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Abstract

Neural networks and tree ensembles are state-of-
the-art learners, each with its unique statistical
and computational advantages. We aim to com-
bine these advantages by introducing a new layer
for neural networks, composed of an ensemble
of differentiable decision trees (a.k.a. soft trees).
While differentiable trees demonstrate promising
results in the literature, they are typically slow in
training and inference as they do not support con-
ditional computation. We mitigate this issue by
introducing a new sparse activation function for
sample routing, and implement true conditional
computation by developing specialized forward
and backward propagation algorithms that exploit
sparsity. Our efficient algorithms pave the way
for jointly training over deep and wide tree en-
sembles using first-order methods (e.g., SGD).
Experiments on 23 classification datasets indicate
over 10x speed-ups compared to the differentiable
trees used in the literature and over 20x reduction
in the number of parameters compared to gradi-
ent boosted trees, while maintaining competitive
performance. Moreover, experiments on CIFAR,
MNIST, and Fashion MNIST indicate that replac-
ing dense layers in CNNs with our tree layer re-
duces the test loss by 7-53% and the number of
parameters by 8x. We provide an open-source
TensorFlow implementation with a Keras API.

1. Introduction

Decision tree ensembles have proven very successful in var-
ious machine learning applications. Indeed, they are often
referred to as the best “off-the-shelf” learners (Hastie et al.,
2009), as they exhibit several appealing properties such as
ease of tuning, robustness to outliers, and interpretability
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(Hastie et al., 2009; Chen & Guestrin, 2016). Another natu-
ral property in trees is conditional computation, which refers
to their ability to route each sample through a small number
of nodes (specifically, a single root-to-leaf path). Condi-
tional computation can be broadly defined as the ability of
a model to activate only a small part of its architecture in
an input-dependent fashion (Bengio et al., 2015). This can
lead to both computational benefits and enhanced statisti-
cal properties. On the computation front, routing samples
through a small part of the tree leads to substantial training
and inference speed-ups compared to methods that do not
route samples. Statistically, conditional computation offers
the flexibility to reduce the number of parameters used by
each sample, which can act as a regularizer (Breiman et al.,
1983; Hastie et al., 2009; Bengio et al., 2015).

However, the performance of trees relies on feature engineer-
ing, since they lack a good mechanism for representation
learning (Bengio et al., 2013). This is an area in which
neural networks (NNs) excel, especially in speech and im-
age recognition applications (Bengio et al., 2013; He et al.,
2015; Yu & Deng, 2016). However, NNs do not naturally
support conditional computation and are harder to tune.

In this work, we combine the advantages of neural networks
and tree ensembles by designing a hybrid model. Specifi-
cally, we propose the Tree Ensemble Layer (TEL) for neural
networks. This layer is an additive model of differentiable
decision trees, can be inserted anywhere in a neural net-
work, and is trained along with the rest of the network using
gradient-based optimization methods (e.g., SGD). While dif-
ferentiable trees in the literature show promising results, es-
pecially in the context of neural networks, e.g., Kontschieder
et al. (2015); Frosst & Hinton (2017), they do not offer true
conditional computation. We equip TEL with a novel mech-
anism to perform conditional computation, during both train-
ing and inference. We make this possible by introducing
a new sparse activation function for sample routing, along
with specialized forward and backward propagation algo-
rithms that exploit sparsity. Experiments on 23 real datasets
indicate that TEL achieves over 10x speed-ups compared to
the current differentiable trees, without sacrificing predictive
performance.

Our algorithms pave the way for jointly optimizing over
both wide and deep tree ensembles. Here joint optimization
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refers to updating all the trees simultaneously (e.g., using
first-order methods like SGD). This has been a major com-
putational challenge prior to our work. For example, jointly
optimizing over classical (non-differentiable) decision trees
is a hard combinatorial problem (Hastie et al., 2009). Even
with differentiable trees, the training complexity grows ex-
ponentially with the tree depth, making joint optimization
difficult (Kontschieder et al., 2015). A common approach
is to train tree ensembles using greedy “stage-wise” proce-
dures, where only one tree is updated at a time and never
updated again—this is a main principle in gradient boosted
decision trees (GBDT) (Friedman, 2001)!. We hypothesize
that joint optimization yields more compact and expressive
ensembles than GBDT. Our experiments confirm this, indi-
cating that TEL can achieve over 20x reduction in model
size. This can have important implications for interpretabil-
ity, latency and storage requirements during inference.

Contributions: Our contributions can be summarized as
follows: (i) We design a new differentiable activation func-
tion for trees which allows for routing samples through
small parts of the tree (similar to classical trees). (ii) We
realize conditional computation by developing specialized
forward and backward propagation algorithms that exploit
sparsity to achieve an optimal time complexity. Notably,
the complexity of our backward pass can be independent
of the tree depth and is generally better than that of the
forward pass—this is not possible in backpropagation for
neural networks. (iii) We perform experiments on a collec-
tion of 26 real datasets, which confirm TEL as a competitive
alternative to current differentiable trees, GBDT, and dense
layers in CNNs. (iv) We provide an open-source TensorFlow
implementation of TEL along with a Keras interface”.

