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Abstract

We introduce graph gamma process (GGP)
linear dynamical systems to model real-valued
multivariate time series. GGP generates S
latent states that are shared by K different
communities, each of which is characterized
by its own pattern of activation probabilities
imposed on a S×S directed sparse graph, and
allow both S and K to grow without bound.
For temporal pattern discovery, the latent
representation under the model is used to de-
compose the time series into a parsimonious
set of multivariate sub-sequences generated by
formed communities. In each sub-sequence,
different data dimensions often share similar
temporal patterns but may exhibit distinct
magnitudes, and hence allowing the superpo-
sition of all sub-sequences to exhibit diverse
behaviors at different data dimensions. On
both synthetic and real-world time series, the
proposed nonparametric Bayesian dynamic
models, which are initialized at random, con-
sistently exhibit good predictive performance
in comparison to a variety of baseline models,
revealing interpretable latent state transition
patterns and decomposing the time series into
distinctly behaved sub-sequences.

1 INTRODUCTION

Linear dynamical systems (LDSs) have been widely
used to model real-valued time series (Kalman, 1960;
West and Harrison, 1997; Ghahramani and Roweis,
1999; Ljung, 1999), with diverse applications such as fi-
nancial time series analysis (Carvalho and Lopes, 2007)
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and movement trajectory modeling (Gao et al., 2016;
Zhang et al., 2017). They have become standard tools
in optimal filtering, smoothing, and control (Imani and
Braga-Neto, 2018; Hardt et al., 2018; Koyama, 2018).
An LDS consists of two main blocks, including an ob-
servation model, which assumes that the observations
are translated from their latent states via a linear sys-
tem with added Gaussian noise, and a transition block,
which is represented by a Markov chain that linearly
transforms a latent state from time t− 1 to time t with
added Gaussian noise. The transition block plays an
important role in capturing the underlying dynamics
of the data. An LDS, which has limited representation
power due to its linear assumption, allows one to exam-
ine the temporal trajectory of each latent dimension to
understand the role played by the corresponding latent
factor. While it is often considered to be simple to
interpret, its interpretability often quickly deteriorates
as its latent state dimension increases.

To enhance the representation power of LDSs, in par-
ticular, to model non-linear behaviors of the time series
and improve their interpretability, one may consider
switching LDSs (Fox et al., 2009; Linderman et al.,
2017; Nassar et al., 2018), which learn how to divide
the time series into separate temporal segments and
fit them by switching between different LDSs. Impor-
tant parameters include the number of different LDSs,
their latent state dimensions, and the transition mech-
anism from one LDS to another. While nonparametric
Bayesian techniques have been applied to switching
LDSs to learn the number of LDSs that is needed, the
latent state dimensions often stay as tuning parame-
ters to be set (Fox et al., 2009; Nassar et al., 2018).
Moreover, switching LDSs do not allow different LDSs
to share latent states, making it difficult to capture
smooth transitions between different temporal patterns,
and false positives/negatives and delays in detecting
the switching points will also compromise their perfor-
mance. In addition, existing optimal smoothing and
filtering techniques developed for LDSs, such as Kalman
filtering (Kalman, 1960), require non-trivial modifica-
tions before being able to be applied to switching LDSs
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(Murphy, 1998).

Moving beyond switching LDSs where different LDSs
neither share their latent states nor overlap in time,
we propose the graph gamma process (GGP) LDS that
encourages forming multiple LDSs that can share their
latent states and co-occur at the same time. GGP-LDS
uses a flexible combination of multiple LDSs to fit the
observation at any given time point, allowing smooth
transitions between different dynamical patterns across
time. A notable feature of GGP-LDS is that existing
optimal filtering and smoothing techniques developed
for a canonical LDS can be readily applied to GGP-
LDS without any modification. Therefore, GGP-LDS
can serve as a plug-in replacement of the LDS in an
existing system.

The introduced nonparametric Bayesian construction
in GGP-LDS will support S latent states that are
shared by K different types of LDSs, each of which is
characterized by its own pattern of activation probabil-
ities imposed on a S×S sparse state-transition matrix,
and allow both S and K to grow without bound. This
unique construction is realized by modeling the sparsity
structure of the S × S state-transition matrix as the
adjacency matrix of a directed random graph, which is
resulted from the logical OR operation over K latent
binary adjacency matrices, each of which is drawn ac-
cording to the interaction strengths between the states
(nodes) of a type of LDS (node community). While
a latent state is associated with all communities, the
association strengths can clearly differ. Note that the
sparsity pattern of the state-transition matrix is deter-
mined by the logical OR of these community-specific
binary adjacency matrices. Therefore, to facilitate in-
terpretation and visualization, one can hard assign a
state to a community whose binary adjacency matrix
best explains how this state is being influenced by the
states of the previous time, or to a community that
best explains how this state is influencing the states of
the next time.

GGP-LDS allows approximating complex nonlinear dy-
namics by activating a certain combination of commu-
nities to model a particular type of linear dynamics at
any given time, and using smooth transitions between
overlapping communities to model smooth transitions
between distinct linear dynamics. The characteristics
of each community can be visualized by reconstructing
the observations using the inferred latent representa-
tion and a community-specific reweighted latent state-
transition matrix, where the weights are determined by
the activation strength of that community relative to
the combined activation strength of all communities.

