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Abstract

We consider the problem of sparse nonnegative matrix factorization (NMF) with archetypal regu-

larization. The goal is to represent a collection of data points as nonnegative linear combinations of a

few nonnegative sparse factors with appealing geometric properties, arising from the use of archetypal

regularization. We generalize the notion of robustness studied in Javadi and Montanari (2019) (without

sparsity) to the notions of (a) strong robustness that implies each estimated archetype is close to the

underlying archetypes and (b) weak robustness that implies there exists at least one recovered archetype

that is close to the underlying archetypes. Our theoretical results on robustness guarantees hold under

minimal assumptions on the underlying data, and applies to settings where the underlying archetypes

need not be sparse. We propose new algorithms for our optimization problem; and present numerical

experiments on synthetic and real datasets that shed further insights into our proposed framework and

theoretical developments.

1 Introduction

Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999) is a well-known dimensionality reduction

method where we represent a collection of data points as nonnegative linear combinations of a few nonnegative

latent factors. Nonnegative factors are desirable from an interpretability standpoint in applications such as

computational biology (Brunet et al., 2004; Kotliar et al., 2019), image processing (Kalayeh et al., 2014;

Liu et al., 2011), text mining (Berry and Browne, 2005), and chemometrics (Lawton and Sylvestre, 1971),

among others. Mathematically, given a m × n data matrix with nonnegative entries X ∈ Rm×n≥0 (the rows

of X correspond to the m samples and the columns the dimensions), NMF computes nonnegative lower-

dimensional latent factorsW ∈ Rm×k≥0 ,H ∈ Rk×n≥0 . Here, k denotes the number of latent factors with k < m,n

and we desire the factors to lead to a good approximation of the underlying data matrix: X ≈WH, where
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rows of H are representatives of the data and rows of W denote the coefficient weights. In the simplest

form, NMF can be formulated (Lin, 2007) as the following nonconvex optimization problem

min
H,W

‖X −WH‖2F s.t. H ∈ Rk×n≥0 ,W ∈ Rm×k≥0 (1)

where, ‖ · ‖F denotes the Frobenius norm of a matrix.

Archetypal Analysis. The NMF problem is inherently under-determined due to scaling issues; and addi-

tional constraints should be imposed to make it well-defined. Archetypal Analysis (AA) due to Cutler and

Breiman (1994) is a regularized variant of NMF where representatives of the data (aka the archetypes), given

by the rows of H, have an appealing geometric interpretation. The archetypes are chosen so that they belong

to the convex hull of the data and the data is contained within their convex hull. In practice however, it may

not be possible to find such archetypes (Javadi and Montanari, 2019). To this end, Javadi and Montanari

(2019) propose a regularization scheme based on AA: Among all possible sets of candidate archetypes that

represent the data with an acceptable accuracy, we select the one that is the closest to the convex hull of

the data. Figure 1 (a), (b) illustrate the exact AA of Cutler and Breiman (1994) and regularized AA with

a toy example1.

Robustness. IfX admits an exact factorization of the formX = WH for someW ∈ Rm×k≥0 andH ∈ Rk×n≥0 ,

Donoho and Stodden (2004) show that under the so-called separability assumption2, it is possible to recover

W andH fromX (up to permutation and scaling of rows ofH/columns ofW ). The separability assumption

has been consequently generalized to less restrictive cases, including noisy settings. In particular, Arora et al.

(2012) consider an approximately separable model, where the data is assumed to be a noisy version of a

separable dataset. They show that in this model, under additional regularity conditions, a polynomial-

time algorithm exists that finds a factorization that is close to the factorization of the noiseless data in a

suitable metric. Their results are further improved by Recht et al. (2012), showing that noisy separable

NMF can be solved by linear programs. Ge and Zou (2015) show that a relaxed version of separability, the

so-called subset separability condition, suffices to achieve a good factorization from noisy data. Note that the

separability/subset separability assumptions are usually hard to verify on real data; and in our development

we do not make use of this assumption. Javadi and Montanari (2019) show that AA enjoys robustness to

perturbation: under certain assumptions, the resulting solution from AA on the perturbed data is close to

the underlying model in a suitable metric (as discussed in Section 2.2). In particular, this implies that at

least one of the recovered archetypes is close to the underlying archetypes that contain and represent the

noiseless data. In this paper, we generalize this notion to a stronger version of robustness which implies that

each recovered archetype is close to some true archetype.

