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Abstract
We study the problem of learning the causal relationships between a set of observed variables in
the presence of latents, while minimizing the cost of interventions on the observed variables. We
assume access to an undirected graph G on the observed variables whose edges represent either all
direct causal relationships or, less restrictively, a superset of causal relationships (identified, e.g.,
via conditional independence tests or a domain expert). Our goal is to recover the directions of all
causal or ancestral relations in G, via a minimum cost set of interventions.

It is known that constructing an exact minimum cost intervention set for an arbitrary graph
G is NP-hard. We further argue that, conditioned on the hardness of approximate graph coloring,
no polynomial time algorithm can achieve an approximation factor better than Θ(log n), where n
is the number of observed variables in G. To overcome this limitation, we introduce a bi-criteria
approximation goal that lets us recover the directions of all but εn2 edges in G, for some specified
error parameter ε > 0. Under this relaxed goal, we give polynomial time algorithms that achieve
intervention cost within a small constant factor of the optimal. Our algorithms combine work on
efficient intervention design and the design of low-cost separating set systems, with ideas from the
literature on graph property testing.

1. Introduction

Discovering causal relationships is one of the fundamental problems of causality (Pearl, 2009).
In this paper, we study the problem of learning a causal graph where we seek to identify all the
causal relations between variables in our system (nodes of the graph). It has been shown that, under
certain assumptions, observational data alone lets us recover the existence of a causal relationship
between, but not the direction of all relationships. To recover the direction, we use the notion of
an intervention (or an experiment) described in Pearl’s Structural Causal Models (SCM) framework
(Pearl, 2009).

An intervention requires us to fix a subset of variables to each value in their domain, inducing a
new distribution on the free variables. For example, we may intervene to require that some patients
in a study follow a certain diet and others do not. As performing interventions is costly, a widely
studied goal is to find a minimum set of interventions for learning the causal graph (Shanmugam
et al., 2015). This goal however does not address the fact that interventions may have different costs.
For example, interventions that fix a higher number of variables will be more costly. Additionally,
there may be different intervention costs associated with different variables. For example, in a
medical study, intervening on certain variables might be impractical or unethical. Hyttinen et al.
(2013) address the need for such cost models and give results for the special case of learning the
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directions of complete graphs when the cost of an intervention is equal to the number of variables
contained in the intervention. Generalizing this notion, we study a linear cost model where the
cost of an intervention on a set of variables is the sum of (possibly non-uniform) costs for each
variable in the set. This model was first introduced in Kocaoglu et al. (2017a) and has received
recent attention (Lindgren et al., 2018; Addanki et al., 2020).

Significant prior work on efficient intervention design assumes causal sufficiency, i.e., there
are no unobserved (latent) variables in the system. In this setting, there is an exact characteri-
zation of the interventions required to learn the causal graph, using the notion of separating set
systems (Shanmugam et al., 2015; Eberhardt, 2007). Recently, the problem of learning the causal
graph with latents using a minimum number of interventions has received considerable attention
with many known algorithms that depend on various properties of the underlying causal graph (Ko-
caoglu et al., 2017b; Addanki et al., 2020; Kocaoglu et al., 2019). However, the intervention sets
used by these algorithms contain a large number of variables, often as large as Ω(n), where n is
the number of observable variables. Thus, they are generally not efficient in the linear cost model.
Some work has considered efficient intervention design in the linear cost model for recovering the
ancestral graph containing all indirect causal relations (Addanki et al., 2020). Other algorithms such
as IC∗ and FCI with running times exponential in the size of the graph, aim to learn the causal graph
in the presence of latents using only observational data; however, they can only learn a part of the
entire causal graph (Verma and Pearl, 1992; Spirtes et al., 2000).

1.1. Our Results

In order to address the shortcomings when there are latents, we consider two settings. In the first
setting, we assume that we are given an undirected graph that contains all causal relations between
observable variables, but must identify their directions. This undirected graph may be obtained,
e.g., by running algorithms that identify conditional dependencies and consulting a domain expert
to identify causal links. In the second setting, we study a relaxation where we are given a supergraph
H ofG containing all causal edges and other additional edges which need not be causal. The second
setting is less restrictive, modeling the case where we can ask a domain expert or use observational
data to identify a superset of possible causal relations.

From H we seek to recover edges of the ancestral graph1 of G, a directed graph containing
all causal path relations between the observable variables. Depending on the method by which H
is obtained, it may have special properties that can be leveraged for efficient intervention design.
For example, if we use FCI/IC∗ (Spirtes et al., 2000) to recover a partial ancestral graph from
observational data, the remaining undirected edges form a chordal graph (Zhang, 2008a). Past work
has also considered the worst case when H is the complete graph (Addanki et al., 2020). In this
work, we do not assume anything about how H is obtained and thus give results holding for general
graphs.

In both settings, we show a connection to separating set systems. Specifically, to solve the
recovery problems it is necessary and sufficient to use a set of interventions corresponding to a
separating set system when we are given the undirected causal graphG and a strongly separating set
system when we are given the supergraph H . A separating set system is one in which each pair of
nodes connected by an edge is separated by at least one intervention – one variable is intervened on

1. We note that ancestral graph defined here and in Kocaoglu et al. (2017b); Addanki et al. (2020) is slightly different
from the widely used notion from Richardson and Spirtes (2002).
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and the other is free. A strongly separating set system requires that every connected edge (u, v) is
separated by two interventions – there exists a intervention including u but not v and an intervention
that includes v but not u.

Unfortunately, finding a minimum cost (strongly) separating set system for an arbitrary graph
G is NP-hard (Lindgren et al., 2018; Hyttinen et al., 2013). We give simple algorithms that achieve
O(log n) approximation and further argue that, conditioned on the hardness of approximate graph
coloring, no polynomial time algorithm can achieve o(log n) approximation, where n is the number
of observed variables.

To overcome this limitation, we introduce a bi-criteria approximation goal that lets us recover
all but εn2 edges in the causal or ancestral graph, where ε > 0 is a specified error parameter. For
this goal, it suffices to use a relaxed notion of a set system, which we show can be found efficiently
using ideas from the graph property testing literature (Goldreich et al., 1998).

In the setting where we are given the causal edges in G and must recover their directions, we
give a polynomial time algorithm that finds a set of interventions from which we can recover all but
εn2 edges with cost at most ∼ 2 times the optimal cost for learning the full graph. Similarly, in the
setting of ancestral graph recovery, we show how to recover all but εn2 edges with intervention cost
at most ∼ 4 times the optimal cost for recovering all edges.

Our result significantly extends the applicability of a previous result (Addanki et al., 2020) that
gave a 2-approximation to the minimum cost strongly separating set system assuming the worst case
when the supergraph H is a complete graph. That algorithm does not translate to an approximation
guarantee better than Ω(log n) for general graphs.

Finally, for the special case whenG is a hyperfinite graph (Hassidim et al., 2009) with maximum
degree ∆, we give algorithms (See Appendix E) that obtain approximation guarantees as above, and
recover all but εn∆ edges of G.

1.2. Other Related Work

There is significant precedent for assumptions on background knowledge in the literature. For
example, (Hyttinen et al., 2013) and references therein, study intervention design in the same model:
a skeleton of possible edges in the causal graph is given via background knowledge, which may
come e.g., from domain experts or previous experimental results. Assuming causal sufficiency (no
latents), most work focuses on recovering causal relationships based on just observational data.
Examples include algorithms like IC (Pearl, 2009) and PC (Spirtes et al., 2000), which have been
widely studied (Hauser and Bühlmann, 2014; Hoyer et al., 2009; Heinze-Deml et al., 2018; Loh and
Bühlmann, 2014; Shimizu et al., 2006). It is well-known that to disambiguate a causal graph from
an equivalence class of possible causal structures, interventional, rather than just observational data
is required (Hauser and Bühlmann, 2012; Eberhardt and Scheines, 2007; Eberhardt, 2007). There
is a growing body of recent work devoted to minimizing the number of interventions (Shanmugam
et al., 2015; Kocaoglu et al., 2017b, 2019) and costs of intervention (Lindgren et al., 2018; Kocaoglu
et al., 2017a). Since causal sufficiency is often too strong an assumption (Bareinboim and Pearl,
2016), many algorithms avoiding the causal sufficiency assumption, such as IC∗ (Verma and Pearl,
1992) and FCI (Spirtes et al., 2000), and using just observational data have been developed. There
is a growing interest in optimal intervention design in this setting (Silva et al., 2006; Hyttinen et al.,
2013; Parviainen and Koivisto, 2011; Kocaoglu et al., 2017b, 2019).
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2. Preliminaries

Causal Graph Model. Following the SCM framework (Pearl, 2009), we represent a set of random
variables by V ∪L where V contains the endogenous (observed) variables that can be measured and
L contains the exogenous (latent) variables that cannot be measured. We define a directed causal
graph G = G(V ∪ L, E) on these variables where an edge corresponds to a causal relation between
the corresponding variables: a directed edge (vi, vj) indicates that vi causes vj .

We assume that all causal relations belong to one of two categories : (i) E ⊆ V × V containing
direct causal relations between the observed variables and (ii) EL ⊆ L × V containing relations
from latents to observable variables. Thus, the full edge set of our causal graph is E = E ∪EL. We
also assume that every latent l ∈ L influences exactly two observed variables, i.e., (l, u), (l, v) ∈
EL and no other edges are incident on l. This semi-Markovian assumption is widely used in
prior work (Kocaoglu et al., 2017b; Shpitser and Pearl, 2006) (see Appendix A for a more detailed
discussion). Let G(V,E) denote the subgraph of G restricted to observable variables, referred to as
the observable graph.

Similar to Kocaoglu et al. (2017b); Addanki et al. (2020), we define ancestral graph of G over
observable variables V , denoted by Anc(G) as follows : (vi, vj) ∈ Anc(G) iff there is a directed
path from vi to vj in G (equivalently in G due to the semi-Markovian assumption). Throughout we
denote n = |V |.
Intervention Sets. Our primary goal is to recover either G or Anc(G) via interventions on the
observable variables. We assume the ability to perform an intervention on a set of variables S ⊆ V
which fixes S = s for each s in the domain of S. We then perform a conditional independence test
answering for all vi, vj “Is vi independent of vj in the interventional distribution do(S = s)?” and
denote it using vi |= vj | do(S). Here do(S = s) uses Pearl’s do-notation to denote the interventional
distribution when the variables in S are fixed to s.

An intervention set is a collection of subsets S = {S1, . . . , Sm} that we intervene on in order
to recover edges of the observable or ancestral graph. It will also be useful to associate a matrix
L ∈ {0, 1}n×m with the collection where the ith column is the characteristic vector of set Si, i.e.,
row entry corresponding to node in Si is 1 iff it is present in Si. We can also think ofL as a collection
of n = |V | length-m binary vectors that indicate which of the m intervention sets S1, . . . , Sm each
variable vi belongs to.

As is standard, we assume that G satisfies the causal Markov condition and assume faith-
fulness (Spirtes et al., 2000), both in the observational and interventional distributions follow-
ing (Hauser and Bühlmann, 2014). This ensures that conditional independence tests lead to the
discovery of true causal relations rather than spurious associations.

Cost Model and Approximate Learning. In our cost model, each node u ∈ V has a cost C(u) ∈
[1,W ] for some W ≥ 1 and the cost of intervention on a set S ⊆ V has the linear form C(S) =∑

u∈S C(u). That is, interventions that involve a larger number of, or more costly nodes, are more
expensive. Our goal is to find an intervention set S minimizingC(S) =

∑
S∈S

∑
u∈S C(u), subject

to a constraint m on the number of interventions used. This min cost intervention design problem
was first introduced in Kocaoglu et al. (2017a).