It is noteworthy to mention that while the LDS
(Kalman, 1963) has been chosen as the transition and

observation model of GGP-LDS, the proposed GGP can
potentially be applied to many other nonlinear systems
that have a latent state transition module (Johnson
et al., 2016).

2 NONPARAMETRIC BAYESIAN
MODELING

For LDSs, let us denote yt ∈ RV and xt ∈ RS as the
observed data and latent state vectors, respectively,
at time t ∈ {1, . . . , T}, D = (d1, . . . ,dS) ∈ RV×S
as the observation factor loading matrix, and both
Φ ∈ RV×V and Λ = diag(λ1, . . . , λS) as precision
(inverse covariance) matrices. Inspired by Kalantari
et al. (2018), we first modify the usual LDS hierarchi-
cal model by utilizing a spike-and-slab construction
(Mitchell and Beauchamp, 1988; Ishwaran and Rao,
2005; Zhou et al., 2009), which imposes binary mask
Z ∈ {0, 1}S×S element-wise on the real-valued latent
state transition matrix W ∈ RS×S as

yt ∼ N (Dxt,Φ
−1), xt ∼ N

(
(W � Z)xt−1,Λ

−1
)
.

TheK×K latent state-transition matrix W�Z, in par-
ticular, the sparsity structure of Z, plays an important
role in determining the model’s dynamical behaviors.
First, the nonzero locations in Z determine the tempo-
ral dependencies between the latent states (Kalantari
et al., 2018). For example, if zij , the (i, j)th element
of Z, is zero, then at time t, xti will be independent
of x(t−1)j , and xtj will not influence x(t+1)i. Thus in
what follows, we consider that there is a directed link
(edge) from states (nodes) j to i if zij = 1.

Second, viewing Z as the adjacency matrix of a directed
random graph and the LDS states as the graph nodes,
we may introduce inductive bias to encourage its nodes
to be formed into overlapping communities, reflected
by overlapping dense blocks along the diagonal of the
adjacency matrix after appropriately rearranging the
orders of the nodes. We may then view each commu-
nity as an LDS, which forms its own state-transition
matrix, using a submatrix of W � Z, to model the
transitions between the corresponding subset of states.
This construction allows approximating complex non-
linear dynamics by activating different communities at
different levels to model a particular type of linear dy-
namics at any given time, and using smooth transitions
between overlapping communities to model the smooth
transitions between distinct linear dynamics.

To induce the structure of overlapping communities
into Z, the adjacency matrix of a directed random
graph, and allow both the number of communities
and number of nodes (dimension of Z) to grow without
bound, we propose the graph gamma process (GGP). A
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draw from the GGP consists of countably infinite latent
communities, each of which is associated with a positive
weight indicating the overall activation strength of the
community. These communities all share the same set
of countably infinite nodes (states) but place different
weights on how strongly a node is associated with a
community. We describe the detail in what follows.

2.1 Graph Gamma Process

Denote Z(i, :) and Z(:, i) as row i and column i of Z,
respectively. Since

E[xt |xt−1,W,Z] = (W � Z)xt−1

we have:

E[xti |xt−1,W,Z] = (W (i, :)� Z(i, :))xt−1, and
E[xt+1 |xt,W,Z] = (W (:, i)� Z(:, i))xti

+

∞∑
j 6=i

(W (:, j)� Z(:, j))xtj (1)

which means xti will be dependent on xt−1 if Z(i, :)
contains non-zero elements, and it will influence xt+1

if Z(:, i) contains non-zero elements. To construct a
nonparametric Bayesian model that removes the need
to tune the hidden state dimension, our first goal is
to allow Z to have an unbounded number of rows and
columns, which means that the model can support
countably infinite state-specific factors di, with which
the mean of yt given xt is factorized as E[yt |xt,D] =
Dxt =

∑∞
t=1 dixti.

2.1.1 Forming Unbounded Number of States

To achieve this goal, with cρ > 0 and G0,ρ defined as a
finite and continuous base measure over a complete and
separable metric space Ω, we first introduce a gamma
process Gρ ∼ ΓP(cρ, G0,ρ) on the product space R+×Ω,
where R+ := {x : x > 0}, such that for each subset
A ⊂ Ω, we have Gρ(A) ∼ Gamma(G0,ρ(A), 1/cρ). The
Lévy measure of this gamma process can be expressed
as ν(dρdd) = ρ−1e−cρρdρG0,ρ(dd). A draw from this
gamma process can be expressed as Gρ =

∑∞
i=1 ρiddi,

consisting of countably infinite atoms (factors) di with
weights ρi. We view di as the factor loading vector for
latent state i, and will make ρi determine the number
of nonzero elements in Z(i, :) and, consequently, how
strongly xti, the activation of state i at time t, is
influenced by xt−1 of the previous time. As the number
of ρi that are larger than an arbitrarily small constant
ε follows a Poisson distribution with a finite mean as
γ0,ρ

∫∞
ε
ρ−1e−cρρdρ, where γ0,ρ := G0,ρ(Ω) is the mass

parameter, this can be used to express the idea that
only a finite number of elements in {xti}i=1,∞ at time
t will be dependent on xt−1 of the previous time.

