overflow/underflow 0.83
batchTransfer 5 Integer overflow/underflow 0.82

Table 5: List of vulnerable variables.
Function Vulnerable variable | # attacks
transferFrom value 16
airDrop airDropPot 8

airDropTracker 8
transfer value 7
transferProxy | value 6
v 6
r 6
S 6
batchTransfer | value 5

(under a given function) most commonly appearing in the
attack incidents we collected. In particular, we observed that
the function transferFrom(), which is used for transferring
tokens between accounts, was exploited by the same integer
overflow attack in 16 different Dapps.

Mission completion. After a successful attack, our research
shows that the attacker often withdraws all the profits he made
and tries to remove attack traces by destructing all his exploit
contracts. Specifically, our dataset includes the transactions to
destruct exploit contracts by calling selfdestruct() or custom
destruct functions. Actually, 35.6% of the exploit contracts in
all attack incidents we studied were destroyed. Note that the
destruction of a contract automatically transfers its winnings
to the contract’s creator EOAs.

Interestingly, once an EOA receives the fund from its con-
tract, it tends to further transfer the winnings to another ad-
dress. In our study, we identified 198 transfer transactions
at the mission completion stage, and constructed the money
flow chains on them in the same way as did when analyzing
attack preparation. Figure 6(a) shows the cumulative distribu-
tion of the nodes in the money flow chains. We found that in
19% of money flow chains, illegal profit was transferred via at
least one money mule. Also intriguing is the observation that
the adversary always converts Ethereum tokens (e.g., Beauty
Coin, Smart Coin, SmartMesh Token) into Ethers before mov-
ing the fund into a long money flow chain, possibly due to
the belief that the latter have better protected values than the
former. For this purpose, a set of Ethereum Exchanges are
used. Figure 6(b) illustrates seven Ethereum Exchanges dis-
covered from our dataset. There are two types of exchange
services in Ethereum: centralized Exchanges (e.g., ShapeShift,
Binance, Poloniex, Gate.io and BitUN.io) and decentralized
Exchanges (e.g., EtherDelta and IDEX). From the data we
collected, apparently miscreants are more in favor of the de-
centralized ones. Particularly, EtherDelta shows up in 53%
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of the attack incidents, while ShapeShift, the most popular
one among centralized Exchanges, is just found in 21% of the
incidents.

3.3 Analyzing Attacker EOAs

Then we looked into the role and relationships of 227 attacker
EOAs discovered in our study. Our study shows that attacker
EOAs are organized through a hierarchical structure during
an attack incident, with each of them playing one or more
roles. Further revealed in our study is the competition relation
among different attacker EOAs when exploiting the same
Dapp, across different attack incidents, as elaborated below.

Roles in an incident. We analyzed the roles of 227 attacker
EOAs by first categorizing them based on the attack stages
(Section 3.2) at which they appeared and then manually in-
vestigating their transactions to understand their behaviors.
More specifically, we observed that 19 EOAs acted as exploit
developers which created and tested exploit contracts at the
first stage (see Section 3.2); 168 EOAs invoked exploit con-
tracts or ran other exploit code, thereby likely playing the
role of attack operators; further 21 EOAs apparently managed
the attack cost inflow through transferring attack cost into
the exploit contracts via intermediary EOAs, behaving like
money managers, and 23 EOAs were found to relay attack
profits, as money mules did.

Our study shows that attacks on Dapps are organized
through a hierarchical structure in which every actor has a
well-defined role. There is only a small overlap among differ-
ent roles: Figure 7(a) shows that rarely do we see that an EOA



played more than one role, except that 21% of the exploit
developers also acted as attack operators.

Campaign competition. As mentioned earlier, 39% of the
victim Dapps have been exploited in more than one attack
incident. Interestingly, our research reveals the presence of
competitions among different attack campaigns on the same
Dapp. Here, a campaign is considered to include all attacker
EOAs showing up in an attack incident against a target Dapp.

Figure 7(b) compares the cumulative attack profits of three
campaigns on Fomo3D from 2018/06/15 to 2018/08/31. Each
of them involved a completely different set of EOAs from
others and therefore presumably they were organized by dif-
ferent parties. Campaign 1 first launched a bad randomness
attack on the Dapp on 2018/06/15, followed by Campaign 2
on 2018/07/08 and Campaign 3 on 2018/07/21. Here we use
the exploit success rate, defined as the number of successful
exploit transactions (i.e., receipt status is 1) among all exploit
transactions, to measure attack effectiveness. Although start-
ing relatively late, Campaign 2 evolved its exploit contract on
2018/7/20 to increase its effectiveness. Hence, it made more
profits than the other two campaigns. For Campaign 3, even
though it apparently was quite effective (see Figure 7(b)), the
attack only lasted for a short period of time and earned only a
small amount of profit, probably due to the fact that Fomo3D
had already lost most of its money during the attack.

3.4 Analyzing Dapp Intervention

We further studied how Dapp owners responded to the attack
incidents by analyzing Dapp’s transactions after an attack oc-
curs. We observe some Dapp owners abandoned their Dapps
(33 out of 56 victim Dapps), while others tried to fight back,
through patching, hiding source code or controlling access to
the critical functions. None of them, however, is found to be
a perfect solution in our research.