Some earlier works have considered NMF formulations robust to outliers (Chen et al., 2014; Kong et al.,

2011). In this paper, we consider a different notion of robustness—unrelated to outliers arising in the context

of robust statistics (Huber, 2004).

Sparsity. Generally speaking, due to nonnegativity constraints on the latent factors, NMF is known to

produce sparse solutions, that is, H and W have some zero entries (Yang and Oja, 2010). A sparse

representation of the data aids in interpretability and requires less storage space. This property of NMF has

1See Appendix B for details of the example.
2The factorization X = WH is called separable if rows of X are among rows of H.
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been utilized in different applications such as image processing (Hoyer, 2004), computational biology (Kim

and Park, 2007), medical imaging (Woo et al., 2018), document clustering (Kim and Park, 2008) and audio

processing (Virtanen, 2007). Several papers have proposed formulations of NMF with additional penalties

and/or constraints to encourage enhanced sparsity in NMF—we refer to these as sparse NMF methods.

Specifically, Hoyer (2004) consider a sparse NMF problem where they use a combination of the `1 and `2

penalty on the entries of H. Peharz and Pernkopf (2012) add a constraint of the form ‖H‖0 ≤ ` to problem

(1), where ‖H‖0 is the `0-pseudonorm, the number of nonzero entries of H and ` is the desired sparsity level.

Kim and Park (2007, 2008) add an `1 norm penalty on the entries of H to the cost function of (1) to impose

sparsity on H. To the best of our knowledge, there is limited theoretical work on sparsity in NMF—in

particular, towards understanding the effect of sparsity constraints on the robustness of the representation

returned by NMF, an aspect we study here. In this paper, we present a simultaneous analysis of sparsity and

archetypal regularization in the form of Sparse AA (SAA). We study regularized AA (Javadi and Montanari,

2019) in the presence of additional sparsity constraints on H. In other words, we look for H such that it has

a few nonzero entries (i.e., ‖H‖0 is small), its rows describe the data well and are close to the convex hull

of data. See Figure 1 (c) for a numerical illustration of this problem. In particular, we show that sparsity

constrained AA leads to robust solutions, both in the weak sense of Javadi and Montanari (2019) and the

stronger notion of robustness proposed here. An important feature of our analysis is that we do not assume

the underlying archetypes are sparse—i.e., we can handle model misspecification—this makes our proofs

different from existing work. We also discuss how noise and sparsity affect the robustness properties of the

model.

Algorithms. Due to the bilinearity of the mapping (W ,H) 7→ WH, most formulations of NMF end up

in a nonconvex optimization problem, although some convex formulations exist (Bach et al., 2008) when

the dimension of the latent factors grows to infinity. Some basic approaches to these nonconvex problems

include projected gradient methods (Lin, 2007), multiplicative update rules (Gonzalez and Zhang, 2005;

Lee and Seung, 1999) and alternating optimization (Chu et al., 2004; Paatero and Tapper, 1994). More

sophisticated algorithms for NMF have been proposed in recent years, for example see Gillis and Vavasis

(2014); Leplat et al. (2019); Mizutani (2014). In this paper we present algorithms to obtain good solutions

for the regularized AA problem with sparsity constraints. To this end, we present proximal block coordinate

methods, and establish that they lead to a stationary point. We discuss a useful initialization scheme based

on Mixed Integer Programming (MIP) (Bertsimas et al., 2016; Wolsey and Nemhauser, 1999) that leads

to high-quality solutions. To further improve the quality of solutions available from our block coordinate

procedure, we present local search based methods—to this end, our framework draws inspiration from the

work of Beck and Eldar (2013); Hazimeh and Mazumder (2020) and adapts it to the setting of matrix

factorization problems. Note that Abrol and Sharma (2020); Elhamifar et al. (2012); Mørup and Hansen

(2012) have proposed algorithms for the original AA problem without sparsity constraints. In addition, prior

work has extended the notion of separability arising from NMF to address the AA problem: For example,

Damle and Sun (2017) use geometric interpretations of AA and separability to develop a new algorithm

for NMF. Our numerical experiments on synthetic, and real datasets validate our theoretical results, and

suggest the superiority of SAA over other popular sparse NMF methods.

