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Abstract. This paper establishes a link between the theory of cluster alge-

bras and the theory of representations of partially ordered sets. We introduce
a class of posets by requiring avoidance of certain types of peak-subposets

and show that these posets can be realized as the posets of quivers of type A
with certain additional arrows. This class of posets is therefore called posets
of type A. We then give a geometric realization of the category of finitely

generated socle-projective modules over the incidence algebra of a poset of

type A as a combinatorial category of certain diagonals of a regular polygon.
This construction is inspired by the realization of the cluster category of type A
as the category of all diagonals by Caldero, Chapoton and the first author [10].

We also study the subalgebra of the cluster algebra generated by those

cluster variables that correspond to the socle-projectives under the above con-
struction. We give a sufficient condition for when this subalgebra is equal to

the whole cluster algebra.
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1. Introduction

Geometric realizations of algebraic structures using the combinatorial geometry of
surfaces have been developed by different authors in recent years (for instance see
[2–6,8,10,14–16,26,28]). This approach provides geometric and combinatorial tools
for the study of the objects and morphisms in the category. It plays an important
role in cluster-tilting theory and in representation theory in general. For example,
the category C of diagonals (not including boundary edges) in a regular polygon
Πn+3 with n + 3 vertices introduced by Caldero, Chapoton and the first author
[10] is a geometric realization of the cluster category of type An; which, in greater
generality, was defined simultaneously by Buan-Marsh-Reiten-Reineke-Todorov [9].
They defined cluster categories as orbit categories of the bounded derived category
of hereditary algebras. As an application in [10], the module category of a cluster-
tilted algebra of type An is described by a category of diagonals CT in Πn+3, where
T is a triangulation of Πn+3.

The present work links the theory of cluster algebras [17] and cluster categories with
the theory of representations of partially ordered sets (in short, posets) through a
geometric realization inspired by the one in [10].

The representation theory of posets was established parallel to the development of
the representation theory of Artin algebras; the notion of a matrix representation
of a poset P over an algebraically closed field k was introduced in the 1970s by
Nazarova and Roiter [25]. Aside from matrix representations of a poset P, the con-
cept of P-space (or representation of P) over a field k was introduced by Gabriel
[18] in connection with the investigation of representations of quivers. If (P,�) is
a finite poset, the category of P-spaces of the poset P is nothing else than the cat-
egory modsp(kP

?) of finitely generated socle-projective modules over the incidence
algebra kP? of the enlarged poset P? = P ∪ {?} such that x ≺ ? for each x ∈ P;
however, there are genuine methods in representation theory of posets such as the
differentiation algorithms [11,12,33,36]. In a more general situation, Simson stud-
ied the category of peak P-spaces which is identified with the category modsp(kP)
of finitely generated socle-projective kP-modules, where kP is the incidence algebra
of a poset P [31, 34]. He gave the finiteness criterion for those categories while
his student J. Kosakowska classified the sincere posets of finite representation type
[19–21]. Moreover, the tameness criterion was given by Kasjan and Simson in [22].
In general, the theory of representations of posets plays an important role in the
study of lattices over orders, in the classification of indecomposable lattices over
some simple curve singularities and in the classification of abelian groups of finite
rank (see [1, 33]).

In this paper, we introduce a class of posets which we call posets of type A. Roughly
speaking, they are posets with n ≥ 1 elements whose category of socle-projective
representations is embedded in the category of representations of a Dynkin quiver
of type An. We characterize these posets as those not allowing a peak-subposet of
one of four types, see Definition 3.1. Then, we define a subcategory C(T,F ) of the
category CT of diagonals of a triangulated polygon Πn+3 with n+ 3 vertices to give
a geometric realization of the category modsp(kP) of posets P of type A, where
T is a triangulation of Πn+3 associated to a Dynkin quiver Q of type An and F
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is a set of additional arrows for Q. We show that there is an equivalence of cate-
gories C(T,F ) → modsp(kP) in Theorem 4.5. Moreover, we define a subalgebra A(P)
of the cluster algebra A = A(x, Q) generated by the cluster variables associated
to diagonals in C(T,F ) and diagonals in T ; then, we establish that if P is the poset
whose Hasse quiver is a Dynkin quiver Q of type An then A = A(P) in Theorem 5.2.

The paper is organized as follows: In section 2, we recall some notation and results
about categories of diagonals in regular polygons and categories of socle-projective
representations of posets. In section 3, we define and study posets of type A.
Section 4 is devoted to proving our main result, Theorem 4.5. Finally, the last
section deals with the subalgebras A(P) of the cluster algebra A.

2. Preliminaries

2.1. Category of diagonals CT . We recall some results and notation of [10] (see
also Chapter 3 in [29]) which are used in this work. A diagonal in a regular polygon
is a straight line segment that joins two of the vertices and goes through the interior
of the polygon. A triangulation of the polygon is a maximal set of non-crossing
diagonals. Such a triangulation cuts the polygon into triangles.

Let T = {τ1, . . . , τn} be a triangulation of a regular polygon Πn+3 (or (n+ 3)-gon)
with n+ 3 vertices and let γ and γ′ be diagonals that are not in T . The diagonal γ
is related to the diagonal γ′ by a pivoting elementary move if they share a vertex
on the boundary (this vertex is called pivot), the other vertices of γ and γ′ are
the vertices of a boundary edge of the polygon and the rotation around the pivot
is positive (for the trigonometric direction) from γ to γ′. Let Pv : γ → γ′ denote
the pivoting elementary move from γ to γ′ with pivot v. Compositions of pivoting
elementary moves are called pivoting paths.

The combinatorial k-linear additive category CT of diagonals is defined as follows:
The objects are positive integral linear combinations of diagonals that are not in
T . By additivity, it is enough define morphisms between diagonals. To do that, we
recall that the mesh relations are the equivalence relation between pivoting paths
induced by identifying every couple of pivoting paths of the form

γ
Pv1−−→ β

Pv′2−−→ γ′ and γ
Pv2−−→ β′

Pv′1−−→ γ′

where v1 6= v′2 and v2 6= v′1 (see Figure 1). In these relations, diagonals in T or
boundary edges are allowed with the following convention: If one of the interme-
diate edges (β or β′) is either boundary edge or diagonal in T , the corresponding
term in the mesh relation is replaced by zero. Thus, the space of morphisms from
a diagonal γ /∈ T to a diagonal γ′ /∈ T is the quotient of the vector space over k
spanned by pivoting paths from γ to γ′ modulo the mesh relations.

The following lemma describes the relative positions of diagonals γ and γ′, when
there exist a nonzero morphism between them.

Lemma 2.1. [10, Lemma 2.1] The vector space HomCT (γ, γ′) is nonzero if and only
if there exists a diagonal τi ∈ T such that τi crosses the diagonals γ and γ′ and the
relative positions of them are as in Figure 2. That is, let v1, v2 be the endpoints
of τi and u1, u2 (respectively u′1, u

′
2) be the endpoints of γ (respectively γ′). Then
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=

v1

v2γγ′v′1

v′2
β

Pv1Pv′2 Pv′1Pv2

v1

v2v′1

v′2γ γ′

β′

Figure 1. Mesh relations Pv′2Pv1 = Pv′1Pv2 in CT

ordering the vertices of the polygon in the positive trigonometric direction starting
at v1, we have v1 < u1 ≤ u′1 < v2 < u2 ≤ u′2. In this case, HomCT (γ, γ′) is of
dimension one.

u1

u2

u′1 u′2

γ

γ′

v1

v2

τi

Figure 2. Relative position

A triangulation T of the (n + 3)-gon is said to be triangulation without internal
triangles if each triangle has at least one side on the boundary of the polygon. It
is important to recall that every triangulation T of the (n + 3)-gon gives rise to a
cluster-tilted algebra kQT /I of type An, where I is the two-sided ideal generated
by all length two subpath of oriented 3-cycles in QT , and every cluster-tilted al-
gebra is of this form. In particular, every Dynkin quiver of type An corresponds
to a triangulation without internal triangles. The map associates a quiver QT to
the triangulation T = {τ1, . . . , τn} of Πn+3 as follows: The vertices of QT are
(QT )0 = {1, 2, . . . , n} and there is an arrow x → y in (QT )1 precisely if the diag-
onals τx and τy bound a triangle in which τy lies counter-clockwise from τx (see
Figure 3 and Example 4.3).

 x→ y
τxτy

Figure 3. τy is counter-clockwise from τx

A vertex x ∈ (QT )0 belongs to the support supp γ of a diagonal γ /∈ T if the diagonal
τx ∈ T crosses γ. The following lemma permits to see diagonals that are not in



A GEOMETRIC REALIZATION OF SOCLE-PROJECTIVE CATEGORIES... 5

T as indecomposable objects in the module category of the cluster-tilted algebra
kQT /I of type A.