We further mark each ρi with a degenerate
gamma random variable, changing the Lévy mea-
sure of the gamma process to that of a marked
gamma process (Kingman, 1993) as ν(dρ dd dτ) =
ρ−1e−cρρdρG0,ρ(dd)γ0,ττ

−1e−cττdτ ; we express a
draw from this marked gamma process as Gρ,τ =∑∞
i=1 (ρi, τi)δdi . We will make τi determine the ran-

dom number of nonzero elements in Z(:, i) and, con-
sequently, how strongly xti, the factor score of state
i at time t, will influence xt+1 of the next time point.
As the number of τi that are larger than an arbitrarily
small constant ε follows a Poisson distribution with a
finite mean as γ0,τ

∫∞
ε
τ−1e−cττdτ , this can be used to

express the idea that only a finite number elements in
{xti}i=1,∞ at time t will influence xt+1.

2.1.2 Forming Unbounded Number of
Overlapping State Communities

Given Gρ,τ =
∑∞
i=1 (ρi, τi)δdi , we further need to build

a stochastic process to form unbounded number of com-
munities among states {x(t+1)i}i=1:∞ and {xti}i=1:∞
where each of these communities will help to form one
of concurrent LDSs. To facilitate that objective, we fur-
ther define a gamma process Go ∼ ΓP(co, Gρ,τ ), with
Lévy measure ν(drdθdψ) = r−1e−crdrGo(dθdψ), a
draw from which is expressed as Go =

∑∞
κ=1 rκδ{θκ,ψκ}.

In this random draw, rκ ∈ R+, reflecting the ac-
tivation strength of community κ, is the weight of
the κth atom {θκ,ψκ}, where θκ = (θ1κ, . . . , θ∞κ)T ,
ψκ = (ψ1κ, . . . , ψ∞κ)T , and θiκ and ψiκ, represent-
ing how strongly that node i is associated with com-
munity κ, are defined on ρi and τi, the weights of
the atoms of the gamma process Gρ,τ , using θiκ ∼
Gamma(ρi, 1/e), ψiκ ∼ Gamma(τi, 1/f). We refer to
the hierarchical stochastic process constructed in this
way as the GGP. We denote the mass parameter of
the GGP as γ0 :=

∫
Go(dθdψ). Inherited from the

property of a gamma process, the GGP has an inherent
shrinkage mechanism that its number of atoms (node
communities) with weights greater than ε > 0 is a finite
random number drawn from Pois(γ0

∫∞
ε
r−1e−crdr).

Given a random draw from the GGP as Go =∑∞
κ=1 rκδ{θκ,ψκ}, we will let rκ determine the overall

activation strength of community κ, θiκ how strongly
state i in community κ is influenced by the states of
the previous time in the same community, and ψjκ
how strongly state j in community κ influences the
states of the next time in the same community. To
express this idea, for community κ parameterized by
{rκ,θκ,ψκ}, we generate a community-specific sparse
adjacency matrix, whose (i, j)th element is drawn as

zijκ ∼ Bernoulli(1− e−rκθiκψjκ). (2)

Thus from nodes j to i, community κ defines its own in-
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teraction probability, expressed as pijκ = 1−e−rκθiκψjκ ,
and draws a binary edge zijκ based on pijκ. While there
are countably infinite nodes, in community κ, the total
number of edges is a finite random number and hence
the number of nodes with nonzero degrees is also finite.
Lemma 1. The number of edges in community κ, ex-
pressed as

∑∞
i=1

∑∞
j=1 zijκ, is finite.

As in (2), whether zijκ = 1 or 0 is related to both the
overall strength of community κ and how strongly nodes
i and j are affiliated with community κ. Lemma 1,
whose proof is deferred to the Appendix, suggests that
we can extract a finite submatrix Zκ := {zijκ}i,j∈Sκ ,
where Sκ := {i :

∑
j zijκ +

∑
j zjiκ > 0} is the set

of nodes with non-zero degrees in community κ. We
consider Sκ as the nodes activated by community κ
and Zκ as its nonempty graph adjacency matrix. Thus
under the proposed GGP construction, different com-
munities could overlap in the nodes belonging to their
respective nonempty graph adjacency matrices, which
means it is possible that Sκ ∩ Sκ′ 6= ∅ for κ 6= κ′. If
Sκ ∩ Sκ′ = ∅, then we consider communities κ and κ′
as two non-overlapping communities.

Our previous analysis shows whether zij = 1 deter-
mines not only whether state i at a given time will be
dependent of the states of the previous time, but also
whether state j at a given time will influence the states
of the next time. To express the idea that whether
zij = 1 is collectively decided by all countably infi-
nite communities, whose nonempty adjacency matrices
could overlap in their selections of nodes, we take the
OR operation over all elements in {zijκ}κ to define the
adjacency matrix of the full model as zij = ∨∞κ=1zijκ,
which means zij = 1 if at least one zijκ = 1, indicating
community κ places a directed edge from nodes j to
i, and zij = 0 otherwise. In a matrix format, we have
Z = ∨∞κ=1Z

(κ), where Z(κ) represents the graph adja-
cency matrix of community κ, whose (i, j)th element
is zijκ.