Letting L ∈ {0, 1}n×m be the matrix associated with an intervention set S , the cost C(S) can
be written as C(L) =

∑n
j=1C(vj) · ‖L(j)‖1, where ‖L(j)‖1 is the weight of L’s jth row, i.e., the

number of 1’s in that row or the number of interventions in which vj is involved.
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We study two variants of causal graph recovery, in which we seek to recover the observable
graph G or the ancestral graph Anc(G). We say that an intervention set S is α-optimal for a given
recovery task if C(S) ≤ α · C(S∗), where S∗ is the minimum cost intervention set needed for that
task. For both recovery tasks we consider a natural approximate learning guarantee:

Definition 1 (ε-Approximate Learning) An algorithm ε-approximately learns G(V,E) (analo-
gously, Anc(G)) if it identifies the directions of a subset Ẽ ⊆ E of edges with |E \ Ẽ| ≤ εn2.

Generally, we will seek an intervention set S that lets us ε-approximately learn G or Anc(G), and
which has cost bounded in terms of S∗, the minimum cost intervention set needed to fully learn the
graph. In this sense, our algorithms are bicriteria approximations.

Independent Sets. Our intervention set algorithms will be based on finding large independent sets
of variables, that can be included in the same intervention sets, following the approach of Lindgren
et al. (2018). Given G(V,E), a subset of vertices Z ⊆ V forms an independent set if there are no
edges between any vertices in Z, i.e., E[Z] = ∅whereE[Z] is set of edges in the sub-graph induced
by Z. Given a cost function C : V → R+, an independent set Z is a maximum cost independent
set (MIS) if C(Z) =

∑
u∈Z C(u) is maximized over all independent sets in G. Since finding MIS

is hard (Cormen et al., 2009), we will use the following two notions of a MIS, with the first often
referred to as simply NEAR-MIS, in our approximate learning algorithms :

Definition 2 ((γ, ε)-NEAR-MIS) A set of nodes S ⊆ V is a (γ, ε)-near-MIS in G = (V,E) if
C(S) ≥ (1− γ)C(T ) and |E[S]| ≤ εn2 where T is a maximum cost independent set (MIS) in G.

Definition 3 ((ρ, γ, ε)-Independent-Set) A set of nodes S ⊆ V is a (ρ, γ, ε)-independent-set in
G = (V,E) if C(S) ≥ ρ(1− γ) · C(V ) and |E[S]| ≤ εn2.

3. Separating Set Systems

Our work focuses on two important classes of intervention sets which we show in Sections 4 and 5
are necessary and sufficient for recovering G and Anc(G) in our setting. Missing details from this
section are collected in Appendix B.

Definition 4 (Separating Set System) For any undirected graph G(V,E), a collection of subsets
S = {S1, · · · , Sm} of V is a separating set system if every edge (u, v) ∈ E is separated, i.e., there
exists a subset Si with u ∈ Si and v /∈ Si or with v ∈ Si and u /∈ Si.

Definition 5 (Strongly Separating Set System) For any undirected graph G(V,E), a collection
of subsets S = {S1, · · · , Sm} of V is a strongly separating set system if every edge (u, v) ∈ E is
strongly separated, i.e., there exist two subsets Si and Sj such that u ∈ Si \ Sj and v ∈ Sj \ Si.

For a separating set system, each pair of nodes connected in G must simply have different
assigned row vectors in the matrix L ∈ {0, 1}n×m corresponding to S (i.e., the rows of L form a
valid coloring of G). For a strongly separating set system, the rows must not only be distinct, but
one cannot have support which is a subset of the other’s. We say that such rows are non-dominating:
there are distinct i, j ∈ [m] such that L(u, i) = L(v, j) = 0 and L(u, j) = L(v, i) = 1. We observe
that every strongly separating set system must satisfy the non-dominating property (as also observed
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in Lemma A.9 from Addanki et al. (2020)). When S is a (strongly) separating set system for G we
call its associated matrix L a (strongly) separating matrix for G.

Finding an exact minimum cost (strongly) separating set system is NP-Hard (Lindgren et al.,
2018; Hyttinen et al., 2013) and thus we focus on approximation algorithms. We say the S is
an α-optimal (strongly) separating set system if C(S) ≤ α · C(S∗), where S∗ is the minimum
cost (strongly) separating set system. Equivalently, for matrices C(L) ≤ α · C(L∗) where L,L∗

correspond to S,S∗ respectively.
Unfortunately, even when approximation is allowed, finding a low-cost set system for an arbi-

trary graphG is still hard. In particular, we prove a conditional lower bound based on the hardness of
approximation for 3-coloring. Achieving a coloring for 3-colorable graphs that uses sub-polynomial
colors in polynomial time is a longstanding open problem (Wigderson, 1983; Blum and Karger,
1997; Karger et al., 1994), with the current best known algorithm (Arora and Chlamtac, 2006)
achieving an approximation factor O(n0.2111). Thus Theorem 6 shows the hardness of finding near
optimal separating set systems, barring a major breakthrough on this classical problem.

Theorem 6 Assuming 3-colorable graphs cannot be colored with sub-polynomial colors in polyno-
mial time, there is no polynomial time algorithm for finding an o(log n)-optimal (strongly) separat-
ing set system for an arbitrary graph G with n nodes when m = β log n for some constant β > 2.

Proof We give a proof by contradiction for the case of separating set system A similar proof can
be extended to strongly separating set systems. Suppose G is a 3-colorable graph containing n
nodes with unit costs for every node. We argue that if there is an a o(log n)-optimal algorithm for
separating set system then, we can use it to obtain an algorithm for 3-coloring of G using no(1)

colors, thereby giving a contradiction.
First, we observe that the cost of an optimal separating system on G when m = β log n is at

most n, as each color class forms an independent set in G and every node in the color class can
be assigned a vector of weight at most 1. Let A(G) denote the separating set system output by an
α-optimal algorithm where α = o(log n). We outline an algorithm that takes as input A(G) and
returns a no(1)-coloring of G.

We have C(A(G)) ≤ αC(S∗) where S∗ is an optimal separating set system for G. Letting L
be the separating matrix associated with A(G), we thus have

C(A(G)) =

n∑
j=1

‖L(j)‖1 ≤ αC(S∗) ≤ αn.

Using an averaging argument, we have that inA(G), there are at most n4 nodes (denoted by V \D(1))

with weight ‖L(j)‖1 more than 4α. Consider the remaining 3n
4 nodes given by D(1). Let D(1)

j

denote the nodes that have been assigned weight j by A(G). For each of the at most
(
m
j

)
vectors

with weight j that are feasible, we create a new color and color each node in D(1)
j using these new

colors based on the weight j vectors assigned to the node in A(G). We repeat this procedure for
every weight j in D(1). As the maximum weight of a node in D(1) is 4α, the total number of colors
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that we use to color all the nodes of D(1) is

4α∑
j=0

(
m

j

)
≤

4α∑
j=0

mj

j!
=

4α∑
j=0

(4α)j

j!

(m
4α

)j
≤ e4α

(m
4α

)4α
≤ 24α log e+4α log m

4α

< 24α log e+
√

4mα

< 2o(logn)+
√

logn·o(logn)

< no(1),

where the first strict inequality used the fact that log m
4α ≤

√
m
4α for m

4α >
β logn
o(logn) > 32.

After coloring the nodes of D(1), we remove these nodes from G and run α-optimal algorithm
A on the remaining nodes V \ D(1). Observing that a sub-graph of a 3-colorable graph is also
3-colorable, we have that the set of nodes obtained by running A on V \ D(1) that have weight
at most 4α (denoted by D(2)) also require at most no(1) colors. As |D(i)| ≥ 3|V \D(i−1)|

4 for all
i ∈ {1, 2, · · · , log n}, in at most log n recursive calls to A, we will fully color G using at most
no(1) log n = no(1) colors. Hence, we have obtained a no(1)-coloring of G using an α-optimal
algorithm when α = o(log n).

Remark. The results of Theorem 6 can be extended to any m. When m = o(log n), in our
hardness example that uses 3 colors, any valid separating set system using m interventions would
lead to a coloring of the graph using at most 2m = no(1) colors, i.e., a sub-polynomial number of
colors. Thus, even finding a valid separating matrix in this scenario is hard, under our assumed
hardness of 3-coloring.

We shall now proceed to discuss a O(log n) approximation algorithm for finding (strongly)
separating set systems. It is easy to check that for a strongly separating set system, every node must
appear in at least one intervention (because of non-dominating property), and so the set system has
cost as least

∑
v∈V C(v). At the same time, with m ≥ 2 log n, we can always find a strongly

separating set system where each node appears in log n interventions. In particular, we assign
each node to a unique vector with weight log n. Such an assignment is non-dominating and since(

2 logn
logn

)
≥ n, is feasible. It achieves cost C(S) = log n ·

∑
v∈V C(v), giving a simple log n-

approximation for the minimum cost strongly separating set system problem. For a separating
set system, a simple O(log n)-approximation is also achievable by first computing an approximate
minimum weight vertex cover and assigning all nodes in its complementary independent set the
weight 0 vector i.e., assigning them to no interventions. We give a sketch of the arguments involved
in proving the approximation ratio of the above algorithm and defer the full details to Appendix B.

A 2 log n-Approximation Algorithm. Find a 2-approximate weighted vertex cover X in G using
the classic algorithm from Williamson and Shmoys (2011). In L, assign zero vector to all nodes of
V \X; assign every node in X with a unique vector of weight log n and return L.

We observe that all the nodes that are part of maximum cost independent set (complement of
minimum weighted vertex cover) are assigned a weight 0 vector by optimal separating system for
G. Therefore, the cost of optimal separating set system is at least the cost of minimum cost vertex
cover in G. As every node is assigned a vector of weight log n and the cost of vertex cover is at
most twice the cost of the minimum weighted vertex cover, we have C(L) ≤ 2 log n · C(L∗).
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By Theorem 6, it is hard to improve on the above O(log n) approximation factor (up to con-
stants). Therefore, we focus on finding relaxed separating set systems in which some variables are
not separated. We will see that these set systems still suffice for approximately learning G and
Anc(G) under the notion of Definition 1.

Definition 7 (ε-(Strongly) Separating Set System) For any undirected graph G(V,E), a collec-
tion of subsets S = {S1, · · · , Sm} of V is an ε-separating set system if, letting L ∈ {0, 1}n×m be
the matrix corresponding to S , |{(vi, vj) ∈ E : L(i) = L(j)}| < εn2. It is strongly separating if
|{(vi, vj) ∈ E : L(i), L(j) are not non-dominating}| < εn2.

For ε-strongly separating set systems, when the number of interventions is large, specifically
m ≥ 1/ε, a simple approach is to partition the nodes into 1/ε groups of size ε · n. We then assign
the same weight 1 vector to nodes in the same group and different weight 1 vectors to nodes in
different groups. For ε-separating set system, we first find an approximate minimum vertex cover,
and then apply the above partitioning. In Appendix B, we show that we get within a 2 factor of
the optimal (strongly) separating set system. Therefore, for the remainder of this paper we assume
m < 1/ε. While m is an input parameter, smaller m corresponds to fewer interventions and this is
the more interesting regime.

