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Abstract

Accurately and efficiently characterizing the decision boundary of classifiers is
important for problems related to model selection and meta-learning. Inspired by
topological data analysis, the characterization of decision boundaries using their
homology has recently emerged as a general and powerful tool. In this paper,
we propose an active learning algorithm to recover the homology of decision
boundaries. Our algorithm sequentially and adaptively selects which samples it
requires the labels of. We theoretically analyze the proposed framework and show
that the query complexity of our active learning algorithm depends naturally on the
intrinsic complexity of the underlying manifold. We demonstrate the effectiveness
of our framework in selecting best-performing machine learning models for datasets
just using their respective homological summaries. Experiments on several standard
datasets show the sample complexity improvement in recovering the homology
and demonstrate the practical utility of the framework for model selection. Source
code for our algorithms and experimental results is available at https://github.
com/wayne0908/Active-Learning-Homology.

1 Introduction

A broadly known meta-learning [1] is to design an model to learn a task learning process and, with
this model, a new task can be adapted to with fewer examples. [2] views meta-learning from another
perspective: The complexity of the data at hand is an important insight that, if gleaned correctly from
past experience, can greatly enhance the performance of a meta-learning procedure. A particularly
useful characterization of data complexity is to understand the topological properties of the decision
boundary; for example, by using topological data analysis (TDA) [3, 4, 5]. This scenario makes sense
in settings where large corpora of labeled training data are available to recover the persistent homology
of the decision boundary for use in downstream machine learning tasks [5, 6, 7, 8§]. However the
utility of this family of methods is limited in applications where labeled data is expensive to acquire.

In this paper, we explore the intersection of active learning and topological data analysis for the
purposes of efficiently learning the persistent homology of the decision boundary in classification
problems. In contrast to the standard paradigm, in active learning, the learner has access to unlabeled
data and sequentially selects a set of points for an oracle to label. We propose an efficient active
learning framework that adaptively select points for labeling near the decision boundary. A theoretical
analysis of the algorithm results in an upper bound on the number of samples required to recover the
recover the decision boundary homology. Naturally, this query complexity depends on the intrinsic
complexity of the underlying manifold.
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There have been several other studies that have explored the use of topological data analysis to
characterize the decision boundary in classification problems. In [9], the authors use the persistent
homology of the decision boundary to tune hyperparameters in kernel-based learning algorithms.
They later extended this work and derived the conditions required to recover the homology of the
decision boundary from only samples [5]. Other works have explored the use of other topological
features to characterize the difficulty of classification problems [10, 11, 7]. While all previous work
assumes full knowledge of data labels, only samples near the decision boundary are used to construct
topological features. We directly address this problem in our work by proposing an active approach
that adaptively and sequentially labels only samples near the decision boundary, thereby resulting in
significantly reduced the complexity of needed labelled samples. To the best of our knowledge, this
is the first work that explores the intersection of active learning and topological data analysis.

Our main contributions are as follows:

* We introduce a new algorithm for actively selecting samples to label in service of finding
the persistent homology of the decision boundary. We provide theoretical conditions on the
query complexity that lead to the successful recovery of the decision boundary homology.

* We evaluate the proposed algorithm for active homology estimation using synthetic data and
compare its performance to a passive approach that samples data uniformly. In addition, we
demonstrate the utility of our approach relative to a passive approach on a stylized model
selection problem using real data.

2 Preliminaries

In this section, we define the decision boundary manifold and discuss the labeled Cech Complex [5]
which we then use to estimate the homology of this manifold from labeled data. For more background
and details, we direct the reader to appendix.

2.1 The Decision Boundary Manifold and Data

Let & be a Euclidean space that denotes the domain/feature space of our learning problem and
let 1 denote the standard Lebesgue measure on X'. We will consider the binary classification
setting in this paper and let Y = {0, 1} denote the label set. Let pxy denote a joint distribution
on X x ). Of particular interest to us in this paper is the so-called Bayes decision boundary
M = {x € X|py|x(1|x) = py|x(0[x)}. Indeed, identifying M is equivalent to being able to
construct the provably optimal binary classifier called the Bayes optimal predictor:

i) = {

Following along the lines of [5], the premise of this paper relies on supposing that the set M is in
fact a reasonably well-behaved manifold'. That is, we will make the following assumption.

