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Abstract

Efficiently and accurately simulating partial differential equa-

tions (PDEs) in and around arbitrarily defined geometries, espe-

cially with high levels of adaptivity, has significant implications

for different application domains. A key bottleneck in the above

process is the fast construction of a ‘good’ adaptively-refined mesh.

In this work, we present an efficient novel octree-based adaptive

discretization approach capable of carving out arbitrarily shaped

void regions from the parent domain: an essential requirement

for fluid simulations around complex objects. Carving out objects

produces an incomplete octree. We develop efficient top-down and

bottom-up traversal methods to perform finite element compu-

tations on incomplete octrees. We validate the framework by (a)

showing appropriate convergence analysis and (b) computing the

drag coefficient for flow past a sphere for a wide range of Reynolds

numbers (O(1 − 106)) encompassing the drag crisis regime. Finally,

we deploy the framework on a realistic geometry on a current

project to evaluate COVID-19 transmission risk in classrooms.

1 Introduction

The discretization of the domain (i.e., mesh generation) is a criti-

cal aspect of numerically solving PDEs. The resolution and quality

of the mesh are intimately related to the overall accuracy of PDE

solvers. Even though mesh generation is a fundamental part of

numerical approaches, creating quality meshes continues to be a

significant bottleneck in the overall workflow. This bottleneck is

exacerbated when considering adaptivity and parallel deployment

and becomes exceptionally challenging in the presence of an arbi-

trarily shaped geometric object that has to be carved out from the

computational domain. Such challenges are particularly common in

simulating the flow over external objects. Streamlining this work-

flow is one of the components of the NASA 2030 computational

fluid dynamics (CFD) milestone towards the goal of conducting

overnight large-eddy simulations (LES) [55]: "Mesh generation and

adaptivity continue to be significant bottlenecks in the CFD workflow."

Immersed boundary methods (IBMs) [42] are commonly used to

simulate fluid flow around geometric objects immersed in a com-

putational domain. A significant advantage of IBM approaches

arises from performing the complete simulation on structured

§these authors contributed equally.

(a) immersed
(b) complete octree

(c) carved out
(d) incomplete octree

Fig. 1. Difference between the adaptive mesh for immersed and carved out for

the sphere case. In immersed case, we retain the full octree and this gives to a

significantly large number of elements and nodes compared to the carved out

case. Itmust be noted the elements that are inside the object do not contribute

to the accuracy of the solution. Eventually Dirichlet Boundary condition are

imposed on all the In nodes.

grids [42, 47], thus avoiding any requirement of the grid conform-

ing to the immersed geometric object (Fig. 1a). Naively immersing

the object can lead to large void regions. These regions do not

participate in the solution but require the associated matrix and

vector storage as they form a part of the mesh data structure. This

problem is exacerbated in the presence of multiple objects. This

paper presents a strategy wherein the void regions are first carved

out from the main computational domain (Fig. 1c) —in the vein of

the finite cell approach [60] with the object then immersed in the

carved domain. This approach reduces the number of degrees of

freedom and, hence, the memory footprint associated with the void

regions.

Tree-based grid generation (quadtrees in 2D and octrees in 3D) is

common in computational sciences [6, 11, 17, 24, 28, 30, 48, 56, 58]

largely due to its simplicity and parallel scalability. The ability to

efficiently refine (and coarsen) regions of interest using tree-based

data structures have made it possible to deploy them on large-scale

multi-physics simulations [2, 3, 14, 24, 32, 33, 37, 37, 49, 53]. Exist-

ing algorithms for tree-based grid generation are mainly focused

on axis-aligned hierarchical splitting on isotropic domains (i.e.,

spheres, squares, and cubes). Such approaches cannot easily sup-

port anisotropic domains (for example, an elongated channel) or
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body-conforming mesh generation for a carved-out object. Stan-

dard workarounds include stretching or warping (using a coordi-

nate transformation) of the computational domain, transforming

a cubic domain into a rectangular channel. Unfortunately, these

asymmetric transformations come at the cost of degradation in

the overall quality of the domain discretization leading to large

condition numbers in the resultant matrix (see Sec. 4.2).

Our contributions in this paper are as follows: (a) we develop an

efficient tree-based adaptive mesh generation framework that re-

laxes the requirement of the mesh to conform to isotropic domains;

(b) we compare the current approach with the state-of-the-art im-

mersed method strategies [31, 59, 62, 65]; (c) we show the parallel

scalability of our framework on the Frontera supercomputer up

to 16K cores; (d) we deploy the framework in conjunction with

a well established FEM formulation: variational multiscale (VMS)

method [12] to model non-trivial applications of simulating the

flow fields in classrooms to understand the risk of transmission of

Coronavirus. The fast generation of quality meshes is pivotal to this

application. Here, we present an octree-based mesh generation tool

that provides an alternative to using two-tier meshes (HHG [13],

p4est [17]) and is not dependent on having top-level hexahedral

meshes–that can be hard to generate. In contrast, our approach

works with any arbitrary user-supplied function that returns In or

Out (of the object) for any queried point.

2 Related Work

There have been significant algorithmic advances for the fast

generation of octrees on modern supercomputers. For instance,

octrees have been used for voxelization of 3D objects to accelerate

ray-tracing [64], signed distance calculation [67], compression [50],

and fast rendering [34]. Building upon these successes, octrees

have become one of the more common mesh generation tools for

large-scale PDE simulations, with scalable and adaptive capabili-

ties [21, 24, 29, 32, 49, 58]. Butmost work related to solving PDEs has

been focused on the generation of complete octrees in the context of

PDE solvers [18, 23, 24, 30, 38, 51, 56, 57, 63]. In a complete octree,

every non-leaf subtree has all 2
𝑑 = 8 children, and thus, the union of

all leaf octants is a filled cube without holes. This makes simulating

non-cuboid domains non-trivial, with most approaches either rely-

ing on stretching (coordinate transforms) or using a much larger

bounding box. Secondly, complex objects have to be immersed into

the octree mesh [21, 29, 53], rather than being carved-out. Naively

immersing the object in the octree can leave many elements that

fall into the void regions. This problem is further exacerbated in

the presence of multiple objects. The elements that fall into the

void regions are not solved during the simulations but have an

associated memory footprint. The carving of an object leads to the

construction of an incomplete octree. An octree is incomplete if

there are non-leaf subtrees with one or more missing children. Fi-

nally, there has been limited work in developing octree-based mesh

generation to efficiently solve PDEs over complex geometries. As

stated earlier, carving out affords multiple advantages (explored in

this paper) at the cost of a voxelated boundary of the object. We cir-

cumvent the voxelated boundary issue via an immersed boundary

(IBM) formulation on this carved-out octree.

An alternate approach has been to use two-tier meshes [13, 17]

that rely on having a top-level unstructured hexahedral mesh that

(a) Complete quadtree (b) Incomplete quadtree

Fig. 2. A disk (enclosed region within the red circle) immersed in a complete
( Fig. 2a) or incomplete ( Fig. 2b) quadtree mesh. Every leaf in the tree rep-

resents an element occupying a region of space, which is either completely

inside (■) the body; completely outside (■) the body; or intercepted (■) by

the boundary (solid red circle). A complete tree (Fig. 2a) requires all 2
𝑑
chil-

dren of each non-leaf subtree to be present, and thus gaps are not allowed in

the middle of the mesh. However, useful information is only contributed by

elements outside (■) or intercepted (■) by the body.

conforms to the complex geometry and can independently refine

(uniformly or adaptively) each hexahedral element of the top-level

mesh. While this approach works well for simple shapes, like

spheres [16], hex-meshing is non-trivial for more complex geome-

tries [61]. An alternative is then to use affine transforms within each

top-level element but limits the ability to have isoparametrically

refined elements. In contrast, our approach can take an arbitrary

function to carve out the domain and is capable of on-the-fly refine-

ment and coarsening that matches the arbitrary function within

the refinement tolerance.

In this work, we address some of the key algorithmic challenges

that are important to consider for carrying out efficient carving-

out within the octree framework, yet missing from the existing

literature:

• Careful mathematical abstraction that ensures the correctness of

the generated mesh for any given arbitrary shape. Additionally,

within the correctly carved out region, it is critical to correctly

mark the boundary elements and nodes to solve PDEs correctly.