Lemma 2.2. [10, Lemma 3.2] Let γ be a diagonal which does not belong to T . The
set supp γ is connected as a subset of the quiver QT .

In [10], the authors defined a k-linear additive functor Θ from CT to the category
mod kQT /I of finitely generated kQT /I-modules. The image of a diagonal γ /∈ T
is the representation Mγ = (Mγ

x , f
γ
α) defined as follows: For each vertex x in QT ,

Mγ
x =

{
k if x ∈ supp γ,
0 otherwise.

For any arrow α : x→ y in QT ,

fγα =

{
idk if Mγ

x = Mγ
y = k,

0 otherwise.

Moreover, for any pivoting elementary move P : γ → γ′ they defined the morphism
Θ(P ) from (Mγ

x , f
γ
α) to (Mγ′

x , f
γ′

α ) to be idk whenever possible and 0 otherwise.
The category CT of diagonals gives a geometric realization of the category of finitely
generated kQT /I-modules in the following sense.

Theorem 2.3. [10, Theorems 4.4 and 5.1]

(a) The functor Θ is an equivalence of categories.
(b) The irreducible morphisms of CT are direct sums of the generating mor-

phisms given by pivoting elementary moves.
(c) The mesh relations of CT are the mesh relations of the AR-quiver of CT .
(d) The AR-translation is given on diagonals by r−. Here, r− (respectively r+)

denotes the clockwise (respectively counter-clockwise) elementary rotation
of the regular polygon Πn+3.

(e) The projective indecomposable objects of CT are the diagonals in r+(T ).
(f) The injective indecomposable objects of CT are the diagonals in r−(T ).

2.2. Socle-projective modules over incidence algebras. In this section, we
recall some of the main results regarding finitely generated socle-projective modules
over incidence algebras of posets due to Simson [30,31,33,34].

We denote by (P,�) a finite partially ordered set (in short, poset) with respect to
the partial order �. We shall write x ≺ y if x � y and x 6= y. For the sake of
simplicity we write P instead of (P,�). Let maxP (respectively minP) be the set of
all maximal (respectively minimal) points of P. A poset P is called an r-peak poset
if |maxP| = r. We recall that a full subposet P′ of P is said to be a peak-subposet
if maxP′ ⊆ maxP. In the sequel, we denote P− = P \maxP.

The Hasse diagram of P is obtained as follows: One represents each element of P
as a vertex in the plane and draws a line segment or curve that goes upward from
x to y whenever y covers x, that is, whenever x ≺ y and there is no z such that
x ≺ z ≺ y. These lines may cross each other but must not touch any vertices other
than their endpoints. Such a diagram, with labeled vertices, uniquely determines
its partial order.

Example 2.4. Given the one-peak poset P whose Hasse diagram is
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?3

◦4◦2

◦5◦1

◦6

the subposet {2, 4, 5, 6} is not a peak-subposet of P, whereas {1, 6, 3} is a peak-
subposet of P.

For a point a ∈ P, the subposets of P

aO = {x ∈ P | a � x} , aM = {x ∈ P | x � a}

are called up-cone and down-cone respectively. In the literature, the up-cone of a
is also called the principal filter of a and its down-cone is its principal ideal. A
poset P is called a chain (or a totally ordered set or a linearly ordered set) if and
only if for all x, y ∈ P we have x � y or y � x. On the other hand, an ordered set
P is called an antichain if and only if for all x, y ∈ P we have x � y in P only if
x = y. The cardinality of a maximal antichain in a poset P is called the width w(P)
of P. If some subsets X1, . . . , Xn of P do not intersect mutually (but may have
comparable points), then their union X1 ∪ · · · ∪Xn is called a sum and is denoted
by X1 + · · ·+Xn. We recall that according to the Dilworth’s theorem if the width
w(P) = n then P is a sum of n chains. For details on posets, we refer to [13,35].

Given a finite poset P, by kP we mean the incidence algebra of the poset P. kP can
be described as a bound quiver algebra kQ/I induced by the Hasse quiver Q of P
whose vertices are the points of P and there is an arrow α : x → y for each pair
x, y ∈ P such that y covers x. The ideal I is generated by all the commutativity
relations γ − γ′ with γ and γ′ parallel paths in Q. In this case, the category
mod(kP) of the finitely generated kP-modules is identified with the well known
category rep(Q, I) of representations of the bound quiver (Q, I).

Example 2.5. The incidence algebra kP of the poset P defined in Example 2.4 is
the bound quiver algebra kQ/I, where Q is the is the quiver

6

ω��
1

γ ��

5
α

uu δ��
2

β ��

4

ξ��
3

and the ideal I is generated by the relation αβ − δξ.

Recall that the socle soc M of a module M is the semisimple submodule generated
by all simple submodules of M . A module M is called socle-projective if soc M
is a projective module. We denote by modsp(kP) the full subcategory of mod(kP)
whose objects are the socle-projective kP-modules. We have an explicit description
of the objects in modsp(kP) as follows.

Proposition 2.6. [30, Section 3] Each kP-module M in mod(kP) is identified with
a collection M = (Mx, yhx)x,y∈P of finite-dimensional k-vector spaces Mx, one for
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each point x ∈ P, and a collection of k-linear maps yhx : Mx → My, one for each
relation x � y in P, such that

(a) xhx is the identity of Mx for all x ∈ P and why ·yhx = whx for all x � y � w
in P.

Furthermore, M = (Mx, yhx)x,y∈P is a socle-projective module if it also holds that

(b) For all x ∈ P−, the k-subpace

Ix =
⋂

z∈maxP
z�x

ker zhx

of Mx is the zero subspace.

Note that it is enough to define the linear maps yhx when y covers x, that is, one
for each arrow in the Hasse quiver of P because if x ≺ y but y does not cover
x then for any chain x = x0 ≺ x1 ≺ · · · ≺ xl = y in P such that xi+1 covers xi
we have that yhx = yhxl−1

· · · x1
hx. The condition (a) implies that it is well defined.

Let M = (Mx, yhx)x,y∈P and N = (Nx, yh
′
x)x,y∈P be two objects in mod(kP). A

morphism of kP-modules f : M → N is a collection f = (fx)x∈P of linear maps

fx : Mx → Nx

such that for each relation x � y in P the diagram

Mx My

Nx Ny

yhx

fx fy

yh
′
x

commutes, that is,
fy ◦ yhx = yh

′
x ◦ fx.

In the context of the representations of posets introduced by Nazarova and Roiter
[25], the category modsp(kP) is identified with the category P-spr of peak P-spaces
over the field k defined by Simson (see [34]). Thus, following [27,31,34], modsp(kP)
is an additive Krull–Schmidt category of finite global dimension which is closed un-
der taking kernels and extensions. Furthermore, it has enough projective objects,
AR-sequences, source maps, and sink maps.

The category modsp(kP) (or the poset P) is said to be of finite representation type
if it has only a finite number of nonisomorphic indecomposable socle-projective
kP-modules, otherwise, it is of infinite representation type. We have the following
criterion of finite representation type due Simson.

Theorem 2.7. [34, Theorem 3.1] The category modsp(kP) is of finite representation
type if and only if the poset P does not contain as a peak-subposet any of the posets
P1, . . . ,P110 presented in [34, Section 5].

For a poset P of finite representation type, all the indecomposable socle-projective
kP-modules can be obtained via the sincere peak-subposets of P.