4. Observable Graph Recovery

We start by considering the setting where we are given all edges in the observable graph G (i.e., all
direct causal relations between observable variables) e.g., by a domain expert, and wish to identify
the direction of these edges. It is known that, assuming causal sufficiency (no latents), a separating
set system is necessary and sufficient to learnG (Eberhardt, 2007). In Appendix C we show that this
is also the case in the presence of latents when we are given the edges in G but not their directions.
We also show that an ε-separating set system is sufficient to approximately learn G in this setting:

Claim 8 Under the assumptions of Section 2, if S = {S1, S2, · · ·Sm} is an ε-separating set system
for G, S suffices to ε-approximately learn G.

In particular, if S is an ε-separating set system, we can learn all edges in G that are separated by S
up to εn2 edges which are not separated. Given Claim 8, our goal becomes to find an ε-separating
matrix Lε for G satisfying for some small approximation factor α, C(Lε) ≤ α ·C(L∗) where L∗ is
the minimum cost separating matrix for G. Missing technical details of this section are collected in
Appendix C.

We follow the approach of Lindgren et al. (2018), observing that every node in an independent
set of G can be assigned the same vector in a valid separating matrix. They show that if we greedily
peel off maximum independent sets from G and assign them the lowest remaining weight vector
in {0, 1}m not already assigned as a row in L, we will find a 2-approximate separating matrix.
Their work focuses on chordal graphs where an MIS can be found efficiently in each step. However
for general graphs G, finding an MIS (even approximately) is hard (see Appendix A). Thus, in
Algorithm 1, we modify the greedy approach and in each iteration we find a near independent set
with cost at least as large as the true MIS in G (Def. 2). Each such set has few internal edges, this
leads to few non-separating assignments between edges of G in Lε. Let ε be parameter that bounds
the number of non-separating edges, and δ is the failure probability parameter of our Algorithm 1.
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All the error parameters are scaled appropriately (See Appendix C for more details) when we pass
them along in a procedure call to NEAR-MIS (line 5 in Algorithm 1).

Algorithm 1 ε-SEPARATING MATRIX(G,m, ε, δ)

1: Input : Graph G = (V,E), cost function C : V → R+, m, error ε, and failure probability δ.
2: Output : ε-Separating Matrix Lε ∈ {0, 1}n×m.
3: Mark all vectors in {0, 1}m as available.
4: while |V | > 0 do
5: S ← NEAR-MIS (G, ε2, εδ)
6: ∀ vj ∈ S, Set Lε(j) to smallest weight vector available from {0, 1}m and mark it unavail-

able.
7: Update G by E ← E \ E[S] and V ← V \ S.
8: end while
9: return Lε

Observe that any subset of fewer than εn nodes has at most ε2n2 internal edges and so the
NEAR-MIS (G, ε2, εδ) routine employed in Algorithm 1 always returns at least εn nodes. Thus the
algorithm terminates in 1/ε iterations. Across all 1/ε NEAR-MIS’s there are at most ε2n2 · 1/ε =
εn2 edges with endpoints assigned the same vector in Lε, ensuring that Lε is indeed ε-separating for
G.

In Algorithm 2, we implement the NEAR-MIS routine by using the notion of a (ρ, γ, ε)-Independent-
Set (Definition 3). We find a value of ρ that achieves close to the MIS cost via a search over de-
creasing powers of (1 + γ).

In Algorithm 3 we show how to obtain a (ρ, γ, ε)-Independent-Set (denoted by S) whenever the
cost of MIS in G is at least ρ · C(V ). So, C(S) ≥ ρC(V ) − ργC(V ) and we might lose a cost of
at most γρC(V ) compared to the MIS cost. Therefore, we add ε · n nodes of highest cost (denoted
by Sε/2) to S and argue that by setting γ = O(ε/W ), S ∪ Sε/2 has a cost at least the cost of MIS,
i.e., S ∪ Sε/2 is a (0, ε)-NEAR-MIS.

Algorithm 2 NEAR-MIS
1: Input : Graph G(V,E), cost function C : V → R+, error ε, and failure probability δ.
2: Output : Set of nodes that is a (0, ε)-NEAR-MIS in G.
3: Initialize ρ = 1, and let T be the set of

√
εn nodes in G with the highest cost.

4: while ρ ≥
√
ε do

5: S ← INDEPENDENT-SET(G, ρ, ε/8W, ε, δ′) where δ′ = εδ/4W log(1/ε)
6: Let Sε/2 denote the highest cost ε · n/2 nodes in V \ S.
7: if C(S ∪ Sε/2) ≥ C(T ) and |E[S ∪ Sε/2]| ≤ εn2 then
8: return S ∪ Sε/2
9: end if

10: ρ = ρ/(1 + γ)
11: end while
12: return T

9
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4.1. (ρ, γ, ε)− INDEPENDENT-SET

In this section, we introduce several new ideas and build upon the results for finding a (ρ, 0, ε)-
Independent-Set which has been used to obtain independent set property testers for graphs with unit
vertex costs (Goldreich et al., 1998). First, we describe an overview of the general approach.

Unit Cost Setting. Suppose S is a fixed MIS in G with |S| ≥ ρ · n and U ⊂ S. Let Γ(u) represent
the set of nodes that are neighbors of node u in G. Let

Γ(U) =
⋃
u∈U

Γ(u) and Γ(U) = V \ Γ(U).

Here, Γ(U) denotes the set of nodes with no edges to any node of U . We claim that S ⊆ Γ(U).
First, we observe that S ⊆ Γ(S) as S is an independent set so no node in S is a neighbor of another
node in S (i.e., all nodes in S are in Γ(S)). Then, we use the fact Γ(S) ⊆ Γ(U) since U ⊆ S to
conclude S ⊆ Γ(U). Further, Goldreich et al. (1998) proves that, if U is sampled randomly from
S, taking the lowest degree ρ · n nodes in the induced subgraph on Γ(U) will with high probability
yield a (0, ε)-NEAR-MIS for G. Intuitively, the nodes in Γ(U) have no connections to U and thus
are unlikely to have many connections to S.

To find a U that is fully contained in S, we can sample a small set of nodes in G; since we
have |S| ≥ ρ · n the sample will contain with good probability a representative proportion of nodes
in S. We can then brute force search over all subsets of this sampled set until we hit U which is
entirely contained in S and for which our procedure on Γ(U) returns a (ρ, 0, ε)-Independent-Set,
i.e., a NEAR-MIS.

General Cost Setting. In the general cost setting, when S is a high cost MIS, may not contain
a large number of nodes, making it more difficult to identify via sampling. To handle this, we
partition the nodes based on their costs in powers of (1 + γ) into k = O(γ−1 logW ) (where W is
the maximum cost of a node in V ) partitions V1, . . . , Vk.

A good partition is one that contains a large fraction of nodes in S: at least γρ|Vi|. Focusing
on these partitions suffices to recover an approximation to S. Intuitively, all bad partitions have few
nodes in S and thus ignoring nodes in them will not significantly affect the MIS cost.

Definition 9 ((γ, ρ)-good partition) Let S be an independent set in G with cost ≥ ρC(V ). Then
F(γ,ρ) = {i | |Vi ∩ S| ≥ γρ|Vi|} is the set of good partitions of V with respect to S.

Claim 10 Suppose S is an independent set in G with cost C(S) ≥ ρC(V ), then, there exists an
independent set S′ ⊆ S such that C(S′) ≥ ρ(1− 2γ)C(V ) and S′∩Vi = S ∩Vi for all i ∈ F(γ,ρ).

While we do not a priori know the set of good partitions, if we sample a small number t of
nodes uniformly from each partition, with good probability, for each good partition we will sample
γρt/2 nodes in S. We search over all possible subsets of partitions and in one iteration of our
search, we have all the good partitions denoted by {V1, V2 · · ·Vτ}. Now, for such a collection of
good partitions, we search over all possible subsets U = U1 ∪ U2 · · · ∪ Uτ where |Ui| = γρt/2 and
in at least one instance have all Ui in good partitions fully contained in S. Let

Z(U) :=
τ⋃
i=1

Vi \
τ⋃
i=1

Γ(Ui)

10
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be the nodes in every good partition Vi with no connections to any of the nodes in Ui. Analogous
to unit cost case, we sort the nodes in a good partition Vi by their degree in the induced subgraph
on Z(U). We select low degree nodes from each partition until the sum of the total degrees of the
nodes selected is εn2/k. We output union of all such nodes iff it is a (ρ, 3γ, ε)-independent set. One
key difference is that while including nodes from Z(U), we do not include the nodes in the sorted
order until sum of degrees is εn2. Instead, we process each good partition and include the nodes
from each partition separately. Later, we will argue that by doing so we have made sure that the cost
contribution of a particular partition is accounted for accurately.

Algorithm 3 (ρ, γ, ε) INDEPENDENT-SET

1: Input : Graph G = (V,E), cost function C : V → R+, parameters ρ, γ, ε and δ
2: Output : (ρ, 3γ, ε) independent set in G if one exists.
3: For i = 1, . . . , k, define Vi = {v ∈ V | (1 + γ)i−1 ≤ C(v) < (1 + γ)i} where k = γ−1 logW

4: Sample t = O(k log(k/εδ)
εγρ ) nodes Ṽi in each partition Vi.

5: for every collection of partitions {V1, V2, · · ·Vτ} ⊆ {V1, V2, · · ·Vk} do
6: for U = U1 ∪ U2 ∪ · · · ∪ Uτ such that Ui ⊆ Ṽi with size γρt/2 for all i ∈ [τ ] do
7: Let Z(U) :=

⋃τ
i=1 Vi \

⋃τ
i=1 Γ(Ui).

8: for i = 1 . . . τ do
9: Sort nodes in Z(U)∩Vi in increasing order of degree in the induced graph on Z(U).

10: Let Ẑi(U) ⊆ Z(U) ∩ Vi be set of nodes obtained by considering the nodes in the
sorted order until the total degree is εn2/k.

11: end for
12: Let Ẑ(U) =

⋃τ
i=1 Ẑi(U).

13: return Ẑ(U) if C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).
14: end for
15: end for

By construction, our output, denoted by Ẑ(U) will have at most εn2 internal edges. Thus, the
challenge lies in analyzing its cost. We argue that in at least one iteration, all chosen Ui for good
partitions will not only lie within the MIS S, but their union will accurately represent connectivity
to S. Specifically, any vertex v ∈ Z(U), i.e., with no edges to Ui for all i ∈ F(γ,ρ), should have few
edges to S. We formalize this notion using the definition of ε2-IS representative subset below.

Definition 11 (ε2-IS representative subset) R ⊆
⋃
i∈F(γ,ρ)

(S ∩ Vi) is an ε2-IS representative sub-
set of S if for all but ε2n nodes of good partitions i.e.,

⋃
i∈F(γ,ρ)

Vi, we have the following property:

Suppose v ∈
⋃

i∈F(γ,ρ)

Vi : if Γ(v) ∩R = ∅ then |Γ(v) ∩ S| ≤ ε2n.

We show that there is a ε2-IS representative subset containing at least γρt/2 nodes from each good
partition among our sampled nodes

⋃k
i=1 Ṽi. Setting ε2 = ε/2k we have:

Lemma 12 If t = O(k log(k/εδ)
εγρ ) nodes are uniformly sampled from each partition Vi to give Ṽi, with

probability 1 − δ, there exists an ε/2k-IS representative subset R such that, for every i ∈ F(γ,ρ),
|Ṽi ∩R| = γρt/2.

11
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Lemma 12 implies that in at least one iteration, our guess U restricted to the good partitions is in
fact an ε/2k-IS representative subset. Thus, nearly all nodes in Z(U) lying in good partitions have
at most εn/2k edges to S.