Dapp patching. Patching a vulnerable Dapp is complicated
due to the immutability of the code stored on the blockchain.
A typical solution is to create a new contract with the patch.
To understand this procedure, we extracted Dapp’s original
addresses from its website’s archive. We found that five of
the Dapps analyzed in our research updated their contract
addresses after being attacked, and one used delegatecall()
for patching. Interestingly, three Dapps were attacked again
after patching. For instance, Lucky Blocks changed its address
twice to fix vulnerabilities yet still ending up being exploited.

Closed source. Another way is security by obscurity, hiding
source code in an attempt to raise the challenge in reverse-
engineering. A prominent example is Lucky Blocks, a gam-
bling game, whose source code was removed right after a bad
randomness attack. Indeed, we did not see any more attack on
the Dapp after that. This approach, however, could make some
Dapp less trustworthy. Again, for Lucky Blocks, through ana-
lyzing its PRNG in the patched version, we discovered that
the Dapp owner stealthily adjusted the code to limit the range

function getRandom() returns (var r0) {
var tempO0 = memory[0x40:0x60];
memory [tempO:temp0 + 0x20] = block.difficulty;

return keccak256 (memory[templ:templ + tempO
- templ + 0x54]) % 0x64; //0x64=100}

(@)

function getRandom() returns (var r0) {

var varl = 0x5c¢; //92

var temp0 = memory[0x40:0x60];

memory [tempO:temp0 + 0x20] = block.difficulty;

var var2=keccak256 (memory[temp3:temp3+ (temp2+0x20)-temp3
if (varl){return var2 % varl;} else {assert();}}

(b)
Figure 8: PRNG codes of Lucky Blocks.

of the randomly-produced lucky number, thereby reducing
the winning chance by 8% (Figure 8). The Dapp later indeed
shows higher owner-side revenue.

Administrator list. Finally, we found that 33 of the 56 victim
Dapps utilized administrator lists to restrict access to their
critical functions. However, the administrator list cannot stop
the attack that exploits the vulnerabilities in an authentication
mechanism to bypass access control. An example is the attack
on Morph [45]. Also, this strategy requires the identification
of critical functions beforehand.

4 Finding New Attacks

In this section, we show how the new CTI discovered can help
find new attacks, including those on 0-day victim Dapps. Our
key insight is that even though specific operations may vary
across different types of attacks on different Dapps, the high-
level behavior patterns (e.g., testing exploit contracts) are
relatively stable in each attack stage (e.g., attack preparation
stage), and can therefore be learned from a set of transactions
and their execution traces. Here we elaborate on a methodol-
ogy, called DEFIER, that utilizes the sequence of transactions
and the operations they trigger to recover attack footprints
and determine the stage of an exploit.

4.1 DEFIER: Idea and Design

DEFIER includes two components, Preprocessing and
Sequence-based Classification. Preprocessing takes as its
input a set of transactions directly interacting with a Dapp,
automatically extending the set to include those indirectly
related to the Dapp (Section 4.2). These transactions are then
clustered into groups based on the similarity of their execution
traces and the closeness in their invocation times (within a
short window). These transaction groups are then utilized by
Sequence-based Classification to re-construct potential attack
footprints, in terms of a transaction sequence from multiple



EOAs (Section 4.3). More specifically, for each sequence of
transactions (modeled as vectors through graph embedding),
we propose a novel embedding technique to convert the se-
quence into a feature vector that captures the latent intent of
the sequence (through an attention model to focus on each
transaction’s interactions with the Dapp and an analysis on the
relation between transactions). Those vectors then go through
a multi-class classifier to output the attack stage they belong
to if they are indeed exploit attempts

Example. To explain how DEFIER works, here we walk
through its workflow using an attack incident on Suoha, a
victim Dapp found at the propagation stage of a bad random-
ness attack on Fomo3D. To investigate this attack incident,
DEFIER identifies the latent intent (i.e., exploit calling at the
propagation stage) by (1) clustering similar transactions from
EOAs across different Dapps (e.g., transactions that launch
the same exploit on multiple Dapps) and (2) then analyzing
those transactions to find the latent intent.

More specifically, DEFIER first runs Preprocessing to
gather transactions, whose to fields or execution traces con-
tain Suoha’s address. From those transactions, 286 EOAs
(including those calling 7 contracts to interact with the Dapp)
are extracted. Further, we gather the EOAs’ transactions with
other Dapps, those with a small TG distance with the transac-
tions with Suoha. In this way, 11,088 transactions are iden-
tified and further clustered into 142 groups with an average
TG edit distance of 0.2 and a time window of 1.5 hours. For
each of these groups, Sequence-based Classification first runs
graph embedding to convert each transaction to a vector and
each group to a vector sequence and then utilizes an LSTM
model to analyze the relation between the vectors in the se-
quence, converting each sequence to a feature vector. Then, a
multilayer perception (MLP) classifier, trained over the trans-
actions from reported attacks, labels 3 of the sequences as
attack propagation and the remaining 139 as legitimate.