Given a poset P and an object M = (Mx, yhx)x,y∈P in mod(kP), the Jacobson

radical of M is the kP-module given by rad M = ((rad M)x, yhx)x,y∈P, where
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(rad M)x =
∑
a≺x Im(xha) and yhx is the restriction of yhx to (rad M)x for each

x � y in P. By top of M we mean the semisimple quotient kP-module top M =
M/rad M given by ((top M)x, yfx)x,y∈P, where (top M)x = Mx/(rad M)x and

yfx = 0 for each x ≺ y in P. Moreover, the coordinate vector of M is given by the
vector

d = cdimM = (dx)x∈P ∈ NP

such that dx = dimkMx if x ∈ maxP and dx = dimk(top M)x otherwise. If M is
an indecomposable socle-projective kP-module, the coordinate support

csuppM = {x ∈ P | (cdimM)x 6= 0}

of M is a peak-subposet of P. In particular, if csuppM = P, M is called a sincere
socle-projective kP-module. Furthermore, if there exists a sincere socle-projective
kP-module, we say that P is a sincere poset.

Example 2.8. Let P be the one-peak poset given in Example 2.4 whose Hasse
quiver is shown in Example 2.5. The kP-module M given by the system

0

0��
k

1 ��

0
0

uu 0��
k

1 ��

k

1��
k

is an indecomposable socle-projective kP-module. Indeed, since P has a unique
maximal point z = 3, we have that the k-subspace Ix of Mx defined in Proposition
2.6 is given by Ix = ker 3hx = 0 for all x ∈ P−. Note that, replacing 1 on arrow
γ by 0 would result in a representation that is not socle-projective. Moreover
the coordinate vector of M is cdimM = (d1, . . . , d6) = (1, 0, 1, 1, 0, 0) and the
coordinate support of M is the peak-subposet given by csuppM = {1, 3, 4}. Since
the restriction of M to the poset csuppM is a sincere socle-projective k(csuppM)-
module, csuppM is a sincere poset.

The classification of all sincere r-peak posets of representation finite type and the
sincere socle-projective representations of them ñ was given by M. Kleiner [24], for
the case r = 1, and by J. Kosakowska [19–21] in the remaining cases. Such lists are
important because we can get all indecomposable objects in modsp(kP) of a given
poset P of finite representation type lifting all sincere socle-projective kS-modules
of all sincere peak-subposets S of P via the subposet induced functor [23].

(2.1) TS : modsp kS → modsp kP

that assigns to the socle-projective kS-module M the socle-projective kP-module
X ⊗kS (eL(kP)eP−∪maxP), where eJ =

∑
i∈J ei for any subposet J ⊆ P.

Proposition 2.9. [32, Proposition 2.11] Up to isomorphism, any indecomposable
object M in modsp(kP) is the image TS(L) of a sincere socle-projective kS-module
L, where S is a sincere peak-subposet of P. In this case, S = csuppM and L is the
restriction of M to S.

In particular, if P is a one-peak poset the above result was presented in [33, Section
5.3].
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3. Posets of type A

In this section, we introduce a family of posets which we call posets of type A
because of a characterization using a type A quiver given in Proposition 3.8.

Definition 3.1. A finite connected poset P is said to be poset of type A if P does
not contain as a peak-subposet any of the following posets:

R1

?

◦◦ ◦

R2

? ?
◦
◦

R3

? ? ?

◦

?1

R4,n, n ≥ 0

?2 ?3 · · · ?n+2

◦ ◦ ◦ . . . ◦

Example 3.2. The poset P given in Example 2.4 is a poset of type A because
although {2, 4, 5, 6} is a subposet of type R2 it is not a peak-subposet of P. On the
other hand, the poset

?2 ?5

◦1 ◦4

◦3 ◦6
?7

is a three-peak poset of type A which can be viewed as a Dynkin quiver of type E7.

We say that two maximal points z and z′ in a poset P are neighbors if zM ∩ z′M 6= ∅.
Then, we describe this notion when P is a poset of type A as follows.

Lemma 3.3. Let P be an r-peak poset of type A with r ≥ 2. The following state-
ments hold:

(a) The points z, z′ ∈ maxP are neighbors if and only if zM ∩ z′M = {x}, for
some x ∈ minP.

(b) For all z ∈ maxP, z has at most two neighbors. Moreover, there exists at
least a point z ∈ maxP such that z has a unique neighbor.

Proof. Since R2 is not peak-subposet of P then x ∈ zM ∩ z′M implies that x ∈ minP

because otherwise there exists y ≺ x and R2 = {y, x, z, z′} would be a peak-
subposet of P. Now, if x 6= x′ ∈ zM ∩ z′M then R4,0 is peak-subposet of P which is a
contradiction. Thus, the set zM∩z′M is a singleton. Clearly the converse implication
is true. On other hand, since P is a connected poset then each maximal point z
has at least one neighbor, but z does not have three neighbor points. Indeed, if
z1, z2, z3 are distinct neighbors of z with xi ∈ zM ∩ (zi)M then we have the subposet

z1 z z2 z3

x1 x2 x3.

If x1, x2, x3 are three distinct points then {z, x1, x2, x3} is a peak-subposet of type
R1, a contradiction. Suppose that two of the xi are equal, for instance x1 = x2.
Then {z1, z, z2, x1} is a peak-subposet of type R3, a contradiction. Thus z has at
most two neighbors. Finally, if each maximal point has exactly two neighbor points
then R4,n is peak-subposet of P for some n ≥ 0, which is contradictory, and we are
done. �
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Actually, the posets of type A can be viewed as posets associated to certain quivers
which are obtained from Dynkin quivers of type A by adding some new arrows. To
explain this, we need the following definitions:

Let Q be an acyclic quiver and let PQ = Q0 be its set of vertices. We define an
order on PQ by x � y if and only if there exists a path from x to y in Q. We
say that PQ is the poset associated to the quiver Q. Note that there is a unique
poset associated to a finite acyclic quiver, but the converse is false in general. As
an example, the poset associated to the quiver

1 //

��

2

3

@@

is {1 < 3 < 2}. However, the Hasse quiver of this poset is 1 // 3 // 2 . Thus, the
two quivers have the same associated poset. As another example, corresponding
to the poset P = {1, 2} together with the usual ordering 1 < 2, we get countably
many quivers with n arrows from 1 to 2 for any natural number n ∈ N.

Recall that a vertex x in a quiver Q is said to be a sink vertex (respectively source
vertex ) if there is no arrow α in Q such that s(α) = x (respectively t(α) = x),
where s(α) is the starting vertex and t(α) is the target vertex of the arrow α.

Given a Dynkin quiver Q of type A, its underlying graph Q has the form

◦
1

◦
2

◦
n−1

◦
n

,

and the vertices 1 and n are called extreme vertices of Q. Moreover, if z is a sink
vertex in Q, the maximal full subquiver Q(z) of Q such that z is the unique sink
vertex in Q(z) is said to be the z-subquiver of Q. In other words, the vertices
of Q(z) are the vertices in the support Supp I(z) of the indecomposable injective
representation I(z) at vertex z.

Example 3.4. The quiver Q = 1 // 2 3oo // 4 // 5 6oo // 7 of type A7

contains the 2-subquiver 1 // 2 3oo , the 5-subquiver 3 // 4 // 5 6oo , and

the 7-subquiver 6 // 7 .

We will now add new arrows to our quiver Q as follows.

Definition 3.5. A set F = {α1, . . . , αt} of new arrows for Q is called an alien set
for Q if the following conditions hold.

(a) For all α ∈ F , there exists a sink vertex z in Q such that s(α), t(α) ∈
Supp I(z).

(b) For all α ∈ F , t(α) is not a source vertex in Q unless it is an extreme vertex
in Q.

(c) For all α ∈ F , the arrow α is the unique path from s(α) to t(α) in QF ,
where QF is the quiver such that QF0 = Q0 and QF1 = Q1 ∪ F .

(d) The quiver QF is acyclic.

The arrows in an alien set for Q will be called alien arrows.
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Example 3.6. If Q is the quiver 1 // 2 // 3 4oo 5oo 6oo of type A6 then
F = { α : 5→ 2} is an alien set for Q and QF is the quiver in Example 2.5. Note
that the poset PQF is the one-peak poset of type A defined in Example 2.4.

Example 3.7. Let Q be the quiver in Example 3.4. The set

F = {α : 3→ 1, β : 6→ 4}

is an alien set for Q. Moreover, the quiver QF is equal to

1 3

2 4 6

5 7

α

β

Note that the poset PQF associated to QF is the three-peak poset of type A defined
in Example 3.2.

The following proposition characterizes posets of type A.

Proposition 3.8. A poset P is of type A if and only if there exists a Dynkin quiver
Q of type A and an alien set F for Q such that P = PQF is the poset associated to

the quiver QF .