Related Work: Table 1 summarizes the most relevant re-
lated work. Differentiable decision trees (a.k.a. soft trees)
are an instance of the Hierarchical Mixture of Experts in-
troduced by Jordan & Jacobs (1994). The internal nodes
of these trees act as routers, sending samples to the left
and right with different proportions. This framework does
not support conditional computation as each sample is pro-
cessed in all the tree nodes. Our work avoids this issue
by allowing each sample to be routed through small parts
of the tree, without losing differentiability. A number of
recent works have used soft trees in the context of deep
learning. For example, Kontschieder et al. (2015) equipped
soft trees with neural representations and used alternating
minimization to learn the feature representations and the

!'There are follow-up works on GBDT which update the leaves
of all trees simultaneously, e.g., see Johnson & Zhang (2013).
However, our approach allows for updating both the internal node
and leaf weights simultaneously.

https://github.com/google-research/
google-research/tree/master/tf_trees

Table 1: Related work on conditional computation

Paper CT CI DO Model/Optim

Kontschieder et al. (2015) N N Y Soft tree/Alter
Toannou et al. (2016) N H Y Tree-NN/SGD
Frosst & Hinton (2017) N H Y Soft tree/SGD
Zoran et al. (2017) N H N Soft tree/Alter
Shazeer et al. (2017) H Y N Tree-NN/SGD
Tanno et al. (2018) N H Y Soft tree/SGD
Biau et al. (2019) H N Y Tree-NN/SGD
Hehn et al. (2019) N H Y Soft tree/SGD
Our method Y Y Y Soft tree/SGD

H is heuristic (e.g., training model is different from inference),
CT is conditional training. CI is conditional inference. DO
indicates whether the objective function is differentiable. Soft
tree refers to a differentiable tree, whereas Tree-NN refers to
NN with a tree-like structure. Optim stands for optimization
(SGD or alternating minimization).

leaf outputs. Hehn et al. (2019) extended Kontschieder
et al. (2015)’s approach to allow for conditional inference
and growing trees level-by-level. Frosst & Hinton (2017)
trained a (single) soft tree using SGD and leveraged a deep
neural network to expand the dataset used in training the
tree. Zoran et al. (2017) also leveraged a tree structure with
a routing mechanism similar to soft trees, in order to equip
the k-nearest neighbors algorithm with neural representa-
tions. All of these works have observed that computation
in a soft tree can be expensive. Thus, in practice, heuristics
are used to speed up inference, e.g., Frosst & Hinton (2017)
uses the root-to-leaf path with the highest probability during
inference, leading to discrepancy between the models used
in training and inference. Instead of making a tree differ-
entiable, Jernite et al. (2017) hypothesized about properties
the best tree should have, and introduced a pseudo-objective
that encourages balanced and pure splits. They optimized
using SGD along with intermediate processing steps.

Another line of work introduces tree-like structure to NNs
via some routing mechanism. For example, Ioannou et al.
(2016) employed tree-shaped CNNs with branches as weight
matrices with sparse block diagonal structure. Shazeer et al.
(2017) created the Sparsely-Gated Mixture-of-Experts layer
where samples are routed to subnetworks selected by a
trainable gating network. Biau et al. (2019) represented a
decision tree using a 3-layer neural network and combined
CART and SGD for training. Tanno et al. (2018) looked
into adaptively growing an NN with routing nodes for per-
forming tree-like conditional computations. However, in
these works, the inference model is either different from
training or the router is not differentiable (but still trained
using SGD)—see Table 1 for details.
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2. The Tree Ensemble Layer

TEL is an additive model of differentiable decision trees. In
this section, we introduce TEL formally and then discuss
the routing mechanism used in our trees. For simplicity, we
assume that TEL is used as a standalone layer. Training
trees with other layers will be discussed in Section 3.

We assume a supervised learning setting, with input space
X C RP? and output space Y C R*. For example, in the
case of regression (with a single output) k& = 1, while in
classification k depends on the number of classes. Let m be
the number of trees in the ensemble, and let 7D : X — RF
be the jth tree in the ensemble. For an input sample z € RP,
the output of the layer is a sum over all the tree outputs:

T(@)=TY (@) + TP @)+ -+ T (). (1)

The output of the layer, 7 (z), is a vector in R* containing
raw predictions. In the case of classification, mapping from
raw predictions to ) can be done by applying a softmax
and returning the class with the highest probability. Next,
we introduce the key building block of the approach: the
differentiable decision tree.

The Differentiable Decision Tree: Classical decision trees
perform hard routing, i.e., a sample is routed to exactly one
direction at every internal node. Hard routing introduces dis-
continuities in the loss function, making trees unamenable
to continuous optimization. Therefore, trees are usually
built in a greedy fashion. In this section, we present an
enhancement of the soft trees proposed by Jordan & Jacobs
(1994) and utilized in Kontschieder et al. (2015); Frosst &
Hinton (2017); Hehn et al. (2019). Soft trees are a variant of
decision trees that perform soft routing, where every internal
node can route the sample to the left and right simultane-
ously, with different proportions. This routing mechanism
makes soft trees differentiable, so learning can be done using
gradient-based methods. Soft trees cannot route a sample
exclusively to the left or to the right, making conditional
computation impossible. Subsequently, we introduce a new
activation function for soft trees, which allows conditional
computation while preserving differentiability.