In the graph induced by nodes of Z(U), with edge set E[Z(U)], consider the degree incident on
nodes of S ∩ Vi for each partition Vi. As there are at most n nodes in Vi, from Defn. 11, we have
the total degree incident on S ∩ Vi is at most εn2/k. Thus, including the nodes with lowest degrees
in Ẑi(U) until the total degree is εn2/k will yield a set of nodes at least as large as S ∩ Vi. Since all
nodes in Vi have cost within a 1±γ factor of each other, we will haveC(Ẑi(U)) ≥ (1−γ)·C(S∩Vi).
As the cost of S in the bad partitions is small, using Claim 10, we have Ẑ(U) =

⋃τ
i=1 Ẑi(U) is a

(ρ,O(γ), ε)-independent set.

4.2. Approximation Guarantee

Overall, Algorithm 3 implements a (ρ, γ, ε)−INDEPENDENT-SET as required by Algorithm 2 to
compute a NEAR-MIS in each iteration of Algorithm 1. It just remains to show that, by greedily
peeling off NEAR-MIS from G iteratively, Algorithm 1 achieves a good approximation guarantee
for ε-Approximate Learning G. To do this, we use the analysis of a previous work from Lindgren
et al. (2018). In their work, an exact MIS is computed at each step, since their graph is chordal so
the MIS problem is polynomial time solvable (Lindgren et al., 2018). However, the analysis extends
to the case when the set returned has cost that is at least the cost of MIS (in our case a NEAR-MIS),
allowing us to achieve near 2-factor approximation, as achieved in (Lindgren et al., 2018). Our final
result is:

Theorem 13 For any m ≥ η log 1/ε for some constant η, with probability ≥ 1 − δ, Algorithm 1
returns Lε with C(Lε) ≤ (2 + exp (−Ω(m))) · C(L∗), where L∗ is the min-cost separating ma-
trix for G. Moreover Lε ε-separates G. Algorithm 1 has a running time O(n2f(W, ε, δ)) where
f(W, ε, δ) = O

(
W
ε2

log 1
ε exp

(
O
(
W 2 log2 W

ε6
log W

ε log W logW log 1/ε
εδ

)))
.

5. Ancestral Graph Recovery

In Section 4, we assumed knowledge of the edges in the observable graph G and sought to identify
their directions. In this section, we relax the assumption, assuming we are given any undirected
supergraphH ofG i.e., it includes all edges ofG and may also include edges which do not represent
causal edges. When given such a graph H , we cannot recover G itself and therefore, we seek to
recover all directed edges of the ancestral graph Anc(G) appearing in H (i.e., the set of intersecting
edges), which we denote by Anc(G) ∩ H . This problem strictly generalizes that of Section 4,
as when H = G we have Anc(G) ∩ H = G. Missing details of this section are collected in
Appendix D.

First, we show that to recover Anc(G) ∩H , a strongly separating system (Def 4) for H is both
necessary and sufficient. Furthermore, an ε-strongly separating system suffices for approximate
learning. We formalize this using the following lemma:

Lemma 14 Under the assumptions of Section 2, if S = {S1, S2, · · ·Sm} is an ε-strongly separat-
ing set system for H , S suffices to ε-approximately learn Anc(G) ∩H .

12
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Given Lemma 14, our goal becomes to find an ε-strongly separating matrix for H , Lε with cost
within an α factor of the optimal strongly separating matrix for H , for some small α.

To do so, our algorithm builds on the separating set system algorithm of Section 4. We first run
Algorithm 1 to obtain an ε-separating matrix LSε and construct S1, S2, · · ·S1/ε where each set Si
contains all nodes assigned the same vector inLSε – i.e., Si corresponds to the NEAR-MIS computed
at step i of Algorithm 1.

We form a new graph by contracting all nodes in each Si into a single super node and denote the
resulting at most 1/ε vertices by VS . In Addanki et al. (2020), the authors give a 2-approximation
algorithm for finding a strongly separating matrix on a set of nodes, provided the graph on these
nodes is complete. As H is an arbitrary super graph of G, the contracted graph on VS is also
arbitrary. However we simply assume the worst case, and run the Algorithm of Addanki et al.
(2020) on it to produce LSSε , which strongly separates the complete graph on VS . It is easy to show
that as a consequence, LSSε ε-strongly separates H .

Algorithm 4 ANCESTRAL GRAPH(H,m, ε, δ)

1: LSε := ε-SEPARATING MATRIX(H,m, ε, δ).
2: Construct S1, S2, · · ·S1/ε where each set Si contains nodes assigned the same vectors in LSε .
3: Construct a set of nodes VS by representing Si as a single node wi and C(wi) =

∑
u∈Si C(u).

4: LSSε := SSMATRIX(VS ,m) from Addanki et al. (2020).
5: return LSSε

To prove the approximation bound, we extend the result of Addanki et al. (2020), showing
that their algorithm actually achieves a cost at most 2 times the cost of a separating matrix for the
complete graph on VS which satisfies two additional restrictions: (1) it does not assign the all zeros
vector to any node and (2) it assigns the same number of weight one vectors as the optimal strongly
separating matrix. Further, we show via a similar analysis to Theorem 13 that this cost on VS is
bounded by 2 times the cost of the optimal strongly separating matrix on the contracted graph over
VS . Combining these bounds yields the final 4 approximation guarantee of Theorem 15.

Theorem 15 Let m ≥ η log 1/ε for some constant η and LSSε be matrix returned by Algorithm 4.
Then with probability ≥ 1 − δ, LSSε is an ε-strongly separating matrix for H and C(LSSε ) ≤
(4+exp (−Ω(m))) ·C(L∗) where L∗ is the min-cost strongly separating matrix forH . Algorithm 4
runs in time O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

6. Open Questions

We highlight that in both the settings, although we consider the presence of latents in the system,
in this paper, we provide results for learning causal relations among only the observable variables.
Identification of latents is an important goal and has been well-studied (Kocaoglu et al., 2017b,
2019; Addanki et al., 2020) when the objective is to minimize the number of interventions. However,
in Addanki et al. (2020), for the linear cost model, the authors argue that there is no good cost lower
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bound known, even for recovering the observable (rather than ancestral) graph in the presence of
latents. This makes the development of algorithms with approximation guarantees in terms of the
optimum cost difficult. We view addressing this difficulty as a major open question.

Our results on bounded degree graphs make an additional assumption that the graph is hyper-
finite, which gives more structure but still captures many graph families. It is an interesting open
question if we can extend them to general sparse graphs. This setting is challenging since even
finding a Near-MIS with ε · |E| edges is still open and likely to be hard (Ron, 2010). We conjecture
that if |E| = O(n), a constant approximation for our objectives is not possible (assuming standard
complexity theoretic conjectures) if we must separate all but ε · |E| many edges.

It would also be very interesting to extend our work to the setting where we seek to identify
a specific subset of edges of the causal graph, or where certain edges are ‘more important’ than
others. We hope that our work is a first step in this direction, introducing the idea of partial recovery
to overcome hardness results that rule out non-trivial approximation bounds for full graph recovery
in the linear cost model.
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Appendix A. Discussions

A.1. Semi-Markovian Assumption

Our assumption that each latent only affects two observable variables is commonly known as the
semi-Markovian condition and is standard in the literature, e.g., see Tian and Shpitser (2003); Ko-
caoglu et al. (2017b). In fact, using (pairwise) conditional independence tests, it is impossible to
discover latent variables that affect more than two observables, even with unlimited interventions.
Consider observables x, y, z and a latent lxyz that is a parent of all them. If we test whether x, y,
and z are all pairwise independent and they all turn out to be false, we can’t distinguish the cases
where a single latent lxyz or three separate latents lxy, lyz and lxz are causing this non-independence.
Thus, we cannot remove the assumption without changing our intervention model or making more
restrictive assumptions. As an example, Silva et al. (2006) considers the case when latents affect
more than two observables, however, they make very strong assumptions – that there are no edges
between observables, and each observable has only one latent parent.

A.2. Hardness of Independent Set

For the linear cost model, the problem of learning a causal graph was introduced in Kocaoglu et al.
(2017a). It was shown recently that the problem of obtaining an optimum cost set of interventions
is NP-hard (Lindgren et al., 2018). Under causal sufficiency (no latents), it is well known that the
undirected graph (also called Essential Graph (Zhang, 2008b; Lindgren et al., 2018)) recovered after
running the IC∗ algorithm is chordal. Further, an intervention set which is a separating set system
(Def. 4) for the Essential Graph ofG is both necessary and sufficient (Eberhardt, 2007; Shanmugam
et al., 2015) for learning the causal graph.

The authors of Lindgren et al. (2018) give a greedy algorithm to construct a 2-approximation
to the optimal cost separating set system of the essential graph. Their algorithms requires at each
step finding a maximum independent set in G and peeling it off the graph, and is the basis for our
approach in Section 4. Since G is chordal , there is an algorithm for finding an exact maximum
independent set in polynomial time (Frank, 1975). However, without the assumption of causal
sufficiency, we cannot directly extend their algorithm, since finding a maximum independent set in
a general graphG is NP-hard (Cormen et al., 2009). Moreover, finding an approximate independent
set within a factor of nε for any ε > 0 in polynomial time is also not possible unless NP ⊆
BPP (Feige et al., 1996).

Appendix B. Missing Details From Section 3

B.1. 2 log n Approximation Algorithm for Separating Set System

In this section, we show that the algorithm presented in section 3 obtains a 2 log n-optimal separating
set system for a given graph G. To do so, we first make the following two simple claims. Let
S∗ = {S1, S2, · · ·Sm} be the minimum cost separating set system forG and I denote the maximum
cost independent set in G.

Definition 16 (Vertex Cover). A set of nodes S is a vertex cover for the graph G(V,E), if for every
edge (u, v) ∈ E, we have {u, v} ∩ S 6= φ.

Claim 17 The set of vertices in V \ I forms a minimum weighted vertex cover for G.
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Proof Suppose X denote a minimum weighted vertex cover in G, then, V \ X is an independent
set in G. We have C(X) = C(V )−C(V \X) ≥ C(V )−C(I) as I is maximum cost independent
set. Observe that the vertex cover given by X := V \ I satisfies the above equation with equality.
Hence, the claim.

Claim 18 C(S∗) ≥ C(V \ I).

Proof Let L∗ denote optimal separating matrix corresponding to S∗. We can rewrite C(S∗) in
terms of C(L∗) =

∑n
j=1C(vj) ‖L(j)‖1. It is easy to observe that every node in an independent set

of G can be assigned the same vector in a separating matrix. So, nodes with weight zero in L∗ are
from an independent set (say IL∗) in G. As weight of the vectors assigned to remaining nodes in L∗

is at least 1, we have C(L∗) ≥ C(V )− C(IL∗) ≥ C(V )− C(I), using the definition of I .

Combining Claims 17 and 18, we can observe that a good approximation for weighted vertex
cover will result in a good approximation for separating set system. There is a well known 2-
approximation algorithm for weighted vertex cover problem using linear programming that runs in
polynomial time (Page 10, Theorem 1.6 Williamson and Shmoys (2011)).

Lemma 19 If m ≥ 2 log n, then, there is an algorithm that returns a separating set system that is
2 log n-optimal.

Proof LetX denote the minimum weighted vertex cover which is a 2-approximation obtained using
the well known linear programming relaxation (Williamson and Shmoys, 2011). In our algorithm,
we assign every node in X with a unique vector of weight log n. This is feasible because the set of
nodes in V \X form an independent set, and

(
m

logn

)
≥
(

2 logn
logn

)
≥ n. Combining Claims 17 and 18,

we have
C(L) = log n C(X) ≤ 2 log n C(V \ I) ≤ 2 log n C(S∗).