Proof. In order to prove the necessary condition we proceed by induction on the
number r of peaks in P. First we suppose that P is a one-peak poset with a maximal
point z. Since R1 is not peak-subposet of P we conclude that w(P) ≤ 2. Thus, if
w(P) = 1 then P is a chain and it can be viewed as a linearly oriented quiver Q
of type A. Clearly, if F = ∅ then P is the poset associated to the quiver QF . On
the other hand, if w(P) = 2 then by Dilworth’s theorem P− is a sum of two chains
P1 = {x1 ≺ · · · ≺ xs} and P2 = {y1 ≺ · · · ≺ yt}. Given the quiver

Q = x1
// · · · // xs // z ytoo · · ·oo y1

oo ,

the set F = F1 ∪ F2 such that F1 = {α : x → y | y ∈ P2 covers x ∈ P1} and
F2 = {α : y → x | x ∈ P1 covers y ∈ P2} is an alien set for Q. Let α : x→ y be an
alien arrow in F . We suppose that there is another path from x to y in QF , then
there exists an alien arrow α′ : x′ → y′ in QF such that x � x′, y′ � y and x 6= x′

or y 6= y′. However, in this case, y does not cover x which is a contradiction. Thus,
F is an alien set for Q and P is the poset PQF associated to the quiver QF .

Now, we suppose that the assertion is true for any h-peak poset of type A, for
all 1 ≤ h ≤ r − 1. Let P be a r-peak poset of type A. By Lemma 3.3 part (b)
we can choose a point z ∈ maxP such that z has a unique neighbor. The peak-
subposets P̄ = {z1, . . . , zr−1}M and Pz = zM of P are two posets of type A, where
maxP = {z1, . . . , zr−1, z}. By induction there are two Dynkin quivers Q′ and Q′′

of type A and two alien sets F ′ and F ′′ for Q′ and Q′′ respectively such that P̄ is
the poset associated to the quiver Q′F

′
and Pz is the poset associated to the quiver

Q′′F
′′
. We suppose that z′ ∈ (maxP)\{z} is the neighbor of the point z. By Lemma

3.3 part (a) we conclude that zM ∩ z′M = {x}, where x ∈ minP, in other words, x is
a source vertex in Q′ and Q′′. Clearly P̄ ∩ Pz = {x}, otherwise z would have two
neighbors. Now we are going to prove that the point x is an extreme vertex of both
quivers Q′ and Q′′. Since Q′′ has a unique sink vertex z and x is a source vertex
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in Q′′ then x is an extreme vertex in Q′′. Moreover, if x is a source vertex which
is not an extreme vertex in Q′ then R3 would be a peak-subposet of P and in this
way we get a contradiction. Then the quiver Q = (Q0, Q1) such that Q0 = Q′0∪Q′′0
and Q1 = Q′1 ∪Q′′1 is a Dynkin quiver of type A. Note also that F = F ′ ∪F ′′ is an
alien set for Q because there is no alien arrow ending at x, otherwise R2 would be
a peak-subposet of P. Furthermore, P is the poset associated to the quiver QF .

The sufficiency of the assertion is proved as follows; let us suppose that P is the
poset PQF associated to a quiver QF , where Q is a Dynkin quiver of type A and
F is an alien set for Q, we shall prove that P is of type A. Locally an alien arrow
α ∈ F with s(α), t(α) ∈ Supp I(z), where z is a sink vertex in Q is such that
s(α) 6= z, otherwise the quiver QF would be cyclic. Then the maximal points in
P are exactly the sink vertices in the quiver Q. For each z ∈ maxP, Definition

3.5 implies that the peak-subposet zM = Q
(z)
0 of P is a poset of width at most two

and then R1 is not a peak-subposet of P. Note that the poset PQ is a poset of
type A because Q is a Dynkin quiver of type A. Thus, by Lemma 3.3 part (b), if
z, z′ ∈ maxPQ are neighbors and x ∈ zM∩z′M then x ∈ minPQ. Since Q is a Dynkin
quiver of type A, x is a source vertex in Q. However, x is a non-extreme vertex
in Q because an alien arrow always connects two vertices in the same z-subquiver.
Definition 3.5 part (b) implies that P does not contain R2 as peak-subposet. Now,
we suppose that P contains R3 as peak-subposet, that is, there are three maximal
points z, z′, z′′ in P and a point x ∈ P such that x ∈ zM ∩ z′M ∩ z′′M. Thus, by the
same arguments as above, z, z′ and z′′ are sink vertices in Q. Moreover, since R2 is
not a peak-subposet of P, then x is a minimal point in P which implies that x is a
source vertex in the quiver Q. Moreover, since Q is a Dynkin quiver of type A, we
can suppose that there is no path in Q from x to z′′; thus, Definition 3.5 implies
that x ⊀ z′′ in P, a contradiction. These arguments allow us to conclude that R3

is not peak-subposet of P. In the same way, we can see that for all n ≥ 0, R4,n is
not a peak-subposet of P. �

A poset P is said to be locally of width n or have local width n if n is the minimum
integer such that for each z ∈ maxP it holds that w(zM) ≤ n. Clearly a poset of
type A has local width less than or equal to two. The following lemma describes
sincere posets of type A and their socle-projective indecomposable modules.

Lemma 3.9. Let P be a poset of type A. Then

(a) modsp kP is of finite representation type.
(b) P is a sincere poset if and only if P is isomorphic to one of the following

posets:

?1

S(r)
1

?2 ?3 · · · ?r

◦ ◦ . . . ◦

?1

S(r)
2

?2 ?3 · · · ?r

◦ ◦ . . . ◦ ◦

?1

S(r)
3

?2 ?3 · · · ?r

◦ ◦ ◦ . . . ◦ ◦

for some r ≥ 1. Furthermore, the module M = (Mx, yhx)x,y∈P in modsp(kP)
such that Mx = k for all x ∈ P and yhx = idk for each x � y in P is the
unique sincere object in modsp(kP).

Proof. According to Theorem 2.7 part (b), to prove the part (a) is enough to ob-
serve that no poset listed in [34, section 5] is a peak-subposet of P. Indeed, the
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posets of the series P2,n+1, P ′′2,n, P3,n, n ≥ 0 and the poset P2,0 contain R3 as
peak-subposet. Moreover, the posets of the series P ′2,n+1, P ′′3,n, n ≥ 0 contain R1

as peak-subposet and the posets of the series P ′3,n, n ≥ 0 contain R2 as peak-
subposet. Note that by definition P does not contain as a peak-subposet a poset of
the series P1,n, n ≥ 0. Moreover, we note that any poset of the form {P4, . . . ,P110}
contains as peak-subposet to Ri for some i = 1, 2, 3.

In order to prove (b), first we consider that P is one-peak poset. In this case,

according to the list of sincere one-peak-posets (see [24]) we have that P = S(1)
i for

some i = 1, 2, 3. Moreover, we observe in the known lists of sincere r-peak posets

of finite type that F (2)
1 = S(2)

1 ,F (2)
2 = S(2)

2 ,F (2)
5 = S(2)

3 are the sincere two-peak

posets of type A (see [19]), F (3)
44 = S(3)

1 , F (3)
46 = S(3)

2 ,F (3)
53 = S(3)

3 are the sincere

three-peak posets of type A (see [20]) and F (r)
8 = S(3)

1 ,F (r)
10 = S(3)

2 ,F (r)
13 = S(3)

3 are
the sincere r-peak posets of type A, with r ≥ 4 (see [21]). Thus, the first part of
(b) is true. Now, we observe in the mentioned lists that for each i = 1, 2, 3. and

for each r ≥ 1 the sincere r-peak poset S(r)
i has only one sincere socle-projective

kS(r)
i -module M = (Mx, yhx)

x,y∈S(r)
i

such that Mx = k and yhx = idk for each

x � y. �

Recall that the support suppM of a representationM = (Mx, yhx)x,y∈P in modsp(kP)
is given by {x ∈ P |Mx 6= 0}. The following lemma will be used to prove the cate-
gorical equivalence proposed in Theorem 4.5.

Lemma 3.10. Let P be a poset of type A associated to the quiver QF as in Propo-
sition 3.8. Then

(a) Up to isomorphism, any indecomposable kP-module M = (Mx, yhx)x,y∈P
in modsp(kP) is such that Mx = k and yhx = idk for all x � y in suppM .