We consider a single tree in the additive model (1), and
denote the tree by 7' (we drop the superscript to simplify the
notation). Recall that 7" takes an input sample and returns
an output vector (logit), i.e., T : X C RP — R*. Moreover,
we assume that 7" is a perfect binary tree with depth d. We
use the sets Z and L to denote the internal (split) nodes and
the leaves of the tree, respectively. For any node i € ZU L,
we define A(7) as its set of ancestors and use the notation
{x — i} for the event that a sample = € RP reaches i. A
summary of the notation used in this paper can be found in
Table A.1 in the appendix.

Soft Routing: Internal tree nodes perform soft routing,

where a sample is routed left and right with different propor-
tions. We will introduce soft routing using a probabilistic
model. While we use probability to model the routing pro-
cess, we will see that the final prediction of the tree is an
expectation over the leaves, making 7" a deterministic func-
tion. Unlike classical decision trees which use axis-aligned
splits, soft trees are based on hyperplane (a.k.a. oblique)
splits (Murthy et al., 1994), where a linear combination of
the features is used in making routing decisions. Particu-
larly, each internal node ¢ € 7 is associated with a trainable
weight vector w; € RP that defines the node’s hyperplane
split. Let S : R — [0, 1] be an activation function. Given a
sample x € RP, the probability that internal node 7 routes x
to the left is defined by S({w;, ).

Now we discuss how to model the probability that = reaches
a certain leaf [. Let [l /7] (resp. [¢ \ {]) denote the event
that leaf [ belongs to the left (resp. right) subtree of node
1 € Z. Assuming that the routing decision made at each
internal node in the tree is independent of the other nodes,
the probability that = reaches [ is given by:

Pz =11 =], riu), )

i€A(l)
where r;;(x) is the probability of node ¢ rout-
ing x towards the subtree containing leaf [, i.e.,
ria(z) = S({x, w)) (1 — S((w, w;))) . Next,
we define how the root-to-leaf probabilities in (2) can be
used to make the final prediction of the tree.

Prediction: As with classical decision trees, we assume
that each leaf stores a weight vector o; € R¥ (learned during
training). Note that, during a forward pass, o; is a constant
vector, meaning that it is not a function of the input sam-
ple(s). For a sample x € RP, we define the prediction of the
tree as the expected value of the leaf outputs, i.e.,

T(z) = P({z — 1})or. 3)

lec
Activation Functions: In soft routing, the internal nodes
use an activation function S in order to compute the rout-
ing probabilities. The logistic (a.k.a. sigmoid) function
is the common choice for § in the literature on soft trees
(see Jordan & Jacobs (1994); Kontschieder et al. (2015);
Frosst & Hinton (2017); Tanno et al. (2018); Hehn et al.
(2019)). While the logistic function can output arbitrarily
small values, it cannot output an exact zero. This implies
that any sample = will reach every node in the tree with a
positive probability (as evident from (2)). Thus, computing
the output of the tree in (3) will require computation over
every node in the tree, an operation which is exponential in
tree depth.

We propose a novel smooth-step activation function, which
can output exact zeros and ones, thus allowing for true
conditional computation. Our smooth-step function is S-
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shaped and continuously differentiable, similar to the logis-
tic function. Let v be a non-negative scalar parameter. The
smooth-step function is a cubic polynomial in the interval
[—7/2,7/2], 0 to the left of the interval, and 1 to the right.
More formally, we assume that the function takes the para-
metric form S(t) = at® + bt? + ct +d for t € [—v/2,7v/2],
where a, b, ¢, d are scalar parameters. We then solve for the
parameters under the following continuity and differentia-
bility constraints: (i) S(—v/2) = 0, (i) S(v/2) = 1, (iii)
S'(t)[t=—~/2 = S'(t)|4=/2 = 0. This leads to:

0 ift < —/2
St)=4-Ft+t+5 if —v/2<t<7/2 ()
1 ift > /2

By construction, the smooth-step function in (4) is contin-
uously differentiable for any ¢ € R (including —v/2 and
~/2). In Figure 1, we plot the smooth-step (with v = 1)
and logistic activation functions; the logistic function here
takes the form (1 + e~%)~1, i.e., it is a rescaled variant of
the standard logistic function, so that the two functions are
on similar scales. The two functions can be very close in
the middle of the fractional region. The main difference is
that the smooth-step function outputs exact zero and one,
whereas the logistic function converges to these asymptoti-

cally.
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Figure 1: Smooth-step vs. Logistic (1 + e~6¢)~1,

Outside [—v/2,7/2], the smooth-step function performs
hard routing, similar to classical decision trees. The choice
of 7 controls the fraction of samples that are hard routed.
A very small v can lead to many zero gradients in the in-
ternal nodes, whereas a very large v might limit the extent
of conditional computation. In our experiments, we use
batch normalization (Ioffe & Szegedy, 2015) before the tree
layer so that the inputs to the smooth-step function remain
centered and bounded. This turns out to be very effective
in preventing the internal nodes from having zero gradi-
ents, at least in the first few training epochs. Moreover, we
view 7 as a hyperparameter, which we tune over the range
[107%,1]. This range works well for balancing the train-
ing performance and conditional computation across the 26
datasets we used (see Section 4).