We note that marginalizing out {zijκ}κ, we can directly
draw the graph adjacency matrix defined by zij =

∨∞κ=1zijκ as Z ∼ Bernoulli(1− e−
∑∞
κ=1 rκθkψ

T
k ), which

can also be equivalently generated under the Bernoulli-
Poisson link (Zhou, 2015) as Z = δ(M ≥ 1), M =∑∞
κ=1 Mκ, Mκ ∼ Pois(rκθκψTκ ), where δ(·) returns

one if the condition is true and zero otherwise. While
the graph defined by Z has countably infinite nodes, the
total number of edges is finite and hence the number
of nodes with nonzero degrees is also finite; the proof
of the following Lemma is deferred to the Appendix.
Lemma 2. The number of edges in Z, expressed as∑∞
i=1

∑∞
j=1 zij, is finite.

In summary, the GGP uses a gamma process to sup-
port countably infinite node communities in the prior,

and another marked gamma process to support count-
ably infinite number of nodes (states) shared by these
communities. The adjacency matrix of the GGP gen-
erated random graph can be either viewed as taking
the OR operation over all community-specific binary
adjacency matrices, or viewed as thresholding a latent
count matrix that aggregates the activation strengths
across all communities for each node pair. Under this
model construction, with the inherent shrinkage mech-
anisms of the gamma processes, only a finite number
of communities will contain edges between the nodes,
and the nonempty communities overlap with each other
on their selections of nonzero-degree nodes, the total
number of which across all communities is finite.

2.2 Hierarchical Model and Inference

To facilitate implementation, we truncate the GGP
by setting K as an upper-bound of the number of
communities, and S as an upper-bound of the number
of states (nodes). We set γ0,ρ = γ0,τ = γ0. We make
the scales of θiκ and ψjκ change with κ to increase
model flexibility. Letting eκ, fκ ∼ Gamma (α0, 1/β0)
and x0 ∼ N (m0,H0), the hierarchical model of the
truncated GGP-LDS is expressed as

yt ∼ N (Dxt, Φ−1), Φ ∼Wishart(V, V + 2),

xt ∼ N
[
(W � Z)xt−1, diag(λ1, . . . , λS)−1

]
,

ds ∼ N
(
0, IV /

√
V
)
, λs ∼ Gamma (a, 1/b) ,

wij ∼ N (0, ϕ−1
ij ), ϕij ∼ Gamma (α0, 1/β0) ,

zij = ∨Kκ=1zijκ, zijκ = δ(mijκ ≥ 1),

mijκ ∼ Pois (rκθiκψjκ) , rκ ∼ Gamma(γ0/K, 1/c),

θiκ ∼ Gamma (ρi, 1/eκ) , ρi ∼ Gamma (γ0/S, 1/cρ) ,

ψjκ ∼ Gamma (τj , 1/fκ) , τj ∼ Gamma (γ0/S, 1/cτ ) .

The graphical model is depicted in the Appendix A. As
in Lemma 2, the total number of nonzero elements in
Z has a finite expectation. Thus if the GGP truncation
levels K and S are set large enough, it is expected for
some state i that

∑
j zij = 0, which means its corre-

sponding row in Z has no nonzero elements, and/or∑
j zji = 0, which means its corresponding column in

Z has no nonzero elements. If node i has zero degree
that

∑
j zij =

∑
j zji = 0, then xti will neither depend

on xt−1 nor influence xt+1, which means {xti}t, the
factor scores of state i, capture only the non-dynamic
noise component of the data. Moreover, the proposed
model will penalize the total energy captured by zero-
degree node (state) i, expressed as

∑T
t=1 x

2
ti if it is a

zero-degree node (see Appendix B for more details).

We perform Bayesian inference via Gibbs sampling. Ex-
ploiting a variety of data augmentation and marginal-
ization techniques developed for discrete data (Zhou
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and Carin, 2013; Zhou, 2015) , we provide closed-form
Gibbs sampling updated equations for all model pa-
rameters, as described in detail in Appendix E. Unless
specified otherwise, we consider 6000 Gibbs sampling
iterations, treat the first 3000 samples as burnin, and
collect one sample per 60 iterations afterwards, result-
ing in a collection of 50 posterior MCMC samples that
are used to predict the means and estimate the uncer-
tainty of future observations. We provide a review of
related work in Appendix D, where we compare our
proposed models with a variety of dynamical systems,
including switching LDSs and autoregressive, nonpara-
metric, and deep neural network based models, and we
clarify our distinct contributions.

Another set of time-series models are nonparametric
Bayesian switching LDSs (Fox et al., 2009; Linder-
man et al., 2017), in which every temporal segment
of the time series is fitted by one LDS. These models
are focused on finding a mixture of LDSs, which are
used to fit different time series segments, and a switch-
ing mechanism between different LDSs is learned to
model the transitions between segments. Switching
LDSs, however, may not provide satisfactory predictive
performance on test data, as false switching, missed
switching, and delayed switching could all compromise
their predictions. Chiuso and Pillonetto (2010) design
another type of nonparametric Bayesian models that
identify sparse linear systems. Unlike the proposed
GGP-LDS, it assumes no latent state transitions and
models each observation as a linear combination of
previous observations and some external input.