(b) The support suppM of an indecomposable object in the category modsp kP
is connected as a subset of the quiver Q.

Proof. LetM = (Mx, yhx)x,y∈P be an indecomposable object in modsp(kP). Propo-
sition 2.9 implies that M = TS(L), where L = (Lx, ygx) is a sincere object in
modsp(kS), S is a sincere peak-subposet of P and TS is the subposet induced func-
tor defined in Equation (2.1). Thus, Definition 3.1 implies that S is a poset of type
A. Indeed, ifR ∈ {R1,R2,R3,R4,n} is peak-subposet of S thenR is peak-subposet

of P, a contradiction. By Lemma 3.9, we have S = S(r)
i for some r ≥ 1 and some

i = 1, 2, 3, Lx = k for all x ∈ S, and ygx = idk for each x � y in S. Thus, M is the
representation described in (a).

To prove (b) it is enough to see that the set (maxS)M ∩SO is connected as a subset

of the quiver Q for any sincere peak-subposet S of P. Note that the poset S(r)
1 is

a peak-subposet of S = S(r)
i for all i = 1, 2, 3. We suppose that

S(r)
1 = {z1 � x2 ≺ z2, z2 � x3 ≺ z3, . . . , zr−1 � xr ≺ zr}

then {z1, . . . , zr} ⊆ maxP and since R2 * P we have that {x2, . . . , xr} ⊆ minP.

Thus, for each zi, with 2 ≤ i ≤ r − 1 the zi-subquiver Q(zi) of Q has the form

xi // · · · // zi · · ·oo xi+1
oo . Since each vertex in Q

(zi)
0 belongs to the set

{zi}M∩{xi, xi+1}O, then Q
(zi)
0 ⊂ suppM for each 2 ≤ i ≤ r−1. Let w (respectively
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w′) be the left (respectively right) extreme vertex of the quiver associated to S and
let x (respectively y) be minimal element in (xO2 ∩ (P \ S)) ∪ {w} (respectively
(xOr ∩ (P \ S)) ∪ {w′} ) then it is easy to see that suppM = [x, y]Q, where [x, y]Q
denote a interval of Q which is a connected subset of Q. �

4. Category of sp-diagonals

In this section, we define a category C(T,F ) of diagonals associated to a poset P of
type A and we prove in Theorem 4.5 and Corollary 4.6 that this category gives a
geometric realization of the category of finitely generated socle-projective modules
over the incidence k−algebra kP.

Let P be a poset of type A associated to the quiver QF as in Proposition 3.8. Thus,
Q is a Dynkin quiver of type An and F is an alien set for Q. Let T = {τ1, . . . , τn}
be the triangulation of a (n + 3)-gon Πn+3 such that QT = Q. A fan in T is a
maximal subset Σv ⊆ T of at least two diagonals such that all the diagonals in
Σv share the vertex v of Πn+3. A diagonal τ ∈ Σv is said to be the peak-diagonal
of Σv if it is maximal in Σv in accordance with the order τx ≤ τy if and only if
there is a path from the vertex x to the vertex y in the quiver Q. Geometrically,
the peak-diagonal of a fan Σv is the diagonal that can be obtained from each other
diagonal in Σv by a clockwise rotation around the vertex v (see Figure 4).

v
peak-diagonal

Figure 4. Fan of a triangulation

Lemma 4.1. Let T = {τx | x ∈ Q0} be a triangulation associated to a Dynkin
quiver Q of type A. Then

(i) A diagonal τz ∈ T is the peak-diagonal of a fan in T if and only if z is a
sink vertex in the quiver Q.

(ii) If τx ∈ T , there are at most two fans in T containing τx.
(iii) There are exactly two fans containing the diagonal τx ∈ T if and only if x

is a non-extremal sink vertex or a non-extremal source vertex in Q.

Proof. The property (i) is a consequence of the order ≤ defined in T and the
definition of sink vertex. Note that if x is a vertex in Q and z is a sink vertex
in Q such that τx ≤ τz, there exists a source vertex x′ such that τx′ ≤ τx. Thus,
a fan containing τx is given by Σ = {τy ∈ T | y ∈ Q′0}, where Q′ is the full
subquiver x′ → · · · → x → · · · → z of Q. Clearly, the fan Σ is unique if x is
neither a source vertex nor a sink vertex. If x = z is a sink vertex we have two
possibilities, either z is an extreme vertex or it is not. In the first case, there exists
a unique source vertex x′ in Q such that τx′ < τz which determines a unique fan
Σ = {τy ∈ T | y ∈ Q′0} containing τz, where Q′ is the full subquiver x′ → · · · → z
of Q. In the second case, there exist two source vertices x′ and x′′ in Q such that
τx′ < τz and τx′′ < τz . Thus, there are exactly two fans Σ = {τy ∈ T | y ∈ Q′0} and
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Σ′ = {τy ∈ T ∈ T | x ∈ Q′′0} containing τz, where Q′ and Q′′ are full subquivers of
Q given by x′ → · · · → z o and z ← · · · ← x′′ respectively. Analogous to the proof
of the above case, we can prove the result when x is a source vertex in Q. As a
consequence, the properties (ii) and (iii) are true. �

Definition 4.2. A diagonal γ /∈ T is an sp-diagonal if it satisfies the following
conditions:

(a) If γ crosses τ ∈ T then γ crosses the peak-diagonal of at least one fan in T
containing τ . Henceforth, any diagonal γ /∈ T satisfying this condition will
be called a ?-diagonal.

(b) For all alien arrows α ∈ F with s(α), t(α) ∈ supp I(z), if γ crosses τs(α)

and τz then γ also crosses τt(α). Diagonals γ /∈ T satisfying this condition
will be called non-frozen diagonals. Moreover, if there exists α ∈ F with
s(α), t(α) ∈ supp I(z) such that γ crosses τs(α) and τz but not τt(α), we say
that γ is frozen by α.

Example 4.3. Let Q be the quiver in Example 3.4 then Q = QT , where T is the
following triangulation

τ1
τ2

τ3
τ4

τ5
τ6

τ7

In this case, the sets {τ1, τ2}, {τ2, τ3}, {τ3, τ4, τ5}, {τ5, τ6} and {τ6, τ7} are fans of
T . We have used bold font for the peak-diagonal of each fan. Moreover, let QF be
the quiver in the Example 3.7. Then, the diagonals

γ2

γ1

are such that supp γ1 = {3, 4} and supp γ2 = {1, 2, 3}. Thus, γ1 is not a ?-diagonal
because it crosses τ4 but it does not cross the peak-diagonal τ5 in the unique fan
{τ3, τ4, τ5} of τ4, whereas γ2 is a ?-diagonal because it crosses τ2 which is the peak-
diagonal in the fans {τ1, τ2} and {τ2, τ3} for τ1, τ2 and τ3.

Given the alien arrows α : 3 → 1 and β : 6 → 4 (see Example 3.7), a diagonal γ
is frozen by α if γ crosses τ3 and τ2 but not τ1; whereas the diagonals frozen by β
cross τ6 and τ5 but not τ4 (see Figure 5). Note that, γ2 is an sp-diagonal.

Figure 5. Diagonals frozen by α (left) and by β (right).
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The following lemma describes the relation between ?-diagonals and socle-projective
modules in mod kQT .

Lemma 4.4. Let Θ : CT → mod kQT be the equivalence of categories of Theo-
rem 2.3, where QT is a Dynkin quiver of type A. Then γ is a ?-diagonal if and
only if Θ(γ) is socle-projective.

Proof. Since QT is a Dynkin quiver of type A, then T = {τx | x ∈ (QT )0} is a
triangulation without internal triangles. First, we suppose that γ is a ?-diagonal.
Let x be a vertex in QT such that the indecomposable simple kQT -module S(x) at
vertex x is a submodule of Θ(γ) = Mγ . We shall prove that S(x) is a projective
kQT -module. Since Hom(S(x),Mγ) 6= 0, then Mγ

x = k, that is, τx crosses γ. By
hypothesis, there exists a fan Σ containing τx such that γ crosses the peak-diagonal
τz of Σ. If x 6= z then τx < τz, that is, there is a path p in QT from x to z
whose vertices are in supp γ. Moreover, a nonzero morphism f = (fx)x∈(QT )0 of
representations from S(x) to Mγ is such that ft = 0 for all t 6= x because S(x) is
the simple representation at vertex x. Let x → y be the arrow in p starting in x,
then the diagram

S(x)x S(x)y

Mγ
x Mγ

y

0

fx 0

1

commutes because f is a morphism of representations of the quiver QT . Since
S(x)y is zero and Mγ

x = Mγ
y = k, then fx = 0. Therefore, the morphism f is zero,

a contradiction. Thus, we conclude that x = z, that is, τx is a peak-diagonal. By
Lemma 4.1, x is a sink vertex in QT and then S(x) is projective. Since all simple
submodules of Mγ are projectives, we have that soc M is projective.

