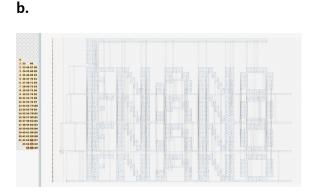

A Python library for structural DNA nanotechnology


Jorge Eduardo Guerrero¹, Reza Zadegan^{1*}

¹Nanoengineering Department, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, USA

Structural DNA nanotechnology is a powerful technique for bottom-up self-assembly of nanoscale structures. Potential applications are vast and only limited by the researchers' imagination. For large and complex structures, the manual or semi-automatic designing process is time-consuming and requires a detailed inspection of the model, leading to user error. We introduce MENDEL, a software library that allows the automatic, extensive, and parametric DNA nanostructures design in this work. MENDEL contains a set of commands that automate the designing process, allow the abstraction of turning sites, compute staples, and parametrize scaling and repetitive features; thus, reducing user error, design complications, and time-to-complete. Running MENDEL through Blender renders a 3D representation of the model. Also, for community convenience, MENDEL generates caDNAno/CanDo compatible files. MENDEL is available as open-source software at https://github.com/SBMI-LAB/MENDEL.

a.

c.

Fig. 1. In under 41 seconds, MENDEL generated a four-layered origami consisting of 37,048 base pairs. (a) Blender interface with scripting window and MENDEL commands, (b) CaDNAno file generated, (c) CANDO geometry prediction.

Acknowledgment

This project was supported in part by NSF Grant No. MCB 2027738 and North Carolina Biotechnology Center Grant No.2020-FLG-3887.

^{*}Corresponding author: rzadegan@ncat.edu