(see Sec. 3.1)

• Handling of hanging nodes is critical during the carving out

operations. Specifically, no hanging nodes should be present at

the boundaries. If so, the parent of these nodes can lie in the

inactive region, which is discarded during tree pruning. This

would result in an incorrect PDE solution. (see Sec. 3.4)

• It is essential that the partitioning algorithm only looks at the

active region of the octree. This ensures that FEM computations

are evenly distributed and hence load-balanced. The data struc-

ture used in previous literature [66] first builds a complete octree

distributed among processors before canceling out the inactive

regions. This leads to the generation of complete trees with a

substantial fraction of the trees in inactive regions. (see Sec. 3.2)

• Efficient pruning of trees at coarser levels is essential. Earlier

approaches first generate the complete octrees before pruning.

This can lead to substantial overheads for non-cube geometries,

such as an elongated channel. (see Sec. 3.2)

3 Methodology

This section describes the methodology used to generate the

tree-based grids (i.e., quadtrees in 2D, octrees in 3D) for arbitrary

geometric domains. The key idea is to carve out regions from a

𝑑-dimensional cube that is inside the immersed geometric object

https://frontera-portal.tacc.utexas.edu/
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to generate the PDE solution domain (see Fig. 2). In this paper, we

refer to the aforementioned domain that is left after carving out

as the subdomain. As noted above, the subdomain may be a sub-

rectangle of a regular box, or it may have carved regions excluded

from an 𝑑-dimensional cubic domain. The algorithms presented

here are dimension agnostic, but for simplicity, we mainly focus on

3D-based grids (octree) unless specified otherwise.

Previous work [17, 23, 30, 46, 56] have demonstrated efficient

methods to construct 2:1-balanced complete octrees and additional

data structures to perform efficient numerical computations at a

large scale. These methods order the octants of the octree using a

space-filling curve (SFC) (such as the Hilbert or Morton curve) to

achieve better memory accesses locality and improved distributed-

memory domain decomposition. This paper presents parallel algo-

rithms to extend numerical computations on incomplete octrees.

3.1 Specification of the Subdomain

We describe an abstraction of the application-dependent arbi-

trary subdomains. The subsequent tree-based algorithms depend on

a user-defined function to decide whether a given point or region

in space should be retained or discarded (“carved”). In addition,

the abstraction encodes enough detail for the octree algorithms to

support efficient pruning during tree traversals.

Let Ω = 𝐶 ∪𝐶 ′ be a cube comprised of two disjoint subsets: a

closed carved set 𝐶 ⊂ Ω, and its open complement: the retained set

𝐶 ′ ≡ Ω \𝐶 . Enforcing 𝐶 as a closed set means that it contains the

boundary, 𝜕𝐶 ⊂ 𝐶 . (Referring back to Fig. 2, in 2D, 𝐶 would be the

disk, including 𝜕𝐶 , the red circle.)

Suppose that Ω is hierarchically partitioned according to an

octree, T , which captures 𝜕𝐶 well enough under some metric. Any

octant 𝑒 of T belongs to one of the following categories, depending

on the closure of the region it bounds, 𝑒:

(1) “carved,” if 𝑒 ⊂ 𝐶 .
(2) “retained,” if 𝑒 ⊄ 𝐶 .

(a) “intercepted,” if “retained” and 𝑒 ∩𝐶 ≠ ∅.
(b) “non-intercepted,” if 𝑒 ⊂ 𝐶 ′

The retained octants form an incomplete octree; that is, we de-

fine T𝐼 ≡ T \ {carved leafs}. The intercepted and non-intercepted

sets specify the subdomain-boundary octants and the subdomain-

internal octants, respectively.

3.1.1 Features of the Abstraction: Defining the subdomain abstrac-

tion in this way ensures that the octree pruning problem is well-

defined. Notice the following:

• An application can specify a subdomain through a function 𝐹 (𝑒),
where 𝑒 is any filled-in cube of zero or positive side length, such

that

𝐹 (𝑒) B


label(“carved”) if 𝑒 ⊂C
label(“retain-internal”) if 𝑒 ⊂C’
label(“retain-boundary”) otherwise

– The function 𝐹 (𝑒) applies to both octants and nodal points.

– Points can not be classified “intercepted,” as all points are

contained in the union of 𝐶 and 𝐶 ′.
– The implementation of 𝐹 must take care with nontrivial inter-

sections between 𝜕𝐶 and an element. Even if all vertices lie

in 𝐶 , it is possible for the element to be intercepted, and in

such a case, it should be labeled as “retain-boundary.” In an

application, the intersection test may be as simple or complex

as needed by the geometry being captured.

• 𝐶 is assumed closed; hence its complement, 𝐶 ′, is open.
– This convention permits the robust classification of a boundary

element that sits flush with 𝜕𝐶 . The element is labeled “retain-

boundary,” while the boundary nodes are labeled “carved.”

• This abstraction ensures the correctness of the generated mesh,

for any arbitrary geometry, along with the correct tagging of

boundary elements and nodes which is of utmost important for

solving PDEs correctly.

• It is not necessary to generate a complete octree before filtering

out the carved octants. If an octant is carved, all its children are

carved. If an octant is non-intercepted, so are all its children. The

next section describes how to construct incomplete octrees by

proactively pruning subtrees during construction.

3.2 Octree Construction

The previous literatures have shown efficient octree algorithms

to sort, construct, and traverse octrees in SFC order [23, 30, 56].

Most of the past literature has been limited to the construction of a

complete octree in an isotropic domain [18, 23, 24, 30, 38, 51, 56, 57,

63]. This work builds upon them to efficiently construct the tree in

presence of void regions. Algorithms 1 and 2 forms the central crux

of the work, where an efficient approach for octree construction in

the presence of void regions is introduced. Algorithm 3 describes

the partitioning algorithm based on DistTreeSort to partition the

trees.

The octree is constructed recursively in a top-down fashion

(see Algorithms 1 and 2), with child subtrees being traversed in

an order determined by a regional segment of the SFC. The top

of the tree represents the entire isotropic domain, while subtrees

represent cubical subregions. A given subtree is immediately pruned

if it is classified as a carved region; otherwise, it is constructed.

Constructing a subtree entails either appending the subtree as a

leaf or refining it based on a refinement criterion. In Algorithm 1,

the refinement criterion has a depth in the tree coarser than a target

depth, whereas in Algorithm 2, the criterion has a depth that is

coarser than a subset of seed octants. Other criteria are possible,

e.g., intercepting the subdomain boundary or containing more than

a maximal number of points from an initial point cloud distribution.

If a subtree is to be refined, it is split into its eight child subtrees

(in 3D). The children are permuted into the regional SFC ordering

and constructed recursively.

Algorithm 3 uses the octree partitioning method based on Dist-

TreeSort [23, 30] to distribute octrees in parallel. DistTreeSort

uses TreeSort based comparison-free search algorithm for oc-

tree construction. Instead of performing comparison-based binary

Algorithm 1 ConstructUniform

Require: Region 𝑆 , SFC oracle 𝐼 , final level 𝐿, function 𝐹 () .
Ensure: Set𝑇 of level-𝐿 leafs covering subdomain, sorted by SFC.

1: if 𝐹 (𝑆) ≠ Carved then ⊲ Else prune

2: if level of 𝑆 ≥ 𝐿 then

3: 𝑇 .push(𝑆) ⊲ Leaf.

4: else

5: for 𝑐sfc ← 1 to 2
dim

do ⊲ Regional SFC order

6: 𝑐morton ← 𝐼 .sfc2Morton(𝑐sfc)

7: ConstructUniform(𝑆 .child(𝑐morton), 𝐼 .child(𝑐sfc))
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Algorithm 2 ConstructConstrained

Require: Region 𝑆 , SFC oracle 𝐼 , seed octants 𝐵, function 𝐹 () .
Ensure: Set𝑇 of leafs, no coarser than 𝐵, covering the subdomain, sorted by SFC.

1: if 𝐹 (𝑆) ≠ Carved then ⊲ Else prune

2: 𝐿 ← finest level in 𝐵

3: if |𝐵 | = 0 or level of 𝑆 ≥ 𝐿 then

4: 𝑇 .push(𝑆) ⊲ Leaf.

5: else

6: ⊲ Bucket seeds to SFC-sorted children of 𝑆 .

7: 𝑙 ← level(𝑆) +1
8: counts[2

dim
]← 0

9: for 𝑏 ∈ 𝐵 do

10: counts[child_num(𝑏, 𝑙 )]++
11: counts[]← permute(counts, 𝐼 )

12: offsets[]← scan(counts)

13: ⊲ Construct child subtrees in SFC order.