4.2 Preprocessing

The Preprocessing step is meant to gather and cluster relevant
transactions to analyze all EOAs’ operations and their intents
on a Dapp. Such intents sometimes cannot be profiled only
by the transactions directly interacting with the Dapp. For
example, one can only recognize the intent to reuse exploit
code on other Dapps (the propagation stage) by looking at
the transactions on other targets, which look similar to the
exploits on the Dapp (Section 3). Hence in our research, we
include all such similar transactions, even though they are
not directly related to the Dapp. Altogether, we consider the
following two types of transactions during preprocessing:

e Dapp transactions. We collect the transactions with
the Dapp and those that internally communicate with the
Dapp (the transactions do not have the target Dapp ad-
dress in their To fields but invoke its functions as discov-
ered from their traces). For this purpose, our implemen-

backward intent |

Figure 9: Sequence representation

tation relies on APIs get normal_txs_by_address [3] and
get_internal_txs_by_address [4] from Etherscan [2] to iden-
tify those transactions.

o Semantically-similar transactions. Given those Dapp trans-
actions, to better understand the operational intents of an EOA,
we also gather from the same EOA the transactions with simi-
lar execution traces or occurring concurrently.

Specifically, we first identify all the EOAs directly inter-
acting with the Dapp, including the addresses directly calling
the Dapp and the ones creating a contract to invoke the call.
To this end, we fetch the transactions whose to fields or exe-
cution traces contain the Dapp addresses, to identify a set of
EOAs and contracts. Then, given a contract S interacting with
the Dapp via a transaction zx;, we collect all the EOAs who
have created, called or transferred money into the contract S.
In this way, we discover all relevant EOAs, which allows us
to use the transactions to profile the behaviors of each EOA.

Such profiling is done by running Algorithm | on seman-
tically similar transactions. In particular, given an EOA u
interacting with the Dapp via a transaction #x, we acquire all
her transactions whose TG distances with ¢x; are within ¢4 (a
threshold). In our implementation, we set th to 3 based on an
empirical study (Section 3).

Transaction clustering. As mentioned in Section 3, an oper-
ational intent (e.g., exploit testing, multiple-step game playing
operations) sometimes consists of several transactions from
multiple EOAs. To find the transaction clusters under the
same operational context, we utilize the algorithm described
in Section 3 to group the transactions with similar execution
traces or happened within a small time period.

Account de-noising. Complicating our analysis effort is the
presence of Dapp owner EOAs and library contracts (e.g.,
a game playerbook contract for managing players’ informa-
tion or a contract supporting access to external network data),
which should not be included in an attack investigation. To re-
move the noise, we first identify the library contracts through
a Dapp’s call execution traces: those invoked proactively by
the Dapp are considered to be library contracts. For this pur-
pose, we find all the contracts recorded by the call execution
trace, whose “from" fields are the Dapp address and input
fields are not “Ox". To handle the library contracts, which had



Algorithm 1: Transactions Extension Algorithm

Data: Dapp: a dapp and its addresses.

1 begin

EOAs = extract_eoa_of_dapp(Dapp)

interval = 1 day

threshold = 3

for EOA € EOAs do

txs = get_txs_by_DappandEoa(Dapp, EOA)

for tx € txs do
date = tx_date(tx)
focus_period = calculate_period(date, interval)
extend_txs = get_tx_in_period(EOA, date_period)
picked_txs = [etx for etx in extend_txs if distance(tx,

etx) < threshold|

12 save(picked_txs)

13 end for

14 end for

15 end
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not been proactively called yet, we conduct a static analysis
on the bytecode of a Dapp. In particular, we decompile the
bytecode using [7], and then extract the library contract ad-
dresses using a regex "Ox[a-fA-F0-9]{40}". Also, we retrieve
Dapp creation transaction receipts (i.e., the receipts contain-
ing the contractAddress field of the Dapp address, which
have been collected during the library contracts extraction) to
extract the Dapp creator addresses from the from field.

4.3 Sequence-based Classification

From each transaction cluster, we form a transaction se-
quence, with transactions ordered by their timestamps. For a
transaction sequence, we determine whether it describes an
attack on a Dapp by predicting its latent intent (e.g., exploit
testing, attack propagation, etc.) based upon the knowledge
about other sequences with similar semantics. A semantically-
similar transaction sequence § related to a Dapp attack stage
y is represented as 2-tuple ({tx;|i = 1...k},y), where {rx;|i =
1...k} are transactions in § and y is the label of an attack stage.
The goal of the sequence-based classification is to find the
class label y for an input sequence § given the classifier’s
model parameters 6, i.e., ' = argmax Pr(y|3,0), where the
parameters are learnt from a training dataset. For this purpose,
we first convert the transaction sequence § into a vector se-
quence, with each element also being a vector that represents
its corresponding transaction graph through a graph embed-
ding. This sequence is then fed to an LSTM model to generate
a vector & that describes the relation between transactions and
highlights the information related to malicious behavior. Here,
we choose LSTM, a modified RNN, since it is designed to
learn the long-term dependency relations among the elements
on a sequence [28], which is critical for identifying the pat-
terns that link transactions together at different attack stages.
The vector is later classified by a multilayer perceptron (MLP)
to determine whether it is indeed related to an attack stage.