3 RELATED WORK

Modeling Z as the adjacency matrix of an infinite la-
tent sparse graph is inspired by SGLDS (Kalantari
et al., 2018), but the overlapping latent community
structure added on top of that is unique to GGP-LDS.
The Bernoulli-Poisson link used by Zhou (2015) and
Caron and Fox (2015) to construct observed graphs are
used by both SGLDS and GGP-LDS to construct latent
spare graphs. SGLDS tries to model a single LDS with
infinite number of states, while GGP-LDS tries to form
infinite smaller overlapping LDSs in an infinite dimen-
sional transition model, with smooth transition between
them to support non-linear dynamics. Consequently,
interpretation provided by SGLDS is not directly com-
parable to that of GGP-LDS, as SGLDS only provides
one LDS while the overlapping latent community struc-
tures of GGP-LDS is the foundation to visualize and
interpret the model’s latent representation, such as
decomposing a time series into community-specific sub-
sequences, as will be shown below.

There are models that use the hierarchical Dirichlet

process (Teh et al., 2006) priors over the states in hid-
den Markov models (Johnson and Willsky, 2013; Fox
et al., 2009; Valera et al., 2015; Hayden et al., 2020).
There are also models that perform clustering on the
time series use a Pitman-Yor process based mixture
prior on non-linear state-space models (Nieto-Barajas
et al., 2014), and Dirichlet process mixtures (Caron
et al., 2008) for modeling noise distributions. These
models are not fully nonparametric as they typically
have some parametric assumptions as part of the model
such as having a fixed number of hidden states or impos-
ing explicit specifications of the underlying temporal
dynamics, such as seasonality and trends.

Chiuso and Pillonetto (2010) design a nonparametric
Bayesian model to identify sparse linear systems. It
assumes no latent transitions and believes each obser-
vation is a linear combination of previous observations
plus some external input. Saad and Mansinghka (2018)
introduce a recurrent Chinese restaurant process based
mixture to capture temporal dependencies and a hier-
archical prior to discover groups of time series whose
underlying dynamics are modeled jointly. This model is
able to cluster the observations to a set of trajectories
with similar behaviors, although it is prone to creating
unnecessary clusters as if the same pattern repeats
with different magnitudes in two different segments of
the observation, these two segments are likely to be
assigned to two different clusters. This may result in
many unnecessary clusters for high dimensional and/or
lengthy data.

Another widely used type of time series models are
autoregressive models (Harrison et al., 2003; Davis
et al., 2016; Saad and Mansinghka, 2018). There also
exist several other parametric models, such as Barber
et al. (2011), that provide additional tools to model
time series. Most of these parametric models require
searching over a large set of possible parameter settings
or model configurations to achieve satisfactory perfor-
mance. More comprehensive literature review has been
provided in the Appendix D.

4 EXPERIMENTAL RESULTS

In this section, we will demonstrate the interpretablity
of GGP-LDS and its predictive performance on several
different datasets. Details on how we create overlap-
ping community based model interpretation and visu-
alization are provided in Appendix C.1. Due to the
inherent shrinkage mechanisms of the GGP, we find
that the proposed nonparametric Bayesian model is
not sensitive to the choice of the truncation levels S
and K as long as they are set large enough. For all the
datasets in this section, we truncate them at K = 16
and S = 30, which are found to be large enough to
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accommodate all nonempty node communities, with
interpretable latent representation and good predictive
performance. Our Gibbs sampling based inference is
not sensitive to initialization, allowing us to randomly
initialize the model parameters. In this paper, we set
γ0 = α0 = β0 = c = cρ = cτ = 1 for all experiments.
We set a = 1 and b = 0.1 for all experiments (ex-
cept for all visualizations, we set b = 1 to encourage
sparser latent state-transition matrices), encouraging
λ−1
s to be small and hence encouraging the latent state

representation vector to be constituted more by the
autoregressive components and less by the white noise,
generated by N

[
0, diag(λ1, . . . , λS)−1

]
.

We compare the predictive performance of GGP-LDS
with several representative time series models, whose
description and parameter setup for each dataset are
described in Appendix F. For each dataset, we con-
sider tuning important parameters for each competing
algorithm. Notably for GGP-LDS, when evaluating
predictive performance, we simply use a same set of non-
informative hyperparameters across all datasets and ini-
tialize all learnable parameters at random. Additional
experiments on a synthetic dataset (the FitzHugh-
Nagumo model) and a real dataset (closing stock price
of 12 companies) will also be provided in Appendix F.

4.1 Lorenz Attractor

To demonstrate the performance of GGP-LDS on a
dataset that has an underlying nonlinear dynamical
pattern, we consider the Lorenz Attractor. We show
how GGP-LDS finds an interpretable approximation to
the generated time series with nonlinear dynamics. The
Lorenz system is a classical nonlinear differential equa-
tion with three independent variables, defined as dx1

dt =

α(x2−x1), dx2

dt = x1(β−x3)−x2,
dx3

dt = x1x2−γx3.
There exist approximate solutions for this differential
equation (Hernandez et al., 2018; Linderman et al.,
2017; Nassar et al., 2018). A linear approximation will
be very useful as we can leverage for this non-linear
system many canonical algorithms developed for filter-
ing and smoothing on linear systems. To show how
our model approximates the latent states, we generate
numerical solutions of the Lorenz system with a ran-
domly generated initial state, α = 1, β = 2, γ = 1, and
T = 578 time points. The original generated variables
under the Lorenz system have three dimensions (x1, x2,
and x3). We treat them as latent variables and use a
randomly generated 10× 3 matrix to map them to a
10-dimensional observation space. We use this 10× T
observed data with added white Gaussian noise to train
both GGP-LDS and a variety of baseline models.