14: for 𝑐sfc ← 1 to 2
dim

do

15: 𝑐morton ← 𝐼 .sfc2Morton(𝑐sfc)

16: 𝑆𝑐 ← 𝑆 .child(𝑐morton)
17: 𝐼𝑐 ← 𝐼 .child(𝑐sfc)
18: 𝐵𝑐 ← 𝐵.slice(offsets[𝑐sfc], offsets[𝑐sfc + 1])
19: ConstructConstrained(𝑆𝑐 𝐼𝑐 , 𝐵𝑐 )

Algorithm 3 DistributedConstructConstrained

Require: Distributed set of seed octants 𝐵, function 𝐹 () .
Ensure: Distributed set𝑇 of leafs, no coarser than 𝐵, covering the subdomain, sorted

by SFC.

1: DistTreeSort(𝐵, load_tol) ⊲ [30]

2: 𝑇tmp ← ConstructConstrained(TreeRoot, SFC_Root, 𝐵)

3: DistTreeSort(𝑇tmp , load_tol)

4: 𝑇local ← DistributedUniqueLeafs(𝑇tmp)

5: return𝑇local

searches, TreeSort performs MSD radix sort, except that the or-

dering of buckets are permuted at each level according to the

specified SFC. By performing a fixed number of passes over the

input data in a highly localized manner, TreeSort avoids cache

misses and random memory access leading to better memory per-

formance. [23, 24] Since the constructed octrees from previous

algorithms entail only the active regions of the isotropic domain,

DistTreeSort distributes only these aforementioned active por-

tion. This is the main difference from the past approaches, where

the sorting algorithm looks at the complete tree. This step is piv-

otal to ensure load-balanced computation. Similar to Algorithm 2,

a set of seed octants is used to control the output tree depth. In

the distributed setting, the seed octants also inform the domain

decomposition so that each rank will own approximately the same

number of elements. Note that DistTreeSort accepts a tunable

load-balance tolerance. A large tolerance will partition the tree at

coarse levels. A small tolerance will balance the load more evenly

at the expense of splitting coarse subtrees over multiple processes.

Once the depth-constraining seed octants have been partitioned,

each rank constructs a tree satisfying the local constraints. Then,

overlaps between trees must be resolved. Duplicate octants are

deleted. Finer octants are preferred to coarser overlapping octants

in order to satisfy the depth constraints globally.

3.3 2:1 Balancing

In a 2:1-balanced octree (Fig. 3), a pair of octants sharing any

parts of their boundaries may differ in scale by at most a factor

of 2:1. In other words, they may differ by at most one level in the

tree. Numerical computations on the octree grid are simpler in

terms of the neighborhood data structures if the octree obeys the

2:1-balancing constraint .

Algorithm 4 DistributedConstruct2to1Balanced

Require: Distributed set of seed octants 𝐵, function 𝐹 () .
Ensure: Distributed set𝑇 of leafs, no coarser than𝐵, covering the subdomain, obeying

2:1-balance constraint, sorted by SFC.

1: 𝑇1 ← DistributedConstructConstrained(𝐵, 𝐹 )

2: 𝑇2 ← BottomUpConstrainNeighbors(𝑇1) ⊲ 𝐹 not applied

3: 𝑇3 ← DistributedConstructConstrained(𝑇2 , 𝐹 )

4: return𝑇3

Algorithm 5 BottomUpConstrainNeighbors

Require: Unbalanced leafs𝑇1 .

Ensure: Balanced seeds𝑇2 .

1: 𝑇aux[]← stratify𝑇1 by levels, from finest to coarsest

2: for level 𝑙 from finest to coarsest do

3: for 𝑡 ∈ 𝑇aux[𝑙] do
4: for 𝑛 ∈ MakeNeighbors(MakeParent(𝑡 )) do

5: 𝑇aux[𝑙 − 1].add_unique(𝑛)
6: 𝑇2 ← concatenate(𝑇aux)

7: return𝑇2

Fig. 3. Left most figure shows an octree which violates the 2:1 balanced con-

straint, where the octants that cause the violation is showed in (■). In the

middle figure auxiliary balanced octants are showed in (■), in other words

these are the octants needed to remove the balance constraint violation in

(■). Right most figure shows the constructed octree with auxiliary balanced

octants which satisfies the 2:1 balance constraint. The nodes marked by gray

circles in the final 2:1 balanced mesh are hanging nodes.

We take a bottom-up approach to transform a given linear oc-

tree into a 2:1-balanced octree, based on the local block balancing

method similar to the one by Sundar et al. [56]. In our method (Al-

gorithms 4 and 5), the input octree comprises an initial set of seed

octants. The seed set is iteratively updated from the finest to the

coarsest level. For each seed octant, the neighbors of its parent oc-

tant are added to the next-coarser level of seeds. Duplicate octants

are removed from the next level before proceeding. Finally, after all

the levels have been processed, a new linear octree is constructed

such that each seed octant becomes either a leaf or an ancestor

subtree in the output octree. Thus the final seed set controls the

resolution of the new octree, ensuring the result is 2:1-balanced. It

is important not to preemptively discard the carved octants, which

are generated as neighbors of parents of seed octants. Otherwise,

two leaf octants of 4:1 or greater ratio could meet in a carved region.

3.4 Embedding Nodal Information

Each leaf octant in a linear 2:1-balanced octree represents an

element in the FEM adaptive grid. For a given 𝑝-refinement, there

are (𝑝+1)3 nodes per element (in 3D). Nodal points on the boundary

of an element will be shared with same-level neighboring elements.

Nodes incident on a coarser-level neighbor is considered hanging

nodes (Fig. 3). The value of a hanging node is dependent on the

values of the nodes on the coarser face or edge. Therefore, the

set of independent degrees of freedom (DOFs) on the FEM grid

(underpinning a grid vector) is defined by enumerating the unique,

non-hanging nodes.

First, we loop over all elements and generate the node coor-

dinates with a spacing of

(
length

element

)
/𝑝 in each axis. (Nodes

labeled as “carved” are marked as subdomain boundary nodes.) The
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set of unique nodes is found by executing TreeSort on the nodal

coordinates and removing duplicates.

An extra step is required to detect and discard hanging nodes.

In an isotropic domain, a hanging node has fewer instances than

the number expected for an ordinary node as a function of the

coordinate and grid level. With user-specified geometry, however,

the expected number of instances is nontrivial to compute. Our

solution is to explicitly “cancel” possible hanging nodes using tem-

porary cancellation nodes. The cancellation nodes are generated

on the edges and faces of elements in between the ordinary nodes,

anticipating the coordinates of hanging nodes from hypothetical

finer neighbors. After sorting, every coordinate is occupied by a

mix of ordinary and cancellation nodes. If a cancellation node is

present, then the coordinate is incident on a coarser edge or face,

and thus the node is hanging; the node is discarded. Otherwise, no

cancellation node is present, and the coordinate is enumerated as an

ordinary node. Thus we enumerate exactly the nodes which define

a grid vector. Note that ensuring the absence of hanging nodes at

the carved boundary is essential for accurate PDE solutions.

3.5 Matrix-free, Traversal-based matvec

We implement a traversal-based matrix-vector multiplication

to perform matrix-free computations, which extends the methods

by Ishii et al. [30] to incomplete trees.

Matrix free: The global matrix is defined as a summation of local

elemental matrices, where the summation is due to common nodal

points being shared by neighboring elements. We are able to apply

the global operator to a grid vector without explicitly assembling

the global matrix. Instead, we perform a series of elemental matrix-

vector multiplications, and use the octree structure to compose the

results.

Traversal-based: (Fig. 4) The elemental matrix couples elemental

nodes in a global input grid vector with equivalent elemental nodes

in a global output grid vector. Within a grid vector, the nodes

pertaining to a particular element are generally not stored con-

tiguously. If one were to read and write to the elemental nodes

using an element-to-node map, the memory accesses would require

indirection: 𝑣𝑔𝑙𝑜𝑏 [𝑚𝑎𝑝 [𝑒 ∗ 𝑛𝑝𝑒 + 𝑖]]+ = 𝑣𝑙𝑜𝑐 . Not only do element-

to-node maps cause indirect memory accesses; the maps become

complicated to build if the octree is incomplete due to complex ge-

ometry. We take an alternative approach that obviates the need for

element-to-node maps. Instead, through top-down and bottom-up

traversals of the octree, we ensure that elemental nodes are stored

contiguously in a leaf, and there apply the elemental matrix.

