2104.07084v1 [stat. ME] 14 Apr 2021

.
.

arxiv

Grouped Variable Selection with Discrete Optimization:
Computational and Statistical Perspectives

Hussein Hazimeh* Rahul Mazumder’ Peter Radchenko?

April 16, 2021

Abstract

We present a new algorithmic framework for grouped variable selection that is based on
discrete mathematical optimization. While there exist several appealing approaches based
on convex relaxations and nonconvex heuristics, we focus on optimal solutions for the £;-
regularized formulation, a problem that is relatively unexplored due to computational chal-
lenges. Our methodology covers both high-dimensional linear regression and nonparametric
sparse additive modeling with smooth components. Our algorithmic framework consists of
approximate and exact algorithms. The approximate algorithms are based on coordinate de-
scent and local search, with runtimes comparable to popular sparse learning algorithms. Our
exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can
solve the associated mixed integer programming (MIP) problem to certified optimality. By
exploiting the problem structure, our custom BnB algorithm can solve to optimality problem
instances with 5 x 10% features in minutes to hours — over 1000 times larger than what is
currently possible using state-of-the-art commercial MIP solvers. We also explore statistical
properties of the fy-based estimators. We demonstrate, theoretically and empirically, that our
proposed estimators have an edge over popular group-sparse estimators in terms of statistical
performance in various regimes.

1 Introduction

Sparsity plays a ubiquitous role in modern statistical regression, especially when the number
of predictors is large relative to the number of observations. In this paper, we focus on the
case where predictors have a natural group structure. Typical examples where such a structure
appears are models with multilevel categorical predictors and models that represent nonlinear
effects of continuous variables using basis functions [15, 59, 23]. Grouping may also arise from
scientifically meaningful prior knowledge about the collection of the predictor variables. More
specifically, we consider the usual linear regression framework with response y,x1 and model
matrix X, x, = [X1,...,%p]. We suppose that the p predictors are divided into ¢ pre-specified,
non-overlapping groups. For a given 3 € R? and each g € {1,...,q}, we denote by B, the sub-
vector of B whose coeflicients correspond to the predictors in group g. Following the traditional
approach in high-dimensional regression, we assume that few of the regression coefficients are

*Massachusetts Institute of Technology, hazimeh@mit .edu
fMassachusetts Institute of Technology, rahulmaz@mit.edu
HUniversity of Sydney, peter.radchenko@sydney.edu.au

nonzero, i.e., the model is sparse. This leads to a natural generalization of the classical best
subset selection problem in linear regression [40, 8] to the group setting:

q
min ly = X85 + X0 > 1(8, #0), (1)

g=1

where 1(-) is the indicator function, and)¢ is a non-negative regularization parameter that
controls the number of nonzero groups selected. We will refer to Problem (1) as the Group
fo problem.

Problem (1) is NP-Hard [43] and poses computational challenges. A rich body of prior work

explores sparsity-inducing methods to obtain approximate solutions to (1). Popular methods
include: convex optimization based procedures, such as Group Lasso [59], which is a generalization
of the Lasso approach [54] to the grouped setting, and local solutions to nonconvex optimization
problems arising from group-nonconvex regularizers, such as SCAD, MCP and others [61, 30].
Despite the appeal of these approaches, the statistical and computational aspects of optimal
solutions to (1) remain to be understood at a deeper level. To this end, we aim to advance the
computational frontiers of Problem (1) using novel tools from discrete optimization. Our proposed
combinatorial optimization-based algorithms are scalable. In particular, they can deliver optimal
solutions to (1) for instances that are much larger than state-of-the-art approaches. We also
develop a better understanding of the statistical properties of Problem (1) both theoretically and
empirically.
Computation. We propose new algorithms based on combinatorial optimization for solving
Problem (1) and its variants. First we present approximate algorithms: they deliver high-quality
solutions using a combination of cyclic coordinate descent and local combinatorial optimiza-
tion [24]. These algorithms have runtimes comparable to popular approaches for grouped variable
selection (for example, Group Lasso or MCP), but deliver solutions with considerably improved
statistical performance (for example, in terms of prediction and variable selection), as we demon-
strate in our experiments. Our approximate algorithms deliver good-quality feasible solutions
to (1) but are unable to certify (global) optimality of solutions via matching lower bounds on the
optimal objective value of (1). Certifying optimality is not only important from a methodological
perspective but can also be beneficial in practice for mission-critical applications. For example,
having certifiably optimal solutions can engender trust and provide transparency in consequen-
tial applications such as healthcare. Thus, we propose a new tailored branch-and-bound based
optimization framework for solving (1) to certifiable optimality.

In our exact (global optimization) framework, we formulate the Group ¢y problem as a Mixed
Integer Program (MIP). However, in a departure from earlier work [8, 7], we propose a custom
branch-and-bound (BnB) algorithm to solve the MIP. Indeed, MIP-based techniques have gained
considerable traction recently to solve to (near) optimality the best subset selection problem,
where all groups are of size one [8, 7, 36, 38, 24, 58, 26]. All these works, with the exception
of [26], leverage capabilities of powerful commercial MIP solvers such as Gurobi and CPLEX.
These solvers have gained wide adoption in the past two decades due to major advances in
algorithms and software development [10, 31]. However, these general-purpose solvers may take
several hours to certify optimality on small instances (for example, with p = 1000). In contrast,
our custom BnB algorithm exploits problem-specific structure to scale to much larger instances.
For example, it can solve to optimality instances with p = 5 x 10% — this is 1000 times larger than

what can be handled using Gurobi’s MIP-solver. Our BnB algorithm generalizes to the grouped
setting the approach of [26] developed for the best subset selection problem.

Statistical properties. Statistical properties of Group Lasso have been extensively studied,
and it has been shown, both empirically and theoretically, that it performs well in sparse high-
dimensional settings [16, 2, 42, 28, 57, 34, 44], under certain assumptions on the data. However,
Group Lasso also has its shortcomings, similar to those of Lasso in high dimensional linear
regression [8, 15, 24]. More specifically, depending on the penalty weight, the resulting model
may either be very dense or, alternatively, comes with overly shrunk nonzero coefficients. This
problem is aggravated when the groups are correlated with each other, as Group Lasso tends
to bring in all of the correlated groups in lieu of searching for a more parsimonious model. For
further discussions of these issues in the special case of Lasso see, for example, [62, 37, 15, 8], and
the references therein. In this paper, we demonstrate, both empirically and theoretically, that the
Group £y methodology has advantages over its Group Lasso counterpart in a variety of regimes. In
particular, as a consequence of directly controlling the sparsity level in the optimization problem,
our framework leads to substantially sparser models under similar data fidelity. Moreover, in
many scenarios where the predictors are highly correlated, our approach performs better in terms
of both estimation and prediction.

Additive models with {j-sparsity. In addition to linear models, we also study an impor-
tant example of regression with group structure that arises in high-dimensional sparse additive
modeling [23, 22]. Here, we estimate a nonparametric multivariate regression function in g co-
variates, (z1,...,24), which we model as a sparse additive sum of the form E]ES fj(xj), where
S C {1,...,q}. In this setting, each group generally corresponds to the basis representation of
a given additive component, one for each of the ¢ predictors. Because the groups are allowed to
be large, additional regularization needs to be imposed, typically in the form of a roughness type
penalty on the regression functions. A number of successful Group Lasso-based approaches have
been proposed and analyzed in this setting — see, for example, [39, 51, 29, 32, 49, 60] and the ref-
erences therein. To our knowledge, this is the first paper to explore statistical and computational
aspects of Group {p-based formulations in the context of sparse additive modeling. We show
theoretically and empirically that Group £y based methods enjoy certain statistical advantages
when compared to the Group Lasso-based counterparts.

Contributions. The focus of this paper is on Problem (1) and the sparse additive modeling
problem (which can be formulated as a variant of Problem (1), as we discuss in Section 2). Our
main contributions for these two problems can be summarized as follows:

e We develop fast approximate algorithms, based on first-order and local combinatorial op-
timization. We establish convergence guarantees for these algorithms and provide useful
characterizations of the corresponding local minima. Our experiments indicate that these
algorithms can have an edge in terms of statistical performance over popular alternatives
for grouped variable selection.

e We present mixed integer second order cone program (MISOCP) formulations for the Group
{p-based estimators; and design a novel specialized, nonlinear branch-and-bound (BnB)
framework for solving the MISOCP to global optimality. Our custom BnB solver can
handle instances with 5 x 105 variables — more than a 1000 times larger than what can be
handled by state-of-the-art commercial MISOCP solvers.

e We establish non-asymptotic prediction and estimation error bounds for our proposed esti-
mators, for both the high-dimensional linear regression and sparse additive modeling prob-
lems. We show that under the assumption of sparsity, these error bounds compare favorably
with the ones for Group Lasso.

e We demonstrate empirically that our approach appears to outperform the state of the art
(for example, Group Lasso and available algorithms for nonconvex penalized estimators) in
a variety of high-dimensional regimes and under different statistical metrics (for example,
prediction, estimation, and variable selection).

Organization. In Section 2, we present formulations for the Group ¢y and sparse additive
modeling problems. Section 3 presents approximate algorithms based on first-order and local
combinatorial optimization algorithms. Then, in Section 4, we present our exact MIP algorithm.
Statistical properties of our approach are investigated in Section 5. Section 6 presents compu-
tational experiments. Technical proofs and additional computational details are provided in the
supplement.

Notation. For any non-negative integer k, we denote the set {1,...,k} by [k]. The complement
of a set A is denoted by A°. We denote the index sets corresponding to the ¢ groups of predictors
by Gy, for g € [q] so that nglgg = [p] and G, N Gy = 0 for all g # ¢. For a vector 8, we use the
notation Supp(@) to denote the group support, i.e., Supp(@) = {g | 64 # 0,9 € [¢]}. We also
define a measure of {y-group sparsity (i.e., number of nonzero groups): G(0) := 23:1 1(6, # 0).
We denote the gradient of a scalar-valued function, say J(@), by V.J(0). Moreover, we use the
notation Vg, .J (@) to refer to the subvector of V.J(@) corresponding to the variables in 8,. Vectors
and matrices are denoted in boldface.

2 Optimization problems considered

In this section, we present optimization formulations for the Group ¢y approach (and its variants),
as well as the £y-sparse additive function estimation approach.

2.1 Group /y with ridge regularization

The algorithms discussed in this paper apply to the Group ¢y estimator (1) with an optional ridge
regularization term:

q

min ly = X85 + 2o > 1(8, # 0) + Xo|IB]3, (2)

g9=1

where A\g > 0 controls the number of selected groups, and Ao > 0 controls the strength of the
ridge regularization. Our proposed algorithms apply to both settings: Ay = 0 and Ay > 0 in
Problem (2). The choice of the ridge term in (2) is motivated by earlier work in the context
of best-subset selection [38, 24|, which suggest that when the signal-to-noise ratio (SNR) is low,
additional ridge regularization can improve the prediction performance of best-subset selection
(both theoretically and empirically). Additionally, as discussed in Section 4.2, the choice Ay > 0,
allows for deriving stronger MIP formulations by appealing to perspective formulations [19, 21].

2.2 Nonparametric additive models with /y-sparsity

In the multivariate setting, estimating the conditional mean function E(y|x) = f(z1,...,2q)
becomes notoriously difficult, due to curse of dimensionality. To overcome this problem, additive
approximation schemes [22] are commonly used as an effective methodology: f(x) = ’]1-:1 fi(zy).

A popular approach [see, for example, 56] is to choose f; from some smooth functional class C;,
such as the class of twice continuously differentiable functions. Given the observations (y;,x;),
i € [n], the additive model f(x) can be estimated by solving the following optimization problem:

min D i =Y fil@i)? + A Pen(f;), 3)
=1 =1 i=1

where Pen(f;) is a roughness penalty that controls the amount of smoothness in function f;.

A key ingredient in the additive function fitting framework is the estimation of a univariate
smooth regression function based on observations (y;,u;),7 € [n]. Suppose, for simplicity, that
the u;s are distinct and u; € [0, 1] for all 7. For illustration, let us take Pen(g) = fol (¢" (u))?du.
Then, the solution to the corresponding (infinite dimensional) univariate problem is of the form:
g(u) = ag + cru + Y%, vjNj(u), where Nj(u) are some cubic spline basis functions, such as
truncated power series functions, natural cubic splines or the B-spline basis functions, with knots
chosen at the distinct data points wu;,7 € [n]. Note that fol(g”(u))Qdu = v'Q~, where Q is an
n X n positive definite matrix with the elements w;; = fol N/ (u)N} (u)du. If we refer to the
corresponding functional class as C, define the elements of g as g; := g(u;), for t = 1,...,n, and
let ||g||2 := v/, then the univariate optimization problem is equivalent to

(g1, -, 9m) = & € argmin [y — gl + AglZ. (4)

Problem (4) is a generalized least squares problem in (g, a1,7). A direct extension to the
additive model setting is given by the following formulation:

q q
min [ly = >3+ A 52, (5)
j=1 j=1

where fj S Cj and fj = (fj(xij), ceey f](a:n]))
We wish to impose sparsity on the additive components f;, j € [¢], which naturally leads to
the following optimization problem:

q

q q
min [y =Y 5+ ro Y 1(E #0)+ A [IfE,- (6)
j=1

s =1
We note that the choice Pen(f;) = 1/ [(f} (u))?du leads to the optimization problem

q

q q
min [y =Y f[5+ X > 1(E #0) + 2D [Iflle;- (7)

J=1 J=1 Jj=1

Problems (6) and (7) are close cousins and result in similar estimators. The terms »_ [|f;/l¢; and
> IIE Ha encourage smoothness in each of the additive components, while the sum of indicators

5

directly controls the number of included predictors. In Section 5, we establish theoretical error
bounds for the estimator that corresponds to Problem (7).

Connections with Group Lasso-type penalization schemes. For Grouped Lasso-type
penalization schemes, the choice of the penalty becomes rather subtle. Problem (3) with
Pen(f;) = ||fj||%j does not induce sparsity in [/fj|c,’s for finite A\. Alternatively, the choice
Pen(f;) = ||fj[lc; does result in several components ||f;[|c; being set to zero when A is large. Note,
however, that ||fj[lc; = 0 does not imply f; = 0. This is because [/fj|c, is a seminorm that
is not affected by the linear components of f;. To set f; = 0 one needs to include the linear
components into the penalty. To overcome these limitations, alternatives have been proposed —
here we mention some penalization schemes that are used to encourage selection and smoothness.
One possible choice [39] is Pen(f;) = \/Hf 13 + NI HC , where [/f;]|2 denotes the usual 5 norm of

the vector f;. The corresponding penalization term is A}, Pen(f;), and, hence, the parameters
A and X jointly control smoothness and sparsity. The sum of ||f;||3 and X HfjH%j leads to double
penalization, thereby potentially resulting in unwanted shrinkage that may interfere with variable
selection. Similar issues arise with the choices Pen(f;) = [/fjll2 + X'[|fj||c;, considered in [15], and

Pen(f;) = \/Hf 13 + NI HC + \|If; Hc , which appears in [39].