Sequence representation. As illustrated in Figure 9, each

transaction tx; in §, as described by its associated execution
traces tg;, represents an interaction between the correspond-
ing Dapp and EOA. However, the transaction’s execution can
be too Dapp-specific and noisy to capture the operational
intent, since the execution trace may contain many opera-
tions that happen inside the Dapp, for example, invocation
of the Dapp’s internal libraries to generate a pseudo-random
number (Figure 5), which is less relevant to the EOA-Dapp
interactions of interest to us (attack preparation, exploitation,
propagation and completion). To address this issue, we em-
ploy an EOA-Dapp-execution attention model to highlight the
useful information related to the EOA’s intent on the Dapp.
Here the attention q; is used to adjust the vector representation
of the transaction graph zg;. It is determined by a weighted
combination of the vector representations of EOA eoa;, Dapp
d; (produced by a vertex embedding [25]) and that of 7g;
(produced by graph embedding [19]). Its weights are learnt
through an LSTM model (Figure 9) within an end-to-end
deep neural network that ultimately outputs the feature vector
characterizing whole input (the vector sequence representing
a transaction sequence).

a; = softmax(NE (eoa;) ® NE(d;) - GE(tg;)T), 2
e =aj- GE(l‘gi)

where @ is the concatenate operation, NE() is the vertex
embedding (e.g., node2vec [25]) of the input, which gener-
ates a vector representation for each node, GE() is the graph
embedding (e.g., structure2vec [19]) of the input, which gen-
erates a vector representation for each transaction graph, and

exp(x;
i= Zjefgg(;]))
of the node embedding is set to 64. We construct the con-
catenation of the EOA and the Dapp vertex embedding into a
vector with a length of 128.

In the deep neural network, we further utilize a standard
combination gate [28] to determine how much information
from the EOA, the Dapp and the transaction execution will be
used through adjusting their weights. In this way, we obtain
the representation x; of the transaction tx;:

so ftmax(x) . In our implementation, the length

ci = (W - (NE(eoa;) ® NE(d;) ©e;)" +b),

xi=(1—cij)oej+cio(GE(tgi)) ®)

where W is a weight matrix, b is a bias, ¢ is the sigmoid
function, and o is the element-wise multiplication. Given
transaction encoding x;, we use a Bidirectional LSTM [24],
which has been trained with the classifier (see below) on
labeled dataset (Section 4.4), to capture the inner relationship
between transactions. In this way, the transaction sequence
can be converted into a vector 4 by the trained model.
Sequence classification. The output of the attention model, A,
serves as the input to a multilayer perception (MLP) classifier.
The MLP is used by DEFIER to generate the probability y’
for a given attack stage the sequence is associated with. The



Table 6: Dataset and evaluation results.
Dataset # transactions Results

badset 57,855 DPremicro 98.2%, premacro 92.4%
goodset 39,124 reCmicro 98.1%, recpmacro 98.4%
Unknown set 2,350,779 positive 476,334

Plemicro 91.7%
Sampled testset 30,888 Premacro 83.6%

Groundtruth set

Dremicro and prepqcro: micro of precision, macro of precision
reCmicro and preacro: micro of recall, macro of recall
positive: transactions that labeled as one of attack stages

whole Sequence-based classification module, including the
LSTM and the MLP, can be trained together through stochas-
tic gradient descent, a typical way to train such a complicated
model [14], on labeled data (Section 4.4). In our study, we
built a Bi-LSTM with three folds, whose convolution sizes
were 128, hidden sizes were 256 and batch sizes were 128.
The epochs were set as 20 and learning rate was set as 0.0001.
The hidden size of MLP was set as 256.

4.4 Evaluation

Here we evaluate DEFIER and elaborate on the challenges in
multi-stage exploit transaction identification.

Evaluation with groundtruth set. We evaluated DEFIER
over the following ground-truth dataset as shown in Table
6: for the bad set, we collected 57,855 transaction sequences
associated with Dapp attacks from our measurement study. In
particular, for exploit transactions in the same attack stage,
we first order them by timestamp, and then define a sliding
context window with the size of w (w=8 in our implemen-
tation) to chunk the time-ordered transactions into transac-
tion sequences. Finally, we label those transaction sequences
by their attack stages. We detail the annotation process in
Appendix 7.3. In this way, we built a bad set with 57,855
transactions (469 at the attack preparation stage, 22,333 at the
exploit stage, 34,763 at the attack propagation stage and 290
at the mission completion stage). The transactions of good
set were gathered from 56 victim Dapps related to the bad
set and 318 manually checked normal EOAs on these Dapps.
Specifically, we ran the module of Preprocessing to generate
the transaction sequences with the same size of context win-
dow. In this way, we construct a good set with 39,124 normal
transaction sequences. Running on these sets under 10-fold
cross validation, DEFIER shows a micro-precision of 98.2%,
a macro-precision of 92.4%, a micro-recall of 98.1% and a
macro-recall of 98.4%.