0 otherwise '

(D

Assumption 1. The decision boundary M is a manifold in X with a condition number 1 /7.

The condition number % is an intrinsic property of M and encodes both the local and global curvature
of the manifold. The value 7 is the largest number such that the open normal bundle about M of
radius r is embedded in R¥ for every r < 7. E.g., in Figure 1, M is a circle in R? and 7 is its radius.
We refer the reader to the appendix (or [13]) for a formal definition.

Now we will suppose that we have access to NV i.i.d samples D = {xy,...,xy} C X drawn according
to the marginal distribution px . Notice that in a typical passive learning setting, we assume access to
the N corresponding labels as well. The goal of this paper is to demonstrate that if we are allowed to
choose the labels observed in a sequential and adaptive fashion, then we may obtain far fewer than [V
labels while still being competitive with the traditional passive learning approaches. Based on the
observed data, we define the set D = {x € D : f(x) = 0}, that is the set of all samples with Bayes
optimal label of 0; similarly, we let D! = {x € D : f(x) = 1}.

"Note that it is conceivable that the decision boundary is not strictly a manifold. While this assumption is
critical to the rest of this paper, it is possible to extend the results here by following the theory in [12]. We will
leave a thorough exploration of this for future work.



Figure 1: An example of
(e,7v)—labeled Cech complex,
constructed in a tubular
X neighborhood Tub,, (M)
of radius w + ~, for a

¢ Class 0 manifold M of condition
number 1/7. The overlap

* Class 1 between the two classes (D)
is contained in Tub,, (M).

— M The complex is constructed on

samples in class 0, by placing
77 Tuby, (M) balls of radius € (B (x41)), and
""" is “witnessed” by samples in
class 1. & is the compact
Tub,,+,(M) probability space for the data.
Each triangle is assumed to be
a 2—simplex in the simplicial
Be(x;) complex. Note that we keep
the samples from both classes
sparse for aesthetic reasons.

2.2 The Labeled Cech Complex

As outlined in Section 1, our goal is to recover the homological summaries of M from data. Ho-
mological summaries such as Betti numbers estimate the number of connected components and the
number of holes of various dimensions that are present in M. Since we only have a sample of data
points in practice, we first construct a simplicial complex from these points that mimics the shape
of M. We can then estimate the rank of any homology group H; of dimension ¢ from this complex.
This rank is called the Betti number 3; and informally denotes the number of holes of dimension ¢
in the complex. The multi-scale estimation of Betti numbers, which involves gradual “thickening”
of the complex, results in a persistence diagram PD; that encodes the birth and death time of the
i—dimensional holes in the complex. For more background we refer the reader to [14].

In [5], the authors consider the passive learning setting for estimating the homology of M and
propose a simplicial approximation for the decision boundary called the Labeled Cech (LC) Complex.
We now provide a definition of this complex, letting B.(x) denote a ball of radius € around x. We
refer the reader to the appendix or [5] for the more details.

Definition 1. Given €,y > 0, an (¢, y)-labeled Cech complex is a simplicial complex constructed
from a collection of simplices such that each simplex o is formed on the points in a set S C D°
witnessed by the reference set D' satisfying the following conditions: (a) ﬂxi co Be(xi) # 0, where

x; € S are the vertices of 0. (b) Vx; € S C D°, 3x; € D! such that, ||x; — Xjll, <.

The set S is used to construct the LC complex witnessed by the reference set D*. This allows us to
infer that each vertex of the simplices o are within distance  to some point in D!. The authors in [5]
show that, under certain assumption on the manifold and the distribution, provided sufficiently many
random samples (and their labels) drawn according pxy, the set U = Uxi co B.(x;) forms a cover
of M and deformation retracts to M. Moreoever, the nerve of the covering is homotopy equivalent
to M. The assumptions under which the above result holds also turns out to be critical to achieve the
results of this paper, and hence we will devote the rest of this section to elaborating on these.