B.2. Algorithms for ε-(Strongly) Separating Set System when m ≥ 1/ε

ε-Separating Set System. For ε-separating set system on G(V,E), we first find a 2-approximate
minimum weighted vertex cover X using the well-known linear programming based algorithm
from Williamson and Shmoys (2011) (Refer Page 10, Theorem 1.6 in Williamson and Shmoys
(2011)). We then partition the nodes of X randomly into 1/ε groups of expected size ε · n. We then
assign the same weight 1 vector to nodes in the same group and different weight 1 vectors to nodes
in different groups. This is possible since m ≥ 1/ε. It is easy to see that the total number of edges
that are not separated on expectation is ε|E| ≤ εn2. For the remaining nodes in V \X that form an
independent set, we assign the zero vector. Therefore, total cost of ε-separating set system is given
by C(X). From Claim 17, we have C(X) ≤ 2C(V \I) where I is maximum weighted independent
set in G. Using Claim 18, we have C(X) ≤ 2C(S∗) where S∗ is optimal separating set system for
G. Therefore, we get within a 2 factor of the optimal separating set system.

ε-Strongly Separating Set System. For ε-strongly separating set system on H(V,E), we partition
the nodes randomly into 1/ε groups of expected size ε·n. We then assign the same weight 1 vector to
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nodes in the same group and different weight 1 vectors to nodes in different groups. This is possible
since m ≥ 1/ε. It is easy to see that the total number of edges that are not strongly separated on
expectation is ε|E| ≤ εn2. As every vector assigned to a node in a valid strongly separating matrix
should have weight at least 1, this results in an ε-strongly separating matrix, and the corresponding
set system with optimal cost.

Appendix C. Missing Details From Section 4

In this section, we refer to the conditional independence test described in section 2 as CI-test.

Claim 20 Suppose a set on interventions S = {S1, S2, · · ·Sm} is used for learning the edges of an
undirected causal graph G. Then, under the assumptions of section 2, S is a separating set system
for G.

Proof First, we show that when S is a separating set system for G, we can recover the directions
of G. Consider an edge (vi, vj) ∈ G and let Sk ∈ S be such that vi ∈ Sk and vj 6∈ Sk. As S is a
separating set system, we know that such a set Sk exists for every edge in G. Consider the CI-test
between vi and vj in the interventional distribution do(Sk). If the test returns that vi |= vj | do(Sk),
then, we infer vi → vj , otherwise we infer that vi ← vj . When we intervene on vi obtained by
do(Sk), the latent edges affecting vi and all other incoming edges to vi are removed. As we know
that there is a causal edge between the two variables, if the independence test returns true, it must
mean that there is no incoming edge into vi from vj .

In Eberhardt (2007), it was shown that a separating set system is necessary for learning the
directions among the observable variables assuming causal sufficiency. As we are trying to recover
G using interventions, such a condition will also hold for our case that is a generalization when not
assuming causal sufficiency. Hence, the claim.

Claim 21 (Claim 8 restated) Under the assumptions of Section 2, if S = {S1, S2, · · ·Sm} is an
ε-separating set system for G , S suffices to ε-approximately learn G.

Proof Given S denotes an ε-separating set system for G(V,E). So, there are at most εn2 edges
(u, v) ∈ E such that for all i ∈ [m], either {u, v} ∩ Si = φ or {u, v} ∩ Si = {u, v}. For
every such edge, any intervention on a set in S , say Si cannot recover the direction from a CI-test
u |= v | do(Si)? because for both the cases u ← v or u → v, the CI-test returns that they are
dependent. For the remaining edges (u, v) ∈ E, in the intervention Sj where {u, v} ∩ Sj = {u},
we can recover the direction using the CI-test : u → v if u 6⊥⊥ v | do(Sj) and u ← v otherwise.
From Def. 1, we have that S ε-approximately learns G.

Claim 22 (Claim 10 restated) Suppose S is an independent set inGwith costC(S) ≥ ρC(V ), then,
there exists an independent set S′ ⊆ S such that C(S′) ≥ ρ(1 − 2γ)C(V ) and S′ ∩ Vi = S ∩ Vi
for all i ∈ F(γ,ρ).
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Proof Construct S′ using (γ, ρ)-good partitions of V . For every i ∈ F(γ,ρ), include S ∩ Vi in S′.
Therefore, we have

C(S′) = C(S)−
∑

i 6∈F(γ,ρ)

C(S ∩ Vi)

≥ ρC(V )− γρ
∑

i 6∈F(γ,ρ)

|Vi|(1 + γ)i

≥ ρC(V )− γρ(1 + γ)
∑

i 6∈F(γ,ρ)

|Vi|(1 + γ)i−1

≥ ρC(V )− γρ(1 + γ)C(V )

≥ ρ(1− 2γ)C(V ).

Lemma 23 (Lemma 12 restated) If t = O( k
εγρ log 4k

εδ ) nodes are uniformly sampled from each

partition Vi to give Ṽi, with probability 1− δ, there exists an ε/2k-IS representative subset R such
that, for every i ∈ F(γ,ρ), |Ṽi ∩R| = γρt/2.

Proof
Consider a good partition Vi for some i ∈ F(γ,ρ). So, |Vi ∩ S| ≥ γρ|Vi|. As Ṽi consists of

t nodes that are uniformly sampled from Vi, using Hoeffding’s inequality (Bardenet and Maillard
(2015); Hoeffding (1994)), we know that |Ṽi ∩ S| ≥ γρt/2 with probability at least

1− exp(−γρt/8) ≥ 1− exp

(
−k
ε

log
4k

εδ

)
≥ 1− δ

2k
.

Applying union bound, we have for every i ∈ F(γ,ρ), |Ṽi ∩ S| ≥ γρt/2 with probability at least

1− k δ
2k
≥ 1− δ

2
.

Consider the union of all subsets Uj ⊆ Ṽj ∩ S of good partitions such that |Uj | = γρt/2, i.e.,

R =
k⋃

j=1 | j∈F(γ,ρ)

Uj .

We claim that R is a ε/2k-IS representative subset of V by arguing that if v has no neighbours
in R, then, the degree to S is more than εn/2k with low probability.

First, consider the case when v ∈ S, then |Γ(v)∩S| = 0 and Γ(v)∩R = φ. Suppose v ∈ Vj \S
for some j ∈ F(γ,ρ) and |Γ(v) ∩ S| ≥ εn/2k. If Γ(v) ∩ R = φ, then Γ(v) ∩ R ∩ Vi = φ for all
i ∈ F(γ,ρ). As R is formed using the sampled nodes, we have that every node in R should be from
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Vi \ (Γ(v)∩S ∩Vi) for the condition Γ(v)∩R = φ to be satisfied. As every element in R is chosen
uniformly at random from the respective good partitions independently, we have :

Pr
∀i,Ui∼Vi

[∀i : Γ(v) ∩R ∩ Vi = φ and |Γ(v) ∩ S| > εn/2k] ≤ Πi∈F(γ,ρ)

(
|Vi| − |Γ(v) ∩ S ∩ Vi|

|Vi|

)|Ui|
≤ exp

(
−
∑
i

|Ui||Γ(v) ∩ S ∩ Vi|
|Vi|

)

≤ exp

(
−γρt

n

∑
i

|Γ(v) ∩ S ∩ Vi|

)

≤ exp

(
−γρt

n

εn

2k

)
≤ εδ/2k.

Therefore, on expectation, there are at most n · εδ/4k nodes such that the number of neighbours
in S is more than εn/2k. Using Markov’s inequality, with probability 1− δ/2, we have that at most
εn/2k nodes have number of neighbours in S greater than εn/2k. Applying union bound, we have
with probability 1− δ that R is a ε/2k-IS representative subset.

Lemma 24 Suppose S is an independent set in G with cost C(S) ≥ ρC(V ) for some ρ > 0 and
Ẑ(U) denote the set found by Algorithm 3 such that U is a ε/2k-IS representative subset. Then, with
probability 1− δ, we have

C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

Proof Consider Ẑi(U) for some i ∈ F(γ,ρ) and let F :=
⋃
i∈F(γ,ρ)

Vi. In Algorithm 3, we obtained

Ẑi(U) by including nodes from Z(U)∩ Vi in the sorted order of degree such that the total degree of
nodes in the induced graph Z(U) is bounded by εn2/k. First, when U is a ε/2k-IS representative
subset, we observe that

U ⊆ S ∩ F ⊆ F \ Γ(S ∩ F ) ⊆ Z(U).

So, S ∩ Vi ⊆ Z(U) ∩ Vi. From Lemma 12, we have, for every node in Z(U) ∩ Vi except for
ε/2k many, the maximum degree to S ∩ Vi is at most εn/2k, and the remaining nodes can have a
maximum degree of n. Combining these statements, we have that the total degree incident on the
nodes in S ∩ Vi from the nodes Z(U) ∩ Vi is at most

εn

2k
· |Z(U) ∩ Vi|+ n · εn

2k
≤ εn2

k
.

As we include nodes in Ẑi(U) until sum of degrees is εn2/k, we have that the size of Ẑi(Ui)
will only be more than the size of S ∩Vi and satisfies |Ẑi(U)| ≥ |S ∩Vi|. We know that every node
in Vi has cost in the range [(1 + γ)i−1, (1 + γ)i), therefore, we have

C(Ẑi(U)) ≥ 1

(1 + γ)
C(S ∩ Vi)
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∑
i∈F(γ,ρ)

C(Ẑi(U)) ≥ 1

(1 + γ)

∑
i∈F(γ,ρ)

C(S ∩ Vi)

From Claim 22, we know∑
i∈F(γ,ρ)

C(Ẑi(U)) ≥ 1

(1 + γ)
C(S′)

≥ (1− γ)(1− 2γ)ρC(V )

C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

Lemma 25 Let G contain an independent set of cost ρC(V ), then, Algorithm 3 returns a set of
nodes Ẑ(U) such that C(Ẑ(U)) ≥ ρ(1 − 3γ)C(V ) and |E[Ẑ(U)]| ≤ εn2 with probability 1 − δ
and runs in time O

(
n2 exp

(
O
(
k2

ε log 1
γε log k

εδ

)))
.

Proof As our Algorithm 3 selects nodes from each partition Vi such that the total degree of nodes
in Ẑi(U) in the graph induced by E[Z(U)] is at most εn2/k. Therefore, total degree of nodes in
Ẑ(U) =

⋃
i∈F(γ,ρ)

Ẑi(U) is at most k · εn2/k. Hence, |E[Ẑ(U)]| ≤ εn2. From Lemma 24, we have

C(Ẑ(U)) ≥ ρ(1− 3γ)C(V ).

In Algorithm 3, we iterate over all subsets of the partitions {V1, V2, · · ·Vk}. Consider a subset
{V1, V2, · · ·Vτ} and in each partition, we iterate over all subsets Ui of size γρt/2. Therefore, total
number of subsets U formed from the union of subsets in each partition ∪τi=1Ui is given by

(
t

γρt/2

)τ
.

Using t = O(k log k/εδ
ργε ) and ρ ≥

√
ε, we have that the total number of iterations is at most

2k ·
(

t

γρt/2

)k
≤ 2k ·

(
2te

γρt

)γρtk/2
≤ 2k ·

(
6

γρ

)γρtk/2
≤ exp

(
O

(
k2

ε
log

1

γε
log

k

εδ

))
.