Table 7: Performance comparison in different models

Method | Attention precision | recall | F1

RNN no attention | 0.965 0.962 | 0.963
RNN attention 0.974 0.969 | 0.971
LSTM no attention | 0.977 0.975 | 0.976
LSTM attention 0.982 0.981 | 0.981

precision 1.0
recall
=98 =fl-score

T 96 95.795.595.695 5 45 95,1

o
o

o
>

True Positive Rate

= ROC curve of class 4 (area =1.00)

00 02 04 06 08 10
False Positive Rate

(b) ROC

Window=5 Window=8 Window=10

(a) Model performance with dif-
ferent window size

Figure 10: Evaluation results.

Missed cases. On the ground-truth dataset, seven cases were
missed by DEFIER. These transactions fell through the cracks
due to inadequate attack-related semantic content in their
clusters. In three cases, we found that the size of the sliding
context window is not large enough to capture some attack
behaviors, and as a result, the adversary’s operational intents
and the attack stages could not be determined. In other cases,
the problem comes from the presence of reverted transactions,
whose original execution traces cannot be obtained, which
prevents DEFIER from building up their transaction graphs.

Determining the number of missed malicious transactions
in the large-scale unknown set (with more than 2.3 million
transactions, 342K clusters) is challenging. What we did in
our research was to flag a transaction cluster as the class
types with the largest predicted probability, as well as the
second largest predicted probability when it is greater than 0.5.
This strategy will include more flagged cases, at the expense
of precision. In this way, our approach flagged 1,069 more
transaction clusters. We manually analyzed all of them and
found 167 new exploit transaction clusters. Looking into these
missed cases, we found that 146 cases were caused by the
window size or reverted transactions, as mentioned above. The
remaining 21 cases resulted from the lack of Dapp information
for transaction graph node labeling (see Section 3.1). This
problem can be handled by a more comprehensive Dapp list.
Falsely detected cases. We also found two major causes for
the 322 false positives observed in our study (Section 4.5).
Those transaction clusters are either semantically similar to
the clusters in another attack stage, or having attack patterns
of multiple attack stages. For example, when attackers evolve
their attack strategy (Section 3.2) frequently without exploita-
tion behavior, our model may misclassify these exploitation
clusters as attack preparation clusters. This is because the
transactions during attack strategy evolution can be semanti-
cally similar to those for attack preparation: the adversary kept
using new exploit contracts to interact with a Dapp, and attack
costs were transferred to the new exploit contract to bootstrap
attack. The second type of false positives is caused by the
incorrect transaction clustering. For example, one transaction
cluster of CityMayor consists of the transactions at attack
preparation stage and exploitation stage, because the time
interval between these transactions is small (< 10 minutes),
and the similarity of these transactions is large (average TG
distance < 0.33).



Table 8: Performance comparison in different epochs

Epoch | learning,q. | precision | recall F1
10 0.001 0.965 0.962 | 0.963
20 0.001 0.982 0.981 | 0.981
50 0.001 0.980 0.980 | 0.980
100 0.001 0.994 0.980 | 0.980

Table 9: Performance comparison in different learning rates

Epoch | learning,,. | precision | recall F1
20 0.1 0.958 0914 | 0.932
20 0.01 0.978 0.977 | 0977
20 0.001 0.982 0.981 | 0.981
20 0.0001 0.985 0.982 | 0.983
20 0.00001 0.918 0.906 | 0.908

Parameter and model selection. In Section 4.2, the size
of the sliding context window w controls the length of the
transactions used to inspect the operational context. Here
a small window size might contain inadequate information
about the operational context, while a large window may bring
in the information across different stages, which leads to noise.
In our research, we analyzed the impact of various w (5, 8, 10),
as illustrated in Figure 10(a) and 10(b), over the ground-truth
dataset, and chose the one with the best performance (w = 8).

Parameters such as the number of epochs and the learning
rates for the LSTM model are used to control the performance
of the model. In our study, we tuned the model by varying
the number of epochs from 10 to 100 and the learning rates
from 0.00001 to 0.1. From the result shown in Table 8 and
Table 9, we can see that the classification performs best under
20 epochs and a learning rate of 0.0001.

In our study, we compared the effectiveness of RNN and
LSTM models on the sequence classification tasks. Specifi-
cally, we implemented four models: RNN, RNN with atten-
tion, LSTM, LSTM with attention on the groundtruth dataset
and evaluated their effectiveness using 10-fold cross valida-
tion. Similar to the LSTM model we used (Section 4.3), the
backbone of the RNN is also three layers 128 * 256 * 128 with
the batch size of 128. Table 7 shows the results. We observe
that the LSTM with attention outperforms other sequence
classification models.

4.5 Discovery and New Findings

We collected 104 popular Dapps and their corresponding con-
tract addresses from a Dapp ranking list [8]. On these Dapps,
we ran the Preprocessing to gather 2,350,779 transactions
from Ethereum and construct 342,224 transaction clusters.
Note that we eliminate all the transactions used in the mea-
surement study (Section 3). DEFIER inspected these trans-
actions and labeled 476,342 of them (100,081 clusters) with
one of the attack stages. These transactions are related to
attacks on 85 victim Dapps. For each victim Dapp, we ran-
domly sampled 4% of the reported transaction clusters for
manual validation. In total, we manually investigated 4,003

Table 10: Victim Dapps in different categories.