Before stating our assumptions, we need a few more definitions. For the distribution pxy, we will let

D2 {x€X:pxy(x|)pxy(x]0) >0}
In other words, ® denotes the region of the feature space where both classes overlap, i.e., both
class conditional distributions p x|y (- | 1) and px|y (- | 0) have non-zero mass. For any r > 0, we
let Tub,.(M) denote a “tubular” neighborhood of radius r around M [13]. We will let Tub,, (M)
denote the smallest tubular neighborhood of M that encloses ©. That is

w £ arginf {p > 0: Tub,(M) D D}.

A stylized example that highlights the relationship between these parameters is shown in Figure 1. In
this sequel, we will introduce a relevant assumption and a lemma underlying the results of this paper



(similar to those in [13, 5]). All assumptions and follow-on results are dependent on two parameters
that are specific to the joint distribution: w - the amount of overlap between the distributions and 7 -
the global geometric property of the decision boundary manifold.

Assumption 2. w < (V9 — /8)7.

A principal difference between [13] and our work is that [13] has direct access to the manifold
and supposes that all generated samples are contained within Tub( Vo \/é)r(M)§ this is one of the
sufficient conditions for manifold reconstruction from samples. In contrast, as in [5], we do not have
direct access to the decision boundary manifold. Rather, certain properties of M are inferred from
the labels. In this paper, we show that we can infer the homology of M with far fewer labels if we
are allowed to sequentially and adaptively choose which labels to obtain.

Since the generated samples do not necessarily reside within Tub( Vo \/é)T(M)’ it is not imme-
diately apparent that it is possible to find an .S (see Definition 1) that is entirely contained in
Tub( Vo \/é)r(M)- However, Assumption 2 allows us to guarantee precisely this. To see this, we
will first state the following lemma.

Lemma 1. Provided D° and D" are both %-dense in M, then S is contained in Tub,,4~(M) and it
is 3-dense* in M.

The lemma 1 is based on definition 1(b) that S is a subset of D° within distance ~ from D' and
the proof goes as follows. D" and D! being -dense in M implies ||x; — x;[lz < <, where

x; € D° N Bz(p) and x; € D! (1 Bz (p) for every p € M. Therefore, as the distance from
x; € S C DY tox; € D' is bounded by 7, S is also J-dense in M. This immediately implies S

is (w + ~y)-dense in M. Given lemma 1, as our initial sampling strategy is such that both D° and
D' are Z-dense in M, S is contained in T'ub,, (M) and Z-dense in M. and provided we choose

v < (\f — \/5)7' — w, we can guarantee that S C Tub(\/gﬂ/g)T(M).

With S C Tub 5 \/§)T(M)» S being (w + 7)-dense in M and an appropriate e properly selected,

we will have the (e, 7)-L(VJ complex homotopy equivalent to M per theorems in [5, 13]. We now
state the following proposition.

Proposition 1. The (e,'y)-Lé complex is homotopy equivalent to M as long as (a)
vy < (V9 — V8T — w; (b) D° and D' are g-dense in M and (c) ¢ €
((w+v+f)\/(w+v)2+7267(w+7) (w+v+r)+\/(w+w)2+rz67(w+w>>

2 J 2 :

Notice that the range for € in (c) above is non-trivial as long as v < (\/§ — \/§)T — w. A pictorial
description of relations between w, -y and 7 is shown in the stylized example in Figure 1; here M is a
circle, Tub,, 4 (M) is an annulus and the radius € of the covering ball B.(x) is constrained by 7.

Persistence

Sample from |Unlabeled Graph Graph Query the
Px data construction oracle by §?

Approximate labeled Persistent homology >
data simplicial construction complex estimation diagrams
— \ J
T
Query labels Estimate Homology

Figure 2: The proposed active learning framework for finding the homology of decision boundaries.
3 Active Learning for Finding the Homology of Decision Boundaries

As the definitions above and results from [5] make clear, constructing a useful LC complex requires
sampling both class-conditional distributions in the region around the decision boundary to a sufficient
resolution. The key insight of our paper is to devise a framework based on active learning that
sequentially and adaptively decides where to obtain data and therefore query-efficiently samples
points near the decision boundary. In what follows, we will provide a brief description of our
algorithm, and then we will establish rigorous theoretical guarantees on the query complexity of the
proposed algorithm.