The idea of the top-down phase is to selectively copy nodes from

coarser to finer levels until the leaf level, wherein the selected nodes

are exactly the elemental nodes. Starting at the root of the tree, we

have all the nodes in the grid vector. We create buckets for all child

subtrees. Looping through the nodes, a node is copied into a bucket

if the node is incident on the child subtree corresponding to that

bucket. A node that is incident on multiple child subtrees will be

duplicated. By recursing on each child subtree and its corresponding

bucket of incident nodes, we eventually reach the leaf level.

Once the traversal reaches a leaf octant, the elemental nodes have

been copied into a contiguous array. The elemental matrix-vector

product is computed directly, without the use of an element-to-node

top

down

bottom

up

top

down

bottom

up

Fig. 4. Illustration of top-down & bottom-up tree traversals for a 2𝐷 tree with

quadratic element order. The leftmost figure depicts the unique shared nodes

(nodes are color-coded based on level), as we perform top-down traversal

nodes shared across children of the parent get duplicated for each bucket

recursively, once leaf node is reached it might be missing elemental local

nodes, which can be interpolated from immediate parent (see the rightmost

figure). After elemental local node computations, bottom-up traversal per-

formed while merging the nodes duplicated in the top-down traversal.

map. The result is stored in a contiguous output buffer the same

size as the local elemental input vector.

After all child subtrees have been traversed, the bottom-up phase

returns results from a finer to a coarser level. The parent subtree

nodes are once again bucketed to child subtrees, but instead of the

parent values being copied, the values of nodes from each child

are accumulated into a parent output array. That is, for any node

that is incident on multiple child subtrees, the values from all node

instances are summed to a single value. The global matrix-vector

product is completed after the bottom-up phase executes at the root

of the octree.

Distributed memory is supported by two slight augmentations.

Firstly, the top-down and bottom-up traversals operate on ghosted

vectors. Therefore ghost exchanges are required before and after

each local traversal. Secondly, the traversals are restricted to sub-

trees containing the owned octants. The list of owned octants is

bucketed top-down, in conjunction with the bucketing of nodal

points. A child subtree is traversed recursively only if one or more

owned octants are bucketed to it. Note that because the traver-

sal path is restricted by a list of existing octants, the traversal-

based matvec gracefully handles incomplete octrees without spe-

cial treatment.

Remark. The traversal based matvec is designed to expose mem-

ory locality suited for deep memory hierarchies inherent in modern

day clusters and accelerators like GPUs. In this work, we focus on

distributed memory parallelism; the implementation on accelerators

is deferred to future work.

3.6 Traversal-based Matrix Assembly

In the previous section, we described matvec procedure that

employs a tree traversal, requiring neither element-to-node maps

nor global matrix assembly. In this section, we describe the matrix

assembly procedure for computing the global sparse matrix. The

efficient computation of matrix assembly becomes particularly im-

portant for the problems whose convergence heavily depends on

the preconditioners.

To implement assembly, we have leveraged PETSc interface [8,

10], which only requires a sequence of entries (idrow, idcol, val), and
can be configured to add entries with duplicate indices [9]. Note

that any other distributed sparse-matrix library can be supported

in a similar fashion.

The remaining task is to associate the correct global node indices

with the rows and columns of every elemental matrix. We use an

octree traversal to accomplish this task. Similar to the traversal-

based matvec, nodes are selectively copied from coarser to finer
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levels, recursively, until reaching the leaf, wherein the elemental

nodes are contiguous. Note that integer node ids are copied instead

of floating-point values from a grid vector. At the leaf, an entry of

the matrix is emitted for every row and column of the elemental

matrix, using the global row and column indices instead of the

elemental ones. No bottom-up phase is required for assembly, as

PETSc handles the merging of multi-instanced entries.

4 Results

Computing Environment:We performed experiments, including sim-

ulations and scaling studies, on the Cascade Lake Compute Nodes

of the Frontera system. (Refer Sec. A.3 for compute configuration.)

Software and Libraries: We used PETSc [8] as the numerical algebra

solver for solving system of equations. The DistTreeSort and

TreeSort implementation is taken from Dendro [25]. All com-

parison with the immersed (IBM) method is performed using the

open-source code [52] based on Saurabh et al. [53]. Additionally,

Matlab [41] is used for analyzing the condition number of matri-

ces, and trimesh [20] is used to compute the signed distance. The

roofline plot was generated by using Intel Advisor.

4.1 Approximation of Voxelized Geometry

The carving-out approach leads to a voxelized geometry, which

is an approximation of the actual geometry. In this section, we

compare how closely the voxelized geometry mimics the actual

geometry by considering the example of the Stanford Dragon [36].

Fig. 5 compares the difference in the representation of actual bound-

ary for the voxelized geometry by computing the signed distance
1
.

Fig. 5a shows the voxel representation for the Stanford dragon.

Fig. 5b compares the 𝐿∞ error of computed signed distance between

the boundary nodes of the voxelized geometry and the actual STL

file. Similar to the previous case, we can see that with increase

in the refinement, the voxelized geometry approaches the actual

geometry.

4.2 Conditioning of Discrete Operators

As stated earlier, one approach to deploy traditional octrees

on elongated channels is to stretch the mesh along the elongated

channel [22, 40]. But this has a detrimental effect on condition

number, which in turn will deteriorate the convergence of linear

solvers. Table 1 compares the variation in the condition number

2
with the stretching of the elements for a Laplace operator in

1
computed using trimesh library. A positive value denotes inside.

2
evaluated with Matlab condest command
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Fig. 5. Figure showing the voxelized geometry for the Stanford Dragon on

octreemesh Fig. 5a. The error (Fig. 5b) is measured as themaximum of signed

distance from boundary nodes of octree to the STL mesh. With increase in

the refinement at the surface of geometry, the octree mesh coincides with

the actual 3D mesh resulting in decrease in the signed distance error. Note

the first order convergence in signed distance error with resolution.

Channel

length

Complete octree Incomplete octree

DOFs

Condition

Number
DOFs

Condition

Number

1 1089 402.6 1089 402.6

2 1089 466.7 561 155.6

4 1089 510.1 297 42.5

8 1089 512.0 165 13.3

16 1089 10580.5 99 5.0

Table 1: Comparison of condition number for the case with complete octree

and incomplete octree. In the case of complete octree, each element of the

mesh was stretched according to the channel aspect ratio (represented here

by the length) to conformwith the channel boundaries, whereas in the case of

incomplete octree, the aspect ratio was fixed to be 1 and the elements outside

the domain are removed.

2D. We can see that with the increase in the aspect ratio of the

mesh, the condition number of the linear system increases. With

the generation of incomplete octree, we can ensure the aspect ratio

of each element in the mesh remains 1. Furthermore, since the

error is dominated by the coarsest resolution, the incomplete octree

permits decreasing the overall DOFs, at a given coarse resolution.

This, in turn, decreases the condition number of the linear system.

4.3 Convergence Test for Discrete Operators

Here, we present the convergence analysis for the Poisson opera-

tor −Δ𝑢 = 𝑓 over the domain Ω with 𝑢 = 𝑢𝐷 on the domain bound-

ary Γ. Inserting appropriate finite dimensional function spaces for

trial and test function, the weak form of the Poisson operator can

be written as: (∇𝑤ℎ,∇𝑢ℎ)Ω = (𝑤ℎ, 𝑓 )Ω
As mentioned previously, deploying incomplete octree based

methods results in a voxelated geometry for a complicated geo-

metrical shape. As discussed in Sec. 4.1, with the increase in the

refinement of the element, the voxelated geometry approaches the

true geometry. The rate of convergence of the distance follows only

first order. Therefore, careful treatment is needed at the boundary

elements to ensure an accurate order of convergence. In this context,

several methods have been proposed in the literature [15, 35, 42].

In this work, we use the Shifted Boundary Method (SBM) [5, 39] to

treat boundary elements.