Thus, the choice of Pen(f;) plays an important role in obtaining sparsity for Lasso-type reg-

ularization methods. In contrast, the levels of smoothness and sparsity are controlled separately
in the {yp-formulations: Problems (6) and (7). Group Lasso-type penalization schemes may be
interpreted as convex relaxations of the fy-penalty appearing in Problem (7), as discussed in the
Supplement A.

Other choices of smooth function classes. We note that the above framework, where each
additive component is taken to be a cubic spline, can be generalized to more flexible smooth
nonparametric models, depending upon the choice of Pen(-) and the functional classes C;s. For
example, one may consider the class of functions that are 7' times continuously differentiable,
together with the choice Pen(f;) = [f T) u)du, where () denotes the 7th derivative of fi —
solutions to these problems are given by sphnes of order 7 [56].

Another popular paradigm pursued in several works [32, 33, 50] is the Reproducing Kernel
Hilbert Space (RKHS) framework, wherein every C; is taken to be a Hilbert space encouraging
some form of smoothness on f;. Here, Pen(f;) = ||f;||x; is an appropriate Hilbert space norm.

2.3 General problem formulation considered in this paper

Our focus in this paper is on Problem (2) and the sparse additive modeling problems defined in
(6) and (7). These three problems can all be formulated as follows:

q
min - BPB+(a,B) + 2G(B) + A > P82, (8)
g=1
for suitable choices of @, P = 0, P, > 0, g € [g], where we recall that G(8) := 3:1 1B, #

0). The term »7_, [[PyB3[|2 is only used for the sparse additive modeling problem in (7).
Problems (1) and (6) can be obtained by setting A\; = 0 and choosing P and a appropriately.
1

To simplify the presentation, we apply a change of variable in Problem (8): 8, = P2 B, for

g € [g]. This leads to the following equivalent problem:

q
min - h(0) = O'WO + (b,0) + NG(6)+ M Y _ 642, (9)
N———
=0(0) 9=1
:=0Q(0)

for appropriately defined! W and b. Our algorithmic development will focus on (9).

Overview of our algorithms: Problem (9) is nonconvex due to the discontinuity in G(8).
In Section 3, we design fast algorithms that can obtain high-quality approximate solutions for
this problem. In Section 4, we develop an exact algorithmic framework, based on a custom
MIP solver, which obtains certifiably optimal solutions to (9). Our algorithm constructs: (i) a
sequence of feasible solutions, whose objective values are valid upper bounds, and (ii) a sequence
of lower bounds (a.k.a. dual bounds). As our BnB algorithm progresses, these upper and lower
bounds converge towards the optimal objective of Problem (9). The solver terminates and certifies
optimality when the upper and lower bounds match?. Our experiments indicate that high-quality
initial solutions, as available from the algorithms presented in Section 3, can significantly speed
up convergence and reduce memory requirements in our BnB algorithm.

3 Approximate Algorithms

In this section, we develop fast approximate algorithms to obtain high quality local minimizers for
Problem (9). While these algorithms do not deliver certificates of optimality (via dual bounds),
they attain nearly-optimal (and at times optimal) solutions to many statistically challenging
instances, in running times comparable to group Lasso-based algorithms.

A main workhorse of our approximate algorithms is a nonstandard application of cyclic block
coordinate descent (BCD) to the discontinuous objective function (9). We draw inspiration from
the appealing scalability properties of coordinate descent in sparse learning problems [see, for
example, 20, 3, 24]. Our second algorithm is based on local combinatorial search and is used to
improve the quality of solutions obtained by BCD. We establish convergence guarantees for these
two algorithms.

Our algorithms arise from studying necessary optimality conditions for Problem (9). To
this end, we show that the quality of solutions obtained by BCD are of higher quality than
local solutions corresponding to the popular proximal gradient descent (PGD) [47] algorithm?.
The local minimizers corresponding to local combinatorial search form a smaller subset of those
available from BCD. In this section, we establish the following hierarchy among the classes of
local minima:

Global Minima C Local Search Minima € BCD Minima C PGD Minima. (10)

Tet D, = diag(PI%,. .. ,Pq%) be a block diagonal matrix. Then W = D7*PD7 !, and b = D 'a.

2In practice, MIP solvers terminate when the difference between the upper and lower bounds are below a small,
user-defined threshold.

3Though PGD is popularly used in the context of convex optimization problems, it also leads to useful algorithms
for nonconvex sparse learning problems. In particular, PGD for our problem can be viewed as a generalization of
the iterative hard thresholding (IHT) algorithm [12] to the group setting.

Above, PGD minima correspond to the fixed points of the PGD algorithm; they include all
the fixed points of our proposed BCD algorithm. As we move from right to left in the above
hierarchy, the classes become smaller, i.e., they impose stricter necessary optimality conditions.
At the top of the hierarchy we have the global minimizers of the problem, which can be obtained
using our exact MIP-based framework (we discuss this in Section 4). Our approximate algorithms
are inspired by recent work [24] on the sparse regression problem, but the approach presented
here has notable differences. In particular, the coordinate descent algorithm in [24] performs
exact minimization per coordinate, which can be computationally expensive when extended to
the group setting. Thus, our proposed BCD algorithm performs inexact minimization per group.
In addition, the presence of 5 norms in our objective function makes the analysis for the rate of
convergence for our algorithm different.

3.1 Block Coordinate Descent

We present a cyclic BCD algorithm to obtain good feasible solutions to Problem (9) and establish
convergence guarantees. We first introduce a useful upper bound for ¢(@). For every g € [¢], we
define S, = {(0,0) | 6; = 0;, Vi € [q] s.t. i # g}. By the Block Descent Lemma [6], the following
upper bound holds for every g € [q]:

N L - -
() < £(0) + (Ve,l(0),0y — 0,) + fl!eg — 0,413, V(0,6) €S, (11)

where L, is the “group-wise” Lipschitz constant of V{(0), i.e., Ly is a constant which satisfies:
Vo, (8) — Vo, l(0)]]2 < Ly[0y — By]l, for all (6,0) € Sy. Since £(8) is a quadratic function,
Ly = 201max(Wy), where W is the submatrix of W with columns and rows restricted to group
g, and opax () denotes the largest eigenvalue.

Cyclic BCD sequentially minimizes the objective of (9) with respect to one group of variables
while the other groups are held fixed. Let ' be the iterate obtained by the algorithm after the
[-th iteration. Then, in iteration [+ 1, the variables in a group g (say), are updated while the
other groups are held fixed. Specifically, we have (01, HZH) € Sy. Using (11) with 0=26, f/g > L,
and adding €2(€) to both sides we get:

h(0) < §(6:6") := £(8") + (Vo, (), 0, — 6;) + %’H@g — 0,13 + (6). (12)

Note that the left hand side of (12) is the objective function of Problem (9). We obtain 0’;‘1 by
minimizing the upper bound on our objective, §(0;8'), with respect to 0,

2
+Q(0y). (13)
2

L
9;“ € argmin §(0; 0') = arg min ?g

1
(o Ly !
0, 0, % <09 Ly 0, (6)>

Although nonconvex, the minimization problem in (13) admits a closed-form solution, which can
be obtained via the operator H : R* — R" defined as follows:

A . 2\ A
i lle = 2] if falla > /2 4 3
0 otherwise

H(z;\; Ly) = (14)

where A = (Mg, A1). It can be readily seen that an optimal solution of (13) is given by H (z; X; L),
where z = 9; - %V@gﬁ(@l). Below we summarize our proposed cyclic BCD algorithm.
g

8

Algorithm 1: Cyclic Block Coordinate Descent (BCD)

e Input: Initialization 8° and flg for every g € [q].
e Repeat Steps 1, 2 for [=0,1,2,... until convergence:

1. g+ 1+ (I mod q) and 9§+1<—9§- for all j # g
2. 0L« H(z; X\ Ly), where z = 0!, — (1/L,)Ve,((6").

Convergence Analysis. To establish convergence of the sequence @' in Algorithm 1, we make
use of the following assumption.

Assumption 1. At least one of the following conditions holds:

(a) Strong Convezity: W > 0.

(b) Restricted Strong Convexity: Let 6 be a (Group Lasso) solution defined as 6 &
argming £(0) + M1 >0, [|8yl2. Let k = maxg{[|0]lo | G(6) < G(8)}. Buvery collection
of k columns in W are linearly independent, and the initial solution 6° (in Algorithm 1)

satisfies h(0°) < h(8).

Assumption 1(a) holds if a ridge regularization term is used, i.e., it holds for Problem (2)
with Ao > 0. Assumption 1(b) is less restrictive because we can have W > 0. Suppose that
for some non-negative integer u, every set of u columns in W are linearly independent. Then,
in the Group Lasso problem (defined in Assumption 1(b)), A1 can be chosen sufficiently large so
that some Group Lasso solution 0 satisfies k < u. If 6 is used to initialize Algorithm 1, then
Assumption 1(b) is satisfied.

The following theorem establishes a linear convergence guarantee for the sequence generated
by Algorithm 1.

Theorem 1. Let {01} be the sequence generated by Algorithm 1 and suppose that Assumption 1
holds. Then,

1. The group support stabilizes after a finite number of iterations, i.e., there exists an integer
K and a support S C [q] such that Supp(8') = S for alll > K.

2. The sequence {0'} converges to a solution 0%, with Supp(@*) = S, satisfying:
0% € argmin £(05) + A1 > [|6]l2 (15)
0s
geS
0

. 2\
10502 > (|22, wges (16)
LQ

Ve, (07)||l2 < \/2XoLg + M1, Vg€ S (17)

3. The function Og +— £(0g) is strongly conver with a strong convezity parameter og > 0. Let
Lg be the Lipschitz constant of Ve l(0s). Define Lyar = maxges Lg + 2X1 and Ly, =
mingeg Ly + 2X1. Then, for | > K, the following holds:

(+)ay _ 1, (9* _%s lay _ p(0*
h(6(+Da) h(0)§<1 77>(h(9) h(6)), (18)

where 1 = 2Lmap(1+ |S|(Ls + 2)\1]S])?L ;2

The proof of Theorem 1 is in the supplement. We present here a high-level sketch of the
proof. We establish part 1 by proving a sufficient decrease condition. For part 2, we show that
the objective function restricted to the group support .S is strongly convex, and thus convergence
follows from standard results on cyclic BCD, e.g., [6]. To establish the linear rate of convergence
in part 3 of the theorem, we extend the result of [4] who show that cyclic BCD can achieve a linear
rate of convergence on smooth and strongly convex functions: note that our objective function
after support stabilization is not smooth due to the presence of the term > ¢ [|fy]l2.

Optimality conditions of BCD and PGD. The conditions in Theorem 1 (part 2) characterize
a fixed point of Algorithm 1. These are necessary optimality conditions for Problem (9) since any
global minimizer must be a fixed point for Algorithm 1. In what follows, we will show that the
necessary optimality conditions imposed by PGD (which is a generalization of [12] to the group
setting) are generally less restrictive compared to those imposed by Algorithm 1. Note that PGD
is an iterative algorithm whose updates for Problem (9) are given by:

1
6't! ¢ argmin {27|o — (8" —7ve(6Y)3 + Q(O)} : (19)
(4

where 7 > 0 is a step size. Let L be the Lipschitz constant of V{(8). For a constant step size,
the update in (19) converges if 7 = 1/L where L is a constant chosen such that L > L [see,
for example, 24, 35]. For the choice 7 = 1/ L, it can be readily checked that any fixed point of
PGD satisfies the three optimality conditions in Theorem 1 (part 2), but with f/g replaced by L.
The group-wise Lipschitz constant L, satisfies Ly, < L (for any g). In many high-dimensional
problems, we can have Ly < L [see 3, 24]. Thus, Algorithm 1 generally imposes more restrictive
necessary optimality conditions compared to PGD, which can lead to higher quality local minima
in practice. This establishes a part of the hierarchy in (10).

3.2 Local Combinatorial Search

In this section, we introduce a local combinatorial search algorithm to improve the quality of
solutions obtained by cyclic BCD (Algorithm 1). The algorithm performs the following two steps
in the t-th iteration:
1. Block Coordinate Descent: We run Algorithm 1 initialized at the current solution 6!
to obtain a solution 8. We denote the indices of the nonzero groups in 8" by Supp(8') = S.

2. Group Combinatorial Search: We attempt to improve the solution 6% by swapping
groups of variables from inside and outside the support S. In particular, we search for two
subsets S; C S and Sy C S¢ such that removing S; from the support, adding So to the
support, and then optimizing over the groups in Sy, improves the current objective. To
ensure that the local search problem is computationally feasible, we restrict our search to
subsets satisfying |S1| < m and |S2| < m, where m is a pre-specified integer that takes
relatively small values (for example, in the range 1 to 10).

We present a formal description of the optimization problem in step 2 (above). We denote
the standard basis of R? by {ey,...,e,}. Given a set J C [q], we define the p x p matrix U’
as follows: the i-th column of U’ is e; if i € UgesGy and 0 otherwise. In other words, for any
0 € RP, we have (U’6); = ; if i € Uye G, and 0 otherwise. The optimization problem in Step 2

10

is given by:

Jmin hO' — U0+ U20) st. S C8S,8 C 8|S <m,|Ss| <m, (20)
1,02,

where we recall that S = Supp(*). If there is a feasible solution 6 to (20) satisfying h(0) < h(6"),
then we move to the improved solution 6; otherwise, we terminate the algorithm. We summarize
the algorithm below:

Algorithm 2: Local Combinatorial Search

e Input: Initial solution 8° and swap subset size m.
e Repeat Steps 1-3 for t = 1,2,... until convergence:

1. Run Algorithm 1 initialized from 8'~! to obtain a solution 6.
2. Search for a feasible solution @ to (20) satisfying h(6) < h(6").

3. If step 2 succeeds, 0! < 6. Otherwise, terminate.

Theorem 2 establishes that Algorithm 2 converges in a finite number of iterations and char-
acterizes the corresponding solution.