*A set W is Z-dense in M if for every p € M there exists a x € W such that ||p — x||, < %. In other
words, there exists at least one x € W in B% (p) for every p € M.



3.1 The Active Learning Algorithm

A schematic diagram of the proposed active learning framework is presented in Figure 2. As
illustrated, the framework starts from sampling sufficient unlabelled data from px. Subsequently, the
framework takes as input an unlabeled dataset D, and this dataset is used to generate an appropriate
graph on the data. This graph is then used to iteratively query labels near the decision boundary. The
subset of labeled samples are used to estimate the homology, resulting in the persistence diagram of
the LC complex. We briefly outline the label query and homology estimation phases below, and refer
the reader to the appendices for the full details.

Label query phase: The label query phase starts with constructing a graph G = (D, E) from the
unlabeled dataset D. While other choices are possible, we will suppose that the graph we construct
is either a k-radius nearest neighbor or a k-nearest neighbors graph?. After graph construction, a
graph-based active learning algorithm (S?) path [15] accepts the graph G' = (D, E) and selects the
data points whose labels it would like to see. This selection is based on the structure of the graph
and all previous gathered labels. Specifically, S? continually queries for the label of the vertex that
bisects the shortest path between any pair of oppositely-labeled vertices. The authors in [15] show
that S? can provably query and efficiently locate the cut-set in this graph (i.e., the edges of the graph
that have oppositely labeled vertices). As a result, the query phase outputs a set D associated with the
labels that is near the decision boundary.

Homology estimation phase: During the homology estimation stage, we construct an ap-
proximation of the LC complex from the query set D. Specifically, we construct the locally scaled
labeled Vietoris-Rips (LS-LVR) complex introduced in [5]. Sticking to the query set D as an example,
there are two steps to construct the LS-LVR complex: (1) Generate an initial graph from D by
creating an edge set E as follows: E = {{x;,x;}|(xi,%;) € D> Ay; # y; N|xi — x| < ky/Dip; ).
Here, k is a scale parameter, p; is the smallest radius of a sphere centered at x; to enclose k-nearest
opposite class neighbors and p; has a similar definition. This creates a bipartite graph where every
edge connects points from opposite classes; (2) Connect all 2-hop neighbors to build a simplicial
complex. Varying scale parameter « produces a filtration of the simplicial complex, which can be
used to estimate persistence diagrams that quantify the persistent homology.

3.2 Query Complexity of the Active Learning Algorithm

Let G = (D, E) denote a k-radius neighbor graph constructed from the dataset D. This allows us to
define the cut-set C' = {(x;,X;)|y; # y; A (x4,%;) € E} and cut-boundary 0C = {x € V : Je €
C with x € e}. We begin by sketching a structural lemma about the graph G and refer the reader to
the appendix for a full statement and proof.

Lemma 2. Suppose D° and D" are }-dense in M, then the graph G = (D, E) constructed from D
is such that D° (" OC and D* (OC are both %-dense in M and OC C Tuby, 1~ (M) for k = 7.

DY and D' being J-dense in M indicates the longest distance between x; € ©° (| B 2(p) and
x; €D°N By (p) for p € M is . Therefore, letting k = y as Lemma 2 suggested results in both
DY OC and D' () IC being Z-dense in M. Similar to Lemma 1, constructing a graph with a y
radius inevitably results in a subset of points in JC' leaking out of Tub,, (M) and we formally have
OC C Tuby,4~(M). The key intuition behind our approach is that S? is naturally turned to focusing
the labels acquired within Tub,,4~(M). As we show below, this is done in a remarkably query
efficient manner, and furthermore, when we obtain labeled data via querying we can construct an
LC complex; this allows us to find the homology of the manifold M. We next need some structural
assumptions about the manifold M.

