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ABSTRACT

Semi-supervised learning (SSL) over graph-structured data emerges in many net-
work science applications. To efficiently manage learning over graphs, variants
of graph neural networks (GNNs) have been developed recently. By succinctly
encoding local graph structures and features of nodes, state-of-the-art GNNs can
scale linearly with the size of graph. Despite their success in practice, most of ex-
isting methods are unable to handle graphs with uncertain nodal attributes. Specif-
ically whenever mismatches between training and testing data distribution exists,
these models fail in practice. Challenges also arise due to distributional uncer-
tainties associated with data acquired by noisy measurements. In this context, a
distributionally robust learning framework is developed, where the objective is to
train models that exhibit quantifiable robustness against perturbations. The data
distribution is considered unknown, but lies within a Wasserstein ball centered
around empirical data distribution. A robust model is obtained by minimizing the
worst expected loss over this ball. However, solving the emerging functional op-
timization problem is challenging, if not impossible. Advocating a strong duality
condition, we develop a principled method that renders the problem tractable and
efficiently solvable. Experiments assess the performance of the proposed method.

1 INTRODUCTION

Relations among data in real world applications can often be captured by graphs, for instance the
analysis and inference tasks for social, brain, communication, biological, transportation, and sensor
networks (Shuman et al., 2013; Kolaczyk & Csárdi, 2014). In practice however, the data is only
available for a subset of nodes, due to for example the cost, and computational or privacy con-
straints. Most of these applications however, deal with inference of processes across all the network
nodes. Such semi-supervised learning (SSL) tasks over networks can be addressed by exploiting the
underlying graph topology (Chapelle et al., 2009).

Graph neural networks (GNNs) are parametric models that combine graph-filters and topology in-
formation with point-wise nonlinearities, to form nested architectures to easily express the functions
defined over graphs (Zhou et al., 2018). By exploiting the underlying irregular structure of network
data, the GNNs enjoy lower computational complexity, less parameters for training, and improved
generalization capabilities relative to traditional deep neural networks (DNNs), making them ap-
pealing for learning over graphs (Zhou et al., 2018; Wu et al., 2020; Gama et al., 2019).

Similar to other DNN models, GNNs are also susceptible to adversarial manipulated input data or,
distributional uncertainties, such as mismatches between training and testing data distributions. For
instance small perturbations to input data would significantly deteriorate the regression performance,
or result in classification error (Zügner et al., 2020; Jin et al., 2020), just to name a few. Hence, it is
critical to develop principled methods that can endow GNNs with robustness, especially in safety-
critical applications, such as robotics (Tolstaya et al., 2020), and transportation (Zhou et al., 2020).

Contributions. This paper endows SSL over graphs using GNNs with robustness against distribu-
tional uncertainties and possibly adversarial perturbations. Assuming the data distribution lies inside
a Wasserstein ball centered at empirical data distribution, we robustify the model by minimizing the
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worst expected loss over the considered ball, which is challenging to solve. Invoking recently devel-
oped strong duality results, we develop an equivalent unconstrained and tractable learning problem.

1.1 PROBLEM FORMULATION

Consider a SSL task over a graph G := {V,W} with N nodes, where V := {1, . . . , N} denotes the
vertex set, and W represents theN×N weighted adjacency matrix capturing node connectivity. The
associated unnormalized graph Laplacian matrix of the undirected graph G is L := D −A, where
D := diag{W1N}, with 1N denoting the N × 1 all-one column vector. Denote by matrix Xs ∈
RN×F the nodal feature vectors sampled at instances s = 1, 2, · · · , with n-th row x>n,s := [Xs]n:
representing a feature vector of length F associated with node n ∈ V , and> stands for transposition.
In the given graph, the labels {yn,s}n∈Os

are given for only a small subset of nodes, where Os
represents the index set of observed nodes sampled at s, and Us the index set of unobserved nodes.

