Scalable adaptive PDE solvers in arbitrary domains

Kumar Saurabh§ Masado Ishii§ Milinda Fernando
Iowa State University University of Utah University of Utah
Ames, Iowa Salt Lake City, Utah Salt Lake City, Utah
Boshun Gao Kendrick Tan Ming-Chen Hsu
Iowa State University Iowa State University Iowa State University
Ames, Iowa Ames, Iowa Ames, lowa
Adarsh Krishnamurthy Hari Sundar Baskar

Iowa State University
Ames, Iowa

Abstract

Efficiently and accurately simulating partial differential equa-
tions (PDEs) in and around arbitrarily defined geometries, espe-
cially with high levels of adaptivity, has significant implications
for different application domains. A key bottleneck in the above
process is the fast construction of a ‘good’ adaptively-refined mesh.
In this work, we present an efficient novel octree-based adaptive
discretization approach capable of carving out arbitrarily shaped
void regions from the parent domain: an essential requirement
for fluid simulations around complex objects. Carving out objects
produces an incomplete octree. We develop efficient top-down and
bottom-up traversal methods to perform finite element compu-
tations on incomplete octrees. We validate the framework by (a)
showing appropriate convergence analysis and (b) computing the
drag coefficient for flow past a sphere for a wide range of Reynolds
numbers (O(1 — 10°)) encompassing the drag crisis regime. Finally,
we deploy the framework on a realistic geometry on a current
project to evaluate COVID-19 transmission risk in classrooms.

1 Introduction

The discretization of the domain (i.e., mesh generation) is a criti-
cal aspect of numerically solving PDEs. The resolution and quality
of the mesh are intimately related to the overall accuracy of PDE
solvers. Even though mesh generation is a fundamental part of
numerical approaches, creating quality meshes continues to be a
significant bottleneck in the overall workflow. This bottleneck is
exacerbated when considering adaptivity and parallel deployment
and becomes exceptionally challenging in the presence of an arbi-
trarily shaped geometric object that has to be carved out from the
computational domain. Such challenges are particularly common in
simulating the flow over external objects. Streamlining this work-
flow is one of the components of the NASA 2030 computational
fluid dynamics (CFD) milestone towards the goal of conducting
overnight large-eddy simulations (LES) [55]: "Mesh generation and
adaptivity continue to be significant bottlenecks in the CFD workflow."

Immersed boundary methods (IBMs) [42] are commonly used to
simulate fluid flow around geometric objects immersed in a com-
putational domain. A significant advantage of IBM approaches
arises from performing the complete simulation on structured

§these authors contributed equally.

University of Utah
Salt Lake City, Utah

Ganapathysubramanian
Iowa State University
Ames, Iowa

(c) carved out

(d) incomplete octree

Fig. 1. Difference between the adaptive mesh for immersed and carved out for
the sphere case. In immersed case, we retain the full octree and this gives to a
significantly large number of elements and nodes compared to the carved out
case. It must be noted the elements that are inside the object do not contribute
to the accuracy of the solution. Eventually Dirichlet Boundary condition are
imposed on all the IN nodes.

grids [42, 47], thus avoiding any requirement of the grid conform-
ing to the immersed geometric object (Fig. 1a). Naively immersing
the object can lead to large void regions. These regions do not
participate in the solution but require the associated matrix and
vector storage as they form a part of the mesh data structure. This
problem is exacerbated in the presence of multiple objects. This
paper presents a strategy wherein the void regions are first carved
out from the main computational domain (Fig. 1c) —in the vein of
the finite cell approach [60] with the object then immersed in the
carved domain. This approach reduces the number of degrees of
freedom and, hence, the memory footprint associated with the void
regions.

Tree-based grid generation (quadtrees in 2D and octrees in 3D) is
common in computational sciences [6, 11, 17, 24, 28, 30, 48, 56, 58]
largely due to its simplicity and parallel scalability. The ability to
efficiently refine (and coarsen) regions of interest using tree-based
data structures have made it possible to deploy them on large-scale
multi-physics simulations [2, 3, 14, 24, 32, 33, 37, 37, 49, 53]. Exist-
ing algorithms for tree-based grid generation are mainly focused
on axis-aligned hierarchical splitting on isotropic domains (i.e.,
spheres, squares, and cubes). Such approaches cannot easily sup-
port anisotropic domains (for example, an elongated channel) or

SC, 2021,

body-conforming mesh generation for a carved-out object. Stan-
dard workarounds include stretching or warping (using a coordi-
nate transformation) of the computational domain, transforming
a cubic domain into a rectangular channel. Unfortunately, these
asymmetric transformations come at the cost of degradation in
the overall quality of the domain discretization leading to large
condition numbers in the resultant matrix (see Sec. 4.2).

Our contributions in this paper are as follows: (a) we develop an
efficient tree-based adaptive mesh generation framework that re-
laxes the requirement of the mesh to conform to isotropic domains;
(b) we compare the current approach with the state-of-the-art im-
mersed method strategies [31, 59, 62, 65]; (c) we show the parallel
scalability of our framework on the Frontera supercomputer up
to 16K cores; (d) we deploy the framework in conjunction with
a well established FEM formulation: variational multiscale (VMS)
method [12] to model non-trivial applications of simulating the
flow fields in classrooms to understand the risk of transmission of
Coronavirus. The fast generation of quality meshes is pivotal to this
application. Here, we present an octree-based mesh generation tool
that provides an alternative to using two-tier meshes (HHG [13],
péest [17]) and is not dependent on having top-level hexahedral
meshes—that can be hard to generate. In contrast, our approach
works with any arbitrary user-supplied function that returns IN or
Ourt (of the object) for any queried point.

2 Related Work

There have been significant algorithmic advances for the fast
generation of octrees on modern supercomputers. For instance,
octrees have been used for voxelization of 3D objects to accelerate
ray-tracing [64], signed distance calculation [67], compression [50],
and fast rendering [34]. Building upon these successes, octrees
have become one of the more common mesh generation tools for
large-scale PDE simulations, with scalable and adaptive capabili-
ties [21, 24, 29, 32, 49, 58]. But most work related to solving PDEs has
been focused on the generation of complete octrees in the context of
PDE solvers [18, 23, 24, 30, 38, 51, 56, 57, 63]. In a complete octree,
every non-leaf subtree has all 24 =38 children, and thus, the union of
all leaf octants is a filled cube without holes. This makes simulating
non-cuboid domains non-trivial, with most approaches either rely-
ing on stretching (coordinate transforms) or using a much larger
bounding box. Secondly, complex objects have to be immersed into
the octree mesh [21, 29, 53], rather than being carved-out. Naively
immersing the object in the octree can leave many elements that
fall into the void regions. This problem is further exacerbated in
the presence of multiple objects. The elements that fall into the
void regions are not solved during the simulations but have an
associated memory footprint. The carving of an object leads to the
construction of an incomplete octree. An octree is incomplete if
there are non-leaf subtrees with one or more missing children. Fi-
nally, there has been limited work in developing octree-based mesh
generation to efficiently solve PDEs over complex geometries. As
stated earlier, carving out affords multiple advantages (explored in
this paper) at the cost of a voxelated boundary of the object. We cir-
cumvent the voxelated boundary issue via an immersed boundary
(IBM) formulation on this carved-out octree.

An alternate approach has been to use two-tier meshes [13, 17]
that rely on having a top-level unstructured hexahedral mesh that

Saurabh and Ishii, et al.

(b) Incomplete quadtree

(a) Complete quadtree

Fig. 2. A disk (enclosed region within the red circle) immersed in a complete
(Fig. 2a) or incomplete (Fig. 2b) quadtree mesh. Every leaf in the tree rep-
resents an element occupying a region of space, which is either completely
inside (M) the body; completely outside (M) the body; or intercepted (') by
the boundary (solid red circle). A complete tree (Fig. 2a) requires all 24 chil-
dren of each non-leaf subtree to be present, and thus gaps are not allowed in
the middle of the mesh. However, useful information is only contributed by
elements outside (M) or intercepted (") by the body.

conforms to the complex geometry and can independently refine
(uniformly or adaptively) each hexahedral element of the top-level
mesh. While this approach works well for simple shapes, like
spheres [16], hex-meshing is non-trivial for more complex geome-
tries [61]. An alternative is then to use affine transforms within each
top-level element but limits the ability to have isoparametrically
refined elements. In contrast, our approach can take an arbitrary
function to carve out the domain and is capable of on-the-fly refine-
ment and coarsening that matches the arbitrary function within
the refinement tolerance.

In this work, we address some of the key algorithmic challenges
that are important to consider for carrying out efficient carving-
out within the octree framework, yet missing from the existing
literature:

o Careful mathematical abstraction that ensures the correctness of

the generated mesh for any given arbitrary shape. Additionally,

within the correctly carved out region, it is critical to correctly
mark the boundary elements and nodes to solve PDEs correctly.

(see Sec. 3.1)

Handling of hanging nodes is critical during the carving out

operations. Specifically, no hanging nodes should be present at

the boundaries. If so, the parent of these nodes can lie in the
inactive region, which is discarded during tree pruning. This

would result in an incorrect PDE solution. (see Sec. 3.4)

e It is essential that the partitioning algorithm only looks at the
active region of the octree. This ensures that FEM computations
are evenly distributed and hence load-balanced. The data struc-
ture used in previous literature [66] first builds a complete octree
distributed among processors before canceling out the inactive
regions. This leads to the generation of complete trees with a
substantial fraction of the trees in inactive regions. (see Sec. 3.2)

o Efficient pruning of trees at coarser levels is essential. Earlier
approaches first generate the complete octrees before pruning.
This can lead to substantial overheads for non-cube geometries,
such as an elongated channel. (see Sec. 3.2)

3 Methodology

This section describes the methodology used to generate the
tree-based grids (i.e., quadtrees in 2D, octrees in 3D) for arbitrary
geometric domains. The key idea is to carve out regions from a
d-dimensional cube that is inside the immersed geometric object

https://frontera-portal.tacc.utexas.edu/

Scalable adaptive PDE solvers in arbitrary domains

to generate the PDE solution domain (see Fig. 2). In this paper, we
refer to the aforementioned domain that is left after carving out
as the subdomain. As noted above, the subdomain may be a sub-
rectangle of a regular box, or it may have carved regions excluded
from an d-dimensional cubic domain. The algorithms presented
here are dimension agnostic, but for simplicity, we mainly focus on
3D-based grids (octree) unless specified otherwise.