Assumption 3. (@) infxenm px)y(By/a(x)) > pY 49 € {0,1} (B) subye g i (Bluty) (%)) <
P try)- (€) pra (Tubyy 1y (M) < Ny By 4+,

Assumption 3(a) ensures sufficient mass in both classes such that D° and D! are %-dense in M.
Assumption 3(b)(c) upper-bounds the measure of Tub,,4~(M). Recall that G = (D, F) in Lemma 2

3The k-radius nearest neighbor graph connects all pairs of vertices that are a distance of at most k& away, and
the k-nearest neighbor graph connects a vertex to its k nearest neighbors



is a labeled graph; we further write 8 to denote the proportion of the smallest connected component
with all the examples identically labeled. We lay out our main theorem as follows

Theorem 1. Let N, be the covering number of the manifold M. Under Assumptions 1, 2 and 3,

forany 6 > 0, we have that the (e, 'y)—Lé complex estimated by our framework is homotopy equivalent
to M with probability at least 1 — & provided

~log{1/[B(1—-V1-19)]}
P> e i = A

+ D[Ny w1+ ([logz D[] + 1) @)

where

ID| > maX{P(y:lO)ng [log (2N, /4) + log <(1—\}1f5)>} ,
) .

3)
e RGO (e =) }

Remark 1. Theorem I demonstrates that our active learning framework has a query complexity
of O(NNyjrhwiylogaN). That is, after O(NNyi~hwiylogaN) queries at most, a (€,7y) —
LC complex constructed from the queried examples will be homotopy equivalent to M with high
probability. Notice that the intrinsic complexity of the manifold naturally plays a significant role, and
the more complex the manifold the more significant gains the active learning framework has over its
passive counterpart (cf. Eq. 3). In the appendix, we also provide a simple and concrete example that
numerically shows the improvement in query complexity associated with our proposed framework
relative to its passive counterpart.

Remark 2. The results of Theorem 1 can be improved by carrying out a more intricate analysis
of the active learning algorithm as in [15]. Indeed, one may also replace the S* algorithm in
our framework with a different graph-based active learning algorithm seamlessly to leverage the
properties of that algorithm for active homology estimation of decision boundaries. These, and the
relaxation of Assumption 2 , are promising directions for future work.

Remark 3. Parameters w and T are intrinsic properties of pyy and M and these properties are fixed
to a classification problem. Variables v and € are algorithm variables and they are bounded as stated
in Proposition 1.

We provide a complete proof of Theorem 1 in the ap- . a0
pendix. However, we will provide some intuition about ¢ Classi
the operation of our algorithm, and hence to the proof of
the theorem here.

The S? algorithm is split into two phases: uniform query-
ing of labels and querying via path bisection. The uniform
querying serves to finding a path connecting vertices of
opposite labels. The path bisection phase queries at the
mid-point of the shortest path that connects oppositely -
labeled vertices in the underlying graph. As the authors
in [15] show, this endows S? with the ability to quickly
narrow in on the cut-boundary 0C'. The uniform querying Figure 3: Visualization of the synthetic
phase accounts for the first term in Eq. 2, which guarantees data.

that there are sufficient paths to identify 0C completely.

During the path bisection phase, we take ([log, |D|] + 1) queries at most (this may be tightened
using the techniques in [15]) to find the end point of the cut-edge inside a path; this needs to be
done at most |0C/| to complete the querying phase. Next, with the Assumption 2 and the Lemma 2,
it is guaranteed that 0C' C Tub,, 4, (M) C Tub( Vo \/§)T(M) with ~ properly selected following
Proposition 1. Therefore, we may use the measure Ny, ~hy4~ from Assumption 3(b)(c) to upper-
bound |0C| which results in the second term of Eq. 2. This naturally ties the query complexity to the
manifold complexity via Ny, and Tub,,~(M). Eq. 3 comes from the necessary condition for the

LC complex being homotopy equivalent to M, following the lines of [5].




4 Experimental Results

We compare the homological properties estimated from our active learning algorithm to a passive
learning approach on both synthetic data and real data.