Given {Xs,ys}, where ys is the vector of observed labels, the goal is to find the labels of unobserved
nodes {yn,s}n∈Us . To this aim our objective is to learn a functional mapping f(Xs; W) that can
infer the missing labels based on available information. Such a function can be learned by solving
the following optimization problem (see e.g., Kipf & Welling (2016) for more details)

min
f∈F

E
[ L0︷ ︸︸ ︷∑
n∈Os

‖f(xn; W)− yn‖2 +λ

Lreg︷ ︸︸ ︷∑
n,n′

Wnn′‖f(xn; W)− f(xn′ ; W)‖2
]
, (1)

where L0 represents the supervised loss w.r.t. the observed part of the graph, Lreg represents the
Laplacian regularization term, F denotes the feasible set of functions that we can learn, and λ ≥ 0 is
a hyper parameter. The regularization term relies on the premise that connected nodes in the graph
are likely to share similar labels. The expectation here is taken with respect to (w.r.t) the feature and
label data generating distribution.

In this work, we first encode the graph structure using a GNN model denoted by f(X;θ,W), where
θ represents the model parameters. Such a parametric representation enables bypassing explicit
graph-based regularization Lreg represented in 1. The GNN model of f(·) relies on the weighted
adjacency W and therefore can easily propagate information from observed nodesOs to unobserved
ones Us. In a nutshell, objective is to learn a parametric model by solving the following problem

min
θ∈Θ

E{X,y}∼P0
L0

(
f(X,θ; W),y

)
(2)

where Θ is a feasible set, and P0 is the feature and label data generating distribution. Despite
restricting the modeling capacity through parameterizing f(·) with GNNs, we may infuse additional
prior information into the sought formulation through exploiting the weighted adjacency matrix W,
which does not necessarily encode node similarities.

In practice, P0 is typically unknown, instead some data samples {Xs,ys}Ss=1 are given. Upon
replacing the nominal distribution with an empirical one, we arrive at the empirical loss minimiza-
tion problem, that is minθ∈Θ S−1

∑S
s=1 L0

(
f(Xs,θ; W),ys

)
. The model obtained by solving

empirical risk minimization does not exhibit any robustness in practice, specifically if there is any
mismatch between the training and testing data distributions. To endow robustness, we reformulate
this learning problem in a fresh manner as described in ensuing section.

2 DISTRIBUTIONALLY ROBUST LEARNING

To endow robustness, we consider the following optimization problem

min
θ∈Θ

sup
P∈P

E(X,y)∼P L0

(
f(X,θ; W),y

)
(3)

where P is a set of distributions centered around the empirical data distribution P̂0. This novel re-
formulation in 3 yields a model that performs reasonably well among a continuum of distributions.
Various ambiguity sets P can be considered in practice, and they lead to different robustness guaran-
tees with different computational requirements. For instance momentum, KL divergence, statistical
test, and Wasserstein distance-based sets are popular in practice; see also (Blanchet & Murthy, 2019;
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Sinha et al., 2017; Blanchet et al., 2006) and references therein. Among possible choices, KL di-
vergence is not symmetric and under certain conditions can even become infinite, momentum based
methods on the other hand are oftentimes not tractable in practice. Hence, here we advocate the op-
timal transport theory and the Wasserstein distance to characterize the ambiguity set P . As a result,
we can offer a tractable solution for this problem, as delineated next.

To formalize our framework, let us first define the Wasserstein distance between two probability
measures. To this aim, consider probability measures P and P̂ supported on some set X , and let
Π(P, P̂ ) denote the set of joint measures (a.k.a coupling) defined over X × X , with marginals P
and P̂ , and let c : X × X → [0,∞) measure the transportation cost for a unit of mass from X ∈ X
in P to X′ ∈ X in P̂ . The so-called optimal transport problem is concerned with the minimum
cost associated with transporting all the mass from P to P̂ through finding the optimal coupling,
i.e., Wc(P, P̂ ) := inf

π∈Π
Eπ[c(X,X′)]. If c(·, ·) satisfies the axioms of distance, then Wc defines a

distance on the space of probability measures. For instance, if P and P̂ are defined over a Polish
space equipped with metric d, then fixing c(X,X′) = dp(X,X′) for some p ∈ [1,∞) asserts that
W

1/p
c (P, P̂ ) is the well-known Wasserstein distance of order p between P and P̂ .