For a given sample x, we say that a node i is reachable if
P(z — i) > 0. The number of reachable leaves directly
controls the extent of conditional computation. In Figure 2,
we plot the average number of reachable leaves (per sample)
as a function of the training epochs, for a single tree of depth
10 (i.e., with 1024 leaves) and different ~’s. This is for the
diabetes dataset (Olson et al., 2017), using Adam (Kingma
& Ba, 2014) for optimization (see the appendix for details).
The figure shows that for small enough 7 (e.g., v < 1), the
number of reachable leaves rapidly converges to 1 during
training (note that the y-axis is on a log scale). We observed
this behavior on all the datasets in our experiments.
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Figure 2: Number of reachable leaves (per sample) during
training a tree of depth 10.

We note that variants of the smooth-step function are pop-
ular in computer graphics (Ebert et al., 2003; Rost et al.,
2009). However, to our knowledge, the smooth-step func-
tion has not been used in soft trees or neural networks. It
is also worth mentioning that the cubic polynomial used
for interpolation in (4) can be substituted with higher-order
polynomials (e.g, polynomial of degree 5, where the first
and second derivatives vanish at +7/2). The algorithms we
propose in Section 3 directly apply to the case of higher-
order polynomials.

In the next section, we show how the sparsity in the smooth-
step function and in its gradient can be exploited to develop
efficient forward and backward propagation algorithms.

3. Conditional Computation

We propose using first-order optimization methods (e.g.,
SGD and its variants) to optimize TEL. A main computa-
tional bottleneck in this case is the gradient computation,
whose time and memory complexities can grow exponen-
tially in the tree depth. This has hindered training large
tree ensembles in the literature. In this section, we develop
efficient forward and backward propagation algorithms for
TEL by exploiting the sparsity in both the smooth-step func-
tion and its gradient. We show that our algorithms have
optimal time complexity and discuss cases where they run
significantly faster than standard backpropagation.
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Setup: We assume a general setting where TEL is a hidden
layer. Without loss of generality, we consider only one sam-
ple and one tree. Let = € RP be the input to TEL and denote
the tree output by 7'(z) € RF, where T'(x) is defined in (3).
We use the same notation as in Section 2, and we collect the
leaf vectors o, [ € L into the matrix O € RI£IXF and the in-
ternal node weights w;, ¢ € Z into the matrix W € RIZIxp,
Moreover, for a differentiable function h(z) which maps
R® — R", we denote its Jacobian by % € R¥Xs Let L be
the loss function to be optimized (e.g., cross-entropy). Our
goal is to efficiently compute the following three gradients:
gé g‘f{,, and 2 8L . The first two gradients are needed by the
optimizer to update O and W. The third gradient is used to
continue the backpropagation in the layers preceding TEL.
We assume that a backpropagation algorithm has already
computed the gradients associated with the layers after TEL
and has computed %

Number of Reachable Nodes: To exploit conditional
computation effectively, each sample should reach a rel-
atively small number of leaves. This can be enforced by
choosing the parameter -y of the smooth-step function to be
sufficiently small. When analyzing the complexity of the
forward and backward passes below, we will assume that
the sample x reaches U leaves and NN internal nodes.

3.1. Conditional Forward Pass

Prior to computing the gradients, a forward pass over the tree
is required. This entails computing expression (3), which
is a sum of probabilities over all the root-to-leaf paths in
T'. Our algorithm exploits the following observation: if a
certain edge on the path to leaf [ has a zero probability, then
P(z — 1) = 0 so there is no need to continue evaluation
along that path. Thus, we traverse the tree starting from the
root, and every time a node outputs a 0 probability on one
side, we ignore all of its descendants lying on that side. The
summation in (3) is then performed only over the leaves
reached by the traversal. We present the conditional forward
pass in Algorithm 1, where for any internal node 7, we de-
note the left and right children by le ft(i) and right (7).

Time Complexity: The algorithm visits each reachable
node in the tree once. Every reachable internal node requires
O(p) operations to compute S({(w;,z)), whereas each
reachable leaf requires O(k) operations to update the out-
put variable. Thus, the overall complexity is O(Np + Uk)
(recall that N and U are the number of reachable internal
nodes and leaves, respectively). This is in contrast to a
dense forward pass®, whose complexity is O(2%p + 27k)
(recall that d is the depth). As long as 7 is chosen so that U
is sub-exponential* in d, the conditional forward pass has

3By dense forward pass, we mean evaluating the tree without
conditional computation (as in a standard forward pass).
*A function f(t) is sub-exp. in ¢ if lim¢— oo log(f(t))/t = 0.