Previous work [17, 23, 30, 46, 56] have demonstrated efficient
methods to construct 2:1-balanced complete octrees and additional
data structures to perform efficient numerical computations at a
large scale. These methods order the octants of the octree using a
space-filling curve (SFC) (such as the Hilbert or Morton curve) to
achieve better memory accesses locality and improved distributed-
memory domain decomposition. This paper presents parallel algo-
rithms to extend numerical computations on incomplete octrees.

3.1 Specification of the Subdomain

We describe an abstraction of the application-dependent arbi-
trary subdomains. The subsequent tree-based algorithms depend on
a user-defined function to decide whether a given point or region
in space should be retained or discarded (“carved”). In addition,
the abstraction encodes enough detail for the octree algorithms to
support efficient pruning during tree traversals.

Let Q = C U C’ be a cube comprised of two disjoint subsets: a
closed carved set C C Q, and its open complement: the retained set
C’ = Q\ C. Enforcing C as a closed set means that it contains the
boundary, dC c C. (Referring back to Fig. 2, in 2D, C would be the
disk, including dC, the red circle.)

Suppose that Q is hierarchically partitioned according to an
octree, 7°, which captures dC well enough under some metric. Any
octant e of 7~ belongs to one of the following categories, depending
on the closure of the region it bounds, é:

(1) “carved,” ife C C.

(2) “retained,” if e ¢ C.

(a) “intercepted,” if “retained” and é N C # 0.
(b) “non-intercepted,” if é c C’

The retained octants form an incomplete octree; that is, we de-
fine 77 = 7 \ {carved leafs}. The intercepted and non-intercepted
sets specify the subdomain-boundary octants and the subdomain-
internal octants, respectively.

3.1.1 Features of the Abstraction: Defining the subdomain abstrac-

tion in this way ensures that the octree pruning problem is well-

defined. Notice the following:

o An application can specify a subdomain through a function F(é),
where ¢ is any filled-in cube of zero or positive side length, such
that

label(“carved”) ife cC
F(e) = { label(“retain-internal”) ife cC
label(“retain-boundary”) otherwise

— The function F(e) applies to both octants and nodal points.

— Points can not be classified “intercepted,” as all points are
contained in the union of C and C’.

- The implementation of F must take care with nontrivial inter-
sections between dC and an element. Even if all vertices lie
in C, it is possible for the element to be intercepted, and in
such a case, it should be labeled as “retain-boundary.” In an

SC, 2021,

application, the intersection test may be as simple or complex
as needed by the geometry being captured.

e C is assumed closed; hence its complement, C’, is open.

— This convention permits the robust classification of a boundary
element that sits flush with dC. The element is labeled “retain-
boundary,” while the boundary nodes are labeled “carved”

o This abstraction ensures the correctness of the generated mesh,
for any arbitrary geometry, along with the correct tagging of
boundary elements and nodes which is of utmost important for
solving PDEs correctly.

o It is not necessary to generate a complete octree before filtering
out the carved octants. If an octant is carved, all its children are
carved. If an octant is non-intercepted, so are all its children. The
next section describes how to construct incomplete octrees by
proactively pruning subtrees during construction.

3.2 Octree Construction

The previous literatures have shown efficient octree algorithms
to sort, construct, and traverse octrees in SFC order [23, 30, 56].
Most of the past literature has been limited to the construction of a
complete octree in an isotropic domain [18, 23, 24, 30, 38, 51, 56, 57,
63]. This work builds upon them to efficiently construct the tree in
presence of void regions. Algorithms 1 and 2 forms the central crux
of the work, where an efficient approach for octree construction in
the presence of void regions is introduced. Algorithm 3 describes
the partitioning algorithm based on DISTTREESORT to partition the
trees.

The octree is constructed recursively in a top-down fashion
(see Algorithms 1 and 2), with child subtrees being traversed in
an order determined by a regional segment of the SFC. The top
of the tree represents the entire isotropic domain, while subtrees
represent cubical subregions. A given subtree is immediately pruned
if it is classified as a carved region; otherwise, it is constructed.
Constructing a subtree entails either appending the subtree as a
leaf or refining it based on a refinement criterion. In Algorithm 1,
the refinement criterion has a depth in the tree coarser than a target
depth, whereas in Algorithm 2, the criterion has a depth that is
coarser than a subset of seed octants. Other criteria are possible,
e.g., intercepting the subdomain boundary or containing more than
a maximal number of points from an initial point cloud distribution.
If a subtree is to be refined, it is split into its eight child subtrees
(in 3D). The children are permuted into the regional SFC ordering
and constructed recursively.

Algorithm 3 uses the octree partitioning method based on DisT-
TREESORT [23, 30] to distribute octrees in parallel. DISTTREESORT
uses TREESORT based comparison-free search algorithm for oc-
tree construction. Instead of performing comparison-based binary

Algorithm 1 ConstructUniform

Require: Region S, SFC oracle I, final level L, function F().
Ensure: Set T of level-L leafs covering subdomain, sorted by SFC.

1: if F(S) # Carved then > Else prune
2 if level of S > L then

3 T .push(S) > Leaf.
4: else

5: for ¢y — 1to 24M do

6 Cmorton < I.sfc2Morton(cgfe)

7 ConstructUniform(S.child(¢morton), I.child(cstc))

> Regional SFC order

SC, 2021,

Saurabh and Ishii, et al.

Algorithm 2 ConstructConstrained

Algorithm 4 DistributedConstruct2to1Balanced

Require: Region S, SFC oracle I, seed octants B, function F().

Ensure: Set T of leafs, no coarser than B, covering the subdomain, sorted by SFC.
1: if F(S) # Carved then > Else prune
2: L « finest level in B

3: if |B| = 0 or level of S > L then
4: T.push(S) > Leaf.
5: else
6: > Bucket seeds to SFC-sorted children of S.
7: 1 « level(S) +1
8: counts[24M] «— 0
9: for b € Bdo
10: counts[child_num(b, [)]++
11: counts[] « permute(counts, I)
12: offsets[] « scan(counts)
13:] > Construct child subtrees in SFC order.
14: for ¢ — 1to 24 do
15: Cmorton < I.sfc2Morton(csfc)
16: Sc « S.child(emorton)
17: I. « Lchild(cgg)
18: B « Bslice(offsets[csf.], offsets[cse + 1])
19: ConstructConstrained(S; I, Bc)

Algorithm 3 DistributedConstructConstrained

Require: Distributed set of seed octants B, function F().

Ensure: Distributed set T of leafs, no coarser than B, covering the subdomain, sorted
by SEC.

: DisTTREESORT(B, load_tol) > [30]

¢ Tymp < ConstructConstrained(TreeRoot, SFC_Root, B)

: DISTTREESORT(Tip, load_tol)

: Tjocal < DistributedUniqueLeafs(Timp)

: return Tjocyl

G e e

searches, TREESORT performs MSD radix sort, except that the or-
dering of buckets are permuted at each level according to the
specified SFC. By performing a fixed number of passes over the
input data in a highly localized manner, TREESORT avoids cache
misses and random memory access leading to better memory per-
formance. [23, 24] Since the constructed octrees from previous
algorithms entail only the active regions of the isotropic domain,
DisTTREESORT distributes only these aforementioned active por-
tion. This is the main difference from the past approaches, where
the sorting algorithm looks at the complete tree. This step is piv-
otal to ensure load-balanced computation. Similar to Algorithm 2,
a set of seed octants is used to control the output tree depth. In
the distributed setting, the seed octants also inform the domain
decomposition so that each rank will own approximately the same
number of elements. Note that DISTTREESORT accepts a tunable
load-balance tolerance. A large tolerance will partition the tree at
coarse levels. A small tolerance will balance the load more evenly
at the expense of splitting coarse subtrees over multiple processes.
Once the depth-constraining seed octants have been partitioned,
each rank constructs a tree satisfying the local constraints. Then,
overlaps between trees must be resolved. Duplicate octants are
deleted. Finer octants are preferred to coarser overlapping octants
in order to satisfy the depth constraints globally.

3.3 2:1Balancing

In a 2:1-balanced octree (Fig. 3), a pair of octants sharing any
parts of their boundaries may differ in scale by at most a factor
of 2:1. In other words, they may differ by at most one level in the
tree. Numerical computations on the octree grid are simpler in
terms of the neighborhood data structures if the octree obeys the
2:1-balancing constraint .

Require: Distributed set of seed octants B, function F().

Ensure: Distributed set T of leafs, no coarser than B, covering the subdomain, obeying
2:1-balance constraint, sorted by SFC.

: Ty « DistributedConstructConstrained(B, F)

: T, < BottomUpConstrainNeighbors(T7)

: T3 « DistributedConstructConstrained(73, F)

: return T3

> F not applied

T

Algorithm 5 BottomUpConstrainNeighbors

Require: Unbalanced leafs T;.
Ensure: Balanced seeds T5.
1: Tyux[] < stratify T; by levels, from finest to coarsest
2: for level [from finest to coarsest do
3 for t € Tyy[l] do
4: for n € MakeNeighbors(MakeParent(¢)) do
5 Taux[l — 1].add_unique(n)
6: T, « concatenate(Tyx)
7: return T,

"

Fig. 3. Left most figure shows an octree which violates the 2:1 balanced con-
straint, where the octants that cause the violation is showed in (H). In the
middle figure auxiliary balanced octants are showed in ('), in other words
these are the octants needed to remove the balance constraint violation in
(M). Right most figure shows the constructed octree with auxiliary balanced
octants which satisfies the 2:1 balance constraint. The nodes marked by gray
circles in the final 2:1 balanced mesh are hanging nodes.

We take a bottom-up approach to transform a given linear oc-
tree into a 2:1-balanced octree, based on the local block balancing
method similar to the one by Sundar et al. [56]. In our method (Al-
gorithms 4 and 5), the input octree comprises an initial set of seed
octants. The seed set is iteratively updated from the finest to the
coarsest level. For each seed octant, the neighbors of its parent oc-
tant are added to the next-coarser level of seeds. Duplicate octants
are removed from the next level before proceeding. Finally, after all
the levels have been processed, a new linear octree is constructed
such that each seed octant becomes either a leaf or an ancestor
subtree in the output octree. Thus the final seed set controls the
resolution of the new octree, ensuring the result is 2:1-balanced. It
is important not to preemptively discard the carved octants, which
are generated as neighbors of parents of seed octants. Otherwise,
two leaf octants of 4:1 or greater ratio could meet in a carved region.