Using the Wasserstein distance, let us define the uncertainty setP := {P |Wc(P, P̂0) ≤ ρ} to include
all probability distribution functions (pdfs) having at most ρ-distance from P̂0. Incorporating this
ambiguity set into 3, the following robust surrogate is considered in this work

min
θ∈Θ

sup
P∈P

E(X,y)∼P L0

(
f(X,θ; W),y

)
, where P :=

{
P |Wc(P, P̂0) ≤ ρ

}
. (4)

The inner supremum here goes after pdfs characterized by P . Solving this optimization directly
over the infinite-dimensional space of distribution functions raises practical challenges. Fortunately,
under some mild conditions over losses as well as transport costs, the inner maximization satisfies
a strong duality condition (see Blanchet et al. (2006) for a detailed discussions), which means the
optimal objective of this inner maximization and its Lagrangian dual are equal. Enticingly, the
dual reformulation involves optimization over only one-dimensional dual variable. These properties
make it practically appealing to solve 4 directly in the dual domain. The following proposition
highlights the strong duality result, whose proofs can be found in (Blanchet & Murthy, 2019).

Proposition 1 Under some mild conditions over the loss L0(·) and cost c(·), it holds that

sup
P∈P

EP L0

(
f(X,θ; W),y

)
= inf
γ≥0

1

S

S∑
s=1

sup
ξ∈X
{L0

(
f(ξ,θ; W),ys

)
+ γ (ρ− c(Xs, ξ))} (5)

where P :=
{
P |Wc(P, P̂0) ≤ ρ

}
.

The right-hand side in 5 simply is the univariate dual reformulation of the primal problem repre-
sented in the left-hand side. Furthermore, different from the primal formulation, the expectation in
the dual domain is replaced with the summation over available training data, rather than any P ∈ P
that needs to be obtained by solving for the optimal π ∈ Π to form P . Because of these two prop-
erties, solving the dual problem is practically more appealing. Thus, hinging on Proposition 1, the
following distributionally robust surrogate is considered in this work

min
θ∈Θ

inf
γ≥0

1

S

S∑
s=1

sup
ξ∈X

{
L0

(
f(ξ,θ; W),ys

)
+ γ(ρ− c(Xs, ξ))

}
(6)

This problem requires the supremum to be solved separately for each sample Xs, which cannot
be handled through existing methods. Our approach to address this relies on the structure of this
problem to iteratively update parameters θ̄ := [θ>, γ]> and ξ. Specifically, we rely on Danskin’s
theorem to first maximize over ξ, which results in a differentiable function of θ̄, and then minimize
the objective w.r.t. θ̄ using gradient descent. However, to guarantee convergence to a stationary
point and utilize Danskin’s theorem, we need to make sure the inner maximization admits a unique
solution (singleton). By choosing a strongly convex transportation cost such as c(X, ξ) := ‖X −
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Figure 1: Performance during testing for both normal (a) - (b), and perturbed input features (c) - (d).

ξ‖2F , and by selecting γ ∈ Γ := {γ|γ > γ0} with a large enough γ0, we arrive at a strongly
concave objective function for the maximization over ξ. Since γ is the dual variable associated with
the constraint in 4, having γ ∈ Γ is tantamount to tuning ρ, which in turn controls the level of
robustness. Replacing γ ≥ 0 in 6 with γ ∈ Γ, our robust model can be obtained as the solution of

min
θ∈Θ

inf
γ∈Γ

1

S

S∑
s=1

sup
ξ∈X

ψ(θ̄, ξ; Xs) (7)

where ψ(θ̄, ξ; Xs) = L0(f(ξ,θ; W),ys) + γ(ρ − c(Xs, ξ)). Intuitively, input Xs in 7 is pre-
processed by maximizing ψ(·) accounting for a perturbation. We iteratively solve 7, where after
sampling a mini-batch of data, we first pre-process them by maximizing the function ψ(·). Then,
we use a simple gradient descent to update θ̄. Notice that the θ inside function ψ(·), represents the
weights of our considered GNN, whose details are provided in the Appendix. A promising future
research direction is to optimally/adaptively tune the hyper parameter ρ. We refer interested readers
to Esfahani & Kuhn (2018); Fournier & Guillin (2015) for further discussions.

3 EXPERIMENTS

The performance of our novel distributionally robust GNN-based SSL is tested in a regression task
using real load consumption data from the 2012 Global Energy Forecasting Competition (GEFC).
Our objective here is to estimate only the amplitudes of voltages across all the nodes in a standard
IEEE 118-bus network. Utilizing this data set, the training and testing data are prepared by solving
the so-called AC power ow equations using the MATPOWER toolbox (Zimmerman et al., 2010).

