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Abstract

The Sentinel-1 satellites equipped with synthetic aperture
radars (SAR) provide near global coverage of the world’s
oceans every six days. We curate a data set of co-locations
between SAR and altimeter satellites, and investigate the use
of deep learning to predict significant wave height from SAR.
While previous models for predicting geophysical quantities
from SAR rely heavily on feature-engineering, our approach
learns directly from low-level image cross-spectra. Training
on co-locations from 2015-2017, we demonstrate on test data
from 2018 that deep learning reduces the state-of-the-art root
mean squared error by 50%, from 0.6 meters to 0.3 meters.

Introduction

Synthetic aperture radar (SAR) is an important remote sens-
ing technology able to achieve high spatial resolution (< 10
meter). From SAR satellite data, geophysical properties can
be predicted using statistical models, enabling researchers to
monitor global sea states with unprecedented coverage, pre-
cision, frequency, and without the use of complicated SAR
modulation transfer functions (Schulz-Stellenfleth, Konig,
and Lehner 2007). Sea state information provides scientific
value in understanding the propagation of waves (Collard,
Ardhuin, and Chapron 2009; Stopa et al. 2016) and the ef-
fects of climate change (Young, Zieger, and Babanin 2011),
as well as immediate practical benefits such as alerting ships
to dangerously large waves created by storms.

SARs capture sea surface roughness and many other geo-
physical phenomena (Wang et al. 2019). Therefore, pre-
dicting ocean wave signatures from SAR images typically
requires feature engineering — a dimensionality-reduction
step that extracts task-specific i nformation. C WAVE i s a
common feature set for describing wave properties in SAR
as a basis of 20 orthogonal features derived from the SAR
modulation spectra. CWAVE has been used to estimate
the significant w ave height for the S ARs aboard: 1) ERS-
2 (Schulz-Stellenfleth, K 6nig, a nd L ehner 2 007), 2 ) EN-
VISAT (Li, Lehner, and Bruns 2011), and Sentinel-1 (Stopa
and Mouche 2017; Pleskachevsky et al. 2019) linking SAR
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imaging to vital sea state information. Such reduced rep-
resentations of high-dimensional data can be useful when
fitting statistical models to relatively small data sets, but
they are also limiting; task-relevant information is almost-
certainly lost when reducing a high-dimensional SAR image
to the low-dimensional CWAVE feature space.

In this work, we attempt to extract additional informa-
tion from SAR images using deep learning with artificial
neural networks. Deep learning has proven to be an ex-
tremely effective approach to representation learning, lead-
ing to rapid advances in diverse fields such as computer vi-
sion (Krizhevsky, Sutskever, and Hinton 2014), high-energy
physics (Baldi, Sadowski, and Whiteson 2014; Sadowski
and Baldi 2018), and chemistry (Lusci, Pollastri, and Baldi
2013; Duvenaud et al. 2015). Deep learning has the potential
to make similar advances in remote sensing for oceanogra-
phy by extracting information directly from SAR modula-
tion cross-spectra.
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Figure 1: Spatial distribution of co-locations between
Sentinel-1 SAR satellites and altimeter satellites, in 2 x 2°
bins.

In this work, we first curate a data set of over 750,000
co-locations of SAR and altimeter satellites, which provides
SAR in conjunction with direct measurements of ocean
wave heights. The data is used to train deep neural networks
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Figure 2: Level 1 SAR image covering a square 20 x 20 km area (left); real component of the image spectra obtained by taking
the 2D Fourier transform (center); and 20 orthogonal CWAVE basis functions designed to summarize the image spectra (right).
The inputs to the deep neural network are the real and imaginary components of the image spectra, represented as two 72 x 60

matrices.

to predict significant wave height, H, defined as the mean
of the top third of a wave height distribution. We compare
training on SAR image spectra vs. high-level CWAVE fea-
tures, and analyze the effect of training data set size.