3.4 Embedding Nodal Information

Each leaf octant in a linear 2:1-balanced octree represents an
element in the FEM adaptive grid. For a given p-refinement, there
are (p+1)3 nodes per element (in 3D). Nodal points on the boundary
of an element will be shared with same-level neighboring elements.
Nodes incident on a coarser-level neighbor is considered hanging
nodes (Fig. 3). The value of a hanging node is dependent on the
values of the nodes on the coarser face or edge. Therefore, the
set of independent degrees of freedom (DOFs) on the FEM grid
(underpinning a grid vector) is defined by enumerating the unique,
non-hanging nodes.

First, we loop over all elements and generate the node coor-
dinates with a spacing of (lengthgjoment) /P in each axis. (Nodes
labeled as “carved” are marked as subdomain boundary nodes.) The

Scalable adaptive PDE solvers in arbitrary domains

set of unique nodes is found by executing TREESORT on the nodal
coordinates and removing duplicates.

An extra step is required to detect and discard hanging nodes.
In an isotropic domain, a hanging node has fewer instances than
the number expected for an ordinary node as a function of the
coordinate and grid level. With user-specified geometry, however,
the expected number of instances is nontrivial to compute. Our
solution is to explicitly “cancel” possible hanging nodes using tem-
porary cancellation nodes. The cancellation nodes are generated
on the edges and faces of elements in between the ordinary nodes,
anticipating the coordinates of hanging nodes from hypothetical
finer neighbors. After sorting, every coordinate is occupied by a
mix of ordinary and cancellation nodes. If a cancellation node is
present, then the coordinate is incident on a coarser edge or face,
and thus the node is hanging; the node is discarded. Otherwise, no
cancellation node is present, and the coordinate is enumerated as an
ordinary node. Thus we enumerate exactly the nodes which define
a grid vector. Note that ensuring the absence of hanging nodes at
the carved boundary is essential for accurate PDE solutions.

3.5 Matrix-free, Traversal-based MATVEC

We implement a traversal-based matrix-vector multiplication
to perform matrix-free computations, which extends the methods
by Ishii et al. [30] to incomplete trees.

Matrix free: The global matrix is defined as a summation of local
elemental matrices, where the summation is due to common nodal
points being shared by neighboring elements. We are able to apply
the global operator to a grid vector without explicitly assembling
the global matrix. Instead, we perform a series of elemental matrix-
vector multiplications, and use the octree structure to compose the
results.

Traversal-based: (Fig. 4) The elemental matrix couples elemental
nodes in a global input grid vector with equivalent elemental nodes
in a global output grid vector. Within a grid vector, the nodes
pertaining to a particular element are generally not stored con-
tiguously. If one were to read and write to the elemental nodes
using an element-to-node map, the memory accesses would require
indirection: vgop [map[e = npe + i]]+ = vjoc. Not only do element-
to-node maps cause indirect memory accesses; the maps become
complicated to build if the octree is incomplete due to complex ge-
ometry. We take an alternative approach that obviates the need for
element-to-node maps. Instead, through top-down and bottom-up
traversals of the octree, we ensure that elemental nodes are stored
contiguously in a leaf, and there apply the elemental matrix.

The idea of the top-down phase is to selectively copy nodes from
coarser to finer levels until the leaf level, wherein the selected nodes
are exactly the elemental nodes. Starting at the root of the tree, we
have all the nodes in the grid vector. We create buckets for all child
subtrees. Looping through the nodes, a node is copied into a bucket
if the node is incident on the child subtree corresponding to that
bucket. A node that is incident on multiple child subtrees will be
duplicated. By recursing on each child subtree and its corresponding
bucket of incident nodes, we eventually reach the leaf level.

Once the traversal reaches a leaf octant, the elemental nodes have
been copied into a contiguous array. The elemental matrix-vector
product is computed directly, without the use of an element-to-node

SC, 2021,

Fig. 4. Illustration of top-down & bottom-up tree traversals for a 2D tree with
quadratic element order. The leftmost figure depicts the unique shared nodes
(nodes are color-coded based on level), as we perform top-down traversal
nodes shared across children of the parent get duplicated for each bucket
recursively, once leaf node is reached it might be missing elemental local
nodes, which can be interpolated from immediate parent (see the rightmost
figure). After elemental local node computations, bottom-up traversal per-
formed while merging the nodes duplicated in the top-down traversal.

map. The result is stored in a contiguous output buffer the same
size as the local elemental input vector.

After all child subtrees have been traversed, the bottom-up phase
returns results from a finer to a coarser level. The parent subtree
nodes are once again bucketed to child subtrees, but instead of the
parent values being copied, the values of nodes from each child
are accumulated into a parent output array. That is, for any node
that is incident on multiple child subtrees, the values from all node
instances are summed to a single value. The global matrix-vector
product is completed after the bottom-up phase executes at the root
of the octree.

Distributed memory is supported by two slight augmentations.
Firstly, the top-down and bottom-up traversals operate on ghosted
vectors. Therefore ghost exchanges are required before and after
each local traversal. Secondly, the traversals are restricted to sub-
trees containing the owned octants. The list of owned octants is
bucketed top-down, in conjunction with the bucketing of nodal
points. A child subtree is traversed recursively only if one or more
owned octants are bucketed to it. Note that because the traver-
sal path is restricted by a list of existing octants, the traversal-
based MATVEC gracefully handles incomplete octrees without spe-
cial treatment.

REMARK. The traversal based MATVEC is designed to expose mem-
ory locality suited for deep memory hierarchies inherent in modern
day clusters and accelerators like GPUs. In this work, we focus on
distributed memory parallelism; the implementation on accelerators
is deferred to future work.

3.6 Traversal-based Matrix Assembly

In the previous section, we described MATVEC procedure that
employs a tree traversal, requiring neither element-to-node maps
nor global matrix assembly. In this section, we describe the matrix
assembly procedure for computing the global sparse matrix. The
efficient computation of matrix assembly becomes particularly im-
portant for the problems whose convergence heavily depends on
the preconditioners.

To implement assembly, we have leveraged PETSc interface [8,
10], which only requires a sequence of entries (idrow, idco], val), and
can be configured to add entries with duplicate indices [9]. Note
that any other distributed sparse-matrix library can be supported
in a similar fashion.

The remaining task is to associate the correct global node indices
with the rows and columns of every elemental matrix. We use an
octree traversal to accomplish this task. Similar to the traversal-
based MATVEC, nodes are selectively copied from coarser to finer

SC, 2021,

levels, recursively, until reaching the leaf, wherein the elemental
nodes are contiguous. Note that integer node ids are copied instead
of floating-point values from a grid vector. At the leaf, an entry of
the matrix is emitted for every row and column of the elemental
matrix, using the global row and column indices instead of the
elemental ones. No bottom-up phase is required for assembly, as
PETSc handles the merging of multi-instanced entries.

4 Results

Computing Environment: We performed experiments, including sim-
ulations and scaling studies, on the Cascade Lake Compute Nodes
of the Frontera system. (Refer Sec. A.3 for compute configuration.)
Software and Libraries: We used PETSc [8] as the numerical algebra
solver for solving system of equations. The DISTTREESORT and
TREESORT implementation is taken from DENDRO [25]. All com-
parison with the immersed (IBM) method is performed using the
open-source code [52] based on Saurabh et al. [53]. Additionally,
Matlab [41] is used for analyzing the condition number of matri-
ces, and TRIMESH [20] is used to compute the signed distance. The
roofline plot was generated by using Intel Advisor.

4.1 Approximation of Voxelized Geometry

The carving-out approach leads to a voxelized geometry, which
is an approximation of the actual geometry. In this section, we
compare how closely the voxelized geometry mimics the actual
geometry by considering the example of the Stanford Dragon [36].
Fig. 5 compares the difference in the representation of actual bound-
ary for the voxelized geometry by computing the signed distance!.
Fig. 5a shows the voxel representation for the Stanford dragon.
Fig. 5b compares the Lo, error of computed signed distance between
the boundary nodes of the voxelized geometry and the actual STL
file. Similar to the previous case, we can see that with increase
in the refinement, the voxelized geometry approaches the actual
geometry.

4.2 Conditioning of Discrete Operators

As stated earlier, one approach to deploy traditional octrees
on elongated channels is to stretch the mesh along the elongated
channel [22, 40]. But this has a detrimental effect on condition
number, which in turn will deteriorate the convergence of linear
solvers. Table 1 compares the variation in the condition number
2 with the stretching of the elements for a Laplace operator in

!computed using trimesh library. A positive value denotes inside.
Zevaluated with Matlab condest command

-© Distance © Element count

2 -1

=} 310

g 107 | €

= } 3
& q107 g
c10°) | z
(%)

"E 41073

25 103 & I I I 1

4 6 8 10 12
Refinement Level

(a) Voxelized

(b) Error

Fig. 5. Figure showing the voxelized geometry for the Stanford Dragon on
octree mesh Fig. 5a. The error (Fig. 5b) is measured as the maximum of signed
distance from boundary nodes of octree to the STL mesh. With increase in
the refinement at the surface of geometry, the octree mesh coincides with
the actual 3D mesh resulting in decrease in the signed distance error. Note
the first order convergence in signed distance error with resolution.

Saurabh and Ishii, et al.

Channel Complete octree Incomplete octree
length Condition Condition
¢ DOFs Number DOFs Number

1 1089 402.6 1089 402.6

2 1089 466.7 561 155.6

4 1089 510.1 297 42.5

8 1089 512.0 165 13.3

16 1089 10580.5 99 5.0

Table 1: Comparison of condition number for the case with complete octree
and incomplete octree. In the case of complete octree, each element of the
mesh was stretched according to the channel aspect ratio (represented here
by the length) to conform with the channel boundaries, whereas in the case of
incomplete octree, the aspect ratio was fixed to be 1 and the elements outside
the domain are removed.

2D. We can see that with the increase in the aspect ratio of the
mesh, the condition number of the linear system increases. With
the generation of incomplete octree, we can ensure the aspect ratio
of each element in the mesh remains 1. Furthermore, since the
error is dominated by the coarsest resolution, the incomplete octree
permits decreasing the overall DOFs, at a given coarse resolution.
This, in turn, decreases the condition number of the linear system.