Fig. 1 illustrates a single posterior sample of GGP-
LDS, focusing on the inferred graph adjacency ma-
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Figure 1: Visualization of a GGP-LDS inferred posteriori
sample on a Lorenz Attractor synthesized time series. Top
Left: Z from this posterior sample, where the rows and
columns are separately reordered with the method described
in Section C.1; Top Right: The inferred activation proba-
bility of Z; Bottom Left: Θ, where θiκ shows how strongly
state i is influenced by the states of the previous time due
to its association with community κ; Bottom Middle: R,
whose diagonal elements show the activation strength of dif-
ferent communities; Bottom Right: ΨT , where ψκ,j shows
how strongly state j influences the states of the next time
due to its association with community κ.
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Figure 2: Relative activation strength Aκ, as defined in (3),
of the top six communities; note that 4 active communities
formed over 15 active latent states are inferred by GGP-LDS
while the truncation levels of the GGP are set as K = 16
and S = 30.

trix, and the underlying activation probabilities of the
edges of the graph adjacency matrix. More specifi-
cally, in the top row, we show on the left the graph
adjacency matrix Z, whose rows and columns have
been separately reordered following the description in
Section C.1, and on the right the underlying edge acti-
vation probabilities. In the bottom row, we show Θ =
(θ1, . . . ,θK) ∈ RS×K+ , R = diag(r1, . . . , rK) ∈ RK×K+ ,
and ΨT = (ψ1, . . . ,ψK)T ∈ RK×S+ , where θiκ shows
the affiliation strength of x(t+1)i to the κth community
(κth LDS) and ψκ,j shows the association strength of
xtj to the κth LDS.

It can be observed how the shrinkage property of the
gamma process Gρ,τ has been effective in sparsifying
the rows of Θ and columns of ΨT , with unnecessary
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Figure 3: The red trajectory shown on the left is synthe-
sized by a Lorenz Attractor and used as the 3D latent state
sequence to generate y1:T , a 10D time series observation.
Training GGP-LDS on y1:T , the blue trajectory shown on
the right is a 3D visualization of the inferred latent dynamics
based on (x̂

(1)
1:T , x̂

(2)
1:T , x̂

(3)
1:T ), the sub-sequences of the three

strongest communities decomposed from the reconstructed
time series by GGP-LDS.

elements being shrunk towards zero. In addition, it can
be seen that each active row of Θ, or active column
of ΨT can potentially be a member of several different
communities. The shrinkage property of the GGP Go
drives many elements of rk towards zero and hence
helps the model to pick which types of LDSs to be
utilized. This is equivalent to say that the model
infers which of these associations should be amplified
or suppressed in expressing the underlying dynamics of
the data. Moreover, for the Θ matrix, it has 7 members
(rows) associated with community one, which implies
there are 7 corresponding states at time t+ 1 that will
be influenced by xt of the previous time due to their
associations with community one, and ΨT shows that
it has 4 members (columns) associated with community
one, which implies that there are 4 corresponding states
at time t that will influence xt+1 of the next time due
to their associations with community one. Thus the
transition matrix of the first member of overlapping
LDSs will be the 7×4 block shown on the top left corner,
as shown in both Z and its corresponding probability
matrix in Fig. 1.

Out of K = 16 (truncation level) possible communities,
we show in Fig. 2 the top six formed communities, ex-
tracted from the inferred transition matrix for Lorenz
Attractor, in six different subplots; we display each
of these six communities using its relative strength
defined in (3). It is shown in Fig. 2 that our nonpara-
metric Bayesian model finds four communities in total
to model the underlying pattern of the data. The num-
ber of linear solutions that our model has discovered is
similar to that of Nassar et al. (2018), in which a tree
based stick breaking process has been used as the prior.
Moreover, it can be observed from Figs. 1 and 2 that
these 4 active communities are formed over 15 active
states. Note for GGP-LDS, we have truncated its num-
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Figure 4: The bottom row visualizes the inferred latent
states x1:T of GGP-LDS, which are assigned into three
non-overlapping clusters via the K-means algorithm, and
the top row visualizes the corresponding segments of the
Lorenz Attractor synthesized 3D time series.

ber of communities at K = 16 and that of states at
S = 30. The results in Fig. 2 demonstrate the ability
of GGP-LDS in inferring a parsimonious set of active
communities and states to model the time series.

Fig. 8 in Appendix shows how each community can
reconstruct the observed data. Each row corresponds
to a data dimension of the observed time series. The
first three columns show how the three strongest com-
munities contribute to data reconstruction, while the
last column shows the superpositions of the first three
columns and compares them against the observed time
series. It can be seen from Fig. 8 that the different
dimensions of each community specific sub-sequence
share similar temporal patterns, but may exhibit clearly
different magnitudes.