# # exploit .
Type Dapps/0- # attacker transactions/0 <% of victim
day EOAs/0-day day Dapps
Gam- 51/43 65,778 360,524 Lucky
bling /11,339 /114,473 Blocks
Game 28/27 959/919 52,673 SpaceWar
/52,176 P
. 59,872
Finance 5/5 183/183 /59.872 STOX
Power of
Token 2/1 279/167 4,478/472 Bubble
67,199 476,342
Toual 85775 /12,608 1226,763
Table 11: Unknown set result.
# Dapps/0- # attacker # exploit
Attack stage day EOAs/0-day transactions/0-day
Attack
. 80/70 42,661/8,237 214,408/106,436
preparation
Exploitation 85/75 35,955/3,650 143,179/39,908
Attack. 75165 18,466/6,545 118,755/80,419
propagation

transaction clusters with 30,888 transactions. We found that
3,671 clusters are indeed related to attack incidents and 3,347
clusters are at the right attack stage.

Table 10 summarizes our findings. Our study reveals that
Ethereum Dapps attacks are indeed prevalent, compromising
various kinds of Dapps through different attack vectors. We
observe that 57.3% of the victim Dapps are in the category of
Gambling. To support the gambling functionality, these Dapps
need to generate random numbers, which sometimes are im-
plemented by a weak PRNG, thereby exposing the Dapps to
the bad randomness attack. Note that in our study, 82% of
the Dapps scanned by DEFIER were observed under attacks.
This might be because the Dapps we analyzed were highly
popular with large balances, which makes them more likely
to be targeted by the miscreants. Also, among the 85 victim
Dapps found in the exploit transactions, 75 (e.g., SpaceWar
and SuperCard) were never reported before.

To understand the economic impacts of these abusive ac-
tivities, we estimate the financial loss of the victim Dapp. In
particular, for each victim Dapp, we calculate its income and
cost difference of the exploit transactions. Table 12 shows
the victim Dapps with the top-5 largest losses. The total loss
inflicted by the attacks on these five Dapp is estimated to be
28,485 Ethers.

Table 11 shows the number of Dapps found in each of the at-
tack stages. Interestingly, our model identifies 214,408 attack
preparation transactions associated with 80 Dapps. We found
507 functions were tested by the adversaries. Interestingly,
311 functions were indeed exploited in the exploitation stage.
It indicates that our model can help identify the vulnerable
functions before they are exploited.



Table 12: Top-5 victim Dapps with largest losses.

Dapp # transac- # exploit Revenue
tions transactions (Eth)

LastWinner 561,845 101,304 13,295.2

Fomo3D 438,062 83,833 14,630.9
Dice2Win 69,874 8,919 185.0
Fomo Short 52,431 4,075 314.7
SuperCard 43,897 6,315 59.2

5 Discussion

Mitigation. Based on the results of our measurement study,
we have identified several potentially effective mitigation
strategies to control the fast-growing Ethereum Dapp attacks.
In our study, we observed several stakeholders (e.g., exploit
developer and money manager) in the Ethereum Dapp crimi-
nal ecosystem. Identifying such upstream criminal roles and
monitoring or even restricting their activities (e.g., blocking
them from accessing Dapps) could prevent attacks at the early
stage (see Section 3.2).

Also, for the Dapp owner, an effective way to mitigate
the threats she is facing is to detect an exploit attempt at
its preparation stage, and also keep track of the exploits on
similar Dapps to prevent the propagation attack. Particularly,
since DEFIER identifies each stage of the kill chain without
depending on other stages’ information, it can be utilized for
the attack preparation investigation. Also, as mentioned in
Section 4.5, we found that 62% of the functions tested by
the attackers at the preparation stage were indeed exploited
later. Identifying these functions would help the Dapp owner
to locate the vulnerabilities in her Dapp. In addition, our
study reveals the prevalence of the attack propagation stage, in
which attackers reuse their exploit on one target against other
similar Dapps. Therefore, to prevent the attack propagation,
the owner can use DEFIER for exploitation monitoring on
her Dapps with similar functionalities and take actions before
attacks happen.

Limitation of DEFIER. Our design is limited by the informa-
tion it uses: historical transactions and their execution traces.
Although these transactions provide valuable sources for at-
tack investigation, they miss the attack operations that do not
generate transactions, such as conducting a local invocation
(e.g.,eth_call) or calling a constant function of a Dapp (e.g.,
constant, view and pure). While those operations are read-
only or do not change the Dapp state, and thus are found to
be rarely exploited in the attack incidents (see Table 14), we
acknowledge that our vantage point might cause some attack
cases to fall through the cracks. We will leave a further study
on the problem to the future research.

Also, as a supervised learning model, DEFIER required
training set which labels transactions by its attack lifecycle.
While we believe our paper yields meaningful CTI implica-
tions, which help data annotation, we acknowledge that the
data annotation for our model can be time-consuming. How-
ever, since the training set aims at capturing high-level and

relatively-stable attack intents, the training set can be used
until those criminal intents change.