In each iteration, we can find Z(U) in O(|U|n) time. After that, we calculate the degree of nodes in
Z(U) ∩ Vi in the induced sub-graph E[Z(U)] which requires O(|Z(U)|2) = O(n2) running time.
Hence, the claim.

Lemma 26 Suppose S∗ denotes MIS in G(V,E). Algorithm 2 returns a set of nodes S such that
C(S) ≥ C(S∗), |S| ≥

√
εn and |E[S]| ≤ εn2 with probability 1− δ and runs in time

O

(
n2W

ε
log

1

ε
exp

(
O

(
W 2 log2W

ε3
log

W

ε
log

W logW log 1/ε

εδ

)))
.
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Proof
Let T denote the set of

√
εn nodes from V with highest cost. It is easy to observe that C(T ) ≥√

ε C(V ). If C(S∗) < C(T ), then, Algorithm 2 outputs the set T . Therefore,

C(T ) > C(S∗) and |E[T ]| ≤ (
√
εn)2 = εn2.

Otherwise, in Algorithm 2, we search for MIS with cost ρC(V ) using decreasing powers of (1 + γ)
with the help of the parameter ρ when ρ ≥

√
ε. If C(S∗) ≥ C(T ), then, |S∗| ≥ |T | =

√
εn and for

some 1 ≤ j ≤ 1
2γ log 1

ε and ρ = 1
(1+γ)j

(i.e.,
√
ε ≤ ρ ≤ 1) we have

ρC(V ) ≤ C(S∗) ≤ ρ(1 + γ)C(V ).

For this value of ρ, Algorithm 3 returns a set of nodes S such that |E[S]| ≤ ε
8W n2. We observe that

C(S) ≥ 1

(1 + γ)j
(1− 3γ)C(V )

≥ 1− 3γ

1 + γ

C(V )

(1 + γ)j−1
≥ (1− 4γ)C(S∗).

In our call to the Algorithm 3 from Algorithm NEAR-MIS, we set γ = ε
8W .

C(Sε/2) ≥ εn

2
(since, cost of a node is at least 1)

⇒ C(S ∪ Sε/2) ≥ C(S∗) +
εn

2
− ε

2W
C(S∗)

≥ C(S∗) +
εn

2
− ε

2W
n ·W ≥ C(S∗).

As every node in Sε/2 has degree at most n, we have

|E[S ∪ Sε/2]| ≤ εn2

8W
+
εn2

2
≤ εn2.

As C(S ∪Sε/2) ≥ C(T ) where T contains the
√
εn highest cost nodes, we have |S ∪Sε/2| ≥

√
εn.

When C(S∗) ≥ C(T ), we search for the correct value of ρ and for each guess, we call the routine
Algorithm 3. In total, the number of calls that are made to Algorithm 3 is at most 1

2γ log 1
ε . However,

in each call to Algorithm 3, we fail to output with probability δ′. As we set the failure probability
to δ′ = 2γδ/ log(1/ε), overall the iterations, using union bound, the failure probability is at most
δ′ · 1

2γ log 1
ε = δ.

From Lemma 25, Algorithm 3 runs in time O
(
n2 exp

(
O
(
k2

ε log 1
γε log k

εδ′

)))
. Substituting

k = γ−1 logW, δ′, γ = ε
8W and for a total of 1

2γ log 1
ε calls to Algorithm 3, the running time of

Algorithm 2 is

O

(
n2W

ε
log

1

ε
exp

(
O

(
W 2 log2W

ε3
log

W

ε
log

W logW log 1/ε

εδ

)))
.

From Lemma 26, we have that in each iteration, Algorithm 2 returns a set of nodes S that have a
cost C(S) ≥ C(S∗) where S∗ is the maximum independent set in G. In a previous work (Lindgren

24



INTERVENTION EFFICIENT ALGORITHMS FOR APPROXIMATE LEARNING OF CAUSAL GRAPHS

et al., 2018), it was shown that by using maximum independent set in each iteration, we obtain a
(2 + exp (−Ω(m))-optimal separating set system. Following the exact same analysis, gives us an
approximation factor close to 2. We refer the reader to the analysis in Appendix F, and give the
main statement of the Lemma below.

Lemma 27 For any m ≥ η log 1/ε for some constant η > 2, with probability ≥ 1− δ, Algorithm 1
returns Lε with C(Lε) ≤ (2 + exp (−Ω(m))) · C(L∗), where L∗ is the min-cost separating matrix
for G

Scaling Parameters. In Algorithm 1, we pass a scaled value of ε by setting it to ε2 when we call
Algorithm 2, as this ensures that total number of edges returned over 1

ε calls is at most εn2. We
also set the failure probability for each call as εδ, to ensure that over 1

ε calls, total failure probability
using union bound is at most δ.

Theorem 28 (Theorem 13 restated) For any m ≥ η log 1/ε for some constant η, with probabil-
ity ≥ 1 − δ, Algorithm 1 returns Lε with C(Lε) ≤ (2 + exp (−Ω(m))) · C(L∗), where L∗ is
the min-cost separating matrix for G. Moreover Lε ε-separates G. Algorithm 1 has a running time
O(n2f(W, ε, δ)) where f(W, ε, δ) = O

(
n2W
ε2

log 1
ε exp

(
O
(
W 2 log2 W

ε6
log W

ε log W logW log 1/ε
εδ

)))
.

Proof Using all the above scaled parameters, from Lemma 26, the running time of Algorithm 1 that
internally calls Algorithm 2 for 1

ε number of times, is given by

O

(
n2W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

From Lemma 27, we have the approximation guarantee.

Remark. Observe that our running time is exponential in 1/ε and therefore setting ε < 1/n2 to
get a separating system with all edges separated requires exponential running time. As we have
argued that finding such a set system with near optimal cost is hard conditioned on the hardness of
approximate coloring (Theorem 6), it is thus also conditionally hard to improve our runtime to be
polynomial in 1/ε. It is an interesting open question to study the parameterized hardness beyond
polynomial factors with respect to ε.

By Theorem 13 with m = O(log(1/ε)) interventions we can ε-approximately learn any causal
graph G. For learning the entire graph G, m ≥ logχ interventions are necessary, where χ is the
chromatic number of G, since the rows of L ∈ {0, 1}n×m must be a valid coloring of G (Lindgren
et al., 2018).

Appendix D. Missing Details From Section 5

In this section, we say a pair of nodes (vi, vj) share an ancestral relation, if vi has a directed path to
vj (vi is an ancestor of vj) or vj has a directed path to vi (vj is an ancestor of vi).

Lemma 29 Suppose S = {S1, S2, · · · , Sm} is a collection of subsets of V . If Anc(G) ∩ H is
recovered from H using conditional independence tests by intervening on the sets Si ∈ S . Then,
under the assumptions of section 2, S is a strongly separating set system on H .
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Proof First, we argue that to recover Anc(G) ∩ H it is sufficient that S is a strongly separating
set system on H . Suppose (vi, vj) ∈ H and vi, vj share an ancestral relation i.e., either vi is an
ancestor of vj or vj is an ancestor of vi. Therefore, vi 6⊥⊥ vj and (vi, vj) ∈ Anc(G). From Lemma
1 in Kocaoglu et al. (2017b), we know that, we can recover the ancestral relation between vi and
vj using conditional independence tests (or CI-tests) on interventional distributions that strongly
separate the two variables vi and vj . As S is a strongly separating set system for H , we can recover
all ancestral relations in Anc(G) ∩H .

Now, we show that a strongly separating set system on H is necessary. Here, we give a proof
similar to Lemma A.1 from Addanki et al. (2020). Suppose S is not a strongly separating set system
forH . If there exists a pair of nodes containing an ancestral relation, say (vi, vj) ∈ H∩Anc(G) such
that every set Sk ∈ S contains none of them, then, we cannot recover the ancestral relation between
these two nodes as we are not intervening on either vi or vj and the results of an independence
test vi |= vj might result in a wrong inference, possibly due to the presence of a latent variable lij
between them. Consider the case when only one of them is present in every set of S . Let S be such
that ∀Sk ∈ S : Sk ∩ {vi, vj} = {vi} ⇒ vi ∈ Sk, vj 6∈ Sk. We choose our graph G to have two
components {vi, vj} and V \{vi, vj}; and include the edge vj → vi in it. Observe that vi 6⊥⊥ vj . Our
algorithm will conclude from the CI-test vi |= vj | do(Sk)? that vi and vj are independent. However,
it is possible that vi 6⊥⊥ vj because of a latent lij between vi and vj , but when we do CI-test, we
get vi |= vj | do(Sk) as intervening on vi disconnects the lij → vi edge. Therefore, our algorithm
cannot distinguish the two cases vj → vi and vi ← lij → vj without intervening on vj . For every S
that is not a strongly separating set system on H , we can provide a graph G such that by intervening
on sets in S , we cannot recover Anc(G) ∩H from H correctly.

Lemma 30 (Lemma 14 restated) Under the assumptions of Section 2, if S = {S1, S2, · · ·Sm} is
an ε-strongly separating set system for H , S suffices to ε-approximately learn Anc(G) ∩H .

Proof Given S denotes an ε-strongly separating set system for H . So, there are at most εn2

edges (u, v) ∈ H such that for all i ∈ [m], either {u, v} ∩ Si = φ or {u, v} ∩ Si = {u, v} or
{u, v} ∩ Si = {u} (without loss of generality). For every such edge, any intervention on a set in
S , say Si cannot recover the direction from a conditional independence test(CI-test) u |= v | do(Si)
because for both the cases u ← v or u ← luv → v, where luv is a latent, the CI-test returns that
they are independent. Therefore, we cannot recover the ancestral relation (if one exists) between
u, v that are not strongly separated in H . For edges (u, v) ∈ H that are strongly separated using
Si and Sj , we can recover the ancestral relation using CI-tests u |= v | do(Si) and u |= v | do(Sj).
From Def. 1, we have that S ε-approximately learns G.

Algorithm SSMATRIX from Addanki et al. (2020) gives a 2-approximation guarantee for the
output strongly separating matrix. However, we cannot directly extend the arguments as the guaran-
tee holds when the input graph is complete. We get around this limitation, and show that Algorithm 4
achieves a close to 4-approximation, by relating the cost of ε-strongly separating matrix returned by
SSMATRIX on the supernode set VS , to the cost of 2-approximate ε-separating matrix that we find
using Algorithm 1.

Let ALGS denote the cost of the objective
∑n

j=1C(vj) ‖LSε (j)‖1 obtained by Algorithm 1
whereLSε is an ε-separating matrix; ALGSS denote the cost of the objective

∑n
j=1C(vj) ‖LSSε (j)‖1

obtained by Algorithm 4 where LSSε is an ε-strongly separating matrix. For the sake of analysis,
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during assignment of vectors to nodes in LSε , we assume that Algorithm 1 only allows vectors
of weight at least 1. As SSMATRIX algorithm from Addanki et al. (2020) assigns vectors with
weight atleast 1 (otherwise it will not be a valid strongly separating matrix), this assumption for
ALGS helps us in showing a relation between the costs of LSSε and LSε . As that is not sufficient
to obtain the claimed guarantee, instead of assigning

(
m
1

)
vectors of weight 1, we constraint it to

a fixed number r ≤
(
m
1

)
. In Addanki et al. (2020), Algorithm SSMATRIX assigns vectors to LSSε

by guessing the exact number of weight 1 vectors in OPTSS , the parameter r corresponds to this
guess.

Let OPTSS and OPTS denote optimum objective values associated with strongly separating
and separating matrices for a graph H . Let ALGSS(r) denote the cost C(LSSε ) assuming first r
columns are used for exactly r weight 1 vectors during the assignment in LSSε , and the remaining
m − r columns are used for all the remaining vector assignments. Similarly, ALGS(r), OPTS(r)
and OPTSS(r) are defined.