4.3 Convergence Test for Discrete Operators

Here, we present the convergence analysis for the Poisson opera-
tor —Au = f over the domain Q with u = up on the domain bound-
ary I'. Inserting appropriate finite dimensional function spaces for
trial and test function, the weak form of the Poisson operator can
be written as: (Vw", Vul)q = (Wh,f)Q

As mentioned previously, deploying incomplete octree based
methods results in a voxelated geometry for a complicated geo-
metrical shape. As discussed in Sec. 4.1, with the increase in the
refinement of the element, the voxelated geometry approaches the
true geometry. The rate of convergence of the distance follows only
first order. Therefore, careful treatment is needed at the boundary
elements to ensure an accurate order of convergence. In this context,
several methods have been proposed in the literature [15, 35, 42].
In this work, we use the Shifted Boundary Method (SBM) [5, 39] to
treat boundary elements.

The main idea behind SBM is to reformulate the original bound-
ary value problem over a surrogate computational domain by mod-
ifying the original boundary conditions using Taylor series ex-
pansions. The weak form of Poisson operator after applying SBM
treatment can be written as:

(th, Vuh)f2 - (wh, vul . f); - (th T L up g+

%(wh + VW du + VUl d - up): = (Wi f)g

where Q is the voxelated domain, T is the surface of the voxelated
domain, 71 is the unit normal of the voxelated surface, « is the
penalty term, h is the element length, and d is the distance vector
from the boundary surface of voxelated domain I to the true surface
I'. The main idea of the method is to shift the boundary condition
from T to I" by using second-order accurate Taylor series expansion.
We omit the details here and refer to [5, 39] for detailed analysis.
To perform the convergence study, we consider Poisson problem
on a two-dimensional disk of radius R = 0.5, centered at (xy =
0.5,y9 = 0.5) and f = 1. An exact solution exists and can be written
as: u(r) = 0.25(R% — r?), where r = y/(x — x0)2 + (y — yo)2. Fig. 6
shows the convergence behaviour for the linear basis function. If

https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/

Scalable adaptive PDE solvers in arbitrary domains

TTTT T T T T T T
1072 1 N
_‘5
S
=
s
=
- P -@ Ly(Q) (voxelated) Ml Loo (Q) (voxelated)
@ 12(Q)(SBM) — Loo(Q) (SBM)
-- slope = 1 -- slope = 2
10—10 [L | TTTTT T I
1073 1072 107!
h

Fig. 6. Convergence plot: Figure showing the convergence behaviour for the
Poisson operator on a two-dimensional circular disk.

we naively apply the boundary condition at the boundary nodes of
the voxelated geometry, we only get a first-order convergence in
both Ly and Le norm. This is because the right boundary condition
is applied at the wrong place, which is shifted by a distance d
from the true boundary. As seen from the signed distance plot
(Fig. 5b), the voxelated geometry boundary approaches the true
geometry according to the first order, and so is the convergence for
the discrete Poisson operator. With the SBM method, we recover
back the theoretical second-order convergence in both Ly and Lo
norm for the linear basis function.

4.4 Comparison with Immersed Case

Here, we present the comparison of the carved out approach with
the immersed approach in terms of the number of DOF and the total
number of elements. We note that this analysis is equation agnostic.
In order to compare the overall mesh element size and DOF, we set
the background mesh to a constant refinement level and refined
it near the object. Tab. 2 compares the fraction of elements and
DOF required for immersed and carved out approach. In the carved
out case, all the elements and nodes that are inside the domain are
discarded during the tree construction as mentioned in Sec. 3.2,
whereas for the immersed case, we retain the complete octree mesh.
2:1 balancing of octrees leads to the ripple effect, because of which
there is a significant number of elements that are inside the domain
(Fig. 1). The nodes and elements that are marked IN (i.e. inside the
object, sphere/dragon in this case) do not contribute towards the
accuracy of the solution. These are not solved for in the system
of equations, and eventually, a Dirichlet boundary condition is
applied to it, but they had the associated cost during tree traversal
and memory footprint for matrix and vector storage. Overall, we
see about an increase of 80-90% in element size and a 33-40% in
the DOF count if we immerse an object. The excess DOF count is
significantly smaller than the element count because of the fact
that we are performing continuous Galerkin (CG) computations
and several elements share a common DOF. Additionally, we must
recall the fact that in CG computations, hanging nodes do not
contribute to the additional degrees of freedom. However, if we were
to perform discontinuous Galerkin (DG) computation, each element
would have its own unique node id and associated DOF. In such
computations, the excess DOF count would scale as excess element
count. The actual fraction of DOF and element that is reduced as
a result of carving out depends upon the surface area and volume
of the object that is being carved out. A large surface area of the
object would result in more elements at the finest resolution near

SC, 2021,

Refine Level
11 12 13 14
fiem | 175 | 179 | 1.81 | 1.82
foor | 130 | 131 | 132 | 1.33
Stanford | fuem | 1.84 | 1.87 | 1.90 | 1.92
Dragon | fpor | 1.36 | 1.39 | 1.41 | 1.43

Sphere

Table 2: Comparison of the ratio of number of elements (f;jem) and degrees
of freedom (fpor) with and without (immersed) carving out the sphere and
the Stanford dragon from the domain. The base refinement was set to 4 and
the refinement level near the object was varied from 11 to 14.

the boundaries of the object. In contrast, a larger volume would
result in more elements being discarded out from the interior of the
object. Constructing an incomplete octree by cutting the elements
inside the object results in processing fewer elements during a solve.

4.5 Scaling

We evaluated the strong and weak scaling performance of our
traversal-based MATVEC using linear and quadratic elements on the
Frontera supercomputer for two different cases: a) an elongated
channel of dimension 16 X 1 X 1, b) a spherical region carved out
from the cube. We individually timed the execution of major com-
ponents of MATVEC, namely top-down and bottom-up traversal, leaf
MATVEC to compute the elemental operators, malloc and commu-
nication cost. It must be noted that for any PDE solver, MATVEC is
the basic building block and determines the overall parallel per-
formance and scalability. We highlight some important points
regarding the experimental setup for performing the scaling studies
and the interpretability of the scaling results:

e Strong Scaling: For each of the strong scaling cases, we generated
a fixed mesh defined by different refinement levels in different
regions of interest. When comparing the mesh with linear and
quadratic elements, the total number and distribution of elements
in a given mesh is the same not only at a global level but also
locally at each processor level. Note that the partitioning algo-
rithm DISTTREESORT is agnostic to the underlying element order
and distributes the element at the octant level before the nodal
information is encoded 3.

e However, the total number of DOF and problem size grows as
O((p+1)9) for an arbitrary order p and dimension d *. Hence, the
mesh with linear and quadratic elements have different compu-
tation and communication complexity. For instance, both linear
and quadratic mesh for channel strong scaling study have 13.5M
elements. But the linear element mesh has 13.7M DOFs, whereas
the quadratic has 109.1M DOFs.

e Weak Scaling: For the weak scaling runs, with an increase in
the number of processors, we increase the refinement level in
the regions of interest in such a way that the average number of
elements per processor remains the same. Similar to the strong
scaling, for a given number of processors, the total number and
distribution of elements are the same for both linear and quadratic

3More formally, consider a mesh M with N global elements distributed over p proces-
sor. If we globally number the elements of mesh from 0 - - - N' — 1, then if a processor
k,k < p, receives m; - - - my (m;’s being the global element number) elements for
linear, 0 < m; < my < N — 1, then the processor k for quadratic mesh will also
receive the same sequence of elements m; - - - my.

“Every element has O((p + 1)9) nodes (Refer Sec. 3.4).

https://frontera-portal.tacc.utexas.edu/

SC, 2021,

basis functions both globally and locally. Hence, the quadratic
mesh has a greater number of DOF compared to the linear one.

e In all the scaling figures (Fig. 7 -Fig. 10), for a given number of
processors, the left bar corresponds to the MATVEC execution pro-
file for the linear elements, and the right bar corresponds to the
execution profile of the quadratic elements. The total execution
time for the linear elements is shown by solid blue lines and red
dashed lines for the quadratic.

4.5.1 Scaling results for the channel: The incomplete octrees repre-
senting 16 X 1 X 1 elongated channel, with greater refinement on the
boundary and minimal refinement on the interior, are generated to
carry out the scaling studies. This is representative of the common
cases that arise in the boundary-dominated physical phenomena.
Each scaling run was repeated for linear and quadratic hexahedral
grids.

For the strong scaling runs, we generated octree mesh with
13M elements for linear and quadratic basis functions. Both linear
and quadratic mesh is similar at the elemental level. Fig. 7 shows
the strong scaling behavior in terms of parallel cost (Run time X
number of cores) for both the linear and quadratic basis functions.
A constant line would mean ideal strong scaling efficiency. For the
linear mesh, MATVEC execution time decreased from 2.87 s on 224
processors to 0.027 s on 28K processors, resulting in 81% parallel
efficiency for 128 fold increase in processor count. Similarly, for the
quadratic mesh, we see a reduction in MATVEC execution time from
13.5 s on 224 processors to 0.1 s on 28K processors, resulting in 90%
parallel efficiency. The overall theoretical complexity for MATVEC for
a given element of order p has been shown to scale as O(d(p+1)d+1).
We see a factor of 4.2 X increase in MATVEC execution time for
quadratic element (p = 2) over linear (p = 1), which is within the
theoretical bounds.

For the weak scaling runs, we created grids with a fixed grain
size of about 35K elements per core and timed MATVEC execution
time. The coarsest mesh consists of 981K elements on 28 processors
with 1.02M DOFs for linear and 8.01M DOFs for quadratic element,
whereas the finest mesh consists of 502M elements on a 14K pro-
cessors with 505M DOFs for linear and 4 billion DOFs for quadratic
elements. Fig. 8 plots the mean execution of the MATVEC averaged
over 100 iterations as a function of the number of cores. A constant
execution time would imply ideal weak scaling efficiency. We ob-
served a slowly growing weak-scaled execution time. Overall the
time increased from about 1.58 s on 28 cores to 1.9 s on 14 K cores
for linear elements (82% weak scaling efficiency) and 7.04 s to 8.04
s for quadratic elements (86% weak scaling efficiency).