Algorithm 1 Conditional Forward Pass

1: Input: Sample x € RP and tree parameters W and O.
2: Output: T'(x)

3: {For any node ¢, i.prob denotes P(xz — ).}

4: {to_traverse is a stack for traversing nodes. }

5: output < 0, to_traverse < {root}, root.prob + 1
6: while to_traverse is not empty do

7:  Remove a node 7 from to_traverse

8:  if ¢ is an internal node then

9 left(i).prob = i.prob x S({w;,x))

10: right(i).prob = i.prob x (1 — S((w;, x)))

11: if S((w;, x)) > 0, add left(7) to to_traverse
12: if S((w;, x)) < 1, add right (i) to to_traverse
13:  else

14: output < output + i.prob * o;

15:  end if

16: end while

a better complexity than the dense pass (this holds since
N = O(Ud), implying that N is also sub-exponential in d).

Memory Complexity: The memory complexity for infer-
ence and training is O(d) and O(d + U), respectively. See
the appendix for a detailed analysis. This is in contrast to a
dense forward pass, whose complexity in training is O(29).

3.2. Conditional Backward Pass

Here we develop a backward pass algorithm to efﬁciently
aL DL

compute the three gradients: 30° e and 5. » assum-
ing that % is available from a backpropagatlon algorithm.

In what follows, we will see that as long as U is suffi-
ciently small, the gradients 57 9L and @ will be sparse, and
gL can be computed by con51der1ng only a small number
of nodes in the tree. Let R be the set of leaves reached
by Algorithm 1. The following set turns out to be criti-
cal in understanding the sparsity structure in the problem:
F={ieTlic A(l), le R, 0 <S({z,w;)) < 1}.
words, F is the set of ancestors of the reachable leaves,
whose activation is fractional.

In Theorem 1, we show how the three gradients can be
computed by only considering the internal nodes in F and
leaves in R. Moreover, the theorem presents sufficient
conditions for which the gradients are zero; in particular,
gTL = 0 for every internal node 7 € F° and aOL] = 0 for

every leaf | € R¢ (where A€ is the complement of a set A).

Theorem 1. Define py(x,i) = %/8(@ w;)),

pa(x,i) = %/(1—&@,%»), and g(l) =

P({z —1})(2k 57 01). The gradients needed for backpropa-
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gation can be expressed as follows:

Zw [/MJ’ZZQ ,ugszg

ieF 1ER| (1] 1ER|[IN]
0 i€ F°
oL _ ) .
w27 @) Y 9 = a0 3 g)] o
leR|[l/ 4] leR|[iN]
oL 0L
o = grPe o, vieL

In Theorem 1, the quantities p;(x,4) and po(x,?) can be
obtained in O(1) since in Algorithm 1 we store (x, w;) for
every i € F. Moreover, P({x — [}) is stored in Algorithm
1 for every reachable leaf. However, a direct evaluation
of these gradients leads to a suboptimal time complexity
because the terms } ;7 9(1) and 3= ez gy 9 (1) will
be computed from scratch for every node ¢ € F. Our condi-
tional backward pass traverses a fractional tree, composed
of only the nodes in F and R, while deploying smart book-
keeping to compute these sums during the traversal and
avoid recomputation. We define the fractional tree below.

Definition 1. Let Tyoqchapie be the tree traversed by the con-
ditional forward pass (Algorithm 1). We define the fractional
tree Tircrional aS the result of the following two operations:
(i) remove every internal node i € F°€ from Tyeqchapie and (ii)
connect every node with no parent to its closest ancestor.

In Section C.1 of the appendix, we provide an example of
how the fractional tree is constructed. Tjyctionar 1S @ binary
tree with U leaves and |F| internal nodes, each with ex-
actly 2 children. It can be readily seen that |F| = U — 1;
this relation is useful for analyzing the complexity of the
conditional backward pass. Note that Tiactionas Can be con-
structed on-the-fly while performing the conditional forward
pass (without affecting its complexity). In Algorithm 2, we
present the conditional backward pass which traverses the
fractional tree once and returns and any (potentially)
non-zero entries in ao L and aL

Time Complexity: The worst-case complexity of the al-
gorithm is O(Up + Uk), whereas the best-case complexity
is O(k) (corresponds to U = 1), and in the worst case,
the number of non-zero entries in the three gradients is
O(Up+Uk)—see the appendix for analysis. Thus, the com-
plexity is optimal, in the sense that it matches the number
of non-zero gradient entries, in the worst case. The worst-
case complexity is generally lower than the O(Np + Uk)
complexity of the conditional forward pass. This is because
we always have U = O(NN), and there can be many cases
where IV grows faster than U. For example, consider a tree
with only two reachable leaves (U = 2) and where the root
is the (only) fractional node, then /N grows linearly with the
depth d. Aslong as U is sub-exponential in d, Algorithm 2’s

Algorithm 2 Conditional Backward Pass

Input: Sample x € RP, tree parameters, and 2

1.
: -
2: Output: 2E and (potential) non-zeros in 2% and 2%
3 oL __ 0
© dx
4: {For any node i, i.sum-g denotes } ;. ;c a0y 9(1)}
5: Traverse Tiactional 10 pOSt order:
6:  Denote the current node by ¢
7. ifiis aleaf then
8: g(i = %P({x — i})
9: i.sum_g = g(i)
10:  else
11: a = p1(z,i) (left(i).sum-g)
12: b= po(x,i) (right(i).sum_g)
13: 9L = wl(a—1b)
14: % =azT(a—b)
15: i.sum_g = left(i).sum_g + right(i).sum_g
16: endif

complexity can be significantly lower than that of a dense
backward pass whose complexity is O(2%p + 29k).