In Fig. 3, the red trajectory in the left plot represents
the Lorenz Attractor synthesized 3D time series that
is used as the latent state representation to generate
the observed 10D time series, and the blue trajectory
in the right plot illustrates a 3D representation of the
latent dynamics of GGP-LDS trained on this 10D time
series. More specifically, the blue trajectory is the vi-
sualization of the inferred community-specific latent
sub-sequences (x̂(1)

1:T , x̂
(2)
1:T , x̂

(3)
1:T ), where x̂

(κ)
1:T , defined

as in (4), is the latent sub-sequence extracted according
to the relative strength of the κth strongest community
to the aggregation of all communities, as illustrated in
Figs. 2 and 8 and described in detail in section C.1. It
can be seen from Fig. 3 that the latent dynamics (e.g.,
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moving between two spirals) of GGP-LDS, visualized
in 3D based on its inferred sub-sequences of its three
strongest communities, are closely synchronized with
the underlying dynamics of the Lorenz Attract syn-
thesized 3D time series (a video showing how the red
and blue trajectories move synchronously with each
other is provided in the supplement). This shows that
our model infers a close linear approximation to the
underlying nonlinear dynamics.

We provide another visualization of the latent dynamics
inferred by GGP-LDS in Fig. 4. Instead of decomposing
the time series into sub-sequences, we now cluster it
in time according to the inferred latent states xt. In
the bottom row of Fig. 4, the xt’s are partitioned
into three non-overlapping clusters with the K-means
algorithm, which means each xt is assigned to one of
the three clusters. In the top row of Fig. 4, the same
cluster assignment is applied to segment the Lorenz
Attractor time series into three sequences that do not
overlap in time. It is clear that the segmentation points
based on the xt’s inferred by GGP-LDS well align with
the switching points between different linear dynamics,
demonstrating the ability of GGP-LDS to seamlessly
transit between different temporal patterns, each of
which is modeled by adjusting the activation strengths
of different latent state communities that can co-occur
at the same time.

In addition to these qualitative analyses, we quanti-
tatively compare GGP-LDS and a variety of baseline
algorithms on their predictive performance on the same
10D time series yt, generated by adding Gaussian noise
to Dxt, where x1:T is a Lorenz Attractor synthesized
3D time series. As t = 445 is one of the switching time
points at which xt moves from one spiral to another,
we choose y1:445 for training. This set up can mea-
sure how well an algorithm detects and responds to
changes in the underlying dynamics. The predictive
performance of each algorithm is measured by mean
absolute error defined in 23 over a horizon of 10 time
points. The results are presented in Table 1. As shown
in Table 1, most of the competing algorithms are not
making good predictions following the switching point,
likely because they expect that the trajectory will keep
following the same spiral pattern before the switching
point. In reality, the trajectory quickly switches to the
other spiral pattern for a few steps before coming back
to the same spiral pattern observed before t = 445.
To further illustrate this point, we pick three different
dimensions of the 10D time series yt, and show in Fig. 9
the prediction of four different algorithms, including
SGLDS, TrLDS, TCRCP, and the proposed GGP-LDS,
on these three dimensions over a horizon of 10 time
points. It is evident from Fig. 9 that at the switching
point, SGLDS, TrLDS, and TCRCP all fail to detect
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Figure 5: GGP-LDS applied on Pedestrians’ trajecto-
ries data in 2D. Reconstruction of all 6 pedestrians’
trajectories using three strongest communities

the transition from one spiral to another. More specifi-
cally, SGLDS closely follows the pattern of the same
spiral, TrSLDS is experiencing delays in switching to
the correct LDS that better fits the second spiral, and
TRCRP creates wrong patterns.

4.2 Pedestrians’ Trajectories

We analyze a dataset that records by camera the 3D mo-
tions of pedestrians and their interactions, downloaded
from https://motchallenge.net/ and available in
the provided code repository. For visualization, we use
only 2 dimensional data for each pedestrian (x, y). We
select six pedestrians over 120 time points to train our
model. The next 10 time points are used to measure
the predictive performance of various algorithms.

Table 2 compares the predictive performance of various
algorithms on this dataset. In most of the 10 fore-
cast horizons our model has outperformed the other
competing models. Fig. 11 in Appendix provides the
interpretation of the latent factors for this dataset,
analogous to Fig. 1 used to provide interpretation of
the latent structure inferred from Lorenz Attractor.
Fig. 5 and Fig. 12(b) in Appendix, analogous to Fig. 8
for Lorenz Attractor, represents the reconstruction of
all 6 pedestrians’ trajectories using the three strongest
communities. A total of four communities is inferred
by GGP-LDS to model the underlying pattern of the
data as shown by Fig. 12(a) in Appendix. Fig. 5 shows
how each community can decompose the observed data
in 2 dimensions (x, y) into a community-specific sub-
sequence. The last subplot in Fig. 12(b) superposes
the first three sub-sequences and compares it against
the true trajectory (shown in dashed lines).

It is interesting to see how each community can create
one type of motion (e.g., straight movement, circular
trajectory, and spiral movement). It is evident that
regardless of the property of motion, such as “turn
direction,” “radius of circular motion,” or “direction
of straight,” the trajectories of the same nature have
appeared in a same community-specific sub-sequence.
It can be seen in the figure that some of the com-
munities have a very small contribution for some of

https://motchallenge.net/
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Table 1: Lorenz Attractor predictive performance. The best result and the results that are not considered as statistically
different are highlighted in bold.