The main idea behind SBM is to reformulate the original bound-

ary value problem over a surrogate computational domain by mod-

ifying the original boundary conditions using Taylor series ex-

pansions. The weak form of Poisson operator after applying SBM

treatment can be written as:

(∇𝑤ℎ,∇𝑢ℎ)Ω̃ − (𝑤
ℎ,∇𝑢ℎ · ñ)Γ̃ − (∇𝑤

ℎ · ñ, 𝑢ℎ + ∇𝑢ℎ · d − 𝑢𝐷 )Γ̃+
𝛼

ℎ
(𝑤ℎ + ∇𝑤ℎ · d, 𝑢ℎ + ∇𝑢ℎ · d − 𝑢𝐷 )Γ̃ = (𝑤ℎ, 𝑓 )Ω̃

where Ω̃ is the voxelated domain, Γ̃ is the surface of the voxelated

domain, 𝑛̃ is the unit normal of the voxelated surface, 𝛼 is the

penalty term, ℎ is the element length, and d is the distance vector

from the boundary surface of voxelated domain Γ̃ to the true surface
Γ. The main idea of the method is to shift the boundary condition

from Γ to Γ̃ by using second-order accurate Taylor series expansion.

We omit the details here and refer to [5, 39] for detailed analysis.

To perform the convergence study, we consider Poisson problem

on a two-dimensional disk of radius 𝑅 = 0.5, centered at (𝑥0 =

0.5, 𝑦0 = 0.5) and 𝑓 = 1. An exact solution exists and can be written

as: 𝑢 (𝑟 ) = 0.25(𝑅2 − 𝑟2), where 𝑟 =
√
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2. Fig. 6

shows the convergence behaviour for the linear basis function. If

https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/


Scalable adaptive PDE solvers in arbitrary domains SC, 2021,

10
−3

10
−2

10
−110

−10

10
−6

10
−2

h

∥ 𝑢
−
𝑢
𝑒
𝑥
𝑎
𝑐
𝑡
∥

𝐿2 (Ω) (voxelated) 𝐿∞ (Ω) (voxelated)
𝐿2 (Ω) (SBM) 𝐿∞ (Ω) (SBM)

slope = 1 slope = 2

Fig. 6. Convergence plot: Figure showing the convergence behaviour for the

Poisson operator on a two-dimensional circular disk.

we naively apply the boundary condition at the boundary nodes of

the voxelated geometry, we only get a first-order convergence in

both 𝐿2 and 𝐿∞ norm. This is because the right boundary condition

is applied at the wrong place, which is shifted by a distance d
from the true boundary. As seen from the signed distance plot

(Fig. 5b), the voxelated geometry boundary approaches the true

geometry according to the first order, and so is the convergence for

the discrete Poisson operator. With the SBM method, we recover

back the theoretical second-order convergence in both 𝐿2 and 𝐿∞
norm for the linear basis function.

4.4 Comparison with Immersed Case

Here, we present the comparison of the carved out approach with

the immersed approach in terms of the number of DOF and the total

number of elements. We note that this analysis is equation agnostic.

In order to compare the overall mesh element size and DOF, we set

the background mesh to a constant refinement level and refined

it near the object. Tab. 2 compares the fraction of elements and

DOF required for immersed and carved out approach. In the carved

out case, all the elements and nodes that are inside the domain are

discarded during the tree construction as mentioned in Sec. 3.2,

whereas for the immersed case, we retain the complete octree mesh.

2:1 balancing of octrees leads to the ripple effect, because of which

there is a significant number of elements that are inside the domain

(Fig. 1). The nodes and elements that are marked In (i.e. inside the

object, sphere/dragon in this case) do not contribute towards the

accuracy of the solution. These are not solved for in the system

of equations, and eventually, a Dirichlet boundary condition is

applied to it, but they had the associated cost during tree traversal

and memory footprint for matrix and vector storage. Overall, we

see about an increase of 80–90% in element size and a 33–40% in

the DOF count if we immerse an object. The excess DOF count is

significantly smaller than the element count because of the fact

that we are performing continuous Galerkin (CG) computations

and several elements share a common DOF. Additionally, we must

recall the fact that in CG computations, hanging nodes do not

contribute to the additional degrees of freedom. However, if wewere

to perform discontinuous Galerkin (DG) computation, each element

would have its own unique node id and associated DOF. In such

computations, the excess DOF count would scale as excess element

count. The actual fraction of DOF and element that is reduced as

a result of carving out depends upon the surface area and volume

of the object that is being carved out. A large surface area of the

object would result in more elements at the finest resolution near

Refine Level

11 12 13 14

Sphere

𝑓elem 1.75 1.79 1.81 1.82

𝑓DOF 1.30 1.31 1.32 1.33

Stanford

Dragon

𝑓elem 1.84 1.87 1.90 1.92

𝑓DOF 1.36 1.39 1.41 1.43

Table 2: Comparison of the ratio of number of elements (𝑓
elem

) and degrees

of freedom (𝑓DOF) with and without (immersed) carving out the sphere and

the Stanford dragon from the domain. The base refinement was set to 4 and

the refinement level near the object was varied from 11 to 14.

the boundaries of the object. In contrast, a larger volume would

result in more elements being discarded out from the interior of the

object. Constructing an incomplete octree by cutting the elements

inside the object results in processing fewer elements during a solve.

4.5 Scaling

We evaluated the strong and weak scaling performance of our

traversal-based matvec using linear and quadratic elements on the

Frontera supercomputer for two different cases: a) an elongated

channel of dimension 16 × 1 × 1, b) a spherical region carved out

from the cube. We individually timed the execution of major com-

ponents of matvec, namely top-down and bottom-up traversal, leaf

matvec to compute the elemental operators, malloc and commu-

nication cost. It must be noted that for any PDE solver, matvec is

the basic building block and determines the overall parallel per-

formance and scalability. We highlight some important points

regarding the experimental setup for performing the scaling studies

and the interpretability of the scaling results:

• Strong Scaling: For each of the strong scaling cases, we generated

a fixed mesh defined by different refinement levels in different

regions of interest. When comparing the mesh with linear and

quadratic elements, the total number and distribution of elements

in a given mesh is the same not only at a global level but also

locally at each processor level. Note that the partitioning algo-

rithm DistTreeSort is agnostic to the underlying element order

and distributes the element at the octant level before the nodal

information is encoded
3
.

• However, the total number of DOF and problem size grows as

O((𝑝+1)𝑑 ) for an arbitrary order 𝑝 and dimension𝑑 4
. Hence, the

mesh with linear and quadratic elements have different compu-

tation and communication complexity. For instance, both linear

and quadratic mesh for channel strong scaling study have 13.5M

elements. But the linear element mesh has 13.7M DOFs, whereas

the quadratic has 109.1M DOFs.

• Weak Scaling: For the weak scaling runs, with an increase in

the number of processors, we increase the refinement level in

the regions of interest in such a way that the average number of

elements per processor remains the same. Similar to the strong

scaling, for a given number of processors, the total number and

distribution of elements are the same for both linear and quadratic

3
More formally, consider a mesh𝑀 with 𝑁 global elements distributed over 𝑝 proces-

sor. If we globally number the elements of mesh from 0 · · ·𝑁 − 1, then if a processor

𝑘, 𝑘 ≤ 𝑝 , receives𝑚𝑖 · · ·𝑚𝑘 (𝑚𝑖 ’s being the global element number) elements for

linear, 0 ≤ 𝑚𝑖 ≤ 𝑚𝑘 ≤ 𝑁 − 1, then the processor 𝑘 for quadratic mesh will also

receive the same sequence of elements𝑚𝑖 · · ·𝑚𝑘 .

4
Every element has O( (𝑝 + 1)𝑑 ) nodes (Refer Sec. 3.4).

https://frontera-portal.tacc.utexas.edu/
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basis functions both globally and locally. Hence, the quadratic

mesh has a greater number of DOF compared to the linear one.

• In all the scaling figures (Fig. 7 –Fig. 10), for a given number of

processors, the left bar corresponds to the matvec execution pro-

file for the linear elements, and the right bar corresponds to the

execution profile of the quadratic elements. The total execution

time for the linear elements is shown by solid blue lines and red

dashed lines for the quadratic.

4.5.1 Scaling results for the channel: The incomplete octrees repre-

senting 16×1×1 elongated channel, with greater refinement on the

boundary and minimal refinement on the interior, are generated to

carry out the scaling studies. This is representative of the common

cases that arise in the boundary-dominated physical phenomena.

Each scaling run was repeated for linear and quadratic hexahedral

grids.