In the other direction, we have that Θ(γ) is socle-projective. Let τx be a diagonal
in T crossing γ. If τx is a peak-diagonal then the definition of ?-diagonal is trivially
satisfied. If τx is not a peak-diagonal, we suppose that for all fans Σ containing
τx, γ does not cross the peak-diagonal in Σ. By Lemma 4.1, we have that the
number s of fans containing τx is either one or two. In the case s = 1, let τy be the
maximal diagonal in the fan Σ which crosses γ. Then τx ≤ τy < τz, where τz is the
peak-diagonal in Σ. In other words, there is a path p from x to z in QT passing by
y, such that the vertices x, . . . , y in p belong to supp γ, whereas the others vertices
in p are not in supp γ. In particular, Mγ

x = Mγ
y = k and Mγ

z = 0. Let S(y) be the
simple representation of QT at vertex y. Because the diagram

S(y)x S(y)y S(y)z

Mγ
x Mγ

y Mγ
z

0

0

0

λ 0

1 0

commutes, we conclude that there is a nonzero injective morphism from S(y) to
Mγ . Therefore, S(y) is a non-projective module which is a submodule of Mγ , a
contradiction to the hypothesis. In the case s = 2, if τy (respectively τy′) is the
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maximal diagonal in Σ (respectively Σ′) crossing γ. By the above arguments, we
conclude that S(y) and S(y′) are non-projective summands of soc Mγ , a contra-
diction to the hypothesis. Therefore, γ is a ?-diagonal. �

Let C(T,F ) be the full subcategory of the category of diagonals CT generated by
all sp-diagonals in CT . We denote by E(T, F ) the set whose elements are the sp-
diagonals in C(T,F ), the diagonals in T , and the boundary edges in Πn+3.

Since the irreducible morphisms in C(T,F ) cannot be factorized through sp-diagonals,
we introduce the notion of a pivoting sp-move from γ ∈ E(T, F ) to γ′ ∈ E(T, F ),
that is, a composition of pivoting elementary moves of the form

P : γ = γ0
P (1)
v−−−→ γ1

P (2)
v−−−→ . . .

P (s)
v−−−→ γs = γ′

with the same pivot v such that γ1, . . . , γs−1 are not sp-diagonals in Πn+3. Note
that the irreducible morphisms in C(T,F ) are precisely the pivoting sp-moves be-
tween sp-diagonals.

Next, we analyze the relations in the category C(T,F ). These come from the mesh
relations in CT . We suppose that γ and γ′ are sp-diagonals and that the composi-

tions γ
P1−→ β

P2−→ γ′ and γ
P3−→ β′

P4−→ γ′ of two pivoting sp-moves are as in Figure

6. We have that the maps γ
P1−→ β

P2−→ γ′ and γ
P3−→ β′

P4−→ γ′ are equal if we take
into account the following convention: If one of the intermediate edges (β or β′) is
either a boundary edge or a diagonal in T , the corresponding term in the identity
is replaced by zero.

β

β′

γ

γ′
P2P1

P3
P4

Figure 6. Mesh relations in C(T,F ).

4.1. The functor Ω. Let P be the poset of type A associated to the quiver QF ,
where Q is a quiver of Dynkin type A and F an alien set for Q and denote by T a
triangulation associated to Q. Let us define a k-linear additive functor

Ω : C(T,F ) → modsp(kP)

from the category of sp-diagonals to the category of finitely generated socle-projective
kP-modules such that for any sp-diagonal γ we have Ω(γ) = Mγ = (Mγ

x , yh
γ
x) where

Mγ is defined by the following identities:

Mγ
x =

{
k if x ∈ supp γ,
0 otherwise.

and if x � y ∈ P then yh
γ
x =

{
idk if x, y ∈ supp γ,
0 otherwise.

Now, we define the functor Ω on morphisms. By additivity, it is sufficient to define
the functor on morphisms between sp-diagonals. Our strategy is to define the
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functor on pivoting sp-moves and then check that the mesh relations in C(T,F ) hold.
For any pivoting sp-move P : γ → γ′, we define the morphism

Ω(P ) = (Ω(P )x)x∈P : (Mγ
x , yh

γ
x)→ (Mγ′

x , yh
γ′

x )

by the formula

Ω(P )x =

{
idk, if Mγ

x = Mγ′

x = k,

0, otherwise.

By definition, Ω maps compositions of pivoting sp-moves to compositions of the
images of the pivoting sp-moves. Note that if P is the poset PQ associated to a
Dynkin quiver Q of type A (without alien arrows) then the functor Ω is the restric-
tion of the functor Θ defined in section 2.1 to the full subcategory of CT generated
by the ?-diagonals in CT .

Now, we prove that the functor Ω is well-defined and that it is an equivalence of
categories.

Theorem 4.5. Ω is an equivalence of categories.

Proof. Recall here that P and PQ are two different posets, that they have the same
vertices and that P is obtained from PQ by adding edges to the Hasse diagram
corresponding to the alien arrows in F . In particular, x � y in PQ implies x � y
in P. In order to prove that Mγ ∈ modsp(kP) we have to proof the conditions (a)
and (b) in Proposition 2.6. To prove (a) it is enough to consider the non trivial sit-
uation when x ≺ y ≺ w in P such that x,w ∈ supp γ and y /∈ supp γ. First we note
that, by Lemma 2.2, if x ≺ y ≺ w in PQ then y ∈ supp γ which is contradictory.
Therefore, we have that x � y or y � w in PQ. We consider the following cases (re-
call that we always suppose x ≺ y ≺ w in P such that x,w ∈ supp γ and y /∈ supp γ).

Case 1 y ≺ w in PQ and x � y in PQ. In this case, there exists an alien arrow

α : x′ → y′ on vertices of a z-subquiver Q(z) of Q such that x � x′ ≺ z and
y′ � y ≺ w � z in PQ. Indeed, if w � z′ where z′ ∈ maxP and z 6= z′ then
R2 = {x, x′, z, z′} would be a peak-subposet of P, which contradicts Definition 3.1.
Since w is not source vertex in Q, Lemma 4.1 implies that there is a unique fan Σ in
T containing τw and that τz is the peak-diagonal in Σ. Thus, γ crosses τz because
w ∈ supp γ and γ is a ?−diagonal. Since x, z ∈ supp γ, Lemma 2.2 implies that γ
crosses τx′ , and since γ is non-frozen then γ crosses τy′ . Again using Lemma 2.2,
we obtain that γ crosses τy, that is, y ∈ supp γ which is contradictory.

Case 2 x ≺ y in PQ and y � w in PQ. In this case, there exists an alien arrow

α : y′ → w′ on vertices of a z-subquiver Q(z) of Q such that x ≺ y � y′ ≺ z
and w′ � w ≺ z in PQ. Indeed, if w � z′ where z′ ∈ maxP and z 6= z′ then
R2 = {x, y, z, z′} would be a peak-subposet of P, which contradicts Definition 3.1.
Since w is not source vertex in Q, the same arguments in Case 1 imply that γ
crosses τz. Thus, since x, z ∈ supp γ Lemma 2.2 implies that γ crosses τy, in other
words, y ∈ supp γ which cannot be.

Case 3 x � y and y � w in PQ. Equal arguments to the previous cases imply that
there exist two alien arrows α : x′ → y′ and α : y′′ → w′ on vertices of a same
z-subquiver Q(z) of Q such that x � x′ ≺ w′ � w ≺ z and y′ � y � y′′ ≺ z in PQ
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and that γ crosses τz. Thus, Lemma 2.2 implies that γ crosses τx′ , and since γ is
non-frozen we conclude that γ crosses τy′ . Again using Lemma 2.2 we obtain that
γ crosses τy, that is, y ∈ supp γ which cannot be.