Theorem 2. Let {0} be the sequence of iterates generated by Algorithm 2 and suppose Assump-
tion 1 holds. Then, @' converges in a finite number of iterations to a solution that we denote
by OF. Let S = Supp(GT). Then, 01 satisfies the necessary optimality conditions in part 2 of
Theorem 1. In addition, 07 satisfies:

h(0") < Jmin h(@T — UM 0T + U%0) st. 51 C 8,5 C S8 <m,|S| <m. (21)
1,02,

Theorem 2 shows that the solutions obtained by Algorithm 2 impose more restrictive necessary
optimality conditions (in particular, condition (21)) compared to Algorithm 1, which justifies
part of the hierarchy in (10). This is expected, as every iteration of Algorithm 2 improves over
a solution obtained by Algorithm 1. The quality of solutions returned by Algorithm 2 depends
on the swap subset size m. For a sufficiently large choice of m, the algorithm will return a
global minimizer. Intuitively, the computational cost of the local search in step 2 of Algorithm
2 increases with m. In our experiments, we observe that small choices such as m = 1 can lead
to significant improvements in solution quality compared to algorithms that do not incorporate
combinatorial optimization. These improvements are most pronounced in settings where n < p or
the predictors across groups are highly correlated. In Section 4.1.2, we present a MIP formulation
for the local search problem in Algorithm 2 for m > 1. For the special case of m = 1, we use our
own custom implementation that is more efficient than using a MIP-based approach.

3.3 Algorithms for the cardinality constrained formulation

Algorithms 1 and 2 provide solutions for the (penalized) formulation in (9). While this leads to a
family of high-quality estimators across a range of model sizes, it does not allow for explicit control

11

over the number of nonzero groups G(@). To this end, we consider the cardinality constrained
variant of problem (9):

min [(8) = £(8) + M > 10gll2 st. G(O) < k. (22)
g€ld]

In order to obtain a solution to (22) with a desired support size, we propose the following
procedure. First, we run Algorithm 2 (say) over a grid of Ag-values to obtain a sequence of
solutions. Then, if a desired support size, say k, is missing, we obtain it by applying proximal
gradient descent (PGD) to Problem (22):

1
0" € argmin [0 — (6" — TVLO))53+ M D 642 ¢ . (23)
0: Go)<k | 27 ol

where 7 > 0 is a step size and the initial solution 8° can be obtained from Algorithm 2 (for
example, we take a solution with group support size closest to k).
The next proposition establishes the convergence of update (23) and describes its fixed points.

Proposition 1. Let {6'} be the sequence of iterates generated the PGD updates (23). Let L be
the Lipschitz constant of VI(0) and a scalar L such that L > L. Then, {8'} converges for a step
size T = 1/L. Moreover, a solution 0* with group support S is a fixed point of (23) iff G(6*) < k,
and

05 € argmin E(0s) and |[[Ve l(0%)|2 <vw) forgeSS,
0s

where v, = ||l:0; — Vg, (07)|l2, and 7 denotes the kth largest value in the sequence {79}321.

We omit the proof of Proposition 1 as it can be established by a simple extension to the
standard results on the convergence of IHT [for example, those in 12, 3].

4 Mixed Integer Programming

In this section, we propose MIP formulations and algorithms to solve (9) and the combinatorial
search problem in Algorithm 2. Section 4.1 introduces MIP formulations, and Section 4.2 presents
a new BnB algorithm for solving the corresponding problems to optimality.

4.1 MIP Formulations

4.1.1 Formulations for Problem (9)

Below we present two MIP-formulations for (9).
Big-M Formulation: We first present a Big-M based MIP formulation for Problem (9):

q q
min £(8) + o Dz A 110yl (24a)
g=1 g=1
s.t. [|0gll2 < Muzg, g €] (24b)
Zg € {07 1}7 g € [Q] (24(})

12

where, the optimization variables are @ (continuous) and z (binary). Above, My is an a-priori
specified constant (leading to the name “Big-M”) such that some optimal solution, say 6%, to (9)

satisfies maxge(g) [|0;]]2 < My. In (24), the binary variable z, controls whether all the regression

€

coefficients irgl t[g?roup g are zero or not: z; = 0 implies that 8, = 0, and z, = 1 implies that
|04ll2 < My. Such Big-M formulations are commonly used in mixed integer programming to
model relations between discrete and continuous variables, and have been recently used in £y-
regularized regression [8, 58] (for example). Various techniques have been proposed to estimate
the constant My in practice; see [8] for a discussion on estimating the Big-M in the context of
linear regression. The constraints in (24b) are second order cones [13]. Moreover, the objective
function in (24) can be written as a linear function, with additional second order cone constraints
to express the quadratic function £(@) and the terms ||@4||2, g € [¢]. Thus, Problem (24) can be
reformulated as a Mixed Integer Second Order Cone Program (MISOCP), which can be modeled
and solved (for small/moderate problem instances) with commercial MIP solvers such as Gurobi,

CPLEX, and MOSEK. We present an efficient, standalone BnB algorithm for (24) in Section 4.2.
Perspective reformulation: Recall that Problem (9) contains a ridge term in its objective.
The ridge term can be used to derive stronger MIP formulations for (9) based on the perspective
formulation [19, 21]. As we discuss below, the perspective-based formulation differs from the Big-
M formulation (24)—when Ay > 0, it usually leads to tighter convex relaxations and consequently,
reduced MIP runtimes. First, we rewrite (9) as

q

q q
win f(e)+Aozlzg+A121||0g||2+A221||0g||% s, (24D), (24c) (25)
9= 9= 9=

where £(0) = £(8) + X\2||0||3. Using the perspective reformulation [19, 21, 18] for the ridge term
2 geldl 16,13 in the objective, we can reformulate (25) as

q q q
min E(e)+A0;zg+xlg\wgu2ﬂ2;sw (26a)
s.t. [|0gll2 < Myzg, g € [q] (26b)
1613 < 5929, g € [d] (26¢)
zg €{0,1},54 >0, g€ gl (26d)

Compared to (25), formulation (26) uses additional auxiliary variables s, € R>g, g € [q] and
rotated second order cone constraints: [|0,]|3 < s,z, for g € [g]. Each s, takes the place of the
term ||@,]3 in the objective function in (24). Specifically, any optimal solution (8*,z*, s*) to (26)
must satisfy s} = [|65]]3.

Although the MIP formulations (26) and (25) are equivalent, their continuous relaxations
are generally different. The following proposition states that the relaxation of (26) is generally

tighter (i.e., has a higher objective) than the relaxation of (25).

Proposition 2. Let v; and vy be the objective values of (25) and (26) upon relaxing the binary
variable z4 to [0,1] for all g € [q]. Let (6%,2z%,s*) be an optimal solution to the relazation
corresponding to va. Then, the following holds:

vz > B(ET 1),

g€lqllz5>0

13

Proposition 2 implies that using formulation (26) (over formulation (24)) can lead to tighter
lower bounds for the root node relaxation; and hence tighter dual bounds for the node relax-
ations in the BnB tree. This can result in improved runtimes in the overall BnB solver (as we
demonstrate in our experiments). Thus, in our algorithmic framework in Section 4.2, we focus
on formulation (26). To be clear, our BnB procedure applies even without the presence of a ridge
term (i.e., A2 = 0). Specifically, if Ay = 0 in (26), the conic constraints (26¢) can be removed and
formulation (26) reduces to the Big-M formulation in (24).

4.1.2 MIP formulation for local combinatorial search

We present a MIP formulation for the local search problem* that arises in Algorithm 2. Prob-
lem (20) can be formulated using the following Big-M based MIP:

q q
min /(u) + Ao Zzg + A Z g2
g=1 g=1

u,z,0
s.t. u:0t—ZUg0t(1—zg)+ Z UJe (27a)
ges gese
ugllz < Myzg, g € 5° (27b)
Zz92|5|—m, Zzggm (27¢)
ges gese
zg €{0,1}, ge€lq) (27d)

In the formulation above, we assume that My is chosen sufficiently large so that some optimal
solution to (20), say 8", satisfies [|0[l2 < My, g € S° As we discuss below, the objective in (27)
represents h(u) with u = 8 — U%10" + U20, where h(u), S; and Sy are as defined in (20). Note
that the variable u is an auxiliary variable introduced to simplify the presentation. The binary
variables z4, g € [q] are used to select the subsets S; C S and Sy C S¢. In particular, for g € S,
zg = 0 iff g € S1, and this is encoded by constraint (27a). On the other hand, for g € ¢, z, =1
iff g € S9, and this is encoded by constraints (27a) and (27b). Therefore, 23:1 24 is equal to
G(u). The constraints (27¢c) enforce |S1| < m and |S2| < m.

The local search MIP-formulation (27) has a smaller search space compared to the full prob-
lem (24). This is due to the additional constraints appearing in (27c). Furthermore, Problem (27)
effectively uses |S¢|-many ‘free’ continuous group-variables—this is in contrast to |S| + |S¢| con-
tinuous group-variables appearing in the full problem. Thus, for small values of m, Problem (27)
can be typically solved faster than the MIP formulation of (8). While (27) is based on a Big-M
formulation, in the presence of an additional ridge regularizer, one can also derive a perspective
reformulation using ideas similar to (26).

4.2 Exact optimization via a custom nonlinear Branch-and-Bound algorithm

High-performance commercial MIP solvers, such as Gurobi and CPLEX, often deliver state-of-
the-art performance for a variety of MIP problems. These solvers are based on a BnB framework,

4We recommend the use of the MIP formulations when m > 2. When m = 1 a solution to the local search
procedure can be computed efficiently from first principles.

14

which can solve MIP problems to global optimality, typically without having to explicitly enu-
merate all (exponentially many) solutions in the search space. These solvers are general-purpose
and do not take into account the specific structure of the problems we consider here. Therefore,
their performance can suffer: we have empirically observed that they may require several hours
to solve (to certifiable optimality) instances of (26) with p ~ 103, and larger problems can take
much longer.

To address this lack of scalability in general-purpose MIP solvers, we propose a specialized,
nonlinear BnB framework for solving (26) to certifiable optimality. Our framework takes into
account problem structure to achieve scalability. As we demonstrate in the experiments section,
our BnB can solve instances with p ~ 5 x 10% to certifiable optimality in minutes to hours,
whereas Gurobi takes prohibitively long (at least a day) for p ~ 103. An important feature of our
proposal is an open-source, standalone implementation of the BnB solver, which does not rely
on sophisticated and proprietary BnB-capabilities of commercial MIP solvers (e.g., Gurobi). We
first give a high-level overview of our novel nonlinear BnB framework and then dive into specific
technical details.

Overview of nonlinear BnB: Nonlinear BnB is a general framework for solving mixed integer
nonlinear programs [5]. This framework constructs a search tree to partition the set of feasible
solutions of the given MIP (Problem (26) in our case). Instead of explicitly enumerating all the
(exponentially many) feasible solutions, BnB uses intelligent enumeration and methods to prune
parts of the tree by using lower bounds (dual bounds) on the optimal objective value. In what
follows, we briefly describe how the tree is constructed and pruned. Starting at the root node,
the algorithm solves a nonlinear convex relaxation of Problem (26), where all binary variables
are relaxed to [0,1] — this is usually referred to as the root relaxation. Then, the algorithm
chooses a branching variable, say z4, and creates two child nodes (optimization subproblems):
one with z; = 0 and another with z, = 1, where all other binary variables are relaxed to [0, 1].
The algorithm then proceeds recursively: for every unvisited node, it solves the corresponding
optimization problem and checks if there is any fractional (i.e., non-binary) variable z,. If there is
any fractional z,4, the branching process must continue — to this end, the algorithm branches on
one fractional z,, generating two new child nodes. Thus, every node in the search tree corresponds
to an optimization subproblem and every edge represents a branching decision.

While growing the search tree, BnB maintains an upper bound on the objective function
(which can be obtained from any feasible solution to the problem). If the optimization subproblem
at the current node leads to an objective value that exceeds the upper bound, then the node is
pruned (i.e., no children are generated for this node), because none of its descendants can have a
better objective value than the upper bound. Another case where BnB can safely prune a node
is when the corresponding subproblem leads to an integral solution, i.e., a binary z (since there
will be no variables to branch on). For further discussion on nonlinear BnB, see [5].

Specific details: There are many delicate details in BnB that can critically affect its scalability:
for example, the choice of the algorithm for solving the continuous node subproblems, obtaining
upper bounds, branching, and tree-search strategies. We discuss our choices below:

e Subproblem solver: The optimal solutions of the continuous optimization subproblems
encountered in the course of BnB are typically sparse (see Section 4.2.1 for further dis-
cussions). To solve these subproblems, we propose an active-set algorithm, which exploits
sparsity by considering a reduced problem restricted to a small subset of groups. Moreover,

15

we share information on the active sets across the BnB tree to speed up convergence (see
Section 4.2.2).

e Upper bounds: Better upper bounds can lead to aggressive pruning in the search tree,
which can reduce the overall runtime. We obtain the initial upper bound using the approx-
imate algorithms of Section 3. As we demonstrate in the experiments, our approximate
algorithms typically obtain optimal or near-optimal solutions, making them a good choice
to initialize BnB. Moreover, at every node of BnB, we attempt to improve the upper bound
by using the sparsity pattern of the solution to the current node’s subproblem. More con-
cretely, let S C ¢ denote the group support of the latter subproblem’s solution. Then, we
obtain a new upper bound, by restricting optimization to S, i.e., we solve:

q
min £(6) + A\ D 10l + A2llBl5 st B =0, [[B,]la < My, g € [q].
g=1

¢ Branching and search strategies: The branching strategy selects the next variable to
branch on, while the search strategy decides which unexplored node in the search tree to
visit next. Many elaborate strategies for branching and search have been proposed in the
literature — see [41] for a survey. When the initial upper bound is of high quality, more
aggressive pruning is possible, and simple strategies tend to work relatively well in practice
[for example, see the discussion in 17]. Since our approximate algorithms typically return
good upper bounds, we rely on simple strategies. For branching, we use maximum fractional
branching [5, 41], which branches on the factional variable z, whose value is closest to 0.5.
For search, we use breadth-first search and switch to depth-first search if memory issues are
encountered.

Our approach extends our recent work [26] for the best subset selection problem (with a group
size of one). We note that there are important differences as the Group ¢y problem involves a
different and more challenging optimization formulation. Specifically, the Big-M constraints in
(26b) translate to second order cones, instead of box-constraints that appear when the group
sizes are one. Furthermore, in the group setup, we have a non-smooth term »_ .1 [|6,]l2 in the
objective of (26). The conic constraints and ¢, norms in our problem require special care when
developing the subproblem solver (for example, when reformulating the subproblems in Section
4.2.1 and designing the active set algorithm in Section 4.2.2). Tt is also worth mentioning that in
the simplest case where A\; = A2 = 0, our solver solves a MISOCP, whereas [26] solves a mixed
integer quadratic program.

4.2.1 Relaxation reformulation

In this section, we study the convex relaxation arising at a node of the BnB search tree. We
present a particular reformulation of this problem that leads to (i) useful insights about the
sparsity in the solutions of the convex relaxation; and (ii) computational benefits. To simplify
the presentation, we will first focus on the root relaxation of (26), which is obtained by relaxing
all the binary variables in (26) to [0, 1].