Our Contributions. Our contribution in this paper can be summarized as follows:

• We generalize the robustness framework of Javadi and Montanari (2019) to notions of weak and strong
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robustness, introduced in this paper—these notions differ in how they describe the proximity of our es-

timators to the underlying archetypes. Furthermore, we prove robust solutions are good representatives

of the noiseless data.

• We show how sparsity and AA can be used together to produce sparse factors that are robust to noise

and perturbation in the data. Our results apply to the mis-specified setting–i.e., situations where the

underlying archetypes are not necessarily sparse.

• We present algorithms3 based on block proximal descent and local search, discuss MIP-based initial-

ization strategies; and present convergence properties of our proposed algorithmic framework. We

demonstrate via numerical experiments on synthetic and real-datasets the usefulness of our proposed

approach.

Notation. For a matrix X, we let Xi,j , Xi,. and X .,j denote the (i, j)-th element, i-th row and j-th

column of X, respectively. With a slight abuse of notation, for indexed variables, we move the subscript to

superscript: that is, the i-th row of X0 is shown as X0
i,.. The number of rows of a matrix X is denoted as

#row(X). The convex hull of rows of the matrix X ∈ Rm×n is denoted by

Conv(X) =

{
m∑
i=1

αiXi,. : αi ≥ 0,

m∑
i=1

αi = 1

}
.

We define (i) the distance between a vector x and the convex hull Conv(X) as D(x,X) = minv∈Conv(X) ‖x−
v‖22 (ii) the distance between a set of points (i.e., the rows of X) and Conv(Y ) as

D(X,Y ) =

#row(X)∑
i=1

D(Xi,.,Y ) and D(X,Y )1/2 =
√
D(X,Y ).

The number of nonzero entries in a matrix A is denoted as ‖A‖0. We define P`(H) to be the projection

of H ∈ Rk×n onto the `-sparse set {X ∈ Rk×n : ‖X‖0 ≤ `}. Moreover, we define the complement as

P⊥` (H) = H − P`(H). The support of a matrix H ∈ Rk×n, S(H), is defined as the set of its nonzero

coordinates:

S(H) = {(i, j) ∈ [k]× [n] : |Hi,j | > 0}.

We set Ei,j ∈ Rk×n to be the matrix with coordinate (i, j) equal to one and other coordinates equal to zero.

Throughout this paper, we use σmin(H) and σmax(H) to denote the smallest and largest singular values of

H (respectively). We let κ(H) := σmax(H)/σmin(H) denote the condition number of H. For a convex and

subdifferentiable function f : Rd → R, ∂f(x) denotes the set of subgradients of f at x ∈ Rd. Proofs of main

results have been relegated to the appendix to improve readability.

2 Problem Formulation

Given m data points in Rn, stacked along the rows of X ∈ Rm×n, the goal of AA is to find k archetypes

H1,., · · · ,Hk,. ∈ Rn such that: (i) the rows of X are contained in the convex hull of the rows of H; and

(ii) the rows of H are themselves close to the convex hull of the rows of X. In SAA, we wish to learn a

3Implementation can be found at https://github.com/kayhanbehdin/SparseAA.

4

https://github.com/kayhanbehdin/SparseAA


+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++
+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+
+

+

+

+

+

+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

+

+

+

+

+
+

+

+

+ ++

+

+

+

+

++ +
++

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+
+

+
+

+++
+

++
++

+
+

+

++

+
+

+

+

+
+
+
++

+

+
++

+ ++

+

+ +
+

++
+

+

+

+

++
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +
+

+

+ +

+

+
+

+

+

+

+

+
+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

+

+

+

+

+
+

+
+

+
++

+

+

+

+

++ +
+
+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

++

+ +
+

+

+++
+

++
++

+
+

+

+
+

+
+

+

+

+

+

+
++

+

+

+
+ + ++

+

+ +
+

++
+

+

+

+

++
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++
+

+
+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
++

+

+

+

+

+
+

+

+

+

+

+

+

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

+

+

+

+

+
+

+

+

+ ++

+

+

+

+

++ +
++

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+
+

+
+

+++
+

++
++

+
+

+

++

+
+

+

+

+
+
+
++

+

+
++

+ ++

+

+ +
+

++
+

+

+

+

++

(a) (b) (c)