Lemma 31 OPTS(r) ≤ OPTSS(r) for any r ≥ 0.

Proof Observe that any strongly separating matrix for H is also a separating matrix for H . Now,
consider a strongly separating matrix that achieves cost OPTSS(r) using r weight 1 vectors, then,
we have

OPTS(r) ≤ OPTSS(r).

Lemma 32 C(LSSε ) ≤ (4 + γ + exp (−Ω(m))) ·OPTSS .

Proof First, we note that in any strongly separating matrix, for the non-dominating property to
hold, the support of weight 1 vectors and the support of vectors of weight > 1 are column disjoint.
Suppose a∗1 denote the number of columns of m that are used by OPTSS for weight 1 vectors i.e,
OPTSS(a∗1) = OPTSS .

Following the exact proof of Lemma A.5 in Addanki et al. (2020) gives us the following guar-
antee about Algorithm 4

C(LSSε ) ≤ 2 ALGS(a∗1).

From Theorem 13 and Lemma 27 in Appendix F (or the analysis from Lindgren et al. (2018)) :

ALGS(a∗1) ≤ (2 + exp (−Ω(m))) OPTS(a∗1).

From Lemma 31, we know OPTS(a∗1) ≤ OPTSS(a∗1). Therefore, we have

ALGS(a∗1) ≤ (2 + exp (−Ω(m))) OPTSS(a∗1)

= (2 + exp (−Ω(m))) OPTSS .

Hence, the lemma.
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Theorem 33 (Theorem 15 restated) Let m ≥ η log 1/ε for some constant η and LSSε be matrix
returned by Algorithm 4. Then with probability ≥ 1− δ, LSSε is an ε-strongly separating matrix for
H and C(LSSε ) ≤ (4 + exp (−Ω(m))) ·C(L∗) where L∗ is the min-cost strongly separating matrix
for H . Algorithm 4 runs in time O(n2f(W, ε, δ)) where

f(W, ε, δ) = O

(
n2W

ε2
log

1

ε
exp

(
O

(
W 2 log2W

ε6
log

W

ε
log

W logW log 1/ε

εδ

)))
.

Proof From Lemma 32, we have C(LSSε ) ≤ (4 + exp (−Ω(m)))C(L∗). The sets of nodes
S1, S2, · · ·S1/ε returned by Algorithm 4 are such that every set Si contains at most ε2n2 edges
with probability 1− δ. Therefore, in total at most 1

ε ε
2n2 ≤ εn2 edges do not satisfy strongly sepa-

rating property. As SSMATRIX has a running time of O(|VS |) = O(1
ε ), and using the running time

of Algorithm 1 from Theorem 28, our claim follows.

Appendix E. Hyperfinite Graphs : Better Guarantees

In this section, we show that when G has maximum degree ∆ and satisfies hyperfinite property,
we can obtain the same approximation guarantees, but the number of edges that are not (strongly)
separated can be improved to ε · n ·∆. Informally, a hyperfinite graph can be partitoned into small
connected components by removing ε ·n edges for every ε > 0. Bounded degree hyperfinite graphs
include the class of bounded-degree graphs with excluded minor (Alon et al., 1990), such as planar
graphs, constant tree-width graphs, and also non-expanding graphs (Czumaj et al., 2009).

Definition 34 A Graph G(V,E) is (ε, k)-hyperfinite if there exists E′ ⊆ E and |E′ \E| ≤ εn such
that every connected component in the induced subgraph of E′ is of size at most k. A Graph G is
said to be τ -hyperfinite, if there exists a function τ : R+ → R+ such that for every ε > 0, G is
(ε, τ(ε))-hyperfinite.

If a τ -hyperfinite graph G has maximum degree ∆, we give algorithms for (strongly) separating
set systems onG that obtain the same approximation guarantees, but the number of edges that are not
(strongly) separated at most ε · n ·∆. In order to obtain that, we extend the additive approximation
algorithm of Hassidim et al. (2009) for finding the maximum independent set to the weighted
graphs i.e., when the nodes have costs and return a NEAR-MIS instead of MIS. First, we define a
very important partitioning of the nodes V possible in τ -hyperfinite graphs and give the lemma that
describes the guarantees associated with finding the partitions.

Definition 35 (Hassidim et al. (2009)(ε, k) partitioning oracle O) For a given graphG(V,E) and
query q about v ∈ V , O returns the partition P [v] ⊆ V containing v that satisfies :

1. for every node v ∈ V , |P [v]| ≤ k and P [v] is connected

2. |{(u,w) ∈ E | P [u] 6= P [w]}| ≤ ε · n with probability 9/10.

Lemma 36 (Hassidim et al. (2009)) If G is (ε, τ(ε))-hyperfinite graph with maximum degree ∆,
then, there is a (ε ·∆, τ(ε3/54000)) partition oracle that answers a given query q with probability

1− δ, using a running time O(2∆O(τ(ε3))
/δ log 1/δ).
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Using Lemma 36, we query every node to obtain the partitioning of V and formalize this in the
following corollary.

Corollary 37 If G is (ε, τ(ε))-hyperfinite graph with maximum degree ∆, then, we can obtain a
partitioning of the graph G, given by V1, V2, · · · such that with probability 1− δ and a running time

of O(nδ · 2
∆O(τ(ε3/∆3))

log 1/δ), we have :

1. For every i, |Vi| ≤ τ(ε3/∆354000) and Vi is connected

2. |{(u,w) | (u,w) ∈ E, u ∈ Vi, w ∈ Vj and i 6= j}| ≤ ε · n

Given a τ -hyperfinite graph with maximum degree ∆, we describe an algorithm that returns a
set of nodes that have at most εn∆ edges instead of εn2 edges that we saw previously for general
graphsG. To do so, we build upon the previous result from Hassidim et al. (2009) that returns a set of
nodes R which is an additive εn approximation of MIS S∗, i.e., |R| ≥ |S∗| − εn. To obtain this, the
authors first use the partitioning obtained using Lemma 36 and find MIS in each partition separately.
They show that ignoring the nodes that are incident on edges across the partitions obtained using
Lemma 36 will only result in a loss of εn nodes. We observe that in Algorithm 5, by removing the
ε ·n nodes (denoted by V̂ ) that are incident on the edges across partitions, and adding back εn nodes
with highest cost, we will obtain a set of nodes with cost at least that of MIS while only adding εn∆
edges amongst the combined set of nodes.

Algorithm 5 NEAR-MIS in τ -Hyperfinite Graph G
1: Input : Graph G = (V,E), cost function C : V → R+, m, ∆, function τ(·), error ε, failure

probability δ.
2: Output : T that is a NEAR-MIS with at most ε · n ·∆ edges.
3: Let the set of partitions is {V1, V2 · · · } of G(V,E) returned using Corollary 37 with parameters
τ(·), error ε/2 and failure probability δ.

4: for each partition Vi do
5: Calculate the maximum cost independent set Ti in Vi.
6: end for
7: Ê ← {(u, v) | (u, v) ∈ E and there exists i, j where i 6= j, u ∈ Vi, v ∈ Vj}.
8: V̂ ← {u | ∃v such that (u, v) ∈ Ê}.
9: T ← (

⋃
i=1 Ti) \ V̂ .

10: Let H denote ε · n nodes of highest cost in V \ T .
11: return T ∪H .

Lemma 38 In Algorithm 5, we have |V̂ | ≤ ε · n and C(T ∪H) ≥ C(S∗).

Proof From Corollary 37, we have |Ê| ≤ ε · n/2. From the definition of V̂ , we have

|V̂ | ≤ 2|Ê| ≤ ε · n.

Suppose S∗ is the maximum cost independent set in G. Now, consider all nodes in V̂ . Similar
to the above case, it is possible that (u,w) ∈ Ê and u ∈ Ti, w ∈ Tj for some i 6= j. Consider a
node u ∈ S that is isolated in E′ ⊆ E, and included in some partition Vi. As Ti is maximum cost
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independent set in Vi, we have C(Ti) ≥ C(S∗∩Vi) where S∗∩Vi is an independent set induced by
MIS S∗ in the partition Vi. Combining it for all partitions, we have C(

⋃
i Ti) ≥ C(S∗). As nodes

in V̂ , it is possible that including those that share an edge in
⋃
i Ti will result in the set of nodes not

forming an independent set. However, the set
⋃
i Ti \ V̂ formed by removing all the nodes that are

incident with edges across the partitions, is an independent set. Since S∗ is MIS, we have

C(
⋃
i

Ti \ V̂ ) ≤ C(S∗).

As |V̂ | is at most ε ·n, replacing them with H consisting of ε ·n highest cost nodes from T will only
increase the cost. Therefore, we have

⇒ C(T ∪H) = C

((⋃
i

Ti \ V̂

)
∪H

)
≥ C(

⋃
i

Ti) ≥ C(S∗).

Theorem 39 Algorithm 5 returns a set T ⊆ V of nodes such that C(T ) ≥ C(S∗) where S∗ is the

maximum cost independent set; |E[T ]| ≤ ε·n·∆ and uses a running timeO(nδ ·2
∆O(τ(ε3/∆3))

log 1/δ+
n∆) with probability 1− δ

Proof From Lemma 38, we have C(T ) ≥ C(S∗) and the nodes in H include ε · n nodes that
are added (line 10 in Algorithm 2) have at most ε · n · ∆ edges among themselves. Therefore,

|E[T ]| ≤ ε · n · ∆. Using Corollary 37, we have that it takes O(nδ · 2
∆O(τ(ε3/∆3))

log 1/δ) time to
find the partitions. After finding the partitions, we find maximum cost independent set in each of
the at most n partitions each of size O(τ(ε3/∆3)), which takes a running time of

O(finding maximum cost independent set in each partition) = O(n · 2O(τ(ε3/∆3))).

Combining the running times for both these steps, along with O(n∆), the time to find Ê, we have
the running time as claimed.

We can use Algorithm 5 to obtain NEAR-MIS in each iteration of Algorithm 1; from Lemma 27
and Theorem 39, we have the following proposition about separating set system for G.

Proposition 40 Let G(V,E) be a ∆-degree bounded τ -hyperfinite graph. For any m ≥ η log 1/ε
for some constant η, with probability ≥ 1 − δ, there is an algorithm that returns Lε with C(Lε) ≤
(2 + exp (−Ω(m))) · C(L∗), where L∗ is the min-cost separating matrix for G and has a running

timeO
(
n3

δ · 2
∆O(τ(ε3/n3∆3))

log n
δ

)
. Moreover using Lε, the number of edges that are not separated

in G is at most ε · n ·∆.

Proof In every iteration, we identify a set of nodes that has the cost at least the cost of MIS.
Therefore, total number of iterations possible is at most n. Scaling the error parameter by setting
ε′ = ε/n and δ′ = δ/n for each iteration, we have that Algorithm 1 returns Lε such that the number
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of edges that are not separated is n · (ε′ · n ·∆) = ε · n ·∆. Using Lemma 38, we have that the total
running time of our algorithm is

O(n · n
δ′
· 2∆O(τ(ε′3/∆3))

log 1/δ′) = O

(
n3

δ
· 2∆O(τ(ε3/n3∆3))

log
n

δ

)
.

We can obtain a similar result for strongly separating set system for G using Algorithm 4 and
give the following proposition.