’ | top-down O bottom-up [leaf marvec [malloc Ml communicate

1 T - - T T T
@ ‘ = linear = = quadratic ‘

s 1.5 CeemE="

= e e R e W TR = -
S O B B O 8 B H H
0
8

o) 0.5

= 224 448 896 1792 3584 7168 14336 28672

Number of cores —

Fig. 7. Strong scaling for channel case. Parallel cost evaluated with the 3D
Poisson MATVEC on Frontera supercomputer. Problem size was fixed at 13M
elements (13.7M unknowns for linear and 109.1M unknowns for quadratic)

Saurabh and Ishii, et al.

Case Element Strong scaling Weak Scaling
Type Order Num Num . Num .
r elements | DOFs Efficiency elements/core Efficiency
Channel Linear 135M 13.7M 0.81 35K 0.82
(Sec. 4.5.1) | Quadratic 135M 101.9M 0.90 35K 0.86
Sphere Linear 17.5M 174 M 0.90 10K 0.74
(Sec. 4.5.2) | Quadratic 175 M 139.7M 0.96 10K 0.83

Table 3: Summary of scaling efficiency for the channel and spherical carved

out region.

’ | top-down O bottom-up [1eaf maTvEC |:| malloc Bl communicate

= linear = = quadratrc _‘

1792 14336
Number of cores —

Time (s) —
S N B~ N

Fig. 8. Weak scaling run time for channel case: Execution time of 3D Pois-
son MATVEC on Frontera supercomputer, for a fixed grain size of about 35K
elements per core.

4.5.2 Scaling results for a spherical carved out region: To study the
scaling behavior for a complex carved out geometry, we carved out
a spherical region from a cubical domain. A sphere of diameter d = 1
unit is carved out from a cubical domain of 10 X 10 x 10. Overall,
full mesh contains 5 levels of octree adaptivity with maximum
refinement near the sphere. Such domain and mesh resolution are
similar to the application problem used for validation of Navier—
Stokes simulation.

’ | top- down O bottom- up [leaf marvec [malloc B communicate
- - ;

7.'; ’ == linear = = quadratic

£ 2 P
g

g1

=

=

30

A 224 1792 3584 7168

Number of cores —
Fig. 9. Strong scaling for sphere case: Parallel cost evaluated on Frontera su-
percomputer. Problem size was fixed at 17.5 M elements(17.4M unknowns for
linear and 139.7M unknowns for quadratic)

’ | top-down O bottom-up [1eaf maTvEC |:| malloc Bl communicate

3 {—linear = = quadratic
T e m g --—mmmm-
Z 2 ==
£
1
0

28 1792 14336
Number of cores —

Fig. 10. Weak scaling run time for sphere case: Mean Execution time of 100
MATVEC on Frontera supercomputer, for a fixed grain size of about 10K ele-
ments per core.

https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/

Scalable adaptive PDE solvers in arbitrary domains

‘ — Linear — Quadratic (Number of ghost nodes) ‘

== Linear = = Quadratic (17)

10*

Ghost nodes
Owned nodes

n

Average number of ghost nodes

103 -

number of cores —

Fig. 11. Figure showing the mean and standard deviation of the distribution
of ghost nodes (shown by solid lines) and ratio of ghost nodes by owned nodes
per processor (shown by dashed lines)

We created grids of about 17.5M elements for the strong scaling,
which correspond to 17.3M DOFs for the linear and 139.7M DOFs
for the quadratic basis functions. Similar to the channel case, the
mesh partition for both the linear and quadratic is similar at the
elemental level but has a different number of DOFs. Fig. 9 shows
the parallel efficiency averaged over 100 MATVEC iterations. Overall
we observe a good overall parallel efficiency. In the case of linear
elements, we observe a 29X reduction in MATVEC execution time
for 32 fold increase in processor (90% strong scaling efficiency).
In contrast, the quadratic element resulted in a 31X reduction in
computation time (96% strong scaling efficiency).

For the weak scaling, we kept a constant grain size of around
10K elements per processor. The coarsest mesh consists of about
290K elements resulting in 280K DOFs for the linear basis function
and 2.3 M for the quadratic. In contrast, the finest mesh consists of
138 M elements with about 138M DOFs for linear and 1.1 billion
DOFs for quadratic basis function. Fig. 10 shows the overall weak
scaling performance. MATVEC execution time grew from for 4.1 s on
28 processors to about 5.5 s on 14K processors for linear elements,
resulting in a factor of about 1.34X increase for 512X in the number
of processors (74% efficiency). In the case of quadratic elements,
the execution time increased from 20 s on 28 processors to about
25 s on 14K processors, yielding about 83% weak scaling efficiency.
Tab. 3 summarizes the scaling efficiency for both the channel and
the sphere case.

Further, we analyzed the distribution of ghost nodes per proces-
sor for the above sphere case, which is indicative of bytes of data
communicated. In our experiment, we kept a similar distribution of
the elements across processors for both linear and quadratic basis
function but has different degrees of freedom associated with them.
The amount of data communicated across processors is a function of
the total number of ghost elements that share partition boundaries.
With the increase in the number of processors, the total number
of ghost elements increases, but the average number of ghost ele-
ments decreases. For an arbitrary order element p, the number of
nodes that share faces across the processor boundaries (and hence
needs exchange of information) grows as O((p + 1)4-1). Since the
partition is similar at the elemental level, the average number of
ghost nodes that are needed for ghost exchange is higher for the
quadratic compared to the linear elements. The solid lines in Fig. 11
show the comparison for linear and quadratic case.

SC, 2021,

T T T T 11T T T T T 1111
100 Fr>vLinear: 525K clements B>Quad: 525K elements
[-O Linear: 65K elements ©O Quad: 65K elements

T L
Vector FMA Peak: 76.26 GFLOP/s |

L1

Vector Add Peak: 36.8Z.GFLOP/s

=

L 10 E
=9 £ =
S B 5 1
d = 36?’56 s(’w.s -
@) o A s\\"'%u"
1 e E
E e o &
U]
[e et i
0.1 AR ol Ll Lol
0.001 0.01 0.1 1

Arithmetic Intensity (AI)

Fig. 12. Figure showing roofline plot for the Poisson MaTVEC for linear and
quadratic basis function for two different meshes on Frontera. The plot was
generated using Intel Advisor. The green dashed line shows the achieved
bandwidth from our code. All values reported in the plot corresponds to dou-
ble precision floating point operations.

Additionally, we also analyzed the distribution of the ratio of
ghost nodes to the number of owned nodes (denoted by 1), which
is indicative of the extent over which the communication can be
overlapped with computation. Let N} be the number of local nodes
that are owned by processor (do not share processor boundaries
with any other elements) and Ng be the number of ghost nodes,
then:

_Ne (p+1d 1t 1
Np (p+1d (p+1)

From the above equation, we can see that this ratio grows inversely
with respect to the degree of element. We observe similar behav-
ior in our experiments, as shown by dashed lines in Fig. 11. This
explains the better scaling efficiency for quadratic as compared to
linear shown in Tab. 3. For a single processor run, n = 0. With an
increase in the number of processors 7 increases, and in extreme
limit of parallelization, when each processor has only one element,
n — 1. It is non-trivial to analyze the exact rate of increase in # for
arbitrary shapes as a function of processor count and is beyond the
scope of the current work.

4.5.3 Roofline: Fig. 12 shows the single core roofline plot for
the elemental MATVEC computation of Poisson operator using lin-
ear and quadratic basis function on Frontera. Overall, we can see
that the code is memory bound as is common for finite element
codes. We observe higher arithmetic intensity > (AI) for quadratic
(0.121) as compared to linear (0.072) elements. The amount of data
needed for MATVEC computation grows as O((p + 1)9) whereas
the MATVEC computation complexity grows as O(d(p + 1)4*1).
Therefore, Al tends to increase with polynomial order, which ex-
plains the observed behavior. We are able to achieve a performance
of about 4 GFLOP/s using linear basis function and 7 GFLOP/s
using quadratic basis functions for two different meshes, which
corresponds to a bandwidth of approximately 60 GB/s as shown
by the green lines. We note that we have not used any hand-coded
explicit vectorization to ensure the portability of the code across
various platforms and relied on compiler-directed vectorization.
We would like to explore some future avenues from the code opti-
mization point of view pertaining to more efficient cache blocking
techniques and architecture-specific efficient vectorized implemen-
tation of tensor products.

5 Al is measured as the amount of floating point operations performed per byte of data
loaded into the memory.

https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/

SC, 2021,
0.6 T T T TTTTT \x\uuxuxx T T T T Tl T
x
0.4 TNimimamame |
=
O
0.2 - Almedij [4] e Morris [43] ooooo
x Bakic [7] ¢ Achenbach [1] Q&o
1 LBM Medium [27] [] LBM Fine [27] ¢
© Present work
s i Lol L

10° 10 10° 10°
Re
Fig. 13. Drag crisis: Variation in Cy close to the region of drag crisis. We see a
good agreement with the experimental data and past numerical results.

Base Boundary Num Num DENDRO (s) Current Approach (s)
Refinement | Refinement | Elements | Processors | Mesh Mesh

creation | V¥ | Creation MATVEC

448 107.87 59.14 1.69 9.27

10 12 3,138,525 896 55.41 38.03 1.00 4.53

1792 38.21 25.47 0.87 2.34

448 280.88 447.05 21.51 142.89

10 14 49,096,209 896 159.87 349.39 11.51 77.33

1792 127.21 295.02 6.34 48.51

448 - - 4.57 42.58

12 12 17,440,929 896 - - 2.29 19.65

1792 - - 1.75 10.76

448 - - 33.56 182.23

12 14 63,398,613 896 - - 17.14 125.53

1792 - - 9.86 47.65

Table 4: Comparison of the time (in seconds) for mesh generation and
Navier-Stokes MATVEC for the current approach with DENDRoO based octree
framework. With level > 12 of base refinement, DENDRO framework gave
memory error, and hence no time is reported.

4.6 Comparison with Existing Method

Here, we compare the performance of the proposed algorithm
with the existing octree based framework, specifically DENDRoO [26,
51, 56]. DENDRO is a well-validated software and has been widely
used in various large scale scientific simulations [24, 32, 44-46,
53, 66] and has over 200 citations. DENDRO has additional support
for carrying out carving operations [66]. We choose DENDRO as
our benchmark for comparison. For comparison, we choose an
elongated channel of dimensions 128 X 4 X 1. The overall mesh
is determined by two levels of refinement: base refinement and
boundary refinement. Such a channel is commonly found in mi-
crofluidic devices, and simulating such devices is an active area of
research [19, 54].