Note that the root relaxation involves the variables (3, z,s). In Proposition 3, we show that
the root relaxation can be reformulated in the 3 space, leading to a regularized least squares

16

problem. The associated regularizer can be characterized in terms of the reverse Huber penalty
[46] (see also [18]), which is a function H : R — R defined as follows:

H(E) = {\t\ if [t < 1 (28)

(t> +1)/2 otherwise.

Proposition 3. The root relazation obtained by relaxing the binary variables in (26) to [0, 1] is
equivalent to:

q
min - F(6) := UO)+> (B A, My) st [0y]2 < My, g€ g (29)
g=1

where A = (X, A\1, \2) and

2X0H (v A2/ X010g12) + M 10gll2 if /Ao/A2 < My

U050, My) =
(! U) {()‘O/MU +)\1 +)\2MU)||0g||2 Zf \/)\0/)\2 > ./\/lU.

The reformulation in (29) eliminates the the conic and Big-M constraints from the root re-
laxation, at the expense of introducing the non-smooth penalty 23:1 V(045 X, My) which is
separable across the blocks {6,}]. Depending on the choices of A and My, the penalty U is
either the /o norm or a combination of the reverse Huber penalty and the ¢o norm. In either case,
the penalty is sparsity-inducing. In essence, Problem (29) is similar to the Group Lasso problem
[59], with two exceptions: (i) Problem (29) has the additional constraints: [|@4]l2 < My, g € [q],
and (ii) when /Ag/A2 < My, the penalty involves the reverse Huber penalty.

Node relaxations within the BnB tree: The convex relaxation subproblem encountered at
a node of the BnB search tree is similar to the root relaxation, except that some of the z;s are
fixed to 0 or 1. The fixed z4s are determined by the branching decisions made starting from the
root until reaching the node. The convex relaxation at a particular node can be reformulated in
the B-space similar to the reformulation of the root relaxation in (29), except that: (i) if zy =0
then the corresponding group should be removed from the objective function; and (ii) if z4 = 1,
then the penalty W(0,; X, My) should be replaced with W(0y;X) := A\1[|0,]]2 + X260,]|3. More
precisely, let Z and A be the sets of indices of the zgs that are fixed to 0 and 1, respectively.
Then, the following subproblem is solved at the corresponding node:

min 00)+ Y WOy A, My)+ > B0, A) st. 0z =0,[02 <My, g€lg. (30
geEN® geN

In the next section, we develop a scalable algorithm for solving Problem (29). The BnB subprob-
lem (30) can be solved similarly after accounting for the fixed zgs.

4.2.2 Active-Set subproblem solver

As discussed earlier, a solution to Problem (29) is expected to be sparse in € (this will be also
true for the node sub-problems in the BnB tree). To exploit this sparsity, we use an active-set
algorithm: We start by solving Problem (29) restricted to a small subset of groups (i.e., the active
set). After convergence on the active set, we augment the active set with a collection of groups
that violate the optimality conditions for the full problem (if any) and then resolve the problem

17

restricted to the augmented active set. The algorithm keeps iterating between solving a reduced
optimization problem and augmenting the active set, until the optimality conditions for the full
problem are satisfied. Such active-set algorithms have proven to be effective in scaling up the
solvers for group Lasso-type problems [for example, see 25]—our usage differs in that we use this
active-set strategy within every node of the BnB tree.

Next, we describe our active-set algorithm more formally. Let A C [¢] be the active set. The
algorithm starts by solving (29) restricted to the active set, i.e.,

6 cargmin F(8) st. [|0,]2 < My, g€lgl, 04c=0. (31)
]

After solving (31), we check if 0 satisfies the optimality condition for the full problem. Equiva-
lently, for every group g € A¢, we check if the following holds

~

0cargmin F(61,...,0,,...,0,) st. [|0y]2 < M. (32)
09
Since 6§, = 0 is in the interior of the feasible set, condition (32) is equivalent to the zero-

subgradient condition: 0 € OggF(él,...,ég,l,O,égH, ...,84), and can be checked in closed
form.

We repeat the procedure of solving the restricted subproblem in (31) and augmenting A with
groups that violate (32), until there are no more violations. The algorithm is summarized below.

Algorithm 3: An Active-set Algorithm for (29)

e Input: Initial solution @ and initial active set A.
e Repeat Steps 1—3 till convergence:

1. Solve the restricted problem (31) to get a solution 6.
2. V< {g € A°| (32) is violated}.
3. If V is empty terminate, otherwise®, A4 «+ AU V.

Algorithm 3 is guaranteed to converge to an optimal solution for Problem (29) in a finite number
of steps, as there are finitely many groups.

Choice of the active set: The quality of the initial active set A can have a important effect on
the number of iterations in Algorithm 3. Due to the choice of our branching rule, the parent and
its two child nodes solve similar subproblems; the only difference between these subproblems is
that a single z, is fixed to 0 or 1 in the children. Thus, the solutions and supports of the parent
and its children are unlikely to differ by much. We therefore initialize the active set of every node
in the BnB tree (except the root) with the support of its parent. For the root node, we initialize
the active set with the support of the warm start, obtained from the approximate algorithms that
are discussed in Section 3.

°In some cases, |V| can be large, which can slow down the solver in Step 1. Thus, if V has more than K groups,
we augment A with the K groups in V that have the largest violation (instead of A <~ AU V). In our experiments
we set K = 10. We found this helpful to keep the size of the active set manageable during the course of the
algorithm.

18

Solving the restricted subproblem: The convex sub-problem (31) in Step 1 has a small active
set and can be solved with a variety of optimization algorithms: for example, BCD, proximal
gradient methods [6] or an interior point solver (as available in Gurobi). In our experiments, we
use the latter due to its good performance in practice.

5 Statistical Theory

In this section we derive non-asymptotic prediction and estimation error bounds for the Group £y
estimators, and compare them to the bounds that have been established for the corresponding
Group Lasso-based approaches. We focus on linear regression models in Section 5.1 and on
nonparametric additive models in Section 5.2.

While the arguments used in our proofs extend naturally to the penalized case, we focus
on the constrained specifications of the proposed estimators for concreteness. To simplify the
presentation, we consider the setting where the model is correctly specified, so that the true
regression function is a feasible solution to the corresponding optimization problem. However,
our results can be generalized to allow for model misspecification.

We say that a constant is universal if it does not depend on other parameters, such as n, ¢
or k. We use the notation 2 and < to indicate that inequalities > and <, respectively, hold up
to positive universal multiplicative factors, and write < when the two inequalities hold simulta-
neously.

5.1 Linear Model

We assume that the observed data follows the model y = X3 + €, where X is deterministic
and the elements of € are independent N(0,02) with o > 0. We define k., = G(8*) and refer
to || X3 — X3*||13 as the prediction error for estimator . For simplicity of the presentation
we focus on the setting where each group has the same number of T' features. Thus, the total
number of features, p, is equal to ¢7'. Given 3 € RP and J C [q]|, we write 3, for the sub-
vector of 3 indexed by UgeG,y. Consider the following definition, in which we use the notation

18ll2,1 = >Zg=1 1Bg]l2-

Definition 1. Given a positive integer k and a constant ¢ > 1, let

VE|XBl2

Vg = and Ky,
B#0,G(B)<k /1|B|l2,1 ‘

VEIXB2 }

= min min
JClal.||<k {a#o, 18scllz1<elByllz v/l By ll2.1

The above definition is most meaningful under the scaling of the features where ||x;|l2 < v/n
for all j. As we discuss below, constants /f,;*l .» With ¢ > 1, appear in the prediction and estimation

error bounds for the Group Lasso estimator, while 72_,{1* appears in the estimation error bound for
the Group ¢j estimator. The following result establishes a useful relationship for these quantities.

Proposition 4. vy > /fk,c/\@, for all positive integers k and all ¢ > 1.

We study estimator EI, which solves the following optimization problem:

q
min - ly =XBl3 st) 108, #0) <k (33)
g=1

19

where k is a fixed parameter that controls the sparsity level. We note that (33) is a special case
of the cardinality constrained problem considered in Section 3.3. Our first result provides the
prediction error bound for 8, which holds without any assumptions on the design.

Theorem 3. Let §y € (0,1) and suppose that B solves optimization problem (33) for k > k.
Then,
_ ~ . T + log(q/k log(1/46

with probability at least 1 — dg.
Letting 6o = (k/q)* and using Definition 1, we derive the following result.
Corollary 1. If k = k., then

~ T+1 k.
nUXB- XG5 5 otk [LH08/R)]
n

3 «) 1Y/ _
BBy 5 o, [IBRII g)

n

with probability at least 1 — (ky/q)**.

We make several observations regarding the established error bounds, comparing them to
the bounds for the Group Lasso estimator, denoted by BGL, which replaces the £y constraint in
Problem (33) with a penalty on ||3]|2;1. To simplify the comparison of the corresponding rates,
we focus on the setting where k = k.

Remark 1. The Group £y prediction error rate provided in Corollary 1 matches the corresponding
optimal prediction error rate established in [3]]. The estimation error rate in Corollary 1 is also
optimal provided that 72_,61 is bounded by a universal constant under the aforementioned feature

scaling [|xj||2 < v/n.

Remark 2. Let ||xj|l2 < \/n for all j and assume that /ﬁl;lc s bounded by a universal constant
for some ¢ > 1. Then, the error bounds for the Group Lasso estimator [see, for example, Section
8.3 of 15] are

and |8 — B2 < ok

[T + log(q)] 1/2. (34)

n T [XBy - X813 < o2k [D]
The Group ly rates discussed in Remark 1 are better than those in display (34), because they
replace the log(q) term with log(q/k«). Moreover, in view of Proposition 4, the assumption on Yo,
in Remark 1 is weaker than the Group Lasso assumption on ki, .. Finally, the Group {y prediction
error bound holds without any assumptions on the design.

The last observation represents an important non-trivial advantage of £o-based approaches
over Lasso-type methods. [63] provide examples of design matrices in the usual linear regression
context for which the Lasso prediction error is lower-bounded by a constant multiple of 1/\/n,
generally leading to a much larger prediction error than the one for the £y-based method.

5The lower-bound applies to a wide class of coordinate-separable M-estimators, including local optima. of non-
convex regularizers such as SCAD and MCP.

20

Remark 3. One advantage of estimator (33) is that tuning parameter k directly controls the
sparsity of the proposed estimator. In particular, the B that achieves the bounds in Corollary 1
satisfies G(,@) < k.. On the other hand, the BGL that achieves bounds (34) is typically much
more dense. The following inequality, which holds with high probability, is provided in [34]:

64¢max] k..
Rk.,3

G(Bay) < [

Here, ¢max is the mazimum eigenvalue of XX /n. Thus, the right-hand side is at least 64k, .

Remark 4. Theorem 8 and Corollary 1 can also apply to approximate solutions, obtained after
an early termination of the MIP solver. In such settings, the solver provides the current lower
and upper bounds, LB and UB, on the value of the objective. If the corresponding optimality gap
satisfies (UB — LB)/LB < 02k [T + log(q/k+)]/n, then the bounds in Corollary 1 also hold for
the approximate solution.

An attractive feature of Theorem 3 is that the uncertainty parameter §g is independent of the
tuning parameter k. This allows us to control the expected prediction error, as we demonstrate
in the following result.

Corollary 2. Under the conditions of Theorem 3,
E|X8 — XB*|2 < o?k[T + log(q/k)].

An application of Definition 1 yields a corresponding bound on the expected estimation error.

5.2 Nonparametric Additive Model

We study the performance of the proposed approach in the deterministic design setting. We write
| - ||z, for the Lo norm of a real-valued function on [0, 1]. Using the notation in Section 2.2, we
let C; = C for all j and focus on the case where C is an La-Sobolev space:

c={g: 0,11 =R, lgles + 9™l < 00} and Pen(g) = g™z,

We define Cor = {f : [0,1]7 = R, f(x) = ;1-:1 fi(xzj), f; € C} as the corresponding space
of additive functions. We associate each f € Cg with the vector f = 23:1 f;, where f; =
(f](mlj)’ 7f](mn]))a and let

q
G(f)=D 15 #0), Peng(f) = Pen(f;).
j=1 Jj=1
We focus on the estimator that solves the following optimization problem:
min [ly = £ + MPeng(f) st G(f) <k, (35)
S gr

where |- ||, denotes the Euclidean norm divided by y/n.” To ensure identifiability of the represen-
tation f(x) = Y_.9_; fj(x;), additional restrictions are typically imposed. For example, a popular

"We acknowledge the notational inconsistency when n < 2.

21

method is to separate out the constant term and require that » . ; fj(xi;) = 0 for each j. Here
we follow the approach of [53] and avoid specifying a particular set of restrictions. We treat every
representation of f as equivalent, with the understanding that one particular representation is
used when evaluating properties of the components, such as [/f;]|,.

We are interested in comparing estimator (35), denoted by J?, with the widely popular Group
Lasso-based approach, which replaces the ¢y constraint in Problem (35) with a penalty on
Z?:l |£;lln. Theoretical properties of the latter approach have been investigated extensively
[see, for example, 39, 32, 50, 52, 60, 53, and the references therein|. To compare the error bounds
for the two estimators, we need the following definition.

Definition 2. Given a positive integer k, a constant & € (1,00] and an index set J C [q], let

q
e =(f € Crs S IGlla £0, G() < b, 207 B 0Peng (1) < (€= 1) S0 61}

j—l
={f €Cpr: Z\lf n # 0, " 1l + 0™/ G DPeng, () < €3 [I£[1n}
j=1 j¢J jeJ
VE|f]ln VE|Elln
P(k,&) = min and ¢(k min min
(k.8 =l ST g 8= i | B S TE T

As we discuss below, constants ¢(2k,&)~! appear in the error bounds for the Group Lasso-
based approach, while constants 1(k,£) ! appear in some of the bounds that we establish for f.
The following result establishes a useful relationship for these quantities.

Proposition 5. For all positive integers k and all € € (1,00], ¥(2k, &) > ¢(k,€)/V2.

We assume that the observed data follows the model y = f* + €, where f* € Cq, and the
elements of € are independent N (0,0 2) with o > 0. We refer to |[f — £*||2 as the prediction error
for estimator f We write r, = n~"™/(2m+1) suppressing the dependence on m for notational
simplicity, noting that r2 is the optimal prediction error rate in the univariate regression setting
where f* € C. For example, in the case where C is the second order Sobolev space, which
corresponds to m = 2, the above rate is 72 = n~%5. We define a = 1/(4m + 2) and note that
a = 1/10 when m = 2. The next result, in which we treat m > 1 as a fixed integer, establishes
prediction error bounds for the proposed approach.