Memory Complexity: We store one scalar per node in
the fractional tree (i.e., ¢.sum_g for every node ¢ in the
fractional tree). Thus, the memory complexity is O(|F| +
U) = O(U). If v is chosen so that U is upper-bounded by
a constant, then Algorithm 2 will require constant memory.

Connections to Backpropagation: An interesting obser-
vation in our approach is that the conditional backward pass
generally has a better time complexity than the conditional
forward pass. This is usually impossible in standard back-
propagation for NN, as the forward and backward passes
traverse the same computational graph (Goodfellow et al.,
2016). The improvement in complexity of the backward
pass in our case is due to Algorithm 2 operating on the
fractional tree, which can contain a significantly smaller
number of nodes than the tree traversed by the forward pass.
In the language of backpropagation, our fractional tree can
be viewed as a “simplified” computational graph, where the
simplifications are due to Theorem 1.

4. Experiments

We study the performance of TEL in terms of prediction,
conditional computation, and compactness. We evaluate
TEL as a standalone learner and as a layer in a NN, and
compare to standard soft trees, GBDT, and dense layers.

Model Implementation: TEL is implemented in Tensor-
Flow 2.0 using custom C++ kernels for forward and back-
ward propagation, along with a Keras Python-accessible

interface. The implementation is open source?.

Datasets: We use a collection of 26 classification datasets
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(binary and multiclass) from various domains (e.g., health-
care, genetics, and image recognition). 23 of these are from
the Penn Machine Learning Benchmarks (PMLB) (Olson
etal., 2017), and the 3 remaining are CIFAR-10 (Krizhevsky
et al., 2009), MNIST (LeCun et al., 1998), and Fashion
MNIST (Xiao et al., 2017). Details are in the appendix.

Tuning, Toolkits, and Details: For all the experiments, we
tune the hyperparameters using Hyperopt (Bergstra et al.,
2013) with the Tree-structured Parzen Estimator (TPE). We
optimize for either AUC or accuracy with stratified 5-fold
cross-validation. NNs (including TEL) were trained using
Keras with the TensorFlow backend, using Adam (Kingma
& Ba, 2014) and cross-entropy loss. As discussed in Section
2, TEL is always preceded by a batch normalization layer.
GBDT is from XGBoost (Chen & Guestrin, 2016), Logistic
regression and CART are from Scikit-learn (Pedregosa et al.,
2011). Additional details are in the appendix.

4.1. Soft Trees: Smooth-step vs. Logistic Activation

We compare the run time and performance of the smooth-
step and logistic functions using 23 PMLB datasets.

Predictive Performance: We fix the TEL architecture to
10 trees of depth 4. We tune the learning rate, batch size,
and number of epochs (ranges are in the appendix). We as-
sume the following parametric form for the logistic function
f(t) = (1 + e ¥*)~1, where « is a hyperparameter which
we tune in the range [10~*, 10%]. The smooth-step’s param-
eter +y is tuned in the range [10~%, 1]. Here we restrict the
upper range of y to 1 to enable conditional computation over
the whole tuning range. While +’s larger than 1 can lead to
slightly better predictive performance in some cases, they
can slow down training significantly. For tuning, Hyperopt
is run for 50 rounds with AUC as the metric. After tuning,
models with the best hyperparameters are retrained. We
repeat the training procedure 5 times using random weight
initializations. The mean test AUC along with its standard
error (SE) are in Table 2. The smooth-step outperforms the
logistic function on 7 datasets (5 are statistically significant).
The logistic function also wins on 7 datasets (4 are statisti-
cally significant). The two functions match on the rest of the
datasets. The differences on the majority of the datasets are
small (even when statistically significant), suggesting that
using the smooth-step function does not hurt the predictive
performance. However, as we will see next, the smooth-step
has a significant edge in terms of computation time.

Training Time: We measure the training time over 50
epochs as a function of tree depth for both activation func-
tions. We keep the same ensemble size (10) and use v =1
for the smooth-step as this corresponds to the worst-case
training time (in the tuning range [10~%, 1]), and we fix the
optimization hyperparameters (batch size = 256 and learning
rate = 0.1). We report the results for three of the datasets in

Table 2: Test AUC for the smooth-step and logistic functions
(fixed TEL architecture). A x* indicates statistical signifi-
cance based on a paired two-sided t-test at a significance

level of 0.05.

Best results are in bold. AUCs on the 9

remaining datasets match and are hence omitted.