Figure 1: In these figures, blue crosses (‘+’) represent the data points in R2. We seek to find 3 archetypes such

that their convex hull contains the data. Panel (a): the black convex hull (triangle) shows an arbitrary solution to

NMF, while the red convex hull shows the exact AA solution that is the smallest triangle containing the data. Panel

(b): the black convex hull shows a solution that describes the data with no error, while it is not close to the convex

hull of the data. The red convex hull shows the regularized AA solution, which both describes the data well (but

with nonzero error) and is close to the data. Panel (c): the black convex hull shows the exact AA solution which

does not have any zero coordinate, while the red convex hull shows a solution which is sparse and only has 2 nonzero

coordinates. In addition, no other solution with the same sparsity can be found which is closer to the data.

sparse matrix H, i.e., one with few nonzero entries. Equivalently, we seek to learn H such that

D(X,H) = D(H ,X) = 0 (2)

where the first term ensures the data is described by H (as it implies there exists W ∈ Rm×k≥0 such that

X = WH and each row of W sums to one). The second term ensures that rows of H are in the convex

hull of rows of X. As discussed earlier, the constraint (2) is too restrictive for most practical cases. Javadi

and Montanari (2019) propose a relaxed version of (2), where among all the archetypes that contain the

data with acceptable accuracy, they choose archetypes that are closest to the convex hull of data. We follow

suit, but in addition, we impose a sparsity on H via the constraint ‖H‖0 ≤ `, where, ` is a budget on the

number of nonzero entries. Specifically, for a pre-specified value of α, we consider:

Ĥ ∈ argmin
H∈Rk×n≥0

D(H ,X) s.t. D(Xi,.,H)1/2 ≤ α, i ∈ [m]; ‖H‖0 ≤ `. (3)

Above the constraint “D(Xi,.,H)1/2 ≤ α, i ∈ [m]” restricts the data points (rows of X) to be close to the

convex hull of the rows of H. We also constrain the archetypes (i.e., the right latent factors) to be sparse.

Since there are multiple feasible solutions in problem (3), the objective function chooses the archetypes

closest to the convex hull of data points, therefore, making the problem more well-defined.
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2.1 Model setup

Suppose X0 ∈ Rm×n≥0 with rank(X0) = k admits a nonnegative factorization of rank k. That is, there

exist W̄ ∈ Rm×k≥0 , H̄ ∈ Rk×n≥0 such that X0 = W̄ H̄ and rows of W̄ sum to one. This is equivalent to

D(X0, H̄) = 0. However, such a factorization is not generally unique. Hence, we let

H0 ∈ argmin
H∈Rk×n≥0

D(H ,X0) s.t. D(X0,H) = 0 (4)

and assume thatH0 is unique. The choice ofH0 in problem (4) guarantees thatX0 has an exact factorization

of the form X0 = W 0H0 for some W 0 ∈ Rm×k≥0 such that its rows sum to one and H0 is defined as in (4).

Note that rank(H0) = k—otherwise, if rank(H0) < k, then rank(X0) < k which contradicts our assumption

on X0.

We assume that the observed data matrix X, is given by X = X0 + Z where Z is additive noise. In

what follows, we do not make any distributional assumptions on Z.

Remark 1. Our analysis of robustness is valid without the uniqueness assumption on H0. We use uniqueness

for simplicity of exposition.

Remark 2. Note that we do not assume that H0 is sparse, though formulation (3) imposes an explicit car-

dinality constraint on H. This model misspecification leads to technical challenges: The analysis presented

in Javadi and Montanari (2019) does not readily generalize to our setting, and we present a new analysis

technique.

2.2 Robustness to noise in Archetypal Analysis

We are interested to see if a solution Ĥ of (3) is close to H0, the underlying set of archetypes. To this

end, following Javadi and Montanari (2019), we define a distance between two sets of archetypes H1 ∈
Rk1×n,H2 ∈ Rk2×n as

L(H1,H2) =

k1∑
i=1

min
j∈[k2]

‖H1
i,. −H

2
j,.‖22. (5)

Javadi and Montanari (2019) show that under the so-called uniqueness assumption, one has L(H0,HX)1/2 ≤
C maxi∈[m] ‖Zi,.‖2 for some constant C > 0 where HX is the solution to the relaxed AA (i.e. (3) with

` = nk). Note that L(H1,H2) in (5) is a sum of the distances between each row of H1 and rows of

H2. Observe that L(H1,H2) is not symmetric in its arguments. In fact, a small value of L(H1,H2) does

not imply that L(H2,H1) is also small (see Section 2.3 for details). Definition 1 below presents a formal

definition of weak and strong robustness.