Theorem 4. Let k., = G(f*) and consider optimization Problem (35) with k > k.. There exists
a universal constant c1, such that if Ay, > c10[k**r2% + k®rn\/log(eq/k)/n], then

~ | k
B - €12 5 o[k 4 ATy pe () (36)

with probability at least 1 — (k/q)*. Furthermore, for every ¢ € (1,00], there exists a finite
constant cg, which depends only on &, such that if A\, > CQO’[TTQL + rp/log(q)/n|, then

~ I _
-2 < o2 + B [k) 2 4 AuPeng() (37)
with probability at least 1 — 1/q.

22

We make the following observations regarding the established error bounds. To simplify the
comparison of the error rates, we focus on the setting where & = k, and Peng (f*) =< ok..
The last relationship holds, for example, when the scaled roughness of each nonzero component,
Pen(f})/c, is bounded above and below by positive universal constants.

Remark 5. The expression in error bound (36) is optimized for the setting where Peng,(f*) < ok.
However, as we show in the proof, the bound can be improved when ok and Peng,(f*) have different
orders of magnitude.

Remark 6. The prediction error rate provided in (37) is analogous to the rate established in [53]
for the Group Lasso-based approach®, however, the latter rate replaces 1)(2ks, £) 2 with ¢(ky, &) 2.
By Proposition 5, the former rate is at least as good as the latter, with a potential improvement
due to the additional £y group sparsity requirement in the definition of 1. If for some fixed £ > 1
quantity V¥ (2k., €)' is bounded by a universal constant, then inequality (37) yields the following
prediction error rate:

-~ 1
- 62 < 22 4 0],
n

This rate matches the one established in [53] for the Group Lasso-based approach under an anal-
ogous (but somewhat stronger) assumption on ¢(ky, &)1

Remark 7. Bound (36) yields the following error rate without imposing assumptions on the
design:

IF — £ S o2, [k 4 1BLCUE)),

If ke S 1 or k292 <log(eq/k«)/n, then the above expression can be upper-bounded by

2k, [r2 + log(eq/k)] _

" n

Thus,]? achieves the corresponding minimax lower bound on the prediction error [50, 52, 53].

Remark 8. When q = k., the prediction error rate given by bound (36) is kiﬂ/(zmﬂ)rﬁ, which
improves over the corresponding k‘i+3/(2m+l)r% rate? derived in [33]. In particular, when m = 2,

the former rate is l{:g/5n*4/5, while the latter is kf/sn*‘l/‘:’. The improvement in the rate is a
consequence of the more refined entropy bounds derived in our proofs.

Remark 9. In the special case of m = 2 and k. < 1, bound (36) yields the prediction error rate
of n=*° +1og(q)/n, which matches the optimal univariate rate of n=*/> when log(q) < n'/®.

Remark 10. If for some fized & > 1 quantity 1(2k., &)~ is bounded by a universal constant,
then a direct consequence of Theorem 4 is the following estimation error rate:

q
STIE — £l < ok [Tn n M]
j=1

n

8To the best of our knowledge, the bounds in [53] are overall the strongest in the literature for the Group
Lasso-based approach, due to the relative weakness of the imposed conditions: see the discussion in Remark 12 of
[53].

“Theorem 1 in [33] treats the number of predictors (¢ = k) as fixed and omits it from the expression for the
error rate. However, an examination of the proof of their Theorem 1 and the entropy bound in their Lemma A.1,
which explicitly accounts for the number of predictors, reveals the effect of the dimension k..

23

6 Experiments

We present experiments that shed light on the practical performance of our proposals compared
to the state of the art. In Section 6.1, we investigate the statistical properties of our algorithms
for the Group £y problem. In Section 6.2, we present computation times of our MIP algorithm.
Section 6.3 investigates nonparametric sparse additive models.

6.1 Grouped variable selection

We consider both synthetic and real datasets in our experiments, as discussed below.

Synthetic data generation. The underlying model is y = X3* + €, where 8* € RP has ¢
groups, all with the same size. Once we generate X (see below), every column is standardized
to have unit £o-norm. The errors ¢; i N(0,02),i = 1,...,n, are independent of X, and o? is
chosen to achieve a desired signal-to-noise ratio (SNR)!®. We note that the SNR values in our
experiments are sufficiently high to make the true model support recovery possible.

Two different types of X are considered: (a) example=1: We first generate group represen-
tatives vy,...,v, ~ MVNy(0,%), where, X5, = ((045)), with o;; = pl"=l. Given a Vg the
covariates x;j,j € G, are generated by adding independent Gaussian noise to a scalar multiple
of 7,4, to achieve pairwise correlation of 0.9 within the group. (b) example=2: Here we take
X ~ MVN,(0,3), where 0;; = p, for all i # j, with o;; =1 for all j.

To generate the true population regression coefficients, the k., nonzero groups are taken to
be equally spaced in {1,...,q}. All the nonzero entries of 3* are drawn independently from a
standard Gaussian distribution.

Competing algorithms and tuning. In the experiments of this section, we focus on the Group
¢y problem defined in (1), and study the performance of our algorithms. We compare against
the following state-of-the-art grouped variable selection methods: Group Lasso (based on /5
regularization), Group MCP, and Group SCAD - these estimators are computed by using the
R package grpreg [14]. For synthetic data, we construct a separate validation set with a fixed
design. We tune the parameters of the different problems to minimize the prediction error on
the validation set. Specifically, for each of Group £y and Group Lasso, we tune the regularization
parameter over a (one-dimensional) grid with 100 values. For MCP and SCAD, we tune the first
parameter \ over a grid with 100 values, and leave the second parameter v to its default value in
grpreg.

Performance measures. Given an estimator B, we consider the following performance mea-
sures:

e True Positives (TP): The number of nonzero groups that are in both B and 3*.
e False Positives (FP): The number of nonzero groups in 3 but not in 3*

e Recovery F1 Score: The harmonic mean of precision and recall, i.e., F1 Score =
2PR/(P + R), where P = TP/(TP + FP) is precision and R = TP/k, is recall. We
note that an F1 Score of 1 implies perfect support recovery.

o Test MSE: This is defined as (/X3 — X3*(3.

For a generative model of the form y; = u; + €;, we define SNR = Var(u)/Var(e).

24

6.1.1 Statistical performance for varying number of observations

In this experiment, we study the effect of varying the number of observations n on the performance
of Group ¢y and other state-of-the-art group regularizers (Group Lasso, MCP, and SCAD). We
obtain approximate estimators to the Group ¢y problem using Algorithms 1 and 2 (with m = 1).
We generate 10 datasets having exponentially decaying correlation (i.e., under example=1) with
a correlation parameter p = 0.9, p = 5000, a group size of 4, number of nonzero groups k. = 25,
and SNR = 10. This setting is relatively difficult for recovery as each group is highly correlated
with a few others. We report the average performance measures over the 10 datasets in Figure 1.

o Recovery F1 Score s Test MSE Support Size
//‘\'/~ 140 Alg. 1
0.8+ a4} 120 —— Alg. 2
—&— MCP
l 100 SCAD
0.6 3 —— Lasso
80
0.4 2 60
40
0.24 1 %
20
0.0 0 0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Observations Number of Observations Number of Observations

Figure 1: Performance measures for varying number of observations on a synthetic dataset with
highly correlated features. Alg. 1 and Alg. 2 are our proposed algorithms. Here, “Lasso” is a
shorthand for Group Lasso, we use the same convention for SCAD, MCP.

Figure 1 shows that Algorithm 2 notably outperforms the other methods in terms of variable
selection; it perfectly recovers the support for n = 2000. Group MCP and SCAD require roughly
4500 observations to recover the true support, whereas Group Lasso does not recover the support
even when n = p. Moreover, Algorithms 1 and 2 attain the smallest support sizes for any n,
whereas the other methods require much larger supports, especially for small n. Algorithm 2
has the lowest test MSE for all n. The MSE of MCP matches that of Algorithm 2 in most of
the cases, while the other methods lag behind. We also note that there is a gap between the
MSE of Algorithms 1 and 2. This difference is likely due to Algorithm 2 doing a better job in
optimization.

6.1.2 Statistical performance on high-dimensional instances

We compare the performance of the different methods under two high-dimensional settings. In
both settings, we generate data with constant correlation (i.e., under example=2) and SNR = 10.
Below is a description of the settings:

e Setting 1: p =0.9,n = 1000, p = 100, 000, £ = 10, and a group size of 10.
e Setting 2: p = 0.3,n = 1000, p = 100, 000, k£ = 20, and a group size of 4.

For each setting, we generate 10 random training and validation datasets, on which we train and
tune the algorithms. To ensure a fair comparison in terms of running time, we solve the Group

25

£y problem approximately using Algorithm 2 (with m = 1), which typically has the same order
of running time (seconds in this case) as the other group selection methods considered here. We
report the averaged results for Settings 1 and 2 in Table 1.

Table 1: Performance measures for Setting 1 (top panel) and Setting 2 (bottom panel). Means
are reported along with their standard errors.

Algorithm 1810 TP FP MSE |8 — 8|
—~ Group 98.0 (2.5) 9.7(0.2) 01(0.1) 7.8(L7) 0.8(0.1)
2 Group Lasso 2108 (222.6) 10.0 (0.0) 200.8 (22.3) 19.8 (3.4) 1.4 (0.12)
= Group MCP 294 (44.3) 10.0 (0.0) 194 (44) 117 (3.2) 0.95 (0.17)
@ Group SCAD 637 (98.6) 10.0 (0.0) 53.7 (9.9) 184 (5.4) 1.2 (0.22)
~ Group { 79.2 (1.3) 19.6 (0.2) 0.2 (0.1) 0.97 (0.08) 0.35 (0.03)
0 Group Lasso 1139.2 (63.3) 19.9 (0.1) 264.9 (15.7) 4.42 (0.29) 0.67 (0.03)
S GrowpMCP 1460 (156) 198 (0.1) 167 (39) 1.07 (0.07) 0.38 (0.03)
@ Group SCAD 300.0 (36.3) 20.0 (0.0) 55.0 (9.1) 1.26 (0.10) 0.45 (0.05)

Under both settings, Group £y selects significantly smaller support sizes and false positives
than other methods, and is more consistent across the replications (as evidenced by the small
standard error). For example, in Table 1 (top), Group ¢y has a support size which is roughly
20 times smaller than the one for the Lasso and 3 times smaller than one for MCP. For few of
the instances, one true positive is missed in Group £y, but the difference with the other methods
is marginal. In terms of MSE and the estimation error (i.e., |3 — 3"|o), Group ¢y appears to
outperform the other methods, with the differences being most pronounced in the high correlation
setting of Table 1 (top). This aligns with the results in Figure 1, where we saw that Group ¢ leads
to important improvements when features are highly correlated and n is small.

6.1.3 Real data

We study the performance of the different methods on the Amazon Reviews dataset [24]. After
preprocessing, the dataset consists of 3482 predictors divided into 100 groups. We use 3500 and
2368 observations for training and testing, respectively. Additional details on the dataset and
preprocessing are discussed in the Supplement D. On this dataset, we fit regularization paths for
Group {y, Lasso, and SCAD!. For Group ¢y, we use an additional ridge regularization term!?
and consider Ay € {0.5,1,2}. In Figure 2, we plot the test MSE at different sparsity levels. The
results indicate that the lowest MSE is roughly the same for Group ¢y (A2 = 1), Lasso, and SCAD;
with Group ¢y having a clear advantage in terms of the support size. Specifically, Group ¢y with
Ao = 1 attains the lowest MSE at 5 groups whereas Group Lasso and SCAD require around 60
groups to achieve a similar MSE performance.

In the Supplement C.1, we report results on another real dataset; and our conclusions are
qualitatively similar to the example in Figure 2.

"We also tried group MCP, but the solver faced numerical problems—hence, their results are not reported.
12This is found to be useful here due to high feature correlations within a group.

26

0.049

0.048
0.047

---- Group LO (A, =0.5)
Group LO (A;=1)

---- Group LO (A, =2)

—— Group Lasso

—— Group SCAD

0.046

|
\
\
\
[
|
\
|
]
)
\
]

0.045

0.044

Test MSE

0.043

0.042

0.041

0.040

o 20 40 60 80 100
Number of Groups

Figure 2: Test MSE on the Amazon Reviews dataset (n = 3500, p = 3368, and ¢ = 100). For
Group £y, we consider additional ridge regularization and vary the corresponding regularization
parameter Ay € {0.5,1,2}.

6.2 MIP-based global optimality certificates: Timing comparisons

Here, we compare the running time of our BnB solver with Gurobi for obtaining globally optimal
solutions (we note that Algorithms 1, 2 presented earlier are approximate algorithms.) We
generate synthetic data under example=2, and we study the effect of the number of predictors p
on the running time. Specifically, we vary p € {103,10%,10%,10%,5 x 10°} and fix the other data
generation parameters as follows: group size of 10, n = 103, p = 0.1, k. = 5, SNR = 10, and set
all nonzero coefficients in 8* to 1. We solve the MIP in (26) to optimality, for two cases: (i) with
ridge regularization (Ao > 0) and (ii) without ridge regularization (A2 = 0). In both cases, we
fix Ay = 0. For case (i), we choose (Ao, A2) so that the solution obtained has k. nonzero groups
and minimizes the ¢y estimation error. More formally, for a fixed choice of (A, A2), let O(Ao, \2)
denote a solution of (26). Then, we choose the parameters of case (ii) as follows:

(3:%5) € argmin 100, 32) = st GO0 1) = b
A0,A2

We estimate (A}, \3) by running Algorithm 2 on a two-dimensional grid with A\g € {103,2 x
103,...,10*} and Ay € {107°,107*,...,105}. For case (ii), we choose A so that the corresponding
solution has k. nonzero groups. Let S* be the support of the true solution 3%, and let ,B be the
solution obtained by solving ming¢(3) s.t. B(s+)e = 0. Then, in both cases, we set My to
maxge|q] ||Bg\|2. For the two solvers, we set the optimality gap'® to 1% and use a warm start
obtained from Algorithm 2. The running times were measured on a cluster with CentOS 7. Each
job (i.e., a single run of a solver over one dataset) was allocated 4 cores of an Intel Xeon Gold
6130 CPU @ 2.10GHz processor and up to 120 GB of RAM. For each job, we set a time limit of
24 hours.

In Table 2, we report the running time (in seconds) for cases (i) and (ii). In both cases, the
results indicate that our BnB can solve instances with p = 5 x 105 in the order of minutes to
hours, whereas Gurobi cannot solve the problem beyond p = 10? within the 24-hour time limit.
Specifically, for p > 10*, Gurobi’s optimality gap is 100%. The reason behind this large gap is

13Given an upper bound UB and a lower bound LB, the optimality gap is defined as (UB-LB)/UB.