Methods
Data

We curate a training set of historical data from two types
of polar-orbiting satellites: Sentinel-1 SAR satellites and al-
timeter satellites. Because the satellites are on different tra-
jectories, their paths frequently intersect, providing mea-
surements from roughly the same location at the same time.
Specifically, the data set is constructed using measurements
that are less than 3 hours apart and with spatial differences
less than 300 km, resulting in 753,777 co-location events
from 2015 through 2018 that are geographically well dis-
tributed (Figure 1). These events have both SAR imaging
from Sentinel-1 and significant wave height from an altime-
ter, and provide a high-fidelity reference data set (Ribal and
Young 2019).

The data set is split into training, validation, and test sets
based on year of data collection. Co-location events from
2015 and 2016 were used as the training set, events from
2017 was used as a validation set, and events from 2018 was
used as held-out test set. The result was 303,574 training ex-
amples, 265,052 validation examples, and 185,151 test ex-
amples. The validation set was used for learning rate anneal-
ing, early stopping, and hyper-parameter selection, while the
test set was only used for the final evaluation of the model.

The Sentinel-1 SAR data set consists of the real and imag-
inary components computed from SAR modulation cross
spectra. Each data point within the cross spectra was cre-
ated by taking the Level 1 SAR image with 5 x 5 m pixel
resolution covering a 20 x 20 km area and applying a 2D
Fourier transformation to different ”looks” within the dwell
time (Engen and Johnsen 1995) to obtain the real and imag-

inary modulation spectra (Johnsen and Collard 2009) (Fig-
ure 2). The modulation spectra consists of two matrices (real
and imaginary) of shape 72 x 60 with one dimension cor-
responding to wavenumber and the other direction. These
two matrices were then stacked to form the input tensor with
shape 72 x 60 x 2. The 1-Hz altimeter dataset estimates sig-
nificant wave heights with spatial footprints of 6 to 10 km.
The altimeter dataset consists of data merged from 6 differ-
ent altimeter missions and has been cross-calibrated between
platforms, as in Ribal and Young (Ribal and Young 2019).
The SAR image spectra were then pre-processed by center-
ing and scaling the real and imaginary image modulation
spectra separately — each pixel was normalized by subtract-
ing the overall mean and dividing by the overall standard
deviation of all pixels and all co-locations.

In addition to the SAR image spectra, we include a num-
ber of high-level features in our model. First, we include the
time and distance between the satellite co-location measure-
ments, normalized to have zero mean and unit variance —
while this information is only available during training. The
time (or distance) between satellite observations provides a
rough estimate of how much we can trust the altimeter mea-
surement to provide an accurate target because sea states can
change faster than our original time and space constraints.
These features are simply set to zero at prediction time. Sec-
ond, the time-of-day was encoded as a value between -1 and
1 using the function f(t) = 2sin(2Zt) — 1; this normaliza-
tion helps stabilize the neural network optimization. Third,
latitude and longitude were encoded by representing each as
an angle in the range [0, 27) then taking the sine and cosine,
resulting in four features total. Fourth, a binary label was
created to specify the SAR satellite; S1-A or S1-B are cali-
brated to produce comparable data, but there could be small
differences. Finally, we also include the 20 non-dimensional
CWAVE parameters that are derived from the image spectra,
each normalized using standard scaling to have zero mean
and unit variance over the training examples.
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Figure 3: Deep neural network architecture with two input types: SAR image spectra comprising one real and one imaginary
channel (top), and 32 scalar-valued features (bottom). The SAR images are processed by multiple 2D convolution layers before
the two branches of the network are combined by three dense layers at the output.

Deep Learning

Deep Neural Network Architecture We propose a deep
neural network architecture that predicts significant wave
height by using the input data from SAR image spectra. The
model starts as two branches with separate inputs: one which
processes the spectral input and another which extracts in-
formation from the high-level features (Figure 3). The spec-
tral input branch takes an input tensor of the shape (72, 60, 2)
where the real and imaginary values of the Fourier transform
are stacked along the third axis, analogous to the ‘colors’ of
an RGB image. This input tensor is then fed sequentially
into three convolutional layers containing 64, 128, and 256
filters respectively. A filter size of 3 x 3 is maintained at each
convolutional layer with a rectified linear unit (ReLU) acti-
vation. In addition, each layer is followed by a max pooling
layer with a 2 x 2 window. The final convolutional layer is
fed into a global max-pooling layer which produces a flat-
tened array of size 256. This is then fed into two additional
dense layers with 256 hidden units each with ReLU activa-
tion. The non-spectral data branch consists an input layer of
the following 32 features:

o 20 CWAVE features
e | time of day feature

e 2 latitude features (sine and cosine)