Dataset

Smooth-step

Logistic

ann-thyroid
breast-cancer-w.
churn

crx

0.997 £ 0.0001
0.992 £ 0.0015
0.897 £ 0.0014
0.916 £ 0.0025

0.996 £ 0.0006
0.994 + 0.0002
0.898 £ 0.0014
0.929* + 0.0021

diabetes 0.832* +0.0009 0.816 + 0.0021
dna 0.993 + 0.0004 0.994* +0.0
ecoli 0.97* £+ 0.0004 0.952 £ 0.0038
flare 0.78 +£0.0027 0.784 + 0.0018
heart-c 0.936 + 0.002 0.927 £+ 0.0036
pima 0.828* +0.0005 0.82 4 0.0003
satimage 0.988* +0.0002 0.987 + 0.0002
solar-flare_2 0.926 + 0.0002 0.927* 4+ 0.0007
vehicle 0.956 £+ 0.0015 0.965* 4+ 0.0007
yeast 0.876* +£0.0014 0.86 £ 0.0026

# wins 7 7

Figure 3; the results for the other datasets have very similar
trends and are omitted due to space constraints. The results
indicate a steep exponential increase in training time for the
logistic activation after depth 6. In contrast, the smooth-step
has a slow growth, achieving over 10x speed-up at depth 10.

4.2. TEL vs. Gradient Boosted Decision Trees

Predictive Performance: We compare the predictive per-
formance of TEL and GBDT on the 23 PMLB datasets,
and we include L2-regularized logistic regression (LR) and
CART as baselines. For a fair comparison, we use TEL as a
standalone layer. For TEL and GBDT, we tune over the # of
trees, depth, learning rate, and L2 regularization. For TEL
we also tune over the batch size, epochs, and v € [1074,1].
For LR and CART, we tune the L2 regularization and depth,
respectively. We use 50 tuning rounds in Hyperopt with
AUC as the metric. We repeat the tuning/testing procedures
on 15 random training/testing splits. The results are in Table
3.

As expected, no algorithm dominates on all the datasets.
TEL outperforms GBDT on 9 datasets (5 are statistically
significant). GBDT outperforms TEL on 8 datasets (7 of
which are statistically significant). There were ties on the 6
remaining datasets; these typically correspond to easy tasks
where an AUC of (almost) 1 can be attained. LR outper-
forms both TEL and GBDT on only 3 datasets with very
marginal difference. Overall, the results indicate that TEL’s
performance is competitive with GBDT. Moreover, adding
feature representation layers before TEL can potentially
improve its performance further, e.g., see Section 4.3.
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Figure 3: Training time (sec) vs. tree depth for the smooth-step and logistic functions, averaged over 5 repetitions.

Table 3: Test AUC on 23 PMLB datasets. Averages over 15 random repetitions are reported along with the SE. A star (x)
indicates statistical significance based on a paired two-sided t-test at a significance level of 0.05. Best results are in bold.

Dataset TEL GBDT L2 Logistic Reg. CART
ann-thyroid 0.996 + 0.0 1.0 +0.0 0.92 4+ 0.002 0.997 £ 0.0
breast-cancer-wisconsin ~ 0.995™ £ 0.001  0.992 4 0.001 0.991 £ 0.001 0.929 £+ 0.004
car-evaluation 1.0+ 0.0 1.0+ 0.0 0.985 + 0.001 0.981 £ 0.001
churn 0.916 + 0.004 0.92* 4+ 0.004 0.814 + 0.003 0.885 4+ 0.004
crx 0.911 +0.005 0.933* +20.004 0.916 £ 0.005 0.905 £ 0.005
dermatology 0.998 + 0.001 0.998 4+ 0.001 0.998 + 0.001 0.962 £ 0.005
diabetes 0.831* +0.006 0.82 = 0.006 0.824 + 0.008 0.774 £+ 0.008
dna 0.993 + 0.0 0.994* £ 0.0 0.991 £ 0.0 0.964 + 0.001
ecoli 0.97* +0.003 0.962 + 0.003 0.972 4+ 0.003 0.902 + 0.007
flare 0.732 4+ 0.009 0.738 +0.01 0.736 + 0.009 0.717 £ 0.01
heart-c 0.903 + 0.006 0.893 £+ 0.008 0.908 + 0.005 0.829 £+ 0.012
hypothyroid 0.971 4+ 0.003 0.987* +0.002 0.93 + 0.005 0.926 £+ 0.011
nursery 1.0 £ 0.0 1.0+0.0 0.916 £ 0.001 0.996 £+ 0.0
optdigits 1.0+ 0.0 1.0£0.0 0.998 + 0.0 0.958 + 0.001
pima 0.831 + 0.008 0.825 + 0.006 0.832 + 0.008 0.758 + 0.011
satimage 0.99 £ 0.0 0.99+0.0 0.955 £+ 0.001 0.949 + 0.001
sleep 0.925 + 0.0 0.927* +0.0 0.889 + 0.0 0.876 + 0.001
solar-flare_2 0.925 4+ 0.002 0.924 + 0.002 0.92 £ 0.002 0.907 £ 0.002
spambase 0.986 + 0.001 0.989* +-0.001 0.972 £ 0.001 0.926 + 0.002
texture 1.0£0.0 1.0£0.0 1.0+ 0.0 0.974 £+ 0.001
twonorm 0.998* +-0.0 0.997 £ 0.0 0.998 + 0.0 0.865 + 0.002
vehicle 0.953* +0.003 0.931 £ 0.002 0.941 + 0.002 0.871 £ 0.004
yeast 0.861 4+ 0.004 0.859 + 0.004 0.852 + 0.004 0.779 £+ 0.005
# wins 12 14 6 0

heart-c pima spambase

Test AUC
o
2

— TEL
—— GBDT

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of Trees Number of Trees Number of Trees

Figure 4: Mean test AUC vs # of trees (15 trials). SE is shaded. TEL and GBDT have (roughly) the same # of params/tree.
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Table 4: Average and SE for test accuracy, loss and # of params for CNN-Dense and CNN-TEL over 5 random initializations.
A star * indicates statistical significance based on a paired two-sided t-test at a level of 5%. Best values are in bold.