Table 4 compares the time for mesh generation and total MATVEC
time® for Navier-Stokes equation. Unlike the 3D Poisson opera-
tor used for scaling case, the time to compute elemental operator
(denoted by leaf MATVEC) is substantially more expensive. The ex-
tra overhead introduced by performing top-down and bottom-up
traversal will be significantly smaller compared to performing el-
emental MATVEC. The overall time to solve is dominated by load
balancing of FEM computation. Since DENDRO looks at the com-
plete octree, a significant portion of the elements lie inside the
void regions. The partitioning algorithm distributes the elements
of complete octree (almost) equally among processors. This leads
to an imbalance in the overall FEM computation. This is clear from

SThis time include top-down, bottom up, leaf MATVEC and ghost exchange time

Saurabh and Ishii, et al.

the presented MATVEC results. Additionally, in all our runs, we were
not able to go beyond the level of 12 with the DENDRO framework.
This limits our ability to compare for a further elongated channel.
In contrast, within the current framework, we achieve a signifi-
cant improvement in terms of both scalability and time to solve.
Overall, we observed a speedup of about 20X for mesh generation
and 5 for MATVEC time. The actual speedup that we can achieve
is application-specific and needs to be studied individually. The
major factors that determine the overall speedup can be mainly
categorized as a) the fraction of volume that can be excluded out; b)
complexity of IN —~OUT test; c) the resultant communication pattern.

5 Application: Classroom Airflow Simulation

Validation: We first validate the solver by demonstrating the abil-
ity to capture the drag crisis by simulating flow past a sphere. A
sphere of diameter d = 1 is placed at a distance 3d from the inlet at
(3d, 3d, 3d) in a computation domain of (10d, 6d, 6d). The walls
of the domain, except the outlet have constant non-dimensional
freestream velocity of (1, 0, 0) and zero pressure gradient. At the
outlet, the pressure is set to 0 and zero gradient velocity boundary
condition is applied at the wall. No-slip boundary condition (zero
Dirichlet) for velocity is imposed on the surface of the sphere. We
use a well-established Variational Multiscale (VMS) stabilized Finite
Element method for solving the Navier—Stokes equation [12].

Fig. 13 plots the variation of C; across a range of Reynolds
numbers close to the drag crisis regime. We see that the results are in
excellent agreement with experimental and other numerical results.
We are able to accurately capture the drag crisis phenomena, where
a sudden drop in drag from 0.5 [1] - 0.6 [7] at Re around 16, 000 to
0.1 [1] - 0.2 [27] at Re of 2 million is observed. The finest resolution
simulation consists of ~40M elements which is significantly lower
than for LBM simulation by Geier et al. [27]. We visualize the
transition across the drag crises regime in Fig. 14. The drop in
drag in Fig. 13 is due to the change in wake structure and pressure
distribution in Fig. 14.

Application: We finally demonstrate the ability of our frame-
work to simulate flow past complex geometries. We consider a
realistic scenario of modeling airflow in a classroom with complex
furniture, seated students with/without computers (and monitors),
and a standing instructor. We are particularly interested in access-
ing if specific locations in the room are at significantly higher risk
for transmission — for example, where there is local recirculation
causing limited air exchange with the outside environment. In such
cases, it becomes imperative to identify if such locations have a
higher risk and rank among alternate seating arrangements to mit-
igate this risk. The current incomplete octree framework allows us
to efficiently and rapidly evaluate various seating arrangements
and scenarios. In order to carve out the geometry, we perform a
series of IN - OUT tests. This gives an automated way to carve out
complex geometries from the domain. Fig. 15 shows the computa-
tional domain of size 4.83 X 3.34 X 1 that includes complex features
such as tables, chairs and mannequins representing students and
instructor. The velocity inlets and pressure outlets are located at the
top of the domain. The non-dimensional inlet velocity of (0,0, —1)
is imposed at velocity inlets and zero pressure at pressure outlets.
Re = 10° was considered based on the inlet velocity and classroom

Scalable adaptive PDE solvers in arbitrary domains

SC, 2021,

(a) Re = 10,000

(b) Re = 160,000

(c) Re = 2,000,000

Fig. 14. The wake structures and pressure distribution on sphere at different Reynolds number. The drag crisis is evident by noticing the wake structure as it
changes from being divergent at Re = 160, 000 (high drag state) to being convergent at Re = 2 X 10° (low drag state). At the same time, we observe a high pressure
region being developed behind the sphere. The development of this high pressure zone is attributed to the low drag state.

Velocity inlets

Fig. 15. Figure showing the classroom domain and different regions of bound-
ary conditions such as velocity inlet and pressure outlet. The right side shows
the zoomed image with mesh refinement near the object. In all our simula-
tions, we consider that the person marked in red is COVID positive.

Base | Exit | Body Elements Num Immersed (s) Carved out (s)
level | refine | refine | Active procs Mesh Solve Mesh Solve
excess
level | level | Elements construction | time | construction | time
224 92.36 178.74 38.57 61.56
6 8 10 924,549 153
448 50.48 94.95 22.47 32.05
224 136.13 220.6 48 83.3
6 9 10 1,259,670 143
448 73.24 95.06 28.88 45.10
448 210.8 309.60 89.04 131.52
7 9 11 3,461,548 1.64
896 107.88 161.70 53.24 713

Table 5: Comparison of mesh generation and solve time for IBM with the
current approach for the classroom case. The carved out approach leads to
a significant reduction in number of elements. fixcess represents the excess

fraction of elements obtained as a result of generating complete octree.
height. These flow rates, air exchange rates, and room geometry

represent typical values in classrooms seen in US schools.

Fig. 16 illustrates preliminary results enabled by our framework
to evaluate the transmission of COVID viral load in the classroom.
We evaluate the impact of one infected individual (colored red)
who periodically coughs, releasing an aerosolized load of viral
particles. We model the time-dependent transmission of the viral
load as a scalar transport equation that is advected by a statistically
steady—state flow field obtained from the solution of Navier—Stokes
solver. We considered a classroom under two different scenarios:
with (Fig. 16b) and without (Fig. 16a) the presence of computer
monitors. We observe a significant reduction in transmission risk
in the case with monitors due to the monitors redirecting the flow
field upwards away from the occupied zone.

Tab. 5 compares the IMGA based immersed implementation
(based on the open-source code [52]) with the carved-out approach.
The overall mesh consists of three refinement levels: base refine-
ment, exit refinement (near the velocity inlet and pressure outlet),
and object refinement (near the monitors, tables, and mannequin).
To get the refined final mesh, we start the mesh at the base level
and successively refine the mesh until the required refinement level
is reached. At each iteration, we perform a series of ray-tracing to

Base | Exit | Body Num Number of Processors

level | level | Level | Elements 224 448 896 1792 | 3584
Time(s) | 344.87 | 176.15 | 92.16 | 46.44 | 23.95
7 8 11 5,555,871
Efficiency 1.0 0.98 0.94 0.93 | 0.90
Time(s) - 539.15 | 272.28 | 142.73 | 75.7
9 9 11 23,054,077
Efficiency - 1.0 0.99 0.94 | 0.89

Table 6: Scaling result for classroom simulation: Comparison of total solve
time and strong scaling efficiency with increase in processor count for two

different meshes with varying levels of refinement.

determine IN or OUT relative to the object. Overall, we see an ap-
proximately 50% increase in element size for the immersed case. We
achieve a speedup of approximately 2.2X during the mesh creation
stage and 2.8X for the complete solve time. The speedup obtained
in this case is significantly smaller than the channel case described
in Sec. 4.6 mainly because of the nature of objects being carved out.
The mannequin or the table considered here has a large surface area
to volume ratio. The small volume resulted in most of the octants
percolating close to the finest level before they can be discarded.
Additionally, ray-tracing based IN -OuT test needs to be performed
at each iteration of refinement, which is quite expensive [53]. Once
the mesh is generated, we see a significant speedup in the overall
solve time. Tab. 6 compares the scaling efficiency for two different
meshes. Overall we achieve a good scaling efficiency of about 90%
over 16 fold increase in the number of processors.

6 Conclusion

We present a fast and scalable tree-based mesh generation that
is not limited to isotropic domains, which serves as an alternative
to using two-tier meshes that are not dependent on having top-
level hexahedral meshes. The algorithms presented in the paper
are dimension agnostic and provides a generic way to handle any
arbitrary geometries. Our approach allows all elements to remain
isotropic, which speeds up assembly and does not affect condition-
ing due to element stretching. The scaling behavior of the MATVEC,
which is the most dominant part of any FEM solver, has been ver-
ified up to O(16K) cores. We further showcase the applicability
of these algorithms by solving Navier—Stokes for a large-scale 3D
problem in the presence of complex geometries. These algorithmic
features allows fast, well-balanced creation of complex meshes and
efficient solvers that open the way for parametric exploration of
very large-scale simulations (as our example simulation suggests).
In future, we plan to extend the algorithms to incorporate DG based
FEM along with Finite Difference and Finite Volume Methods.

SC, 2021,

Saurabh and Ishii, et al.

Viral Load
10e-05 00001 0.001 001 0.1 1 10 100 200403
I R B T A B T R RN T R AT R TR RA

(a) Without monitors

1.0e-05

- 00001 0.001 001 3 1 10
LI N T AN T O NN T R TR

Viral Load

100 2.0+03
[N ETTTT—-—

(b) With monitors

Fig. 16. Classroom scenario: Evaluation of viral load (in quanta / m?) in two classroom scenarios with and without monitors. The mannequin marked in the red is
infected with COVID and transmits the virus. The isocontours represent the regions of different viral load concentrations in space.

References

[1] Elmar Achenbach. 1972. Experiments on the flow past spheres at very high

[2

[10

[11

[12

[13

[15

[16

[

]

]

]

Reynolds numbers. Journal of Fluid Mechanics 54, 3 (1972), 565-575.