27

Table 2: Running time in seconds for solving Problem (26) to optimality. A dash (-) indicates
that Gurobi cannot solve the problem in 24 hours and has an optimality gap of 100% upon

termination.
Case (i): A2 = A5 | Case (ii): A2 =0
P Ours Gurobi Ours Gurobi
103 96 24223 373 8737
104 199 - 466 -
10° 231 - 1136 -
106 386 - 1628 -
5x 106 | 1922 - 11627 -

that Gurobi cannot solve the root relaxation in the 24-hour time limit, so the best lower bound
upon termination is 0. The running times for our BnB solver in case (i) are lower than case
(ii), and this can be attributed the perspective reformulation which exploits the presence of the
ridge regularizer to speed up computation. It is also worth mentioning that our implementation
of BnB is a prototype that does not exploit parallelism (commercial solvers like Gurobi exploit
parallelism). Parallelizing our BnB implementation is expected to make it faster, especially on
difficult instances where the search tree is large. In the Supplement C.2, we report the running
times of our BnB and Gurobi for different choices of My.

6.3 Nonparametric Additive Models

We study an expanded version of the popular Boston Housing dataset'® as an application of our
MIP framework to fp-sparse additive modeling. The dataset consists of 13 covariates. To get
a better idea about the performance in the presence of irrelevant covariates, we augmented the
data with 50 irrelevant covariates. Specifically, we selected 5 covariates uniformly at random. For
each selected covariate, we randomly permuted the entries of the covariate vector and augmented
the data with the permuted vector—we repeated this step 10 times. This led to 63 covariates in
total. We randomly sampled 406 observations for training and 50 observations for validation, and
we standardized the response and the covariates. We predict house price using the 63 covariates.

We compare the performance of sparse additive models based on Group £y and Group Lasso.
In both approaches, we used B-splines of degree 3 for the basis functions, with 10 knots equi-
spaced in the covariates. For the Group ¢y-based approach, we used formulation (6) and tuned A
over a grid of 100 values between 107> and 102 (equi-spaced on a logarithmic scale). We obtained
the Group Lasso-based approach by relaxing all the binary variables in the MIP formulation of
(6) to the interval [0, 1], and we tuned A over a grid of 100 values ranging from 10~ to 1 (equi-
spaced on a logarithmic scale). In Figure 3, we plot the test MSE versus the number of nonzeros,
for each of the two models. The results indicate that the Group fy-based approach achieves the
minimum test MSE at 7 nonzeros, whereas the Group Lasso-based method achieves its minimum
MSE at around 60 nonzeros (without matching the performance of Group L0).

!4The dataset was downloaded from https://archive.ics.uci.edu/ml/datasets/Housing.

28

https://archive.ics.uci.edu/ml/datasets/Housing

0181 —e— Group LO

0.16 A Group L1
0.14

0.12

Test MSE

0.10 4
0.08 4
0.06 \.//m/"\.\“
0.04 4
6 1‘0 2‘0 3‘0 4b 5‘0 6‘0
Number of Nonzeros

Figure 3: Test MSE versus the number of nonzeros on the Boston Housing dataset (with additional
noisy covariates).

Acknowledgements

We thank Shibal Ibrahim for his help with the Boston Housing dataset experiment. The re-
search was partially supported by the Office of Naval Research (ONR-N000141512342, ONR-
N000141812298), National Science Foundation (NSF-IIS-1718258).

References

[1]

2]

S Agmon. Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, NJ,
1965.

F.R. Bach. Consistency of the group lasso and multiple learning kernel. Journal of Machine
Learning Research, 9:1179-1225, 2008.

Amir Beck and Yonina C. Eldar. Sparsity constrained nonlinear optimization: Optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480-1509, 2013.

Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037-2060, 2013.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh
Mahajan. Mixed-integer nonlinear optimization. Acta Numerica, 22, 05 2013. doi: 10.1017/
50962492913000032.

D.P. Bertsekas. Nonlinear Programming. Athena scientific optimization and computation
series. Athena Scientific, 2016. ISBN 9781886529052. URL https://books.google.com/
books?id=TwOujgEACAAJ.

Dimitris Bertsimas and Bart Van Parys. Sparse high-dimensional regression: Exact scalable
algorithms and phase transitions. The Annals of Statistics, 48(1):300-323, 2020.

Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern
optimization lens. Annals of Statistics, 44(2):813-852, 2016.

29

https://books.google.com/books?id=TwOujgEACAAJ
https://books.google.com/books?id=TwOujgEACAAJ

[9]

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. S. Birman and M. Z. Solomjak. Piecewise-polynomial approximations of functions of the
classes wy'. Math. USSR-Sbornik, 2(3):295-317, 1967.

Robert E Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, Fxtra Volume: Optimization Stories, pages 107-121, 2012.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993-1022, 2003.

Thomas Blumensath and Mike Davies. Iterative thresholding for sparse approximations.
Journal of Fourier Analysis and Applications, 14(5-6):629-654, 2008.

Stephen Boyd and Lieven Vandenberghe. Convexr Optimization. Cambridge University Press,
Cambridge, 2004.

Patrick Breheny and Jian Huang. Group descent algorithms for nonconvex penalized linear
and logistic regression models with grouped predictors. Statistics and computing, 25(2):
173-187, 2015.

P. Biihlmann and S. Van de Geer. Statistics for high-dimensional data: methods, theory and
applications. Springer, 2011.

C. Chesneau and M. Hebiri. Some theoretical results on the grouped variables lasso. Math-
ematical Methods of Statistics, 17:317-326, 2008.

Jens Clausen and Michael Perregaard. On the best search strategy in parallel branch-and-
bound: Best-first search versus lazy depth-first search. Annals of Operations Research, 90:
1-17, 1999.

H. Dong, K. Chen, and J. Linderoth. Regularization vs. Relaxation: A conic optimization
perspective of statistical variable selection. ArXiv e-prints, October 2015.

Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex 0—1 mixed
integer programs. Mathematical Programming, 106(2):225-236, 2006.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL
http://www.jstatsoft.org/v33/i01/.

Oktay Glinliik and Jeff Linderoth. Perspective reformulations of mixed integer nonlinear
programs with indicator variables. Mathematical programming, 124(1-2):183-205, 2010.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, London,
1990.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity:
The Lasso and Generalizations. CRC Press, FL, 2015.

Hussein Hazimeh and Rahul Mazumder. Fast best subset selection: Coordinate descent and
local combinatorial optimization algorithms. Operations Research, 68(5):1517-1537, 2020.

30

http://www.jstatsoft.org/v33/i01/

[25]

[28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

Hussein Hazimeh and Rahul Mazumder. Learning hierarchical interactions at scale: A convex
optimization approach. In International Conference on Artificial Intelligence and Statistics,
pages 1833-1843, 2020.

Hussein Hazimeh, Rahul Mazumder, and Ali Saab. Sparse regression at scale: Branch-and-
bound rooted in first-order optimization. arXiv preprint arXiv:2004.06152, 2020.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Proceedings of the 25th International Confer-
ence on World Wide Web, WWW 16, page 507-517, Republic and Canton of Geneva, CHE,
2016. International World Wide Web Conferences Steering Committee. ISBN 9781450341431.
doi: 10.1145/2872427.2883037. URL https://doi.org/10.1145/2872427.2883037.

J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38:1978—
2004, 2010.

J. Huang, J.L. Horowitz, and F. Wei. Variable selection in nonparametric additive models.
The Annals of Statistics, 38:2282-2313, 2010.

J. Huang, B. Breheny, and S. Ma. A selective review of group selection in high-dimensional
models. Statistical Science, 27:481-499, 2012.

Michael Jinger, Thomas M Liebling, Denis Naddef, George L. Nemhauser, William R Pul-
leyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A Wolsey. 50 Years of Integer
Programming 1958-2008: From the FEarly Years to the State-of-the-art. Springer Science &
Business Media, 2009.

Vladimir Koltchinskii and Ming Yuan. Sparsity in multiple kernel learning. The Annals of
Statistics, 38(6):3660-3695, 2010.

Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric
regression. The Annals of Statistics, 34:2272-2297, 2006.

K. Lounici, M. Pontil, S. van de Geer, and A. Tsybakov. Oracle inequalities and optimal
inference under group sparsity. The Annals of Statistics, 39(4):2164-2204, 2011.

Zhaosong Lu. Iterative hard thresholding methods for 10 regularized convex cone pro-
gramming. Mathematical Programming, 147(1):125-154, Oct 2014. ISSN 1436-4646. doi:
10.1007/s10107-013-0714-4. URL https://doi.org/10.1007/s10107-013-0714-4.

Rahul Mazumder and Peter Radchenko. The Discrete Dantzig Selector: Estimating sparse
linear models via mixed integer linear optimization. IEEE Transactions on Information
Theory, 63 (5):3053 — 3075, 2017.

Rahul Mazumder, Jerome Friedman, and Trevor Hastie. Sparsenet: Coordinate descent with
non-convex penalties. Journal of the American Statistical Association, 117(495):1125-1138,
2011.

Rahul Mazumder, Peter Radchenko, and Antoine Dedieu. Subset selection with shrinkage:
Sparse linear modeling when the snr is low. arXiv preprint arXiv:1708.03288, 2017.

31

https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1007/s10107-013-0714-4

[39]

[40]

[41]

L Meier, S. van de Geer, and P. Bithlmann. High-dimensional additive modeling. The Annals
of Statistics, 37:3779-3821, 2009.

Alan Miller. Subset selection in regression. CRC Press Washington, 2002.

David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell. Branch-
and-bound algorithms: A survey of recent advances in searching, branching, and pruning.
Discrete Optimization, 19:79-102, 2016.

Y. Nardi and A. Rinaldo. On the asymptotic properties of the group lasso estimator for
linear models. FElectronic Journal of Statistics, 2:605-633, 2008.

Balas Natarajan. Sparse approximate solutions to linear systems. SIAM journal on comput-
ing, 24(2):227-234, 1995.

G. Obozinski, M. J. Wainwright, and M. I. Jordan. Support and union recovery in high-
dimensional multivariate regression. The Annals of Statistics, 39:1-47, 2011.

John Tinsley Oden and Junuthula Narasimha Reddy. An introduction to the mathematical
theory of finite elements. Wiley, New York, 1976.

Art B Owen. A robust hybrid of lasso and ridge regression. Contemporary Mathematics, 443
(7):59-72, 2007.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimiza-
tion, 1(3):127-239, 2014.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, and Vincent Dubourg.
Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:
2825-2830, 2011.

P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction
structures in high dimensions. Journal of the American Statistical Association, 105:1541—
1553, 2010.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax-optimal rates for sparse
additive models over kernel classes via convex programming. Journal of Machine Learning
Research, 13(Feb):389-427, 2012.

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of
the Royal Statistical Society, B., 71:1009-1030, 2009.

T. Suzuki and M. Sugiyama. Fast learning rate of multiple kernel learning: Trade-off between
sparsity and smoothness. Annals of Statistics, 41:1381-1405, 2013.

Zhigiang Tan and Cun-Hui Zhang. Doubly penalized estimation in additive regression with
high-dimensional data. The Annals of Statistics, 47(5):2567-2600, 2019.

R Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267-288, 1996.

32

[55] Sara Van de Geer. FEmpirical Processes in M-FEstimation. Cambridge University Press,
Cambridge, 2000.

[56] G. Wahba. Spline Models for Observational Data. STAM, Philadelphia, 1990.

[57] F. Wei and J. Huang. Consistent group selection in high-dimensional linear regression.
Bernoulli, 16:1369-1384, 2010.

[58] Weijun Xie and Xinwei Deng. Scalable algorithms for the sparse ridge regression. SIAM
Journal on Optimization, 30(4):3359-3386, 2020.

[59] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B, 68:49-67, 2006.

[60] Ming Yuan and Ding-Xuan Zhou. Minimax optimal rates of estimation in high dimensional
additive models. The Annals of Statistics, 44(6):2564-2593, 2016.

[61] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of statistics, 38(2):894-942, 2010.

[62] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-
dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008.

[63] Yuchen Zhang, Martin J Wainwright, and Michael T Jordan. Optimal prediction for sparse
linear models? Lower bounds for coordinate-separable M-estimators. Electronic Journal of
Statistics, 11(1):752-799, 2017.

A Convex Relaxation of Problem (7)

Consider Problem (7) and suppose that the solution to this problem is bounded. Moreover, we
assume that the fy-norms of every group f; satisfies: ||fj|[2 < My. Then it follows that the
problem is equivalent to:

q q
min [y = 13+ 20 D 25 +A>_lfille, st [Ifilla < Muzj,z € {0,1},5 € [g]. (A1)
Jj=1 J€ld] Jj=1

Relaxing the z;’s in the above to [0, 1], leads to the following formulation:

q q q
min fy =Y GIZ+HAYflle; A D Il st [Ifllz < Mo (A.2)
j=1 j=1 j=1
where A} := JCTOU Next, we (i) drop the constraints in the above, and (ii) rewrite the resulting

problem as follows:

q q q
. A1
Ty=min [ly =Y 13+ A0 Iflle, + Y > lfll2)- (A.3)
j=1 J=1 =1

33

Note that (A.3) is a relaxation of (A.1) (and consequently of (7)). Now, using the fact that

A1 Ar)”
(If5llc; + S 1Eill2)/v2 < \/HfjHch + <A> I£5113,

it follows that the following

q a 2
) A1
Mo min v =3 63+ VY \/ 512, + (5) 1503). (A4
j=1 j=1

is an upper bound to Problem (A.3) (with the tuning parameters kept fixed). Note that Prob-
lem (A.4) is indeed the penalty considered in [39], with the choice of Pen(f;) = \/Hfj Ha + NI£5 13,

where)\ is appropriately chosen to match (A.4).
We note that the penalty chosen in formulation (A.3) is similar to the penalty considered
in [50], wherein the authors consider an RKHS framework with penalization:

q q
AY_\BKIB + XY KB,
j=1 =1

where K7 indicates the kernel basis matrix for the jth coordinate.

B Proofs

B.1 Proof of Theorem 1

The following lemma shows that there is a sufficient decrease in the objective after every group
update in Algorithm 1. The result of this lemma will be used in the proof of Theorem 1.