We have shown that if x ≺ y ≺ w in P = PQF such that x,w ∈ supp γ then
y ∈ supp γ. Thus, wh

γ
y = yh

γ
x = wh

γ
x = idk and condition (a) holds. To prove

condition (b), let x be an element of P− = P \ maxP. If x /∈ supp γ then clearly
ker zh

γ
x = 0 for all z ∈ maxP such that x ≺ z. If x ∈ supp γ then z′h

γ
x = idk for

some z′ ∈ maxP, where τz′ is the peak-diagonal in some fan containing τx. Thus,⋂
z∈maxP

ker zhx = 0 for all x ∈ P− such that x ≺ z. This shows that Ω(γ) = Mγ is

indeed an object in modsp(kP).

Let us now check that Ω(P ) is well defined for every pivoting sp-move P : γ → γ′.
Indeed, it is enough to show that for any relation x ≺ y such that y covers x in P

the diagram

Mγ
x Mγ

y

Mγ′

x Mγ′

y

yh
γ
x

Ω(P )x Ω(P )y

yh
γ′
x

commutes. Note that the result holds if Mγ
x = 0 or Mγ′

y = 0 and also if both Mγ
y

and Mγ′

x are null spaces. Suppose now that Mγ
x = Mγ′

y = k. If Mγ
y = Mγ′

x = k,
then all four maps are idk and the diagram commutes. The only remaining case is
if exactly one of Mγ

y , Mγ′

x is nonzero. We will show that this cannot happen. Sup-

pose that Mγ′

x = 0 and Mγ
y = k, that is, x, y ∈ supp γ, y ∈ supp γ′ and x /∈ supp γ′.

Since y covers x in P, there exists an arrow α : x→ y in QF . If x ≺ y in PQ then α
is an arrow in Q, that is, τx and τy share a vertex of the polygon and are connected
by a pivoting elementary move. Since P : γ → γ′ is a pivoting sp-move we get that
τx crosses γ, that τx and γ′ have a common point on the boundary of the polygon
and that τy crosses γ and γ′. This implies that τy is clockwise from τx and that
contradicts the orientation x→ y in the quiver Q (see Figure 3). Next, we suppose
that x ⊀ y in PQ, then α : x→ y is an alien arrow in F with x and y in Supp I(z)
for some sink vertex z in Q. Now, by Definition 3.5 part (b), y is not a source
vertex in Q unless y is an extreme vertex in Q. Thus, there is at most one arrow
in Q with starting point y, and therefore there is exactly one fan Σ containing τy
and τz is its peak-diagonal. By Definition 4.2, both γ and γ′ cross τz, because they
are ?-diagonals crossing τy.

γ

γ′

τxτz
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On the other hand, there is a pivoting path from τz to τx in Πn+3, since x belongs
to Supp I(z). But this is impossible, because if τ → τx is a pivot, then τ does not

cross γ′. The other case where Mγ′

x = k and Mγ
y = 0 is proved in a similar way.

To show that the functor Ω is well defined, it only remains to check the mesh

relations. Indeed, let γ
P1−→ β, β

P2−→ γ′, γ
P3−→ β′, β′

P4−→ γ′ be pivoting sp-moves
as in Figure 6 with γ,γ′ sp-diagonals and β 6= β′ sp-diagonals, diagonals in T or
boundary edges. Note that, we can exclude the case where β and β′ are both
diagonals in the triangulation T or both boundary edges because in this case either
γ or γ′ is a diagonal in T . Without loss of generality, we may assume from now on
that β is an sp-diagonal. Suppose first that β′ is an sp-diagonal; then one has to
check the commutativity of the following diagram

Mγ
x Mβ

x

Mβ′

x Mγ′

x

Ω(P1)x

Ω(P3)x Ω(P2)x

Ω(P4)x

for all x ∈ P. Again, the only non trivial case happens when Mγ
x = Mγ′

x = k. In

this case we also have Mβ
x = Mβ′

x = k because any diagonal crossing both γ and
γ′ must also crosses β and β′. Thus all maps are idk and the diagram commutes.
Suppose now that β′ is a boundary edge or diagonal in T . Then we have to show

that the composition Mγ
x

Ω(P1)−−−−→Mβ
x

Ω(P2)−−−−→Mγ′

x is zero for all x ∈ P. Clearly if β′

is a boundary edge or diagonal in T then no diagonal τ ∈ T can cross both γ and
γ′ then Hom(Ω(γ),Ω(γ′)) = 0.

In order to prove that Ω is dense we fix an indecomposable M ∈ modsp(kP). Then
by Lemma 3.10 part (b), Lemma 2.2 and Theorem 2.3 part (a) there exists a diag-
onal γ /∈ T such that supp γ = suppM . We show that γ is an sp-diagonal. Indeed,
since the socle of M is projective, Lemma 4.4 implies that γ is a ?-diagonal. More-
over, given an alien arrow α : x→ y in F , with x and y in Supp I(z) for some sink
vertex z in Q0 such that x, z ∈ suppM then zhx = idk. By Proposition 2.6 part
(a), we have that zhx = zhy · yhx, thus y ∈ suppM . Therefore γ crosses τy and
thus γ is a non-frozen diagonal. We conclude that γ is an sp-diagonal and that
Ω(γ) = M .

To show that Ω is faithful, it is enough to prove that the image of a nonzero
morphism between sp-diagonals is a nonzero morphism in modsp(kP). Indeed, let
P ∈ HomC(T,F )

(γ, γ′) be a nonzero morphism in C(T,F ). Then P also is a nonzero
morphism in CT . Lemma 2.1 implies that there exists a diagonal τx ∈ T crossing γ
and γ′ as in Figure 2. In particular, Mγ

x = Mγ′

x = k, and therefore Ω(P )x = idk 6= 0.

Finally, we show that functor Ω is full. To do so, let Ω(γ)
g−−→ Ω(γ′) be a nonzero

morphism in modsp(kP). Then g = (gx)x∈Q0
, where gx is a linear map from Ω(γ)x

to Ω(γ′)x. The map ĝ = (ĝx)x∈Q0 from Θ(γ) to Θ(γ′) such that ĝx = gx is a
morphism of representations in mod kQ. Indeed, for each arrow α : x → y in Q1,
we have x ≺ y in P. Since g is morphism in modsp kP, then the diagram
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Ω(γ)x Ω(γ)y

Ω(γ′)x Ω(γ′)y

yh
γ
x

gx gy

yh
γ′
x

commutes. Note that the elements in P are the vertices in Q0. Moreover, if γ
is an sp-diagonal then the representations Θ(γ) = (Θ(γ)x, f

γ
α) in mod kQ and

Ω(γ) = (Ω(γ)x, yh
γ
x) in modsp(kP) have the same k-vector spaces Ω(γ)x = Θ(γ)x

for all x ∈ P and the same maps yh
γ
x = fγα for each α : x→ y in Q1 (the map fγα is

not defined when α is an alien arrow for Q). Thus we have a commutative diagram

Θ(γ)x Θ(γ)y

Θ(γ′)x Θ(γ′)y

fγα

ĝx ĝy

fγ
′

α

and hence the map ĝ is a morphism in mod kQ. Under the equivalence of categories
Θ : CT → mod kQT of Theorem 2.3, the morphism ĝ corresponds to a morphism
P ∈ HomCT (γ, γ′), with Θ(P ) = ĝ. Since γ and γ′ are sp-diagonals in CT , P also is
a morphism in the full subcategory C(T,F ) of CT . The definition of the functors Θ
and Ω on morphisms implies that Ω(P ) = g. �

The following corollary is an direct consequence of the arguments used in Theo-
rem 4.5 and section 4.

Corollary 4.6. Let P be a poset of type A associated to the quiver QF as in
Proposition 3.8 and let C(T,F ) be the corresponding category of sp-diagonals. Then

(a) The irreducible morphisms of C(T,F ) are direct sums of the generating mor-
phisms given by pivoting sp-moves.

(b) Let γ
P1−−→ β

P2−−→ γ′ and γ
P3−−→ β′

P4−−→ γ′ be compositions of two pivoting
sp-moves as in Figure 6, where γ, γ′, and β are sp-diagonals. Then

(i) The sequence 0 −→ γ −→ β ⊕ β′ −→ γ′ −→ 0 is an AR-sequence if β′

is a sp-diagonal.
(ii) The sequence 0 −→ γ −→ β −→ γ′ −→ 0 is an AR-sequence if β′ is

either a boundary edge or a diagonal in T .
(iii) If β′ /∈ E(T, F ) then γ′ is an indecomposable projective in C(T,F ) and

γ is an indecomposable injective in C(T,F ).