2 longitude features (sine and cosine)

1 incidence angle feature

1 incidence angle mode feature (binary flag representing
WVI1 or WV2)

1 satellite source feature (binary flag representing
Sentinel-1A and Sentinel-1B)

e | time difference between altimeter and sentinel measure-
ments feature

e | spatial difference between altimeter and sentinel mea-
surements feature

e 1 normalized radar cross section ¢© feature
e 1 normalized variance of radar cross section feature.

These 32 high-level features are fed into 11 dense layers
with 256 ReLU hidden units each. Both branches yield a flat-
tened array of size 256 which are then concatenated to form
a single vector with 512 features. Two hidden dense layers
of 256 and 128 hidden ReLU units then integrate the image
spectra branch with the second branch. Finally, an output
layer with a dropout of 0.337 and softplus activation makes
the final prediction.

This model is trained to minimize the mean squared er-
ror (MSE) using the Adam optimizer (Kingma and Ba 2014)
with a batch size of 128 and an initial learning rate of 0.0003.
The learning rate was decreased by 20% if the validation
set MSE did not improve over 4 epochs, and training was
stopped when the validation set MSE did not improve over
10 epochs. The best model was trained for 35 epochs. The
dropout rate, initial learning rate, and batch size were opti-
mized using the SHERPA black-box optimization package
for machine learning hyper-parameter tuning (Hertel et al.
2018) on a cluster Nvidia RTX 2080 Ti GPUs. One hundred
models were trained using the random search algorithm to
optimize over the search space shown in Table 1.

CWAVE Models To measure the advantage of the deep
learning approach over simpler models, we also trained two
models that predict the significant wave height from the 32



Table 1: Hyper-parameter Search Space

Parameter Range

Batch Size {128,256, 512, 1024}
Learning Rate  [0.0001, 0.001]
Dropout [0.2, 0.5]

high-level features alone: a simple linear regression model
and a deep neural network. The neural network consisted of
eleven dense hidden layers of 256 ReL.U units, followed by
a layer of 64 ReLU units, and two outputs. The two out-
puts correspond to a heteroskedastic Gaussian distribution
N (y1,y2), where ys is restricted to ensure positive variance
by defining a custom activation function:

J oy y2 > 0,

Y2 = 1,1y2 Y2 < 0
Weights are initialized using the scaling suggested by (He
et al. 2015), and the conditional negative log-likelihood of
the target values is minimized using the Adam optimizer
(Kingma and Ba 2014) with mini-batches of size 1024. The
initial learning rate of 0.003 decays starting at epoch 300 at
a decay rate of 0.0005 applied at the end of each subsequent
epoch. A dropout rate of 0.5 is applied to the penultimate
layer. Training is stopped when the validation loss doesn’t
improve after 15 epochs. The architecture, learning rate, and

early-stopping were optimized with SHERPA.

Results

To compare the three types of models after hyper-parameter
tuning, we trained each on data from 2015-2016, and tested
on events from 2018, enabling us to explore the relative ben-
efits of deep learning and the use of image spectra features.
Table 2 shows that the deep neural network trained on image
spectra achieves a significantly lower root mean squared er-
ror (RMSE) of 0.33 meters compared to the other methods
that rely only on the high-level features: 0.64 m for the lin-
ear model and 0.43 m for the deep neural network trained on
CWAVE alone. Furthermore, this performance improvement
is consistent across small, medium, and large waves.