Lemma 1. (Sufficient Decrease) The sequence of iterates {0'} in Algorithm 1 satisfies the fol-
lowing for every l and g =1+ (I mod q):

L,— L
h(0') — h(e") > %II% — 0.3, (B.5)

Proof of Lemma 1. Fix some [> 0 and let g = 1+ (I mod ¢). Applying (11) to (6'!,6")
and adding Q(8'1) to both sides, we get:

L
h(0™1) < (6') + (Vo, (8,0, — 0,) + S0, — 0,13 + 2(0"). (B.6)

By rewriting the term %Hef;l — ngH% in the above as #H%ﬂ - 9;”% + %H%ﬂ — HZQH% and
regrouping terms, we get:

. L,—L
h(O™) < g(07;6") + =120 — 6,13 (B.7)

But §(6'*1;0') < §(0';6") (by the definition of 87! in (13)). Moreover, §(6'; 8') = h(8"), which
implies §(0'71; 0') < h(0'). Using the latter bound in (B.7), we arrive to the result of the lemma.

Proof of the theorem. In the rest of this proof, we utilize the following definition: E(0g) :=
U(0s) + A1 ges [16g]l2-

34

e Part 1. We will show that the event Supp(el) #* Supp(@”‘l) cannot happen infinitely often.
Suppose that Supp(8') # Supp(6'*!) holds for some I. Then, either one of the following
cases must hold for g = 1+ (I mod ¢): (I) 0; =0# 01;1 or (II) Oé #0= OZgH. Next, we
will consider Case (I). Since 9;“ # 0, then from the definition of the thresholding operator

in (14), we have [|@"||5 > QL@ Plugging the latter inequality into Lemma 1, we get:
9
Ly—L
h(0') — h(6't1) > %AO. (B.8)
g

The same result in (B.8) applies for Case (II) as well. Thus, whenever the support changes,

the objective improves by a positive constant (defined in the r.h.s of (B.8)), which combined
with the fact that k(@) > 0, implies that the support cannot change infinitely often.

e Part 2. First, we will show that the function F(0g) is strongly convex. This trivially holds
under Assumption 1(a). Next, we will assume that only Assumption 1(b) is satisfied. In
this case, we have h(8°) < h() (where 8 is defined in Assumption 1(b)). Since Algorithm
1 is a descent algorithm, we have h(8') < h(8) for all [> 0. Thus, E(6') + X\G(8') <
E(0)+XoG(8), which combined with the fact that E(8') > E(@), implies that G(8') < G(6)
for all I. Thus, by the definition of k in the assumption, we have [|8'||o < k for all I. But
since every k columns in W are linearly independent, we conclude that E(0g) is strongly
convex.

After the support stabilizes (by Part 1), Algorithm 1 becomes equivalent to minimizing the
strongly convex function E(6g) using cyclic CD. By standard results on CD (e.g., see [6]),
this is guaranteed to converge to a stationary solution 8* of E(8g). This establishes (15).

Finally, we will show that (16) and (17) hold. By the definition of the thresholding operator
in (14), we have

2\
16L]12 > /522, Vg eSs. (B.9)
Lg

Taking the limit as | — oo, we arrive to (16). Similarly, we have

Ve, l(0")2 < \/2XoLy + A1, Vg € S° (B.10)
Taking the limit [— oo leads to (17).

e Part 3. After support stabilization, Algorithm 1 is equivalent to performing cyclic CD

to minimize the function E(0g). Moreover, every iterate of the algorithm after support
stabilization, i.e., 8% for | > K, belongs to the set D := {05 | |02 > %} (this

follows from (14)). Note that Vg, E(0s) is group-wise Lipschitz continuous over D, i.e., the
following holds for every g € [q]:

IV, EOY) ~ Vo, E(O%)]l2 < L,|0% — 632, V04,03 € D st 0} =07 Vi g

where Ly = L, +2);. Similarly, Vg, FE(0s) has a (global) Lipschitz constant of Lg+2|S|\1,
over D.

35

Lemma 3.3 of [4] bounds the objective values of cyclic CD after one full cycle. Their result
holds for continuously differentiable functions whose gradient is Lipschitz over R™. Our
function’s gradient is Lipschitz over D, but we note that [4]’s result can be easily extended
to D, leading to the following bound:

E(0'9) — B0V > ||V, E@93. VI> K, (B.11)

1
2n
where 7 is defined in the statement of the theorem. In part 2, we have shown that E(6g)
is strongly convex. Thus, the following holds:

E(as) > E(0s) + (VE(05s), s — Os) + %HQS —05]2, Vag,8s. (B.12)
Minimizing both sides in (B.12) w.r.t. ag and rearranging terms, we get
B(65) - E(63) < 5~ |Vo, E@s)3 V5. (B.13)
Inequalities (B.11) and (B.13) lead to:
(E(09) — B(0%)) — (B(O§ ™) — B(8%)) > ;rveszé")u% (B.14)
> “HBOF) - POy). (B15)

Rearranging the terms in the above yields:

B0y — B(6*) < <1 - ‘“) (E(alq) - E(e*)). (B.16)
n

Finally, we note that the function E in the above can be replaced by h (because of support

stabilization), which establishes part 3.

B.2 Proof of Theorem 2

By Theorem 1, the support of the iterates in Algorithm 1 stabilizes, say on a support S, and
converges to a solution of ming gy,p(9)=s 7(6). The latter observation along with the fact that Step
2 of Algorithm 2 ensures strict descent, imply that the sequence of solutions 6 in Algorithm 2
must have distinct supports. Therefore, the algorithm terminates in a finite number of iterations.
Note that ' is the output of Algorithm 1 so it must satisfy the characterization given in part 2
of Theorem 1. Moreover, the search in Step 2 must fail at 87, and thus (21) holds.

B.3 Proof of Proposition 2

Let F1(0,z) and F»(6, z, s) be the objective functions in (25) and (26), respectively. Note that
by definition, vo = F5(0*, z*, s*). Since (0%, z*) is feasible for the problem corresponding to v1,
we have:

vy — vy > Fy(0*, 2%, 8") — F1(0", 2%) (B.17)
* |12
Since (0%, 2%, s*) is optimal for the problem of vg, it must satisfy sj = 0 if 2; = 0 and s, = %

9
otherwise (because this is the smallest value of s, which satisfies (26c)). Plugging s; into the

term F5(0*,z*, s*) in (B.17) and simplifying, leads to the result of the proposition.

36

B.4 Proof of Proposition 3

The root relaxation of (26) can be written as:

mgn {E —{—)qZHO ||2+Zmn})\029—1—)\259)} (B.18)

g=1
st [8ll2 < Moz, g € g (B.19)
s929 > 10413, 9 € ld] (B.20)
€[0,1],5 >0, g€ld] (B.21)
Define
w(Bg; X, My) = min(Agzg + Aasg) s.t. (B.19),(B.20),(B.21). (B.22)
%939

Note that the above optimization problem appears inside the second summation of (B.18). Next,
we will derive a closed form expression for (B.22). Let (8, z4,54) be some feasible solution.

Then, the solution (6, 24, s4), where Z, = max{ ”e"gHQ, H/g\j’llh} has an objective value which is less

than or equal to that of (0, z4, s4) (since Z4 is the smallest possible choice of z, which satisfies
2
all the constraints)—if 8, = 0 and s, = 0, we assume that @ = 0, which leads to z, = 0.
2
Thus, replacing constraints (B.19) and (B.20) with the constraint z = max{@, @} does not

change the optimal objective of the problem. This replacement leads to the following equivalent
problem:

0,13 1|0

w(@g; A, My) = min(Aozg + A2sg) st. zg = max{ H gHQ, 165112 },zg €1[0,1],s4 > 0. (B.23)
Zg,Sg Sg MU

In the above, we can eliminate z, by plugging its expression into the the objective and the

constraint z, € [0, 1], which leads to the following equivalent formulation:

A .)\OHOQH%)‘OHOQHQ
w(@g; A, My) = min max e + A2sg, M. + Aa2sg st. sg >0y ||2, 104]]2 < M.
Sg g U

Term 1 Term 2

(B.24)

Suppose that Term 1 in (B.24) attains the maximum. This holds iff Term 1 > Term 2, which
simplifies to: sq4 < My||@g|l2. Term 1 is convex in sg4, so the solution of (B.24) (obtained via
solving the first order optimality condition, assuming s, < My||8,]|2) is given s; = \/Ao/A2||0,]]2

if [|8g]l2 < /Ao/A2 < M, and s}, = [|0,4]3 if \/Ao/A2 < [[0]l2 < M. Pluggmg sy into (B.24),
leads to w(Bg; A, My) = 2X0H(\/A2/A0|0gl|2), for \/Ao/A2 < [|0g]l2 < M.

Now suppose Term 2 attains the maximum in (B.24). There are two lower bounds on s,
in this case: s, > My||,]|2 (from Term 1 < Term 2) and s, > [|04|3 (from the feasible set in
(B.24)). Since [|04]l2 < My, we have My||0,/l2 > ||043, which implies that s, > M||6,]]2 is
the only lower bound needed. Thus, we can simplify (B.24) to:

W
w(8,5 A, My) = min 0/”\49”2 +hos, st sy > Myll0]l2, [0]l2 < M.
Sg U

37

The optimal solution of the above is given by s; = My |02, and this holds for \/Ao/A2 > M.
Plugging s into (B.24) leads to w(fg; A, My) = (Ao/ My + AaMy)||6gl2, for /Ao/A2 > My,
Finally, we replace the inner minimization in (B.18) by the closed form expression of w(04; A, My),
which leads to the result of the proposition.

B.5 Proof of Proposition 4

Because k. > Kg,1 for ¢ > 1, it is sufficient to derive the stated inequality for ¢ = 1.

Consider an arbitrary G satisfying 8 # 0 and G(B) < 2k. We let Jy C [g] index the k
largest values in the set {[|8|2,1}4e[), noting that [Jo| =k and [|B¢l[21 < I8,[[21. The stated
inequality follows from an observation that

V2(XBll> VZEIXBl2 Kk
VallBllzr — 2vnlByllzr T V2

B.6 Proof of Theorem 3
Optimality of 3 and feasibility of 8* imply |ly — X2 < ||y — X8*||2, which leads to

IX(8 - B3 < 2¢"X(B - B°). (B.25)

We will derive a bound for the right hand side of inequality (B.25).

First, consider a fixed subset J C [q] such that |J| = 2k. We define I; = Uge G, and
s = Tk, noting that |I;| = 2s. We choose an orthonormal basis ® = [¢q, ..., ¢y,], such that the
corresponding linear space contains the one spanned by features {x;};cs,. Then, ||®"€||3/0? has
chi-square distribution with 2s degrees of freedom, and

€' X0 < |®e|2] X6,

for all 8 € RP with supp(@) C I;. Applying a chi-square tail bound (for example, the one in
Section 8.3.2 of [15]), we derive that |® " €|? < 02s(1+ a) with probability at least 1 —exp(—2sa).
Consequently, with probability at least 1 — exp(—2sa), inequality

1/2
e'X0 < [023(1 n a)} X062 (B.26)

holds uniformly for all € R? with supp(0) C I.

We now extend this bound to all subsets J C [¢] that have size 2k. Note that the number
of such subsets is bounded by (ge/2k)%*. Applying the union bound, we deduce that inequal-
ity (B.26) holds uniformly over both such J and € with probability at least 1 — exp(—2sa +
2k log(ge/2k)). We note that G(8 — 8*) < 2k and take a = T log(eq/2k) + [2s] L log(1/8). It
follows that

~ 1/2 ~
€' X(B - B") S |o7k[T +log(eq/k)] + o log(1/60) | * [IX(B — B) |2,

with probability at least 1 — §o. We complete the proof by combining the above bound with
inequality (B.25). O

38

B.7 Proof of Corollary 2

We let ¢y be the universal constant from the error bound in Theorem 3 and define
W = [|XB — XB"||3 — cook[T + log(q/F)].
By Theorem 3 we have W < cpo?log(1/dg) with probability at least 1 — &y. Hence,
P(W > w) < e_w/[60”2],
for every non-negative w. Consequently,

EW < / P(W > w)dw < / e~/ [c0o?] gy < cpo’.
0 0

Thus, by the definition of W, we have

E|[XB — X8} < coo®k[T + log(a/h)] + coo™

B.8 Proof of Proposition 5

Consider an arbitrary f € Agge¢. Let Jy be the index set corresponding to the & components f;

with the largest || - ||, norm. Write 7, for n="/(m+1) Note that
q
rnPeng(f) < (§/2 —1/2) ijl I£1ln < (€ =1) D IE]lns
J€Jo
and hence
Z 1£5l[n + rnPeng:(f) <€ Z [1£5]]7-
j¢Jo j€Jo
Consequently, f € B(Jy,&). To complete the proof, we note that
2k||£]| 2k||£]].
VIRl VRl o s

gzl HfJHn B 2ZjeJ0 Hfan B

B.9 Proof of Theorem 4

By analogy with the || - ||, notation, we define (€,v), = (1/n) Y ;" €uv;, for each v € R™. The
global optimality of f, together with the feasibility of f*, implies the following inequality:

£ — £|2 + ApPeng, (f) < 2(e, £ — £),, + AnPeng, (). (B.27)

To control the term (e,/f\— £*),, we need the following result, which is proved in Section B.10.

39

Lemma 2. Let Fs ={f: f € Cq, G(f) < s}. Then, with probability at least 1 — e, inequality

(/o f)n < [51/2+~//(2m)rn X \/SIOg(eq/s) 4 \/bg(l/e)} €]

n n

+ [51/2’”(2’”’1)/(2’”)7“,% +5 7y slog(eq/s) + 5y, M} Peng,(f)
n n

holds uniformly over f € Fs.

We now prove inequalities (36) and (37) in the statement of Theorem 4.

Proof of inequality (36). Note that G(]?— f*) <2k. Applying Lemma (2) with f = f—r,
s = 2k and € = (k/q)*, we conclude that, with probability at least 1 — (k/q)¥,

r 1 —~
(e/o ~ 0 < ak!/2[k7/@mr, 4 Og(iq/k)“f—f*nn

(c1/4) |:k1/27'y(2m71)/(2m)7,72L + RV log(ZQ/k)]Pengr(f— F40B.28)

for some universal constants ¢; and cj.

For the remainder of the proof we restrict our attention to the random event on which (B.28)
holds. We will establish a general prediction error bound, from which inequality (36) will follow
by setting v = m/(2m + 1). We let

1
T 1= 26,0k/? [W/(Qm)rn + og(t;q/lﬁ} and

A, > clo k1/27'y(2m71)/(2m)r72l Y2y, 10g(¢’¢]/k)}
-_ n)
noting that when v = m/(2m + 1), the last inequality matches the corresponding lower-bound
on \, in the statement of Theorem 4. Multiplying inequality (B.27) by two and then apply-
ing (B.28) with f = f — f*, we derive

~

2||f — £*||2 4+ A, Peng(f) 27 || — £%||, + 3AnPeng (f*)

<
< |IF = £ 4+ 72 + 3\, Peng (f*).