In the experiments we use the characteristics of homology group of dimension 1 (31, PD1). We chose
to use dimension 1 since [5] shows that this provides the best topological summaries for applications
related to model selection. We have the performance evaluation for using the characteristics of
homology group of dimension 0 (3y, PDy) presented in the appendix.

Using the synthetic data, we study the query complexity of active learning by examining the
homological summaries $; and PD;. For real data, we estimate PD; of the Banknote, MNIST
and CIFAR10 and then utilize PD; to do model selection from several families of classifiers.

16 =@~ Active learning, k=0.65
—@— Passive learning

4.1 Experiments on Synthetic Data 14

=
o

The synthetic data in Figure 3 has decision boundaries that
are homeomorphic to two disjoint circles. This dataset has
2000 examples. Clearly from Figure 3, 3 of the decision
boundary is two.

Bottleneck distance

Per the first step of our active learning algorithm, we con-
struct a k-radius NN graph with £ = 0.65. The scale

parameter is set assuming we have full knowledge of the 20 4?,,,,.,"“,.?2, 8o 100
decision boundary manifold. Subsequently, we use S? to

query the labels of examples on the created graph. After Figure 4: Bottleneck distance from -

the label query phase, we construct the LS-LVR complex ~&round-truth PDy by the passive learning
with the queried samples and compute 3; and PD; using and active learning.

the python wrapper of the Ripser package [16, 17]. For the passive learning baseline, we uniformly
query the examples with all other aspects of the experiment remaining identical to the active case.
We also compute 31 and PD; from the complete dataset and consider them as the “ground-truth”
homology summaries. We evaluate the similarities between the estimated homology summaries and

the ground-truth homology summaries to show the effectiveness of our active learning framework.
Wi the bottl K di 5% 15% 25% 35% 45%

e compare the bottlenec is- o 8t o Tor &
tance [18, 19] between the ground- ﬁ ﬁ @ ﬁ

truth and estimated values of PD; for g g E g H

different percentages of data labelling. o oy o N o
These results are shown on Figure 4. & a ﬂ ﬁ &

As is clear from the figure, the bot- ] ] ] ] ]
tleneck distance for our active learn- g E g g w
ing framework decreases faster than Figure 5: Visualization of the query process by passive learning
the passive learning approach and per- (top row) and our active learning framework (bottom row) for
fectly recovers the homology with different percentages of data labelling. More examples (highlighted
only 50% of data. A visualization of by green) near the decision boundaries are selected to query in the
the query process is shown on Fig- Proposed framework.

ure 5. As expected, the active learning framework selects more examples to query near the decision.
Please refer to the appendix to evaluate the performance of the active learning framework for different
k-radius nearest neighbor graphs and 3; recovery.

e N &M O ®

4.2 Experiments on Real Data

To demonstrate the effectiveness of our active learning framework on real data, we consider the
classifier selection problem discussed in [5]. A bank of pretrained classifiers is accessible in the
marketplace and customers select a proper one without changing the hyperparameters of the selected
classifier. We consider two selection strategies as follow. One is topologically-based where the
classifier with the smallest bottleneck distance from PD; of queried data is selected. The other one is
to ensemble the topologically-selected classifier and the classifier selected based on the validation
error of the queried data. We ensemble these two classifiers by averaging the output probabilities.



Banknote KNN SVM Neural network  Decision tree
Passive 0.1072+0.0000 0.3753+0.0005 0.4316+0.0000 0.1997+0.0000
Active! 0.0783+0.0014 0.3231+0.0012 0.4316+0.0000 0.1901+0.0004
Active? 0.1017+0.0001 0.3431+0.0012 0.3730+0.0138 0.1744+0.0026
Active? 0.0346+:0.0013 0.0836+0.0133 0.1058+0.0265 0.1613+0.0004