For the strong scaling runs, we generated octree mesh with

13M elements for linear and quadratic basis functions. Both linear

and quadratic mesh is similar at the elemental level. Fig. 7 shows

the strong scaling behavior in terms of parallel cost (Run time ×
number of cores) for both the linear and quadratic basis functions.

A constant line would mean ideal strong scaling efficiency. For the

linear mesh, matvec execution time decreased from 2.87 s on 224

processors to 0.027 s on 28K processors, resulting in 81% parallel

efficiency for 128 fold increase in processor count. Similarly, for the

quadratic mesh, we see a reduction in matvec execution time from

13.5 s on 224 processors to 0.1 s on 28K processors, resulting in 90%

parallel efficiency. The overall theoretical complexity formatvec for

a given element of order 𝑝 has been shown to scale asO(𝑑 (𝑝+1)𝑑+1).
We see a factor of 4.2 × increase in matvec execution time for

quadratic element (𝑝 = 2) over linear (𝑝 = 1), which is within the

theoretical bounds.

For the weak scaling runs, we created grids with a fixed grain

size of about 35K elements per core and timed matvec execution

time. The coarsest mesh consists of 981K elements on 28 processors

with 1.02M DOFs for linear and 8.01M DOFs for quadratic element,

whereas the finest mesh consists of 502M elements on a 14K pro-

cessors with 505M DOFs for linear and 4 billion DOFs for quadratic

elements. Fig. 8 plots the mean execution of the matvec averaged

over 100 iterations as a function of the number of cores. A constant

execution time would imply ideal weak scaling efficiency. We ob-

served a slowly growing weak-scaled execution time. Overall the

time increased from about 1.58 s on 28 cores to 1.9 s on 14 K cores

for linear elements (82% weak scaling efficiency) and 7.04 s to 8.04

s for quadratic elements (86% weak scaling efficiency).
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Fig. 7. Strong scaling for channel case. Parallel cost evaluated with the 3D

Poisson matvec on Frontera supercomputer. Problem size was fixed at 13M

elements (13.7M unknowns for linear and 109.1M unknowns for quadratic)

Case

Type

Element

Order

Strong scaling Weak Scaling

Num

elements

Num

DOFs

Efficiency

Num

elements/core

Efficiency

Channel

(Sec. 4.5.1)

Linear 13.5 M 13.7 M 0.81 35K 0.82

Quadratic 13.5 M 101.9 M 0.90 35K 0.86

Sphere

(Sec. 4.5.2)

Linear 17.5 M 17.4 M 0.90 10K 0.74

Quadratic 17.5 M 139.7 M 0.96 10K 0.83

Table 3: Summary of scaling efficiency for the channel and spherical carved

out region.
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Fig. 8. Weak scaling run time for channel case: Execution time of 3D Pois-

son matvec on Frontera supercomputer, for a fixed grain size of about 35K

elements per core.

4.5.2 Scaling results for a spherical carved out region: To study the

scaling behavior for a complex carved out geometry, we carved out

a spherical region from a cubical domain. A sphere of diameter𝑑 = 1

unit is carved out from a cubical domain of 10 × 10 × 10. Overall,
full mesh contains 5 levels of octree adaptivity with maximum

refinement near the sphere. Such domain and mesh resolution are

similar to the application problem used for validation of Navier–

Stokes simulation.
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Fig. 9. Strong scaling for sphere case: Parallel cost evaluated on Frontera su-

percomputer. Problem size was fixed at 17.5 M elements(17.4M unknowns for

linear and 139.7M unknowns for quadratic)
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Fig. 10. Weak scaling run time for sphere case: Mean Execution time of 100

matvec on Frontera supercomputer, for a fixed grain size of about 10K ele-

ments per core.
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Fig. 11. Figure showing the mean and standard deviation of the distribution

of ghost nodes (shown by solid lines) and ratio of ghost nodes by owned nodes

per processor (shown by dashed lines)

We created grids of about 17.5M elements for the strong scaling,

which correspond to 17.3M DOFs for the linear and 139.7M DOFs

for the quadratic basis functions. Similar to the channel case, the

mesh partition for both the linear and quadratic is similar at the

elemental level but has a different number of DOFs. Fig. 9 shows

the parallel efficiency averaged over 100 matvec iterations. Overall

we observe a good overall parallel efficiency. In the case of linear

elements, we observe a 29× reduction in matvec execution time

for 32 fold increase in processor (90% strong scaling efficiency).

In contrast, the quadratic element resulted in a 31× reduction in

computation time (96% strong scaling efficiency).

For the weak scaling, we kept a constant grain size of around

10K elements per processor. The coarsest mesh consists of about

290K elements resulting in 280K DOFs for the linear basis function

and 2.3 M for the quadratic. In contrast, the finest mesh consists of

138 M elements with about 138M DOFs for linear and 1.1 billion

DOFs for quadratic basis function. Fig. 10 shows the overall weak

scaling performance. matvec execution time grew from for 4.1 s on

28 processors to about 5.5 s on 14K processors for linear elements,

resulting in a factor of about 1.34× increase for 512× in the number

of processors (74% efficiency). In the case of quadratic elements,

the execution time increased from 20 s on 28 processors to about

25 s on 14K processors, yielding about 83% weak scaling efficiency.

Tab. 3 summarizes the scaling efficiency for both the channel and

the sphere case.

Further, we analyzed the distribution of ghost nodes per proces-

sor for the above sphere case, which is indicative of bytes of data

communicated. In our experiment, we kept a similar distribution of

the elements across processors for both linear and quadratic basis

function but has different degrees of freedom associated with them.

The amount of data communicated across processors is a function of

the total number of ghost elements that share partition boundaries.

With the increase in the number of processors, the total number

of ghost elements increases, but the average number of ghost ele-

ments decreases. For an arbitrary order element 𝑝 , the number of

nodes that share faces across the processor boundaries (and hence

needs exchange of information) grows as O((𝑝 + 1)𝑑−1). Since the
partition is similar at the elemental level, the average number of

ghost nodes that are needed for ghost exchange is higher for the

quadratic compared to the linear elements. The solid lines in Fig. 11

show the comparison for linear and quadratic case.
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Fig. 12. Figure showing roofline plot for the Poisson matvec for linear and

quadratic basis function for two different meshes on Frontera. The plot was

generated using Intel Advisor. The green dashed line shows the achieved

bandwidth from our code. All values reported in the plot corresponds to dou-

ble precision floating point operations.

Additionally, we also analyzed the distribution of the ratio of

ghost nodes to the number of owned nodes (denoted by 𝜂), which

is indicative of the extent over which the communication can be

overlapped with computation. Let 𝑁𝐿 be the number of local nodes

that are owned by processor (do not share processor boundaries

with any other elements) and 𝑁𝐺 be the number of ghost nodes,

then:

𝜂 =
𝑁𝐺

𝑁𝐿
∝ (𝑝 + 1)

𝑑−1

(𝑝 + 1)𝑑
=

1

(𝑝 + 1)
From the above equation, we can see that this ratio grows inversely

with respect to the degree of element. We observe similar behav-

ior in our experiments, as shown by dashed lines in Fig. 11. This

explains the better scaling efficiency for quadratic as compared to

linear shown in Tab. 3. For a single processor run, 𝜂 = 0. With an

increase in the number of processors 𝜂 increases, and in extreme

limit of parallelization, when each processor has only one element,

𝜂 → 1. It is non-trivial to analyze the exact rate of increase in 𝜂 for

arbitrary shapes as a function of processor count and is beyond the

scope of the current work.

4.5.3 Roofline: Fig. 12 shows the single core roofline plot for

the elemental matvec computation of Poisson operator using lin-

ear and quadratic basis function on Frontera. Overall, we can see

that the code is memory bound as is common for finite element

codes. We observe higher arithmetic intensity
5
(AI) for quadratic

(0.121) as compared to linear (0.072) elements. The amount of data

needed for matvec computation grows as O((𝑝 + 1)𝑑 ) whereas
the matvec computation complexity grows as O(𝑑 (𝑝 + 1)𝑑+1).
Therefore, AI tends to increase with polynomial order, which ex-

plains the observed behavior. We are able to achieve a performance

of about 4 GFLOP/s using linear basis function and 7 GFLOP/s

using quadratic basis functions for two different meshes, which

corresponds to a bandwidth of approximately 60 GB/s as shown

by the green lines. We note that we have not used any hand-coded

explicit vectorization to ensure the portability of the code across

various platforms and relied on compiler-directed vectorization.