The design of DEFIER is based upon high-level threat
intelligence (e.g., kill chain and attack patterns) instead of
fine-grained Dapp-specific attack operations, and therefore is
robust to the small adjustments of attack activities. However,
the attack that does not exhibit the intent related to the stages
or just involves a single exploit transaction with limited profit
may not be identified. On the other hand, DEFIER would raise
the bar to Dapp attacks, making them more costly especially
to the adversary who wants to launch the attack on a large
scale to make a profit.

Other blockchain platforms. Our current design is focused
on Ethereum Dapps due to their popularity. However, such
criminal operation mode can also be found in other blockchain
platforms (e.g., EOS). In particular, we conducted a small-
scale study on the attack incidents of EOS Dapps (i.e.,
EOS.WIN, EOSCast and EOSRoyale) and discovered a simi-
lar attack lifecycle and attack patterns from the EOS transac-
tions and their corresponding execution traces.

6 Related Work

Study on Ethereum Dapp security. The security issue on
Ethereum Dapp is attracting increasing attention from re-
searchers. Aside from vulnerability assessment [16, 30, 50],
studies on real-world Ethereum Dapp attacks and frauds are
also conducted to understand the cybercriminal situation on
Ethereum Dapps. For example, Chen et al. [16] studied the
Ponzi scheme Dapps on Ethereum and built a machine learn-
ing based Ponzi scheme Dapp detection tool. Torres et al. [46]
investigated another fraud Ethereum Dapps: honeypot, where
attackers lure victims into vulnerable contracts. The paper in-
troduced a methodology that uses symbolic execution for the
automated detection of honeypot contracts. Chen et al. [15]
identified abnormal EOA, that creates lots of contracts that
are rarely used, by a threshold-based method. This method
was validated using four denial-of-service EOAs. Atzei et al.
[10] provided a survey on real-world attacks against Ethereum
smart contracts, giving a taxonomy and discussing the vulner-
abilities in detail. However, this work focused on the vulner-
ability assessment and did not study the attacker operations
and the associated kill chain. To the best of our knowledge,
our paper is the first to study cybercriminal ecosystem (e.g.,
attack lifecycle, attack infrastructures, campaign organization,
etc.) on real-world Dapp attacks, leveraging the open and
immutable transaction records kept by the Ethereum.

Security event detection and forensic. DEFIER investi-
gated the problem of intrusion detection and forensic analysis,
with a specific focus on Etherem Dapp attacks. Numerous
studies [21, 38, 43] have looked into security event detection
and forecast in various domains. Recent year witnesses the
trend of understanding high-level event semantics for a more
efficient and effective security event detection. Ben-Asher et



al. [12] quantitatively evaluated the effectiveness of using con-
textual knowledge for detecting cyber-attacks. Ma et al. [31]
proposed a semantics aware program annotation to partition
execution based on the application specific high level task
structures. Shen et al. [44] used temporal word embedding to
cluster security events under similar context and track their
evolution. Hassan et al. [26] proposed a threat alert triage
system that features historical and contextual information to
automatically triage alerts. The closest work to our study is
HOLMES [35], a real-time APT detection system that gen-
erates a high-level graph, that summarizes the attacker’s kill
chain steps, to identify behavior associated with known attacks
based on frequency analysis. In contrast to previous works,
the kill chain and the associated attack operations are under
explored in the domain of Ethereum Dapp attacks, which
turned out to be very different from the traditional APT kill
chain. In our study, we first time utilize Ethereum transaction
time series analysis based on graph sequence mining to learn
the high-level attack operational intents, which allows us to
accurately detect both known and unknown attacks.

7 Conclusion

In this paper, we report our study on Ethereum Dapp attack
incidents, which consist of a sophisticated attack hierarchi-
cal structure, multiple criminal roles, and various kinds of
attack behaviors. To investigate such attack incidents, we per-
formed the first measurement study and forensic analysis on
real-world Dapp attacks, leveraging the open and immutable
transaction records kept by the Ethereum blockchain. In par-
ticular, we propose a methodology to supplement the missing
attack information of Dapp incident reports. Utilizing more
comprehensive attack transactions and their execution traces
for each attack incident, we conduct an empirical study to
recover Dapp cybercriminal’s end-to-end footprints, as well
as the corresponding kill chain and attack patterns. Moving
forward, we believe that there is a great potential to utilize
such threat intelligence to automatically investigate Dapp on
a large scale. Running on 2,350,779 transactions from 104
Ethereum on-chain Dapp, our Dapp investigation tool DE-
FIER, which captures high-level attack intents, successfully
identified 476,342 exploit transactions on 85 victim Dapps,
which have never been reported before. It sheds on light that
our understanding of Ethereum Dapp cybercrime will help
more effectively defend against this emerging threat.
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Appendix

7.1

Data formats of three types of transactions
and their associated receipts
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Figure 11: Three types of transactions supported on Ethereum.

7.2

Parameter and model selection for trans-
action clustering

As mentioned in Section 3.1, the parameter o and f indicate the importance
of structure similarity and timing closeness when measuring TG distance



Table 13: Performance comparison under different cluster model

Method accuracy | recall | time cost parameters setting

k-Means [32] 0.95 0.83 84.93s iteration number is 3; k is all the ﬁ.rst trar}sactlon in sequences split by a
10-hour time window

Agglomerative Hierarchecal [34] | 0.83 0.97 2h30min | k is all the first transaction in sequences split by a 10-hour time window

DBSCAN [22] 0.89 0.76 2h27min eps is 0.5; the minimal points of a cluster is 2

Table 14: List of Dapp incidents reports.