CNN-Dense CNN-TEL
Dataset Accuracy Loss # Params Accuracy Loss # Params
CIFAR10 0.7278 £ 0.0047 1.673 £0.170 7,548,362 | 0.7296 £ 0.0109 1.202* £0.011 926,465
MNIST 0.9926 £ 0.0002  0.03620 £ 0.00121 5,830,538 | 0.9930+9e¢ -5 0.03379 £0.00093 699,585
Fashion MNIST  0.9299 + 0.0012 0.6930 + 0.0291 5,567,882 | 0.9297 +0.0012 0.3247* £0.0045 699,585

Compactness and Sensitivity: We compare the number
of trees and sensitivity of TEL and GBDT on datasets from
Table 3 where both models achieve comparable AUCs—
namely, the heart-c, pima and spambase datasets. With
similar predictive performance, compactness can be an im-
portant factor in choosing a model over the other. For TEL,
we use the models trained in Table 3. As for GBDT, for
each dataset, we fix the depth so that the number of pa-
rameters per tree in GBDT (roughly) matches that of TEL.
We tune over the main parameters of GBDT (50 iterations
of Hyperopt, under the same parameter ranges of Table 3).
We plot the test AUC versus the number of trees in Figure
4. On all datasets, the test AUC of TEL peaks at a signif-
icantly smaller number of trees compared to GBDT. For
example, on pima, TEL’s AUC peaks at 5 trees, whereas
GBDT requires more than 100 trees to achieve a comparable
performance—this is more than 20x reduction in the number
of parameters. Moreover, the performance of TEL is less
sensitive w.r.t. to changes in the number of trees. These
observations can be attributed to the joint optimization per-
formed in TEL, which can lead to more expressive ensem-
bles compared to the stage-wise optimization in GBDT.

4.3. TEL vs. Dense Layers in CNNs

We study the potential benefits of replacing dense layers
with TEL in CNNs, on the CIFAR-10, MNIST, and Fashion
MNIST datasets. We consider 2 convolutional layers, fol-
lowed by intermediate layers (max pooling, dropout, batch
normalization), and finally dense layers; we refer to this
as CNN-Dense. We also consider a similar architecture,
where the final dense layers are replaced with a single dense
layer followed by TEL; we refer to this model as CNN-TEL.
We tune over the optimization hyperparameters, the num-
ber of filters in the convolutional layers, the number and
width of the dense layers, and the different parameters of
TEL (see appendix for details). We run Hyperopt for 25
iterations with classification accuracy as the target metric.
After tuning, the models are trained using 5 random weight
initializations.

The classification accuracy and loss on the test set and the
total number of parameters are reported in Table 4. While
the accuracies are comparable, CNN-TEL achieves a lower
test loss on the three datasets, where the 28% and 53%

relative improvements on CIFAR and Fashion MNIST are
statistically significant. Since we are using cross-entropy
loss, this means that TEL gives higher scores on average,
when it makes correct predictions. Moreover, the number of
parameters in CNN-TEL is ~ 8x smaller than CNN-Dense.
This example also demonstrates how representation layers
can be effectively leveraged by TEL—GBDT’s performance
is significantly lower on MNIST and CIFAR-10, e.g., see
the comparisons in Ponomareva et al. (2017).

5. Conclusion and Future Work

We introduced the tree ensemble layer (TEL) for neural net-
works. The layer is composed of an additive model of differ-
entiable decision trees that can be trained end-to-end with
the neural network, using first-order methods. Unlike dif-
ferentiable trees in the literature, TEL supports conditional
computation, i.e., each sample is routed through a small
part of the tree’s architecture. This is achieved by using the
smooth-step activation function for routing samples, along
with specialized forward and backward passes for reducing
the computational complexity. Our experiments indicate
that TEL achieves competitive predictive performance com-
pared to gradient boosted decision trees (GBDT) and dense
layers, while leading to significantly more compact models.
In addition, by effectively leveraging convolutional layers,
TEL significantly outperforms GBDT on multiple image
classification datasets.

One interesting direction for future work is to equip TEL
with mechanisms for exploiting feature sparsity, which can
further speed up computation. Promising works in this
direction include feature bundling (Ke et al., 2017) and
learning under hierarchical sparsity assumptions (Hazimeh
& Mazumder, 2020). Moreover, it would be interesting to
study whether the smooth-step function, along with special-
ized optimization methods, can be an effective alternative
to the logistic function in other machine learning models.
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