Example 4.7. Let Q and F as in Example 3.6. Then the triangulation T associ-
ated to Q has the form

τ1 τ2
τ3

τ4 τ5
τ6
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The AR-quiver Γ(CT ) of the category CT has the shape

Here, we have drawn the polygons with sp-diagonals using red color, that is, the
diagonals γ such that γ crosses τ3 and if γ crosses τ5 then γ crosses τ2. Hence, the
AR-quiver Γ(C(T,F )) of the category C(T,F ) is the red part of Γ(CT ), where dotted
lines have been drawn to describe the action of the AR-translation in Γ(C(T,F )).

Example 4.8. Let P = PQF be the three-peak poset of type A defined in Example

3.2 which is the poset associated to the quiver QF in Example 3.7. Recall that, P
can be viewed as a Dynkin quiver of type E7. Thus, the AR-quiver Γ(mod(kP)) of
the module category mod(kP) has the form

7
6
4
5

3
1 4
2

3 6
1 4 7
5

3 6
44
5

6
4 7
5

3 6
1 44
2 5

33 6
11 44 7
2 5

33 66
1 444 7

55

5 4
5 4

3 6
1 44 7
2 5

3 6
1 4 7
2 5

33 66
11 444 7
2 55

3 6
1 44

5

333 66
11 4444 7
2 55

33 6
1 44 7
2 5

333 666
11 4444 77
2 55

3
1 4
2 5

3 6
1 44 7

5

33 66
1 444 7
2 55

33 66
11 444 7
2 5

1
2

3
1 4
5

3 6
44 7
5

3 66
1 44 7
2 5

k

33 6
11 44
2 5

2 1
3
4
5

6
4 7

3 6
1 4
2 5
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3 6
44
5

3 6
1 4 7
2

3 6
1 4
5

3
4

6
7

33 66
1 444 7
2 55

33 66
11 44 7
2 5

33 6
1 44

5
3 6
4 7 6

333 666
11 4444 77
2 55

3 66
1 44 7

5

333 666
11 4444 7
2 55

33 6
1 44
2 5

333 66
11 444 7
2 5

3 6
1 4 7

33 66
1 44 7

5

3 6
4
5

3 6
4

333 66
11 444 7
2 55

33 66
1 444 7

5

33 66
1 44 7
2 5

3 6
1 4 3

33 6
11 44
2 5

33 6
1 44 7

5

3 66
44 7
5

3 6
1 4
2

3
1

3
1 4

3 6
4 7
5

6
4

3
1
2

In the diagram, we have drawn the dimensions of indecomposable socle-projective
modules with red color. Hence, the AR-quiver Γ(modsp(kP)) of the category of
socle-projective modules modsp(kP) has the form

7
6
4
5

3
1
2

6
4 7
5

3 6
1 4
2 5

5 4
5

3 6
1 4 7
2 5

3 6
4
5

3
1 4
2 5

3 6
4 7
5

1
2

3
4
5

6
7

2

On the other hand, the triangulation T associated to Q was described in Example
4.3 and the AR-quiver Γ(CT ) of the category CT has the form

Here, we have drawn the polygons with sp-diagonals using red color. Hence, the
AR-quivers Γ(C(T,F )) and Γ(modsp(kP)) are identified.
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5. Associated subalgebra of the cluster algebra

Let P be a poset of type A and let QF be the quiver associated to P as in Proposition
3.8. We denote by A = A(x, Q) the cluster algebra associated to the initial seed
(x, Q) [17]. It is well known that the initial cluster variables in x correspond to
the shift of indecomposable projectives in the cluster category (see [9] ). Let A(P)
be the subalgebra of A generated by the cluster variables xγ such that γ is an
sp-diagonal in the category C(T,F ) together with the cluster variables in the initial
cluster x. It is a natural to ask under which conditions we have A(P) = A. A
partial answer is given in Theorem 5.2.

Lemma 5.1. Let Q be a quiver of tree type with n vertices and let A = A(x, Q) be
the cluster algebra associated to Q with initial cluster x = {x1, . . . , xn}. If A′ is the
subalgebra of A generated by the cluster variables x1, . . . , xn, xP1

, . . . , xPn , where
for all i = 1, . . . , n, xPi is the cluster variable associated to the indecomposable
projective kQ-module Pi in mod kQ, then A′ = A.

Proof. Because of [7, Corollary 1.21] it suffices to show that A′ contains the initial
cluster x1, . . . , xn as well as the n cluster variables x′1, . . . , x

′
n obtained from the

initial cluster by a single mutation. We proceed by induction on the number n of
vertices in Q. The case n = 1 is trivial. Now, let us consider Q a tree with n
vertices, then Q has n− 1 arrows. Let w be a leaf of Q and define Q′ to be the full
subquiver of Q whose vertices are Q0 \ {w}. Then Q is obtained from Q by adding
one vertex w and one arrow αw that starts or ends at w. We have two cases: either
(i) αw : t→ w or (ii) αw : w → t for some t ∈ Q0. We recall the so-called exchange
relation

(5.1) x′kxk = p−k + p+
k ,

defined for any vertex k in Q, where p−k =
∏
α:r→k xr and p+

k =
∏
β:k→r xr. Here

the product p−k (respectively p+
k ) is taken over all arrows α ∈ Q1 (respectively

β ∈ Q1) that terminate (respectively start) in vertex k. We shall proof that the
variables x′w and x′t belong to A′. In case (i), w is a sink vertex and then x′w = xPw .
Hence, x′w ∈ A′. Additionally, following the knitting algorithm, we have that

(5.2) xPtxt = 1 + p−t
∏
β:t→r

xPr ,

where the product is taken over all arrows β ∈ Q1 that start in vertex t. We multiply
(5.2) by p+

t and we obtain xPtxtp
+
t = p+

t + p−t
∏
β:t→r xrxPr . Since αw is an arrow

from t to w, then xPtxtp
+
t = p+

t +p−t xwxPwδ where the product δ =
∏
β:t→r 6=w xrxPr

is taken over all arrows β ∈ Q1 that start in vertex t and terminate in a vertex
r 6= w. Also, xPtxtp

+
t = p+

t + p−t (1 + xt)δ because xwxPw = x′wxw = 1 + xt. Since
xPt , p

+
t ∈ A′ we have

xPtp
+
t =

p+
t + p−t (1 + xt)δ

xt
=
p+
t + p−t
xt

+ p−t δ ∈ A′.

Since p−t δ belongs to A′, equation (5.1) implies x′t ∈ A′. In case (ii), we have

(5.3) xwxPw = 1 + xPt .

Multiplying (5.3) by xt and using (5.2) we deduce that

xwxPwxt = xt + 1 + p−t
∏
β:t→r

xPr .
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Since xPw , xt ∈ A′ then

xPwxt =
xt + 1 + p−t

∏
β:t→r xPr

xw
∈ A′.

Moreover, since there is an arrow αw from w to t then xw is a factor of p−t ; thus,
x′w = 1+xt

xw
∈ A′. Analogous to the proof of the case (i), we can prove that x′t ∈ A′.

As a consequence of the hypothesis of induction on the quiver Q′ the variables
x′s with vertex s 6= t in Q′0 belong to A′. Thus, [7, Corollary 1.21] implies the
result. �

Theorem 5.2. Let P be a poset of type A associated to the quiver Q∅ as in Propo-
sition 3.8 and let A(P) be the subalgebra of A associated to P. Then A(P) = A.

Proof. In this case, the poset P is viewed as the quiver Q of type A. Then, the
subcategory C(T,F ) of CT is given by ?-diagonals because F = ∅ and it is equivalent
to the category modsp kQ of socle-projective kQ-modules (see Theorem 4.5). By
Theorem 2.3 part (e) the indecomposable projectives in mod kQ can be identified
with diagonals r+(T ) in the category CT which are clearly ?-diagonals. Hence, the
category A(P) contains the clusters variables described in the hypothesis of the
above Lemma. Moreover, Q is a tree quiver. As a consequence, A(P) = A. �
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