We would like to explore some future avenues from the code opti-

mization point of view pertaining to more efficient cache blocking

techniques and architecture-specific efficient vectorized implemen-

tation of tensor products.

5
AI is measured as the amount of floating point operations performed per byte of data

loaded into the memory.

https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/


SC, 2021, Saurabh and Ishii, et al.

10
3

10
4

10
5

10
6

0.2

0.4

0.6

𝑅𝑒

𝐶
𝑑

Almedij [4] Morris [43]

Bakic [7] Achenbach [1]

LBM Medium [27] LBM Fine [27]

Present work

Fig. 13. Drag crisis: Variation in𝐶𝑑 close to the region of drag crisis. We see a

good agreement with the experimental data and past numerical results.

Base

Refinement

Boundary

Refinement

Num

Elements

Num

Processors

Dendro (s) Current Approach (s)

Mesh

Creation

matvec

Mesh

Creation

matvec

10 12 3,138,525

448 107.87 59.14 1.69 9.27

896 55.41 38.03 1.00 4.53

1792 38.21 25.47 0.87 2.34

10 14 49,096,209

448 280.88 447.05 21.51 142.89

896 159.87 349.39 11.51 77.33

1792 127.21 295.02 6.34 48.51

12 12 17,440,929

448 - - 4.57 42.58

896 - - 2.29 19.65

1792 - - 1.75 10.76

12 14 63,398,613

448 - - 33.56 182.23

896 - - 17.14 125.53

1792 - - 9.86 47.65

Table 4: Comparison of the time (in seconds) for mesh generation and

Navier–Stokes matvec for the current approach with Dendro based octree

framework. With level ≥ 12 of base refinement, Dendro framework gave

memory error, and hence no time is reported.

4.6 Comparison with Existing Method

Here, we compare the performance of the proposed algorithm

with the existing octree based framework, specifically Dendro [26,

51, 56]. Dendro is a well-validated software and has been widely

used in various large scale scientific simulations [24, 32, 44–46,

53, 66] and has over 200 citations. Dendro has additional support

for carrying out carving operations [66]. We choose Dendro as

our benchmark for comparison. For comparison, we choose an

elongated channel of dimensions 128 × 4 × 1. The overall mesh

is determined by two levels of refinement: base refinement and

boundary refinement. Such a channel is commonly found in mi-

crofluidic devices, and simulating such devices is an active area of

research [19, 54].

Table 4 compares the time for mesh generation and total matvec

time
6
for Navier–Stokes equation. Unlike the 3D Poisson opera-

tor used for scaling case, the time to compute elemental operator

(denoted by leaf matvec) is substantially more expensive. The ex-

tra overhead introduced by performing top-down and bottom-up

traversal will be significantly smaller compared to performing el-

emental matvec. The overall time to solve is dominated by load

balancing of FEM computation. Since Dendro looks at the com-

plete octree, a significant portion of the elements lie inside the

void regions. The partitioning algorithm distributes the elements

of complete octree (almost) equally among processors. This leads

to an imbalance in the overall FEM computation. This is clear from

6
This time include top-down, bottom up, leaf matvec and ghost exchange time

the presented matvec results. Additionally, in all our runs, we were

not able to go beyond the level of 12 with the Dendro framework.

This limits our ability to compare for a further elongated channel.

In contrast, within the current framework, we achieve a signifi-

cant improvement in terms of both scalability and time to solve.

Overall, we observed a speedup of about 20× for mesh generation

and 5× for matvec time. The actual speedup that we can achieve

is application-specific and needs to be studied individually. The

major factors that determine the overall speedup can be mainly

categorized as a) the fraction of volume that can be excluded out; b)

complexity of In –Out test; c) the resultant communication pattern.

5 Application: Classroom Airflow Simulation

Validation: We first validate the solver by demonstrating the abil-

ity to capture the drag crisis by simulating flow past a sphere. A

sphere of diameter 𝑑 = 1 is placed at a distance 3𝑑 from the inlet at

(3𝑑, 3𝑑, 3𝑑) in a computation domain of (10𝑑, 6𝑑, 6𝑑). The walls
of the domain, except the outlet have constant non-dimensional

freestream velocity of (1, 0, 0) and zero pressure gradient. At the

outlet, the pressure is set to 0 and zero gradient velocity boundary

condition is applied at the wall. No-slip boundary condition (zero

Dirichlet) for velocity is imposed on the surface of the sphere. We

use a well-established Variational Multiscale (VMS) stabilized Finite

Element method for solving the Navier–Stokes equation [12].

Fig. 13 plots the variation of 𝐶𝑑 across a range of Reynolds

numbers close to the drag crisis regime.We see that the results are in

excellent agreement with experimental and other numerical results.

We are able to accurately capture the drag crisis phenomena, where

a sudden drop in drag from 0.5 [1] - 0.6 [7] at Re around 16, 000 to

0.1 [1] - 0.2 [27] at 𝑅𝑒 of 2 million is observed. The finest resolution

simulation consists of ∼40M elements which is significantly lower

than for LBM simulation by Geier et al. [27]. We visualize the

transition across the drag crises regime in Fig. 14. The drop in

drag in Fig. 13 is due to the change in wake structure and pressure

distribution in Fig. 14.

Application: We finally demonstrate the ability of our frame-

work to simulate flow past complex geometries. We consider a

realistic scenario of modeling airflow in a classroom with complex

furniture, seated students with/without computers (and monitors),

and a standing instructor. We are particularly interested in access-

ing if specific locations in the room are at significantly higher risk

for transmission – for example, where there is local recirculation

causing limited air exchange with the outside environment. In such

cases, it becomes imperative to identify if such locations have a

higher risk and rank among alternate seating arrangements to mit-

igate this risk. The current incomplete octree framework allows us

to efficiently and rapidly evaluate various seating arrangements

and scenarios. In order to carve out the geometry, we perform a

series of In - Out tests. This gives an automated way to carve out

complex geometries from the domain. Fig. 15 shows the computa-

tional domain of size 4.83 × 3.34 × 1 that includes complex features

such as tables, chairs and mannequins representing students and

instructor. The velocity inlets and pressure outlets are located at the

top of the domain. The non-dimensional inlet velocity of (0, 0,−1)
is imposed at velocity inlets and zero pressure at pressure outlets.

𝑅𝑒 = 10
5
was considered based on the inlet velocity and classroom
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(a) 𝑅𝑒 = 10,000 (b) 𝑅𝑒 = 160,000 (c) 𝑅𝑒 = 2,000,000

Fig. 14. The wake structures and pressure distribution on sphere at different Reynolds number. The drag crisis is evident by noticing the wake structure as it

changes from being divergent at 𝑅𝑒 = 160, 000 (high drag state) to being convergent at 𝑅𝑒 = 2 × 106 (low drag state). At the same time, we observe a high pressure

region being developed behind the sphere. The development of this high pressure zone is attributed to the low drag state.

Velocity inlets

Pressure outlets

Fig. 15. Figure showing the classroom domain and different regions of bound-

ary conditions such as velocity inlet and pressure outlet. The right side shows

the zoomed image with mesh refinement near the object. In all our simula-

tions, we consider that the person marked in red is COVID positive.

Base

level

Exit

refine

level

Body

refine

level

Elements Num

procs

Immersed (s) Carved out (s)

Active

Elements

𝑓excess
Mesh

construction

Solve

time

Mesh

construction

Solve

time

6 8 10 924,549 1.53

224 92.36 178.74 38.57 61.56

448 50.48 94.95 22.47 32.05

6 9 10 1,259,670 1.43

224 136.13 220.6 48 83.3

448 73.24 95.06 28.88 45.10

7 9 11 3,461,548 1.64

448 210.8 309.60 89.04 131.52

896 107.88 161.70 53.24 71.3

Table 5: Comparison of mesh generation and solve time for IBM with the

current approach for the classroom case. The carved out approach leads to

a significant reduction in number of elements. 𝑓excess represents the excess

fraction of elements obtained as a result of generating complete octree.

height. These flow rates, air exchange rates, and room geometry

represent typical values in classrooms seen in US schools.

Fig. 16 illustrates preliminary results enabled by our framework

to evaluate the transmission of COVID viral load in the classroom.