Gilou Agbaglah, Sébastien Delaux, Daniel Fuster, Jérome Hoepffner, Christophe
Josserand, Stéphane Popinet, Pascal Ray, Ruben Scardovelli, and Stéphane Zaleski.
2011. Parallel simulation of multiphase flows using octree adaptivity and the
volume-of-fluid method. Comptes Rendus Mecanique 339, 2-3 (2011), 194-207.
Mohammad W Akhtar and Stanley J Kleis. 2013. Boiling flow simulations on
adaptive octree grids. International journal of multiphase flow 53 (2013), 88-99.
Jaber Almedeij. 2008. Drag coefficient of flow around a sphere: Matching asymp-
totically the wide trend. Powder Technology 186, 3 (2008), 218-223.

Nabil M Atallah, Claudio Canuto, and Guglielmo Scovazzi. 2020. The second-
generation Shifted Boundary Method and its numerical analysis. Computer
Methods in Applied Mechanics and Engineering 372 (2020), 113341.

Michael Bader. 2012. Space-filling curves: an introduction with applications in
scientific computing. Vol. 9. Springer Science & Business Media.

Vukman Bakic. 2003. Experimental investigation of turbulent flows around a
sphere. TU Hamburg—Harburg, Schriftenreihe Schiffbau, Bericht Nr. 621, Juli 2003
(2003).

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp,
Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curf-
man Mclnnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan,
Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. 2019. PETSc
Web page. https://www.mcs.anl.gov/petsc. https://www.mcs.anl.gov/petsc
Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris
Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp,
Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curf-
man Mclnnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan,
Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. 2020. PETSc
Users Manual. Technical Report ANL-95/11 - Revision 3.14. Argonne National
Laboratory. https://www.mcs.anl.gov/petsc

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997.
Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset,
and H. P. Langtangen (Eds.). Birkhéuser Press, 163-202.

Peter Bastian, Markus Blatt, Andreas Dedner, Christian Engwer, Robert Kléfkorn,
Mario Ohlberger, and Oliver Sander. 2008. A generic grid interface for parallel
and adaptive scientific computing. Part I: abstract framework. Computing 82, 2-3
(2008), 103-119.

Y Bazilevs, VM Calo, JA Cottrell, TJR Hughes, A Reali, and G Scovazzi. 2007. Vari-
ational multiscale residual-based turbulence modeling for large eddy simulation
of incompressible flows. Computer methods in applied mechanics and engineering
197, 1-4 (2007), 173-201.

Benjamin Karl Bergen and Frank Hiilsemann. 2004. Hierarchical hybrid grids:
data structures and core algorithms for multigrid. Numerical Linear Alge-
bra with Applications 11, 2-3 (2004), 279-291. https://doi.org/10.1002/nla.382
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.382

Jacobo Bielak, Omar Ghattas, and EJ Kim. 2005. Parallel octree-based finite
element method for large-scale earthquake ground motion simulation. Computer
Modeling in Engineering and Sciences 10, 2 (2005), 99.

Erik Burman and Peter Hansbo. 2012. Fictitious domain finite element meth-
ods using cut elements: II. A stabilized Nitsche method. Applied Numerical
Mathematics 62, 4 (2012), 328-341.

C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, Eh Tan, T. Tu, L. C. Wilcox, and
S. Zhong. 2008. Scalable adaptive mantle convection simulation on petascale

(17

(18]

[19

[23

[24

[25

[26

[27

[28

[29

[30

[31

@
&,

(33]

supercomputers. In SC "08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. 1-15. https://doi.org/10.1109/SC.2008.5214248

Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees. SIAM
Journal on Scientific Computing 33, 3 (2011), 1103-1133.

Jose J Camata and Alvaro LGA Coutinho. 2013. Parallel implementation and
performance analysis of a linear octree finite element mesh generation scheme.
Concurrency and Computation: Practice and Experience 25, 6 (2013), 826-842.

Lei Chai, Guodong Xia, Mingzheng Zhou, and Jian Li. 2011. Numerical simulation
of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped
reentrant cavities in sidewall. International Communications in Heat and Mass
Transfer 38, 5 (2011), 577-584.

Dawson-Haggerty et al. [n.d.]. trimesh. https://trimsh.org/

Raphael Egan, Arthur Guittet, Fernando Temprano-Coleto, Tobin Isaac, Francois J
Peaudecerf, Julien R Landel, Paolo Luzzatto-Fegiz, Carsten Burstedde, and Fred-
eric Gibou. [n.d.]. Direct numerical simulation of incompressible flows on parallel
Octree grids. J. Comput. Phys. 428 ([n. d.]), 110084.

M Esmaily, Lluis Jofre, Ali Mani, and Gianluca Iaccarino. 2018. A scalable geo-
metric multigrid solver for nonsymmetric elliptic systems with application to
variable-density flows. 7. Comput. Phys. 357 (2018), 142-158.

Milinda Fernando, Dmitry Duplyakin, and Hari Sundar. 2017. Machine and
application aware partitioning for adaptive mesh refinement applications. In
Proceedings of the 26th International Symposium on High-Performance Parallel and
Distributed Computing. 231-242.

Milinda Fernando, David Neilsen, Hyun Lim, Eric Hirschmann, and Hari Sundar.
2019. Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-
Ratio Inspirals. SIAM Journal on Scientific Computing 41, 2 (2019), C97-C138.
Milinda Shayamal Fernando and Hari Sundar. 2020. paralab/Dendro-5.01: Local
timestepping on octree grids. (Jun 2020). https://doi.org/10.5281/zenodo.3879315
Milinda Shayamal Fernando and Hari Sundar. 2020. paralab/Dendro-5.01: LTS
work. https://doi.org/10.5281/zenodo.3876881

Martin Geier, Andrea Pasquali, and Martin Schénherr. 2017. Parametrization of
the cumulant lattice Boltzmann method for fourth order accurate diffusion Part
II: Application to flow around a sphere at drag crisis. J. Comput. Phys. 348 (2017),
889-898.

Deborah M Greaves and AGL Borthwick. 1999. Hierarchical tree-based finite
element mesh generation. Internat. j. Numer. Methods Engrg. 45,4 (1999), 447-471.
Boyce E Griffith, Richard D Hornung, David M McQueen, and Charles S Peskin.
2007. An adaptive, formally second order accurate version of the immersed
boundary method. Journal of computational physics 223, 1 (2007), 10-49.
Masado Ishii, Milinda Fernando, Kumar Saurabh, Biswajit Khara, Baskar Gana-
pathysubramanian, and Hari Sundar. 2019. Solving PDEs in space-time: 4D
tree-based adaptivity, mesh-free and matrix-free approaches. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-61.

Shin K Kang and Yassin A Hassan. 2011. A comparative study of direct-forcing im-
mersed boundary-lattice Boltzmann methods for stationary complex boundaries.
International Journal for Numerical Methods in Fluids 66, 9 (2011), 1132-1158.
Makrand A Khanwale, Kumar Saurabh, Milinda Fernando, Victor M Calo, James A
Rossmanith, Hari Sundar, and Baskar Ganapathysubramanian. 2020. A fully-
coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-
order, energy-stable numerical methods on adaptive octree based meshes. arXiv
preprint arXiv:2009.06628 (2020).

E Kim, Jacobo Bielak, and Omar Ghattas. 2003. Large-scale northridge earthquake
simluation using octree-based multiresolution mesh method. In Proceedings of
the 16th ASCE Engineering Mechanics Conference. Seattle, WA, USA;.

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1002/nla.382
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.382
https://doi.org/10.1109/SC.2008.5214248
https://trimsh.org/
https://doi.org/10.5281/zenodo.3879315
https://doi.org/10.5281/zenodo.3876881

Scalable adaptive PDE solvers in arbitrary domains

[34]

[35]

[36]
[37]

[38]

[39]

[40]
[41]

[42

[43]

Samuli Laine and Tero Karras. 2010. Efficient sparse voxel octrees—analysis,
extensions, and implementation. NVIDIA Corporation 2 (2010).

Jinmo Lee and Donghyun You. 2013. An implicit ghost-cell immersed boundary
method for simulations of moving body problems with control of spurious force
oscillations. J. Comput. Phys. 233 (2013), 295-314.

Marc Levoy, J Gerth, B Curless, and K Pull. 2005. The Stanford 3D scanning
repository. URL http://www-graphics. stanford. edu/data/3dscanrep 5 (2005).
Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and
smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers. 457-462.
Michael Macri and Suvranu De. 2008. An octree partition of unity method
(OctPUM) with enrichments for multiscale modeling of heterogeneous media.
Computers & structures 86, 7-8 (2008), 780-795.

Alex Main and Guglielmo Scovazzi. 2018. The shifted boundary method for
embedded domain computations. Part I: Poisson and Stokes problems. 7. Comput.
Phys. 372 (2018), 972-995.

Ali Mani. 2012. Analysis and optimization of numerical sponge layers as a
nonreflective boundary treatment. J. Comput. Phys. 231, 2 (2012), 704-716.
MATLAB. 2018. 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Mas-
sachusetts.

Rajat Mittal and Gianluca Iaccarino. 2005. Immersed boundary methods. Annu.
Rev. Fluid Mech. 37 (2005), 239-261.

Faith A Morrison. 2013. An introduction to fluid mechanics. Cambridge University
Press.

[44] Jayanta Mukherjee and William D Gropp. 2010. Performance evaluation and

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

enhancement of Dendro. Technical Report.

David Neilsen, Milinda Fernando, Hari Sundar, and Eric Hirschmann. 2019.
Dendro-GR: A scalable framework for Adaptive Computational General Rel-
ativity on Heterogeneous Clusters. In APS April Meeting Abstracts, Vol. 2019.
G11-003.

David Neilsen, Milinda Fernando, Hari Sundar, Eric Hirschmann, and Hyun Lim.
2018. Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-
Ratio Inspirals. APS 2018 (2018), D14-005.

Charles S Peskin. 1977. Numerical analysis of blood flow in the heart. Journal of
computational physics 25, 3 (1977), 220-252.

Stéphane Popinet. 2003. Gerris: a tree-based adaptive solver for the incom-
pressible Euler equations in complex geometries. J. Comput. Phys. 190, 2 (2003),
572-600.

Johann Rudi, A Cristiano I Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis,
Peter W] Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and Omar
Ghattas. 2015. An extreme-scale implicit solver for complex PDEs: highly hetero-
geneous flow in earth’s mantle. In Proceedings of the international conference for
high performance computing, networking, storage and analysis. 1-12.

Hanan Samet and Andrzej Kochut. 2002. Octree approximation and compression
methods.. In 3DPVT. Citeseer, 460—-469.