Consequently,
~ 1 k
||f o f*||721 5 O_Qk[k’)’/m,rn + M] +)\nPengr(f*)-
n
Inequality (36) then follows from the above bound by letting v = m/(2m + 1). We note that this

choice of v optimizes the prediction error rate in the setting where Peng, (f*) < ok, however, the
rate can be improved when Peng,(f*) and ok have different orders of magnitude.

Proof of inequality (37). Applying Lemma (2) with s = 1 and € = 1/q, we deduce that
with probability at least 1 — 1/¢, inequality

(e/0.) S [+ logn(Q)} (161 + roPen(f;)]

40

holds uniformly over f € Cg and j € [q]. The above bound implies that there exists a universal
constant ¢y, such that

(¢/0,6)n ie/af < cofrn + 10%54’)}[iufmmPengr(f)].

Letting f = f— f*, we conclude that

(6. —) < co[ry + 11221][Zuf—f*unmPengr(f M B2

with probability at least 1 — 1/q.

For the remainder of the proof we restrict our attention to the random event on which (B.29)
holds. We define p, = 4coo[r, + \/log(q)/n] and let A, > 4pnry&/(§ — 1). Applying inequal-
ity (B.29), we rewrite inequality (B.27) as follows:

q
20f — £ + AnPenge (f — f) < pn Y I = £5|ln + 3AnPeng: (). (B.30)
j=1

We now consider two possible cases.
Case 1): fin > 7, [Ifj — £f[ln > 3\, Peng(f*). It follows that

q
20f — £ + AnPenge (f — £*) < 200 Y |5 — £ |, (B.31)
j=1

and, consequently, 2rnPengr<J/£_ f*) < 4(Mn7"n/>\n) ?:1 H/f] - f]*”n < (‘E - 1) ;]':1 H/fj - fg*Hn
Taking into account inequality G(f — f*) < 2k and Definition 2, we then derive

S E — £ lln < [2K]2[(2K, O E — £l (B.32)
Ji<q

Combining this bound with inequality (B.31), we colclude
I~ £ < jun[20] 2 [(2k,)17 |E — £,

which implies the stated prediction error bound.
Case ii): pn) iy [Ifj — £f]ln < 3A\Peng (f*). Going back to inequality (B.30), we derive

2I|f — £*|2 + A Peng,(f — f*) < 6A,Peng(f*),

which implies the stated prediction error bound. O

B.10 Proof of Lemma 2

Given J C [q], we define a functional class F(J) = {f : f(x) = >_,c; fi(z;), f;j € C}. We will
need the following result, which is proved in Section B.11.

41

Lemma 3. Let J C [q]. Then, with probability at least 1 — e, inequality
(6/0‘, f)n 5 [|J|1/2+7/(2m),rn + t/n] ||an + |:|J|1/2—"/(2m—1)/(2m)ri + |J’—77«n, /t/n] Pengr(f)

holds uniformly over f € F(J).

Let M denote the number of distinct subsets of [¢] that have size s. We note that log(M;) <
slog(eq/s) and, thus, Mse™t < eslog(eq/s)—t, Applying Lemma 3 together with the union bound,
we derive that, with probability at least 1 — e®108(ea/9)~t inequality

(e/o,f)n < [31/%7/(2’”)7’” + t/n} £l + [81/27”7(2””‘*1)/(27”)7’,21 + SiVTn\/t/n} Peng, (f)

holds uniformly over f € F;. We complete the proof by noting that for ¢t = slog(eq/s) + log(1/¢)
the above inequality becomes

(/o) < [81/2+v/(2m)rn+\/Slog(€Q/8) +\/10g(1/6)}”f”n

n n
4 [51/2—«,(2m—1)/(2m)r7% +s5 7, [slog(eq/s) s, /IOg(l/E)]Pengr(f),
n n
and the corresponding lower-bound on the probability simplifies to 1 — e. O

B.11 Proof of Lemma 3

Given a positive constant § and a metric space H endowed with the norm |- ||, we use the standard
notation and write H(d,H, || - ||) for the d-entropy of H with respect to || - ||. More specifically,
H(6,H,| - ||) is the natural logarithm of the smallest number of balls with radius ¢ needed to
cover H.

With a slight abuse of notation, we extend the domain of || - ||,, from vectors in R™ to real-
valued functions on [0, 1]? by letting || - ||, be the empirical Lo-norm. Thus, given a function h,
we let |||, =[S0, h(x;)?/n]/2. This extension is consistent in the sense that || f||, = ||f||, and
1 filln = [I£lln for f € Cgr, j € [a]-

We let H(J) ={h: h € F(J), ||h|ln/(rn]J]|77) + Peng(h) < 1}, noting that ||h||, < rp|J|™7
and Peng, (h) < 1 for every h € H(J). By Corollary 8.3 in [55] (cf. Lemma 12 in the supplementary
material for [53]),

ra|J| 7Y
sup (/0. h)y < n—1/2/0 JEWHD) - Twldu + ml T~ /6 (B.33)

ReM(J)

with probability at least 1 —e~*. To bound the entropy, we will use the following result, proved
in Section B.12.

Lemma 4. H(u,H(J),| - ||n) < |J|(1/w)™ foru e (0,1).

42

Noting that r,, = n~™/@2m+1) and, thus, n=Y2 = r,‘fm“)/@m), we derive

rolJ| 7Y ro|J| 7Y
w2 [VEGHD e 5 a2 [T e ema,

2m—1)/(2m
< |J|1/2n_1/2[rn|<]|_7}()/ (2m)

_ T£L2m+1)/(2m)+(2m—1)/(2m) ’J| 1/2—y(2m—1)/(2m)

— T72L|J|1/2*v(2m*1)/(2m)‘

Applying bound (B.33), we conclude that

sup (e/o,h), < r2[J[/2@m=D/Cm) 4| J17Y/tn
heH(J)
with probability at least 1 — e™t. The statement of the lemma is then a consequence of the fact
that for every f € F(J), function f/[|| flln/(ra]J|~7) 4+ Peng:(f)] falls in the class H(J). O

B.12 Proof of Lemma 4

We will establish the stated entropy bound for a somewhat larger functional space H'; = {h :
h e F(J), ||h||n+ Peng(h) < 1}. We treat m as fixed, so that universal constants in inequalities
below are allowed to depend on m.

Consider an arbitrary g € C. By the Sobolev embedding theorem [for example, 45, Theorem
3.13], we can write g as a sum of a polynomial of degree m — 1 and a function § that satisfies
|gllz, < Pen(g), where we note that Pen(g) = Pen(g). Applying Lemma 10.9 in [55], which
builds on the interpolation inequality of [1], we derive [|§[lc < Pen(g). Thus, H;, C {p+h: pe
Py, h € Hy}, where

m—1
Pro= {p:p(x) =00+ > > ajzh ag R, ay e RV, E, |pln < 2}
JjeJ I=1
Hy = {h: heF(J), Peng(h) <1, ||hj]le < Pen(hy) Vj € J}.

We are able to impose the bound ||p||, < 2 in the definition of P, because if h = p+h for h € M,
and h € Hy, then ||p + k|, <1 and ||h]|, < Peng(h) < 1. Consequently,

H(u, H(T), ||) < H(uw, Kyl 1) < H(uw/2, P, |- Hln) + H(w/2,H, || - o), (B.34)

where we used the fact that the unit ball with respect to the || - ||oo-norm is contained within
the corresponding ball with respect to the || - ||,-norm. We note that P is a ball of radis 2,
with respect to the | - ||,-norm, in a linear functional space of dimension |J|(m — 1) + 1. Hence,
H(u/2,Py, || - |ln) < |J|+ |J]log(1/u) by, for example, Corollary 2.6 in [55]. Thus, the result of
Lemma 4 follows from B.34 if we also establish that H (8, 1.7, || - lec) < |J](1/8)Y/™ for § € (0,1).

It is only left to derive the stated bound on H(8,#Hy,| - [lsc). Note that we can represent
functional class H; as follows:

Hy=<S b h(x) =Y Ngi(x;), D I\ <1g;€C, Pen(gy) <1, ||gilloo <1Vj € J
jeJ jeJ

43

Given functions h(x) = > jes Nigi(zj) and x) =Y N, gj(x;) in H7, we have

JjeJ 'y
1P =Rlloo < 1D Aig5 = X Aidillee + 11D Ajgy = > Njflloo
jeJ jeJ jed jed
< maxlg; — gl D Pyl + max g e D 1A = N
jeJ - JjeJ ;
jeJ JjedJ
< mex g = gillee + D> 1A = Xj].

jeJ

Consequently, if we let G = {g: g € C, Pen(g) <1, ||g|loc <1}, let || -||1 denote the ¢;-norm and
let B¢ denote a unit ¢;-ball in RY, then

H(,H, || - o) < [TIHE/2,G, || - lloo) + H(3/2,BYL |- 1),

By the results in [9], H(6/2,G;,] - llo) S (1/6)Y™. By the standard bounds on the covering

~

numbers of a norm ball, H(5/2,B|1J‘,H) < 1|+ | J[log(1/8). Thus, H(,Hy, |l - lleo) <

~

|J|(1/8)Y/™ for 6 € (0,1). O

C Additional Experimental Results

C.1 Performance on the Birthweight Dataset

We study the Birthweight dataset, taken from the R package grpreg. Here, we predict birth weight
using 7 grouped covariates. The dataset has 189 observations, which we randomly split into 75%
for training and 25% for testing. On this dataset, we fit regularization paths for Group ¢, , Lasso,
and SCAD. For Group ¢y, we use an additional ¢y regularization and consider As € {1,2,4}. In
Figure C.1, we plot the test MSE versus the sparsity level for the different methods. The results
show that the Group fyp-based methods outperform Group Lasso and SCAD when the group size
is 2 or more.

0.50 1
v Y
Y
0.49 4 ; Y
y Group LO (A, =1)
w 0.48 4 < Group LO (A, =2)
g < < Group LO (A, =4)
*%' ® ® Group Lasso
047 < ° ® Group SCAD
¥ @
0.46
v

0.45

Nunaﬁber of Gr;ups
Figure C.1: Test MSE on the Birthweight dataset. For Group ¢y, we consider additional ridge

regularization and vary the corresponding regularization parameter Ao € {1,2,4}. Group sizes 3
and 4 could not be attained using Group Lasso and SCAD.

44

C.2 Additional Timing Comparisons

Here we consider the same setup as in the experiment of Section 6.2, and we report the running
times for additional values of My to demonstrate the sensitivity of the runtime to My. Let M*
be the value of My used in Section 6.2—note that this is the smallest value of M. We express
our choices of My in terms of M*. We report the results for cases (i) and (ii) in Tables C.1 and
C.2, respectively.

Table C.1: Running time in seconds for solving case (i), i.e., the MIP in (26) with Ag = A}, to
optimality. A dash (-) indicates that Gurobi cannot solve the problem in 24 hours and has an

optimality gap of 100% upon termination.
My = M* My = 1.5M* My = 00
p Ours Gurobi | Ours Gurobi | Ours Gurobi
103 96 24223 186 12320 192 2399
104 199 - 245 - 333 -
10° 231 - 404 - 421 -
106 386 - 1014 - 1250 -
5x 106 | 1922 - 3686 - 4036 -

Table C.2: Running time in seconds for solving case (ii), i.e., the MIP in (26) with Ay = 0, to
optimality. A star or dash (-) indicates that the solver cannot solve the problem in 24 hours. For
star, the optimality gap (in percent) is shown in parenthesis, whereas the gap is 100% for dash.

My = M* My = 1.5M* My =2M*
p Ours Gurobi Ours Gurobi Ours Gurobi
103 | 373 8737 913 10675 1010 13901
10* | 466 - 2813 - *(3.9) -
10° | 1136 - *(4.7) - *(20.7) -
10% | 1628 - *(5.1) - *(21.6) -

D Additional Details on the Datasets

D.1 Description of the Amazon Reviews Dataset

This dataset is a subset of the Amazon Grocery and Gourmet Food dataset [27]. To obtain X
and y, we follow the same steps described in [24], and we restrict X to the top 5500 words in the
corpus. Here X is a TF/IDF representation of the text reviews and y is a continuous variable
which measures review helpfulness. To obtain the groups, we run Latent Dirichlet Allocation
(LDA) [11] on the corpus using scikit-learn [48], where we set the number of groups to 100.
We then use the LDA solution to construct a collection of probability vectors {ﬂ'(i)}}g{, each
(4)

corresponding to a topic. Here m;

We assign word j to the group with index arg maxi{ﬂj(»i)}}gq (i.e., to the group that allocates j
the highest probability). For example, the top 5 words in group 1 are “coffee roast cup keurig
cups” so the topic is on coffee. Group 2 has “bpa worse cans dented claim”, which refers to

refers to the probability of encountering word j in topic i.

45

problems with the packaging of the product. To obtain the training set, we sub-sample uniformly
at random from the corpus and remove any covariates with zero variance (after sub-sampling),
which reduces the number of covariates from 5500 to 3482. Note that the 100 groups have different
sizes, ranging between 9 and 85.

46

	1 Introduction
	2 Optimization problems considered
	2.1 Group 0 with ridge regularization
	2.2 Nonparametric additive models with 0-sparsity
	2.3 General problem formulation considered in this paper

	3 Approximate Algorithms
	3.1 Block Coordinate Descent
	3.2 Local Combinatorial Search
	3.3 Algorithms for the cardinality constrained formulation

	4 Mixed Integer Programming
	4.1 MIP Formulations
	4.1.1 Formulations for Problem (9)
	4.1.2 MIP formulation for local combinatorial search

	4.2 Exact optimization via a custom nonlinear Branch-and-Bound algorithm
	4.2.1 Relaxation reformulation
	4.2.2 Active-Set subproblem solver

	5 Statistical Theory
	5.1 Linear Model
	5.2 Nonparametric Additive Model

	6 Experiments
	6.1 Grouped variable selection
	6.1.1 Statistical performance for varying number of observations
	6.1.2 Statistical performance on high-dimensional instances
	6.1.3 Real data

	6.2 MIP-based global optimality certificates: Timing comparisons
	6.3 Nonparametric Additive Models

	A Convex Relaxation of Problem (7)
	B Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2
	B.3 Proof of Proposition 2
	B.4 Proof of Proposition 3
	B.5 Proof of Proposition 4
	B.6 Proof of Theorem 3
	B.7 Proof of Corollary 2
	B.8 Proof of Proposition 5
	B.9 Proof of Theorem 4
	B.10 Proof of Lemma 2
	B.11 Proof of Lemma 3
	B.12 Proof of Lemma 4

	C Additional Experimental Results
	C.1 Performance on the Birthweight Dataset
	C.2 Additional Timing Comparisons

	D Additional Details on the Datasets
	D.1 Description of the Amazon Reviews Dataset