Passive (ens) | 0.0176+0.0000 0.0259+0.0000 0.0068+0.0000 0.0741+0.0000
Active! (ens) | 0.0173+£0.0000 0.0259+0.0000 0.0039-0.0000 0.0731:0.0000
Active? (ens) | 0.0149+0.0000 0.0259+0.0000 0.0134+0.0001 0.0731+0.0000
Active® (ens) | 0.0149+0.0000 0.0259+0.0000 0.0072+0.0000 0.0770-+0.0000
MNIST KNN SVM Neural network  Decision tree
Passive 0.0129+0.0000 0.0141+0.0000 0.0202+0.0000 0.0332+0.0000
Active! 0.0128+0.0000 0.0161+0.0001 0.0150+0.0000 0.0388+0.0001
Active? 0.0122+0.0000 0.0162+0.0001 0.0177+0.0000 0.0332+0.0000
Active® 0.0104+0.0000 0.0156+0.0001 0.0388+0.0020 0.0332+0.0000
Passive (ens) | 0.0119 £0.0000 0.0124+0.0000 0.0104+0.0000 0.0290+0.0000
Active® (ens) | 0.0123+0.0000 0.0119+0.0000 0.0104+0.0000 0.0284:0.0000
Active? (ens) | 0.0108+0.0000 0.0119+0.0000 0.0125+0.0000 0.0284+0.0000
Active® (ens) | 0.0104+0.0000 0.0119+0.0000 0.0127+0.0000 0.0274::0.0000

CIFAR10 KNN SVM Neural network  Decision tree
Passive 0.3065+0.0002 0.4683+0.0000 0.3185+0.0000 0.3625-+0.0000
Active! 0.3201+0.0000 0.4591+0.0005 0.3058+0.0006 0.3625-+0.0000
Active? 0.3095+0.0001  0.4007+0.0038 0.3058+0.0006 0.3625-+0.0000
Active3 0.3109+0.0001 0.4464 +0.0005 0.3185+0.0000 0.3625 +0.0000

Passive (ens) | 0.2987 +0.0001 0.2698+0.0000 0.2651+0.0001 0.3137+0.0002
Active! (ens) | 0.2911 £0.0001 0.2797+0.0000 0.2558+0.0000 0.3146+0.0000
Active? (ens) | 0.2987+0.0001 0.2864+0.0003 0.2649+0.0001 0.3214+0.0005
Active® (ens) | 0.2935+0.0000 0.2665+0.0000 0.2615+0.0001 0.3221+0.0004

Table 1: Average test error rates(five trials) on Banknote, MNIST and CIFAR10 for the model selected with
15% unlabelled pool data. Passive/Active stands for the non-ensemble classifiers selected by the PD,
homological similarities. Passive/Active (ens) stands for the classifiers ensembled from two classifiers: one is
selected by the PD; homological similarities and the other one is selected by the validation error. The subscript
1, 2 and 3 of the active learning indicates the used 3NN, SNN and 7NN graphs. Best performance in the
non-ensemble and ensemble cases are boldfaced.

We split the data to a training set, a test
set and an unlabeled data pool. The
training set is used to generate four
different banks of classifiers: k-NN
with k ranging from 1 to 29, SVM
with polynomial kernel function de-
gree ranging from 1 to 14, decision
tree with maximum depth ranging
from 1 to 27, and neural networks
with the number of layers ranging
from 1 to 6. The test set is used to
evaluate the test error of each classi- ™ I
fier. The unlabelled data pool is used
to evaluate our active learning algo-
rithm via selective querying.

Figure 6: Test errors as a function of proportions of queried data
on banknote (top), MNIST (middle) and CIFAR10 (bottom) in the
model selection (non-ensemble) for different classifier families.

We use the proposed active learning framework to estimate the homological properties of the queried
data: constructing a k-nearest neighbors graph, query examples by S? and computing the PD; with
the queried examples. We set k =3, 5, and 7. For passive learning, we keep all the operations the
same as the active learning framework except the queried examples are collected by uniform random
sampling. To compute the PD of the decision boundary of the classifier, we simply use the test set
input and the classifier output. Having estimated the homological summaries from the queried data
and the classifiers, we compute the bottleneck distance between the PD; of the queried data and
the classifiers. For the non-ensemble method, we simply select the classifier having the smallest
bottleneck distance as a topologically-selected classifier. For the ensemble method, we further include



an additional classifier selected based on the validation error computed from the queried data and
ensemble it with the topologically-selected classifier.