Proposition 41 Let G(V,E) be a ∆-degree bounded τ -hyperfinite graph. For any m ≥ η log 1/ε
for some constant η, with probability ≥ 1 − δ, there is an algorithm that returns Lε with C(Lε) ≤
(4 + exp (−Ω(m))) · C(L∗), where L∗ is the min-cost strongly separating matrix for G and has a

running time O
(
n3

δ · 2
∆O(τ(ε3/n3∆3))

log n
δ

)
. Moreover using Lε, the number of edges that are not

strongly separated in G is at most ε · n ·∆.

Proof In Algorithm 4, we first find LSε , a separating matrix obtained using Proposition 40 that
does not separate ε · n ·∆ edges of G. Next, we find super nodes using the NEAR-MIS’s returned
and assign it vectors appropriately to form strongly separating matrix LSSε on super nodes. Us-
ing Theorem 33, we have the claimed approximation guarantee. The running time follows from
Proposition 40.

Appendix F. Additional Details for the analysis of 2-approximation result for
ε-Separating Set Systems

In this section, we present already known results from Lindgren et al. (2018) filling in the details
in the analysis of our Algorithm 1 for the sake of completion.
Let I denote the set of all independent sets in G. For some A ⊆ I , we have

J(A) =
∑

v∈
⋃
S∈A

C(v)

that is, it takes a set of independent sets and returns the sum of the cost of the vertices in their union.
We observe that J is submodular, monotone, and non-negative (Lindgren et al., 2018).

Let S0 denote the set of nodes that are assigned weight 0 vector after the first iteration of Algo-
rithm 1. We set V = V \ S0 for the remainder of this section and handle the cost contribution of
nodes in S0 separately in the analysis of approximation ratio.

Lemma 42 Given a submodular, monotone, and non-negative function J over a ground set V and
a cardinality constraint k. Let Algorithm 1 return Sgreedy a collection of at most Ck (for some
constant C > 0) sets that are (0, ε)-NEAR-MIS, then,

J(Sgreedy) ≥ (1− e−C) max
S⊆I,|S|≤k

J(S).
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Proof We have that in ith iteration of Algorithm 1, we pick a set of nodes Si with cost at least the
cost of MIS Ti in G, i.e., Si is a (0, ε)-NEAR-MIS in G and satisfies C(Si) ≥ C(Ti). Let S∗ be the
collection of independent sets such that J(S∗) = maxS⊆I,|S|≤k J(S). Let

⋃
j≤i Sj be denoted by

S1:i. We claim using induction that

J(S∗)− J(S1:i) ≤
(

1− 1

k

)i
J(S∗).

Consider ith iteration when Algorithm 1 picks Si. Using submodularity, we have

J(S∗)− J(S1:i−1) ≤
∑

B∈S∗\S1:i−1

J(S1:i−1 ∪B).

Therefore, there exists one set B ∈ S∗ \ S1:i−1, with cost at least
∑
B∈S∗\S1:i−1

J(S1:i−1∪B)

k . As
argued in Lemma 26, we are picking a set Si with cost C(Si) ≥ C(Ti) where Ti is MIS in the ith
iteration, we have :

C(Si) ≥ C(Ti) ≥
∑

B∈S∗\S1:i−1
J(S1:i−1 ∪B)

k
≥ J(S∗)− J(S1:i−1)

k

J(Si) = C(Si) ≥
J(S∗)− J(S1:i−1)

k
.

For i = 1, our claim follows from the above statement, i.e.,C(S1) = J(S1) ≥ J(S∗)
k . Assuming

that our claim holds until iteration i − 1 for some i ≥ 2, we have after the ith iteration : J(S∗) −
J(S1:i) = J(S∗) − J(S1:i−1) − J(Si). This is true because J(S1:i) = J(S1:i−1) + J(Si) as Si is
greedily chosen by picking a set containing nodes that are not previously selected. Therefore,

J(S∗)− J(S1:i) = J(S∗)− J(S1:i−1)− J(Si)

≤ J(S∗)− J(S1:i−1)− J(S∗)− J(S1:i−1)

k

≤ (J(S∗)− J(S1:i−1))

(
1− 1

k

)
≤
(

1− 1

k

)i
J(S∗).

Setting i = C · k, we have

J(S∗)− J(Sgreedy) ≤
(

1− 1

k

)Ck
J(S∗) ≤ e−C · J(S∗)

⇒ J(Sgreedy) ≥ (1− e−C)J(S∗).

Now, we define two types of submodular optimization problem, called the submodular chain
problem and the supermodular chain problem that will be useful later.
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Definition 43 Given integers k1, k2, . . . , km and a submodular, monotone, and non-negative func-
tion J , over a ground set V , the submodular chain problem is to find sets A1, A2, . . . , Am ⊆ 2[V ]

such that |Ai| ≤ ki that maximizes
m∑
i=1

J(A1 ∪A2,∪ · · · ∪ Ai).

Lemma 44 LetA∗1, A
∗
2, . . . , A

∗
m be the optimal solution to the submodular chain problem. Suppose

that for all 1 ≤ p ≤ m/2 − 1 we have that
∑2p

i=1 ki ≥ τ
∑p

i=1 ki. Also assume that J(A1 ∪ A2 ∪
· · · ∪ Am) = J(V ). Then the greedy algorithm 1 for the submodular chain problem returns set
A1, A2, . . . , Am such that

m∑
i=1

J(A1 ∪A2 · · ·Ai) ≥ J(V ) + 2(1− e−τ )

m/2−1∑
i=1

J(A∗1 ∪A∗2 ∪ · · ·A∗i ).

Proof Given
∑2p

i=1 ki ≥ τ
∑p

i=1 ki. From Lemma 42, we have

J(A1 ∪A2 ∪ · · ·A2p) ≥ (1− e−τ )J(A∗1 ∪A∗2 ∪ · · · ∪ A∗p).

m/2−1∑
i=1

J(A1 ∪A2 · · ·A2i) ≥ (1− e−τ )

m/2−1∑
i=1

J(A∗1 ∪A∗2 ∪ · · · ∪ A∗i ).

Now, we use the monotonicity property of the submodular function J to get

m∑
i=1

J(A1 ∪A2 · · ·Ai) = J(A1 ∪A2 · · · ∪Am) +

m/2−1∑
i=1

J(A1 ∪A2 ∪ · · · ∪ A2i) + J(A1 ∪A2 ∪ · · · ∪ A2i+1)

≥ J(V ) + 2

m/2−1∑
i=1

J(A1 ∪A2 ∪ · · · ∪ A2i).

Hence, the lemma.

Definition 45 Given integers k1, k2, . . . , km and a submodular, monotone, and non-negative func-
tion F , over a ground set V , the supermodular chain problem is to find sets A1, A2, . . . , Am ⊆ 2[V ]

such that |Ai| ≤ ki that minimizes
m∑
i=1

J(V )− J(A1 ∪A2 ∪ · · · ∪ Ai).

For the greedy algorithm 1, we give the following claim for the supermodular chain problem.

Lemma 46 Let A∗1, A
∗
2, . . . , A

∗
m be the optimal solution to the supermodular chain problem. Sup-

pose that for all 1 ≤ p ≤ m/2 − 1 we have that
∑2p

i=1 ki ≥ τ
∑p

i=1 ki. Also assume that
J(A1 ∪A2 ∪ · · · ∪Am) = J(V ). Then the greedy algorithm 1 for the supermodular chain problem
returns set A1, A2, . . . , Am such that

m∑
i=1

J(V )− J(A1 ∪A2 ∪ · · · ∪ Ai) ≤ e−τm · J(V ) + 2
m∑
i=1

J(A∗1 ∪A∗2 ∪ · · ·A∗i ).
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Proof From Lemma 44, we have

(m+ 1)J(V )−
m∑
i=1

J(A1 ∪A2 ∪ · · · ∪ Ai) ≤ mJ(V )− 2(1− e−τ )

m/2−1∑
i=1

J(A∗1 ∪A∗2 ∪ · · ·A∗i )

≤ e−τmJ(V ) +mJ(V )− 2

m/2−1∑
i=1

J(A∗1 ∪A∗2 ∪ · · ·A∗i )

≤ e−τmJ(V ) + 2

m/2−1∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i ).

Now, we use the monotonicity property of J to get

e−τmJ(V ) + 2

m/2−1∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i ) ≤ e−τmJ(V ) + 2

m∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i ).

Finally, we have

m∑
i=1

J(V )− J(A1 ∪A2 ∪ · · · ∪ Ai) ≤ (m+ 1)J(V )−
m∑
i=1

J(A1 ∪A2 ∪ · · · ∪ Ai)

≤ e−τm · J(V ) + 2

m∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i ).

Lemma 47 Suppose S+ denote optimal separating set system that uses an additional color of
weight 1 and uses weight 0 vector to color A0. Let S∗ denote optimal separating system. Then, we
have C(S+)− C(S∗) ≤ 0.

Proof We give a proof similar to Lemma 22 in Lindgren et al. (2018). Let the set of nodes A0

selected in the first iteration of greedy Algorithm 1 and assigned weight 0 vector be denoted by S+
0 .

Similarly, the set of nodes that are colored with weight 0 vector in S∗ be denoted by S∗0 . As S+

denotes optimal solution on V \ S+
0 , we can assume that a solution that uses a weight 1 color for

nodes in S∗0 \ S
+
0 is only going to be worse. Therefore, we have :

C(S+)− C(S∗) ≤
∑

v∈S∗0\S
+
0

C(v)−
∑

v∈S+
0 \S∗0

C(v)

≤
∑

v∈S∗0\S
+
0

C(v) +
∑

v∈S∗0∩S
+
0

C(v)−
∑

v∈S+
0 \S∗0

C(v)−
∑

v∈S∗0∩S
+
0

C(v)

≤
∑
v∈S∗0

C(v)−
∑
v∈S+

0

C(v) ≤ 0.
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LetLε denote the ε-separating matrix returned by Algorithm 1, and letLε = {A0, A1, A2, · · ·Am}
where we abuse the previous notation and denote Ai to represent the set of all nodes (instead of a
collection of subsets of V ) that have weight i assigned by Lε.

C(Lε) =

m∑
i=1

J(V )− J(A1 ∪A2 ∪ · · ·Ai),

where |Li| ≤
(
m
i

)
. We observe that this cost representation corresponds to the supermodular chain

problem discussed above.
Assuming m ≥ η log 1/ε for η > 2, we have that, the greedy Algorithm 1 only uses vectors

of weight at most log 1/ε i.e., m/2. In Lemma 44, each of the values k1, k2 · · · ki · · · kp represent
number of weight i vectors available and from Lemma 21 in Lindgren et al. (2018), we have that
τ = Ω(m), for every p in the range.

Lemma 48 (Lemma 27 restated) For any m ≥ η log 1/ε for some constant η > 2, with probability
≥ 1−δ, Algorithm 1 returns Lε withC(Lε) ≤ (2+exp (−Ω(m)))·C(L∗), where L∗ is the min-cost
separating matrix for G.

Proof Using the definition of S+ from Lemma 47, we argue that C(S+) ≥ J(V ) as every node in
V is assigned a weight 1 vector. From Lemma 46, we have

C(Lε) =

m/2∑
i=1

J(V )− J(A1 ∪A2 ∪ · · ·Ai)

≤ e−τm · J(V ) + 2

m∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i )

≤ e−τm · C(S+) + 2

m∑
i=1

J(V )− J(A∗1 ∪A∗2 ∪ · · ·A∗i )

≤ e−τm · C(S+) + 2C(S∗).

From Lemma 47, we have

≤ (2 + exp (−Ω(m))) · C(S∗) = (2 + exp (−Ω(m))) · C(L∗).
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