Source Report URL Victim Dapp
PeckShield https://blog.peckshield.com/2018/04/22/batchOverflow/ BeautyChain(BEC)
MESH, UGToken(UGT), SmartMesh(SMT),
PeckShield https://blog.peckshield.com/2018/04/25/proxyOverflow/ SmartMesh Token(SMART), MTC, First(FST), GG
Token, CNY Token(CNY't)
PeckShield https://blog.peckshield.com/2018/05/10/multiOverflow/ Social Chain (SCA)
PeckShield https://blog.peckshield.com/2018/08/18/replay/ SmartMesh(SMT), UGToken(UGT), First(FST), MTC
PeckShield https://blog.peckshield.com/2018/08/14/unsafemath/ MovieCredits (EMVC)
Medium https://medium.com/coinmonks/an-inspection-on-ammbr-amr-bug-a5 Ammbr(AMR)
3b4050d52
) Ammbr(AMR), Beauty Coin (BEAUTY), Rocket Coin
: . ?p=217 . .
4Hou https://4hou.win/wordpress/?p=21704 (XRC), Social Chain (SCA)
BCSEC https://bcsec.org/index/detail?id=157&tag=1 Morph
. https: .
Aeternity //blog.aeternity.com/parity-multisig-wallet-hack-47cc507d964d Parity
BitcoinTalk https://bitcointalk.org/index.php?topic=1400536.60 Rubixi
Github https://github.com/ether-camp/virtual-accelerator/issues/8 HackerGold(HKG)
Reddit https://www.reddit.com/r/ethdev/comments/7x5rwr/tricked_by_a_hon PrivateBank
eypot_contract_or_beaten_by/
Reddit https://www.reddit. com/r/ethere.um/commen.ts/916xn1/how_to_pwn_fom Fomo3D
03d_a_beginners_guide
PeckShield https://blog.peckshield.com/2018/07/24/fomo3d/ Fomo3D, RatScam
. https://medium.com/@AnChain.AI/largest-smart-contract-attacks- .
Medium in-blockchain-history-exposed-part-1-93b975a374d0 Fomo3D, LastWinner, RatScam, FomoGame
. https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a
Medium ~detailed-explanation-b30a69b7813f Fomo3D
Medium https://medium. com/@Be051n/thgre—1s—only—one—truth—god—qame—at GodGame
tack-analysis-ea4821d27cc3
360 http://blogs.360.cn/post/Fairness_Analysis_of_Dice2win_EN.html Dice2Win
King of the https://www.kingoftheether.com/postmortem.html King of the Ether Throne
Ether
Throne
Reddit https://www.reddit. com/r/gthereum/commen.ts/4ghzhv/governmentals_ GovernMental
1100_eth_jackpot_payout_is_stuck/
. https://medium.com/spankchain/we-got-spanked-what-we-know-so-f .
Medium ar-d5ed3a0£38 e SpankChain

7.3 Data annotation

We manually examined transaction clusters to identify the adversary’s in-
tent and annotate their attack stage. Serving this purpose is the grounded
theory [33], a systematic methodology that constructs a concept through
methodical gathering and analysis of data in social science. More specifi-
cally, we analyzed transaction clusters through the following three stages:
coding that identifies the anchors (e.g., multiple contract creations and self-
destruction traces in a transaction, using the same contract to call several
Dapps, achieving significant large profit in one transaction, etc.) that enable
the key points of the annotation; code collection and iteration that iteratively
groups anchors and aligns them to the adversary’s operational intents through
comparison [23] (e.g., a transaction cluster shows the operational intent of
the attack propagation, if their execution traces consist of multiple contract

(Definition 1). In our implementation, we analyzed the impact of various o
and [ as shown in Table 15 on the ground-truth set, and chose the combination
of and B (i.e., o« = 0.9, = 0.1) with the best performance.

Also, we compared the effectiveness of different clustering algorithms, i.e.,
k-Means, DBSCAN, Agglomerative Hierarchical, on our task. The results,
with pre-parameters required by cluster models, are shown in Table 13. We
observe that the clustering algorithm k-Means outperforms other clustering
algorithms in terms of accuracy and efficiency. In our study, we weight the
correctness of the results and use k-Means for transaction clustering.

Table 15: Performance comparison under different distance

Welght _ creations and self-destruction when calling several different Dapps); Attack
o i precision | recall stage annotation that annotate transaction clusters’ attack stage based on
0.01 | 099 | 097 0.78 adversary’s operational intents. Throughout the analysis, annotators inten-
0.1 0.9 0.97 0.76 sively discussed with each other to ensure that all transaction clusters were
0.3 0.7 0.97 0.72 correctly understood and evaluated. In total, it took 5 human labors around
0.5 0.5 0.97 0.62 two weeks for data annotation.
0.7 0.3 0.95 0.81
0.9 0.1 0.95 0.83
0.99 | 0.01 | 0.96 0.82
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