We evaluate the impact of one infected individual (colored red)

who periodically coughs, releasing an aerosolized load of viral

particles. We model the time-dependent transmission of the viral

load as a scalar transport equation that is advected by a statistically

steady–state flow field obtained from the solution of Navier–Stokes

solver. We considered a classroom under two different scenarios:

with (Fig. 16b) and without (Fig. 16a) the presence of computer

monitors. We observe a significant reduction in transmission risk

in the case with monitors due to the monitors redirecting the flow

field upwards away from the occupied zone.

Tab. 5 compares the IMGA based immersed implementation

(based on the open-source code [52]) with the carved-out approach.

The overall mesh consists of three refinement levels: base refine-

ment, exit refinement (near the velocity inlet and pressure outlet),

and object refinement (near the monitors, tables, and mannequin).

To get the refined final mesh, we start the mesh at the base level

and successively refine the mesh until the required refinement level

is reached. At each iteration, we perform a series of ray-tracing to

Base

level

Exit

level

Body

Level

Num

Elements

Number of Processors

224 448 896 1792 3584

7 8 11 5,555,871

Time(s) 344.87 176.15 92.16 46.44 23.95

Efficiency 1.0 0.98 0.94 0.93 0.90

9 9 11 23,054,077

Time(s) - 539.15 272.28 142.73 75.7

Efficiency - 1.0 0.99 0.94 0.89

Table 6: Scaling result for classroom simulation: Comparison of total solve

time and strong scaling efficiency with increase in processor count for two

different meshes with varying levels of refinement.

determine In or Out relative to the object. Overall, we see an ap-

proximately 50% increase in element size for the immersed case. We

achieve a speedup of approximately 2.2× during the mesh creation

stage and 2.8× for the complete solve time. The speedup obtained

in this case is significantly smaller than the channel case described

in Sec. 4.6 mainly because of the nature of objects being carved out.

The mannequin or the table considered here has a large surface area

to volume ratio. The small volume resulted in most of the octants

percolating close to the finest level before they can be discarded.

Additionally, ray-tracing based In -Out test needs to be performed

at each iteration of refinement, which is quite expensive [53]. Once

the mesh is generated, we see a significant speedup in the overall

solve time. Tab. 6 compares the scaling efficiency for two different

meshes. Overall we achieve a good scaling efficiency of about 90%

over 16 fold increase in the number of processors.

6 Conclusion

We present a fast and scalable tree-based mesh generation that

is not limited to isotropic domains, which serves as an alternative

to using two-tier meshes that are not dependent on having top-

level hexahedral meshes. The algorithms presented in the paper

are dimension agnostic and provides a generic way to handle any

arbitrary geometries. Our approach allows all elements to remain

isotropic, which speeds up assembly and does not affect condition-

ing due to element stretching. The scaling behavior of the matvec,

which is the most dominant part of any FEM solver, has been ver-

ified up to O(16𝐾) cores. We further showcase the applicability

of these algorithms by solving Navier–Stokes for a large-scale 3D

problem in the presence of complex geometries. These algorithmic

features allows fast, well-balanced creation of complex meshes and

efficient solvers that open the way for parametric exploration of

very large-scale simulations (as our example simulation suggests).

In future, we plan to extend the algorithms to incorporate DG based

FEM along with Finite Difference and Finite Volume Methods.
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(a) Without monitors (b) With monitors

Fig. 16. Classroom scenario: Evaluation of viral load (in quanta /m
3
) in two classroom scenarios with and without monitors. The mannequin marked in the red is

infected with COVID and transmits the virus. The isocontours represent the regions of different viral load concentrations in space.
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A Artifact Description

A.1 Libraries dependencies

The following dependencies are required to compile the code:

• C/C++ compilers with C++11 standards and OpenMP sup-

port

• MPI implementation (e.g. openmpi, mvapich2 )

• PETSc 3.8 or higher

• ZLib compression library (used to write .vtu files in binary

format with compression enabled)

• MKL / LAPACK library

• CMake 2.8 or higher version

• libconfig for parameter reading from file.

A.2 Frontera environment

Experiments performed in Frontera are executed in the following

module environment.

Currently Loaded Modulefiles:
1) intel/19.0.5 4) python3/3.7.0
2) impi/19.0.5 5) autotools/1.2
3) petsc/3.12 6) cmake/3.16.1

A.3 Frontera compute node configuration

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 56
On-line CPU(s) list: 0-55
Thread(s) per core: 1
Core(s) per socket: 28
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon

Platinum 8280
CPU @ 2.70GHz

Stepping: 7
CPU MHz: 2700.000
BogoMIPS: 5400.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 39424K

MemTotal: 195920208 kB
MemFree: 168962328 kB
MemAvailable: 168337408 kB

B Artifact Evaluation

B.1 Signed distance computation

Let𝑀 denotes the closed orientable 2-manifold triangular mesh.

The signed distance from a point p rto𝑀 is given by:

𝑑 (p, 𝑀) = inf

x∈𝑀
∥p − x∥ sign(n · (p − c)) (1)

where: c denotes the closest point to p and n denotes the outward

normal. A positive value of 𝑑 , means the point is inside the surface

and vice-versa.

B.2 Details of solver selection

PETSc was used to solve all the linear algebra problems. In par-

ticular, bi-conjugate gradient descent (-ksp_type bcgs) solver
was used in conjunction with Additive - Schwartz (-pc_type asm)
preconditioner to solve the linear system of equations. The NEW-

TONLS class by PETSc, that implements a Newton Line Search

method, was used for the nonlinear problems. Both the relative

residual tolerance and the absolute residual tolerance for linear and

non - linear solve are set to 10
−6

in all numerical results.

B.3 Downloading and installing the code

This section presents how to run and reproduce the results pre-

sented in the paper. You can clone the repository using, git clone
git@github.com:abcd/sc21-kt.git. We use CMake to configure

and build. In Frontera node,

• git clone git@github.com:abcd/sc21-kt.git
• mkdir build && cd build
• Load the module environment

• mkdir build && cd build
• cmake ../.
• make MVCChannel MVCSphere signedDistance

B.4 Running experiments

B.4.1 MVCChannel: Scaling run for channel case. In order to run

the scaling case, it requires the 3 parameters: a) baseLevel b) bound-

aryLevel and c) element order (1/2). For example, on Frontera it can

be ran as:

ibrun MVCChannel 10 12 1 log10_12.out
where, 10 is the base refinement level, 12 is the boundary refinement

level, 1 is the element order and log10_12.out is the output file

containing the relevant timing information.

B.4.2 MVCSphere: Scaling run for sphere case. In order to run the

scaling case, it requires the 3 parameters: a) baseLevel b) bound-

aryLevel and c) element order (1/2). For example, on Frontera it can

be ran as:

ibrun MVCSphere 7 12 1 log7_12.out
where, 7 is the base refinement level, 12 is the boundary refinement

level, 1 is the element order and log7_12.out is the output file

containing the relevant timing information.

B.4.3 signedDistance: The computation of signedDistance. In

order to find the signed distance, we successively refined near the

boundaries and computed the signed distance. In order to run the

code:

ibrun signedDistance stlFileName 4 14
where: stlFileName is the name of stl file, 4 is the minimum re-

finement level and 14 is the maximum level of refinement at the

stl boundary. After each successive iteration, the code output the

https://www.mcs.anl.gov/petsc/
http://hyperrealm.github.io/libconfig
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
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information of boundary nodes. Then we compute the signed dis-

tance, using the python script provided under the scripts folder.
In order the run the python scripts:

python3 signedDistance stlFileName.
Note that you might need to change the number of processor

on your machine as the python script is parallel and make use of

multiprocessing library.

B.4.4 Roofline plot: We computed the roofline using Intel Advisor.

In order to run the roofline plot, first run the survey using:

ibrun -np 1 advixe-cl -collect survey -project-dir
outputDir -search-dir
src:=examples/BenchMark_channel/src – MVCChannel
baseLevel boundaryLevel eleOrder outputFile
where: outputDir is the directory to store output and MVCChannel
baseLevel boundaryLevel eleOrder outputFile is the same

as in previous description of Channel scaling.

Finally in order to collect FLOPS count:

ibrun -np 1 advixe-cl -collect=tripcounts –flop
–mark-up-list= src/benchmark.cpp -project-dir= outputDir
– MVCChannel baseLevel
boundaryLevel eleOrder outputFile
where: outputDir must be same directory as the survey directory

and MVCChannel must be called with the same arguments.
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