The measurements X used include all active and reactive power injections, corrupted by small ad-
ditive white Gaussian noise. Using MATPOWER we generated 1, 000 pairs of measurements and
ground-truth voltages. We used 80% of this data for training and the remaining for testing. Through-
out the training, the Adam optimizer with a fixed learning rate 10−3 was employed to minimize the
Hüber loss. Furthermore, the batch size was set to 32 during all 100 epochs.

To compare our method we employed 3 different benchmarks, namely: i) the prox-linear network
introduced in (Zhang et al., 2019); ii) a 6-layer vanilla feed-forward neural network (FNN); and, iii)
an 8-layer FNN. Our considered GNN uses K = 2 with D = 8 hidden units with ReLU activation.

The first set of tests are carried out using normal (not-corrupted) data, where the results are depicted
in Fig. 1. Here we show the estimated (normalized) voltage amplitudes at different nodes, namely
105, and 20 during the given time course. The black curve represents the ground truth signal to be
estimated. Clearly our GNN-based method outperforms alternative methods.

The second set of experiments are carried out over corrupted input signals, and the results are re-
ported in Fig. 1. Specifically the training samples were generated according to P0, but during testing
samples were perturbed to satisfy the constraint P ∈ P , that would yield the worst expected loss.
Fig. 1 depicts the estimated signals across nodes 40 and 90. Here we fixed ρ = 10 and related
hyper-parameters are tuned using grid search. As the plots showcase, the our proposed GNN-based
robust method outperforms competing alternatives with corrupted inputs.

4 CONCLUSIONS

This contribution dealt with semi-supervised learning over graphs using GNNs. To account for
uncertainties associated with data distributions, or adversarially manipulated input data, a principled
robust learning framework was developed. Using the parametric models, we were able to reconstruct
the unobserved nodal values.
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A APPENDIX–GRAPH NEURAL NETWORKS

GNNs are parametric models to represent functional relationship for graph structured data. Specif-
ically, the input to a GNN is a data matrix X. Upon multiplying the input X by W, features will
diffuse over the graph, giving a new graph signal Y̌ = WX. To model feature propagation, one can
also replace W with the (normalized) graph Laplacian or random walk Laplacian, since they will
also preserve dependencies among nodal attributes.

During the diffusion process, the feature vector of each node is updated by a linear combination
of its neighbors. Take the n-th node as an example, the shifted f -th feature [Y̌]nf is obtained by
[Y̌]nf =

∑N
i=1[W]ni[X]if =

∑
i∈Nn

wnix
f
i , where Nn denotes the set of neighboring nodes for

node n. The so-called convolution operation in GNNs utilizes topology to combine features, namely

[Y]nd := [H ?X; W]nd :=
K−1∑
k=0

[WkX]n:[Hk]:d (8)

where H := [H0 · · · HK−1] with Hk ∈ RF×D as filter coefficients; Y ∈ RN×D the intermediate
(hidden) matrix with D features per node; and WkX as the linearly combined features of nodes
within the k-hop neighborhood.

To construct a GNN with L hidden layers, first let us denote by Xl−1 the output of the (l − 1)-
th layer, which is also the l-th layer input for l = 1, . . . , L, and X0 = X to represent the input
matrix. The hidden Yl ∈ RN×Dl with Dl features is obtained by applying the graph convolution
operation 8 at layer l, i.e., [Yl]nd =

∑Kl−1
k=0 [WkXl−1]n:[Hlk]:g , where Hlk ∈ RFl−1×Fl is the

convolution coefficients for k = 0, . . . ,Kl − 1. The output at layer l is constructed by applying a
graph convolution followed by a point-wise nonlinear operation σl(·). The input-output relationship
at layer l can be represented succinctly by Xl = σl(Yl) = σl

(∑Kl−1
k=0 WkXl−1Hlk

)
. Using

this mapping, GNNs use a nested architecture to represent nonlinear functional operator XL =
f(X0;θ,W) that maps the GNN input X0 to label estimates by taking into account the graph
structure through W. Specifically, in a compact representation we have that

f(X0;θ,W) := σL

(
KL−1∑
k=0

Wk

(
. . .

(
σ1

(
K1−1∑
k=0

WkX0H1k

)
. . .

))
HLk

)
(9)

where the parameter set θ contains all the trainable filter weights {Hlk, ∀l, k}.
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