We implement the above procedure and evaluate on Banknote [20], MNIST [21] and CIFAR10 [22]
datasets. Banknote contains 1372 instances in two classes with four input features for a binary
classification task. We randomly sample 100 examples to construct the training set. Given the small
size of the Banknote dataset, we use the remaining data as both the test set and unlabelled data
pool. Although the test set and the data pool are not rigorously split in the Banknote case, it is still a
fair comparison since the performance difference is only subject to the querying strategy. For the
MNIST and the CIFAR10 datasets, we create (1) a 1 vs. 8 classification task from MNIST and (2)
an automobile vs. ship classification task from CIFAR10. We randomly sample the data to create a
training set with a sample size of 200, a test set with a sample size of 2000, and an unlabelled data
pool with a sample size of 2000.

Table 1 shows the test error on banknote, MNIST and CIFARI10 for the classifier selected by querying
15% of the unlabelled data pool. We observe that the classifiers selected by our proposed active
learning framework generally has a lower test error rate than the passive learning, especially in
an ensemble classifier selection framework. As the experimental set-ups are identical (except for
the querying strategy) we attribute the performance improvement to the proposed active learning
framework used during model selection. Figure 6 indicates the performance of the non-ensemble
classifiers selected by the homological similarities at the cost of the different proportions of the
data pool. As expected, the proposed active learning framework achieves the best model selection
faster than the passive learning for all classifier families. Note that the selection performance may
be unstable with an increasing number of the queries since the active learning algorithm exhausts
informative examples rapidly and begins to query noisy examples. In summary, Table 1 and Figure 6
indicate that the advantage of active learning in finding good homology summaries is also useful for
model selection; this is evidenced by the lower error rates for the active learning approach relative to
the passive learning approach.

4.3 Analysis of Homological Properties of Real Data

We present the homological properties estimated by passive learning and the proposed active learning
framework. Similar to the experiments with the synthetic dataset, we access the complete unlabelled
data pool and their labels to compute 3; and PD; and use them as the ground-truth 5; and PD;. We
then query the unlabelled data pool and estimate 3; and PD; from the queried data. As we observe
in the Figure 7(a), 51 estimated by our active learning algorithm has a more similar trend to the
ground-truth $; in all three real datasets. Furthermore, CIFAR10 has a significantly higher 3; than
MNIST and Banknote datasets indicating more complex decision boundaries. This is consistent with
the Table 1 which shows that the error rates for the CIFAR10 binary classification tasks is higher than
the other two datasets. Figure 7(b) shows the bottleneck distance between the estimated PD; and
the ground-truth PD; for different proportions of labelled data. We observe that the active learning
algorithm maintains a smaller bottleneck distance at early stages of querying. Such benefits gradually

(a) B1 estimation comparisons at the cost of 50% (b) Bottleneck distance for different proportions of
labelled data. labelled data.

Figure 7: Recovery of homological properties for the banknote (left), MNIST (middle) and CIFAR10 (right)
using the active and passive learning approaches.

5 Conclusions

We propose an active learning algorithm to find the homology of decision boundaries. We theoretically
analyze the query complexity of the proposed algorithm and prove the sufficient conditions to recover
the homology of decision boundaries in the active learning setting. The extensive experiments on
synthetic and real datasets with the application on model selection corroborate our theoretical results.



Broader Impact

The proposed approach, although has strong algorithmic and theoretical merits, has potential real-
world application as we demonstrated.

One of the key uses of this approach is to create efficient summaries of decision boundaries of datasets
[23] and models. Such summaries can be quite useful in applications like Al model marketplaces [24],
where data and models can be securely matched without revealing too much information about each
other. This is helpful in scenarios where the data is private and models are proprietary or sensitive.

A downside of being able to compute homology of decision boundaries with few examples is that
malicious users may be able to learn about the key geometric / topological properties of the models
with fewer examples than they would use otherwise. While this in itself may be benign, combined
with other methods, they may be able to design better adversarial attacks on this model for instance.
Ways of mitigating it in sensitive scenarios include ensuring that users do not issue too many queries
of examples close to the boundary successively, since this may be revealing of malicious intent.
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