Rahul S Sampath, Santi S Adavani, Hari Sundar, Ilya Lashuk, and George Biros.
2008. Dendro: parallel algorithms for multigrid and AMR methods on 2: 1
balanced octrees. In Proceedings of the ACM/IEEE Conference on Supercomputing.
IEEE, 1-12.

Kumar Saurabh, Boshun Gao, Milinda Fernando, Hari Sundar, and Baskar Ganapa-
thysubramanian. 2020. Flow simulations integrating adaptive octree meshes with
immersogeometric analysis. (Jun 2020). https://doi.org/10.5281/zenodo.3879392
Kumar Saurabh, Boshun Gao, Milinda Fernando, Songzhe Xu, Makrand A Khan-
wale, Biswajit Khara, Ming-Chen Hsu, Adarsh Krishnamurthy, Hari Sundar, and
Baskar Ganapathysubramanian. 2021. Industrial scale Large Eddy Simulations
with adaptive octree meshes using immersogeometric analysis. Computers &
Mathematics with Applications 97 (2021), 28—44.

C Shen, DB Tian, C Xie, and J Fan. 2004. Examination of the LBM in simulation of
microchannel flow in transitional regime. Microscale Thermophysical Engineering
8, 4 (2004), 423-432.

Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William
Gropp, Elizabeth Lurie, and Dimitri Mavriplis. 2014. CFD vision 2030 study: a
path to revolutionary computational aerosciences.

Hari Sundar, Rahul S Sampath, and George Biros. 2008. Bottom-up construction
and 2: 1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing 30, 5 (2008), 2675-2708.

Jannis Teunissen and Ute Ebert. 2018. Afivo: A framework for quadtree/octree
AMR with shared-memory parallelization and geometric multigrid methods.
Computer Physics Communications 233 (2018), 156-166.

Tiankai Tu, David R O’Hallaron, and Omar Ghattas. 2005. Scalable parallel octree
meshing for terascale applications. In SC’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE, 4-4.

Markus Uhlmann. 2005. An immersed boundary method with direct forcing for
the simulation of particulate flows. J. Comput. Phys. 209, 2 (2005), 448-476.
Vasco Varduhn, Ming-Chen Hsu, Martin Ruess, and Dominik Schillinger. 2016.
The tetrahedral finite cell method: higher-order immersogeometric analysis on
adaptive non-boundary-fitted meshes. Internat. j. Numer. Methods Engrg. 107, 12
(2016), 1054-1079.

[61

[62

[63

[64

[65

[66

[67

]

]

]

SC, 2021,

Ryan Viertel and Braxton Osting. 2019. An approach to quad meshing based on
harmonic cross-valued maps and the Ginzburg-Landau theory. SIAM Journal on
Scientific Computing 41, 1 (2019), A452-A479.

Zeli Wang, Jianren Fan, and Kun Luo. 2008. Combined multi-direct forcing
and immersed boundary method for simulating flows with moving particles.
International Journal of Multiphase Flow 34, 3 (2008), 283-302.

Tobias Weinzierl. 2019. The Peano software—parallel, automaton-based, dy-
namically adaptive grid traversals. ACM Transactions on Mathematical Software
(TOMS) 45, 2 (2019), 1-41.

Kyu-Young Whang, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, Wan-Sup Cho,
Chong-Mok Park, and Il-Yeol Song. 1995. Octree-R: An adaptive octree for
efficient ray tracing. IEEE Transactions on Visualization and Computer Graphics 1,
4(1995), 343-349.

Fei Xu, Dominik Schillinger, David Kamensky, Vasco Varduhn, Chenglong Wang,
and Ming-Chen Hsu. 2016. The tetrahedral finite cell method for fluids: Immer-
sogeometric analysis of turbulent flow around complex geometries. Computers
& Fluids 141 (2016), 135-154.

Songzhe Xu, Boshun Gao, Alec Lofquist, Milinda Fernando, Ming-Chen Hsu,
Hari Sundar, and Baskar Ganapathysubramanian. 2021. An octree-based immer-
sogeometric approach for modeling inertial migration of particles in channels.
Computers & Fluids 214 (2021), 104764.

Hongfeng Yu, Jinrong Xie, Kwan-Liu Ma, Hemanth Kolla, and Jacqueline H Chen.
2015. Scalable parallel distance field construction for large-scale applications.
IEEE transactions on visualization and computer graphics 21, 10 (2015), 1187-1200.

https://doi.org/10.5281/zenodo.3879392

SC, 2021,
A Artifact Description

A.1 Libraries dependencies

The following dependencies are required to compile the code:

o C/C++ compilers with C++11 standards and OpenMP sup-
port

e MPI implementation (e.g. openmpi, mvapich2)

e PETSc 3.8 or higher

e ZLib compression library (used to write . vtu files in binary
format with compression enabled)

e MKL / LAPACK library

o CMake 2.8 or higher version

e libconfig for parameter reading from file.

A.2 Frontera environment

Experiments performed in Frontera are executed in the following

module environment.

Currently Loaded Modulefiles:

1) intel/19.0.5
2) impi/19.0.5
3) petsc/3.12

4) python3/3.7.0
5) autotools/1.2
6) cmake/3.16.1

A.3 Frontera compute node configuration

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(S): 56

On-line CPU(s) list: 0-55

Thread(s) per core: 1

Core(s) per socket: 28

Socket(s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel

CPU family: 6

Model: 85

Model name: Intel(R) Xeon
Platinum 8280
CPU @ 2.70GHz

Stepping: 7

CPU MHz: 2700.000

BogoMIPS: 5400.00

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 39424K

MemTotal: 195920208 kB

MemFree: 168962328 kB

MemAvailable: 168337408 kB

Saurabh and Ishii, et al.

B Artifact Evaluation

B.1 Signed distance computation

Let M denotes the closed orientable 2-manifold triangular mesh.
The signed distance from a point p rto M is given by:

d(p.M) = inf [lp - x|| sign(n - (p -))

where: ¢ denotes the closest point to p and n denotes the outward
normal. A positive value of d, means the point is inside the surface
and vice-versa.

B.2 Details of solver selection

PETSc was used to solve all the linear algebra problems. In par-
ticular, bi-conjugate gradient descent (-ksp_type bcgs) solver
was used in conjunction with Additive - Schwartz (-pc_type asm)
preconditioner to solve the linear system of equations. The NEW-
TONLS class by PETSc, that implements a Newton Line Search
method, was used for the nonlinear problems. Both the relative
residual tolerance and the absolute residual tolerance for linear and
non - linear solve are set to 107° in all numerical results.

B.3 Downloading and installing the code

This section presents how to run and reproduce the results pre-
sented in the paper. You can clone the repository using, git clone
git@github.com:abcd/sc21-kt.git. We use CMake to configure
and build. In Frontera node,

git clone git@github.com:abcd/sc21-kt.git
mkdir build && cd build

Load the module environment

mkdir build && cd build

cmake ../.

make MVCChannel MVCSphere signedDistance

B.4 Running experiments

B.4.1 MVCChannel: Scaling run for channel case. In order to run
the scaling case, it requires the 3 parameters: a) baseLevel b) bound-
aryLevel and c) element order (1/2). For example, on Frontera it can
be ran as:

ibrun MVCChannel 10 12 1 logl@_12.out
where, 10 is the base refinement level, 12 is the boundary refinement
level, 1 is the element order and 1og10_12.out is the output file
containing the relevant timing information.
B.4.2 MVCSphere: Scaling run for sphere case. In order to run the
scaling case, it requires the 3 parameters: a) baseLevel b) bound-
aryLevel and c) element order (1/2). For example, on Frontera it can
be ran as:

ibrun MVCSphere 7 12 1 log7_12.out
where, 7 is the base refinement level, 12 is the boundary refinement
level, 1 is the element order and log7_12.out is the output file
containing the relevant timing information.
B.4.3 signedDistance: The computation of signedDistance. In
order to find the signed distance, we successively refined near the
boundaries and computed the signed distance. In order to run the
code:

ibrun signedDistance stlFileName 4 14
where: st1FileName is the name of stl file, 4 is the minimum re-
finement level and 14 is the maximum level of refinement at the
stl boundary. After each successive iteration, the code output the

https://www.mcs.anl.gov/petsc/
http://hyperrealm.github.io/libconfig
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/

Scalable adaptive PDE solvers in arbitrary domains

information of boundary nodes. Then we compute the signed dis-
tance, using the python script provided under the scripts folder.
In order the run the python scripts:

python3 signedDistance stlFileName.

Note that you might need to change the number of processor
on your machine as the python script is parallel and make use of
multiprocessing library.

B.4.4 Roofline plot: We computed the roofline using Intel Advisor.
In order to run the roofline plot, first run the survey using:

ibrun -np 1 advixe-cl -collect survey -project-dir
outputDir -search-dir
src:=examples/BenchMark_channel/src — MVCChannel
baselLevel boundarylLevel eleOrder outputFile

where: outputDir is the directory to store output and MVCChannel
baseLevel boundarylLevel eleOrder outputFile is the same
as in previous description of Channel scaling.

Finally in order to collect FLOPS count:
ibrun -np 1 advixe-cl -collect=tripcounts —-flop
-mark-up-list= src/benchmark.cpp -project-dir= outputDir
- MVCChannel baselevel
boundaryLevel eleOrder outputFile
where: outputDir must be same directory as the survey directory
and MVCChannel must be called with the same arguments.

SC, 2021,

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Specification of the Subdomain
	3.2 Octree Construction
	3.3 2:1 Balancing
	3.4 Embedding Nodal Information
	3.5 Matrix-free, Traversal-based matvec
	3.6 Traversal-based Matrix Assembly

	4 Results
	4.1 Approximation of Voxelized Geometry
	4.2 Conditioning of Discrete Operators
	4.3 Convergence Test for Discrete Operators
	4.4 Comparison with Immersed Case
	4.5 Scaling
	4.6 Comparison with Existing Method

	5 Application: Classroom Airflow Simulation
	6 Conclusion
	References
	A Artifact Description
	A.1 Libraries dependencies
	A.2 Frontera environment
	A.3 Frontera compute node configuration

	B Artifact Evaluation
	B.1 Signed distance computation
	B.2 Details of solver selection
	B.3 Downloading and installing the code
	B.4 Running experiments