Table 2: Root Mean Squared Error on Test Set

Wave CWAVE CWAVE Deep  orooneee
Height Linear NN NN Total Data
All Waves  0.642 0.433 0.327 100%
<lm 0.827 0.443 0.392 1.4%

Im - 3m 0.515 0.377 0.255 66.4%
3m- 8m 0.781 0.514 0.426 31.8%
>8m 3.226 1.512 1.216 0.4%

A feature importance study (Table 2) shows the de-
pendence on each set of features. Two additional models

were trained with an identical DNN architecture and hyper-
parameters, but with specific high-level features removed:
the 20 CWAVE parameters removed or the latitude and lon-
gitude features. In both models, time of day, incidence an-
gle, incidence angle mode, satellite type, time and distance
difference between altimeter and sentinel data, normalized
radar cross section o and normalized variance of radar
cross section are still included. The results show that the
high-level CWAVE features are still used by the model, but
only slightly — despite containing no additional informa-
tion, these features add implicit bias to the model. The lo-
cation features do contain additional information — they
essentially allow the model to learn a prior over the wave
heights at different locations — but these too only have a
small effect on performance.

Table 3: Feature Importance Study

No Percentage
Waye No Lati- All of
Height CWAVE tude . Included Total Data
Longitude
All Waves  0.334 0.329 0.327 100%
<Im 0.439 0.421 0.392 1.4%

Im - 3m 0.263 0.255 0.255 66.4%
3m - 8m 0.432 0.429 0.426 31.8%
>8m 1.145 1.187 1.216 0.4%

Finally, we explore the impact of increasing the size of
the training set on the discrepancy between including and
not including CWAVE parameters in our final model. In
this experiment, we fix the hyper-parameters, train on data
from 2015-2017 (568,626 examples), then test on 2018. The
models are trained for a fixed 30 epochs where the learn-
ing rate is annealed by a factor of 0.4 every 10 epochs. Ini-
tial learning rate and dropout are identical to that of our
optimal deep neural network architecture. Figure 4 shows
the mean performance of six randomly-initialized networks
trained with different fractions of the data set. An ensem-
ble (arithmetic mean) of the 6 models using all features and
the complete training set gives a test RMSE of 0.307 — a
50% reduction in RMSE from the previous state-of-the-art
of 0.6 m (Stopa and Mouche 2017). This also approaches
the RMSE of satellite altimetry compared to buoy observa-
tions (Ribal and Young 2019).

Discussion

Our results demonstrate that a deep convolutional neural
network can extract useful representations from SAR im-
age spectra that is not captured by engineered CWAVE fea-
tures. In a direct comparison between two hyper-parameter
optimized deep neural networks, the network with the im-
age spectra information obtained a 29% reduction in RMSE
(0.33 m vs. 0.43 m). This is in keeping with the success of
deep learning in other fields, where the expertly engineered
features are discarded in favor of learned features.
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Figure 4: Performance of with both SAR image spectra and
CWAVE parameters (blue line) and only SAR image spec-
tra (orange curve), while varying the training set size. Each
point is an average of MSE objective over 6 trials with dif-
ferent random weight initializations.

Our results show that there is still some advantage to in-
cluding the CWAVE features in the model, even with a train-
ing set of over 500,000 examples. However, we also show
that this advantage diminishes as the number of training ex-
amples increases (Figure 4). The CWAVE features, being
derived from the image data, provide no additional infor-
mation, but they help bias the model towards a good solu-
tion. As the training data set increases, the model is slower
to overfit, and the benefit of including the CWAVE features
disappears.

Latitude and longitude information is useful for predict-
ing significant wave heights because there are regional char-
acteristics of the wave climate (Stopa et al. 2013). How-
ever, the feature importance study shows that our model only
makes minimal use of this information. This is encouraging,
because it implies that the model is relying almost entirely
on the direct measurements rather than geographical infor-
mation.

Conclusion

Our results demonstrate that deep learning provides a 50%
decrease in RMSE compared to the previous state-of-the-
art in predicting significant wave height from SAR. Instead
of relying on the set of engineered CWAVE features that
capture most of the discriminative information, our deep
learning approach learns directly from the low-level, high-
dimensional image spectra. Furthermore, our results indicate
that there is still room for improvement with additional train-
ing data. Thus, we should we should expect the performance
of our model to increase as more co-location events are col-
lected over the next couple years.
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