Mean absolute error for 10 forecast horizons

Algorithm t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

LDS 11.12(1.10) 13.76(2.47) 18.54(2.78) 22.34(2.90) 18.81(3.18) 13.12(3.30) 9.68(2.87) 8.54(2.37) 7.21(2.51) 7.54(2.48)

rLDSg 8.12(0.90) 12.76(1.31) 17.33(1.98) 20.52(1.61) 15.62(2.05) 10.54(3.21) 8.62(3.28) 9.42(3.65) 7.46(3.16) 6.28(3.49)

rLDSr 12.46(1.72) 19.22(3.72) 21.51(4.22) 25.32(3.67) 18.21(3.11) 11.51(4.16) 13.21(4.21) 10.21(4.11) 8.57(3.95) 6.91(3.18)

SGLDS 8.84(1.32) 10.43(1.66) 14.51(2.43) 15.32(3.61) 16.31(3.24) 15.32(3.83) 12.21(3.94) 9.13(4.24) 9.57(3.95) 7.91(3.68)

TrSLDS 5.21(0.62) 5.76(0.98) 6.23(1.31) 7.45(1.42) 5.31(1.19) 5.12(1.53) 4.21(1.24) 2.31(1.18) 2.57(1.45) 5.78(1.11)

Multi-output GP 11.52(1.58) 15.35(1.73) 16.21(2.21) 19.08(2.36) 17.21(3.79) 12.37(3.77) 8.38(3.98) 8.21(2.98) 6.31(3.21) 7.21(3.98)

FB Prophet 5.57(1.31) 11.82(1.45) 13.42(1.98) 15.21(2.04) 16.26(1.76) 9.41(1.86) 8.78(2.01) 7.66(1.91) 6.54(2.14) 6.72(2.23)

DeepAR 9.42(0.26) 10.21(0.31) 16.22(0.54) 16.42(1.28) 15.24(1.21) 11.21(1.61) 13.25(2.08) 12.83(2.83) 14.21(3.01) 16.25(3.21)

TRCRP 5.66(0.86) 7.91(1.01) 11.23(1.35) 15.37(2.31) 16.21(2.42) 9.68(2.68) 8.21(2.98) 6.85(2.71) 5.63(2.38) 7.35(2.81)

GGP-LDS (10 steps) 2.12(0.84) 3.76(1.87) 4.77(2.68) 5.04(3.16) 4.83(3.32) 4.50(3.27) 4.15(3.34) 4.14(3.51) 4.60(3.66) 5.24(3.86)

GGP-LDS (1 step) 2.10(0.52) 0.37(0.23) 0.32(0.17) 0.41(0.18) 0.40(0.24) 0.64(0.27) 0.84(0.28) 0.81(0.25) 0.66(0.23) 0.57(0.23)

the pedestrians’ trajectory reconstruction since those
pedestrians did not use that specific pattern in their
recorded walking.

4.3 Stock Price

This dataset contains 12 companies’ relative closing
price (Pt − Pt−1) over the course of three years. These
12 companies have been selected from four different
industries, and the stock closing prices of the ones in
the same industry share similar temporal behaviors.
Table 3 compares the predictive performance of various
algorithms on this dataset. In most of the 10 forecast
horizons our model has outperformed the other compet-
ing models. Analogous to Fig. 1 on Lorenz attractor
data set, Fig. 6 is visualization of a posterior sample of
GGP-LDS applied to this data-set. Fig. 13(a) shows
the formed communities. Eight non-zero communities
has been formed with the first four communities hav-
ing at least one non-overlapping member, while the
next four communities do not have members that are
exclusive to them. Having four major communities,
Fig. 13(b) shows how each of these major communi-
ties can contribute to reconstruct the observed data.
Rows of Fig. 13(b) correspond to 6 stocks out of 12.
The first four columns of the figure describe how the
four strongest detected communities contributed to re-
construct the data in each dimension. There are two
noticeable observations in Fig. 13(b). First, it can be
seen that each community represents similar behavior
for all 6 selected stocks in the figure, and these be-
haviors are distinct from one community to another.
Second, it is evident that if a behavior represented
by a community does not play a significant role in re-
construction of the data in a specific dimension, that
community contribution will be trivial. As an example,
community 3’s role in reconstructing the second stock
is trivial, while playing a much more significant role to
reconstruct the observation of the fourth stock.
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Figure 6: GGP-LDS posteriori sample visualization for
Stock price dataset

5 CONCLUSION

We introduce the graph gamma process (GGP) to
form an infinite dimensional transition model with
a finite random number of nonzero-degree nodes and
a finite random number of nonzero-edge communities
over these nodes. The GGP is used to promote sparsity
on the state-transition matrix of a linear dynamical
system (LDS), and encourage forming overlapping com-
munities among the nonzero-degree nodes of the graph.
The model is designed such that each node community
models a behavior described with an LDS. Instead of
assigning one behavior to a temporal segment of an
observation trajectory, it allows any observation point
to be a combination of different simple trajectories,
each modeled by one of the discovered communities
and a smooth transition process forming one trajectory
to another. This way, we can break the sophisticated
behavior in a trajectory to a combination of simple
behaviors which are modeled by linear systems, which
helps model the nonlinearities of the data by smooth
transitioning between these linear systems.
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