Definition 1. (Robustness) An estimator H ∈ Rk×n≥0 is said to be:

(1) (Weak robustness): Weakly robust if L(H0,H)1/2 ≤ f1(maxi∈[m] ‖Zi,.‖2) where f1 is an increasing

real function that does not depend on X.

(2) (Strong robustness): Strongly robust if L(H ,H0)1/2 ≤ f2(maxi∈[m] ‖Zi,.‖2) where f2 is an increasing

real function that does not depend on X.

6
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Figure 2: Illustration of Example 1: (a) The noiseless data and two examples of noisy data. (b) Details of the
example for a specific value of θ.

Note that based on Definition 1, the result of Javadi and Montanari (2019) is an instance of weak robustness

with f1(x) = Cx for x ≥ 0 and some C > 0.

2.3 Strong robustness implies weak robustness

Here we explain the differences between weak and strong robustness and provide some intuition around

the choice of terminology: strong and weak. Example 1 shows an estimator that is weakly robust but not

strongly robust.

Example 1. Let m = 3, n = 2 and k = 2 and

X0 =

 0 1

1 0

1/2 1/2

 , H0 =

[
1 0

0 1

]
.

For θ ∈ (0, π/4), we let the noisy data (Xθ) and noise matrix (Zθ) be:

Xθ =


√

1− cos θ cos(π4 −
θ
2 ) 1 +

√
1− cos θ sin(π4 −

θ
2 )

1− sin θ√
2 sin(θ+

π
4 )

0

1
2

1
2

 and

Zθ =


√

1− cos θ cos(π4 −
θ
2 )
√

1− cos θ sin(π4 −
θ
2 )

− sin θ√
2 sin(θ+

π
4 )

0

0 0

 .
Figure 2 presents an illustration of Example 1. In this figure (panel (a)), X1, X2, X3 correspond to the

original data points (i.e., the rows of X0) and points X ′1, X
′
2, X

′
3 and X ′′1 , X

′′
2 , X

′′
3 are the noisy data points

for two different values of θ. Note that, in all cases, the data points lie on a line. The lines X ′1, X
′
2, X

′
3 and

7



X ′′1 , X
′′
2 , X

′′
3 are obtained by rotating the noiseless data line X1, X2, X3 along its center (1/2, 1/2). Figure 2

(panel (b)) shows line X1, X2, X3 and its rotated version X ′1, X
′
2, X

′
3 (after being rotated by an angle θ). Let

Hθ =

 0
[
1− sin θ√

2 sin(θ+π
4 )

]
tan(θ + π

4 )

1− sin θ√
2 sin(θ+π

4 )
0

 .
Note that Hθ

2,. is the same as the point Xθ
2,.. The line passing through the noisy data points intersects

the y-axis at Hθ
1,.. For the line, X ′1, X

′
2, X

′
3, the point Hθ

1,. is given by X4 in Figure 2, (b). As a re-

sult, Xθ
1,.,X

θ
2,.,X

θ
3,. are on the segment connecting Hθ

1,. and Hθ
2,. and D(Xθ,Hθ) = 0. In addition,

maxi∈[3] ‖Zθi,.‖2 ≤
√

2 showing the amount of noise added to the data is limited. Moreover,

L(H0,Hθ) ≤ ‖H0
1,. −H

θ
2,.‖22 + ‖H0

2,. −H
θ
2,.‖22 ≤ 4

for all θ ∈ (0, π/4), showing Hθ is weakly robust. However, note that

L(Hθ,H0) ≥ min
i∈[2]
‖Hθ

1,. −H
0
i,.‖22 = ‖Hθ

1,. −H
0
2,.‖22

=

([
1− sin θ√

2 sin(θ + π/4)

]
tan(θ + π/4)− 1

)2

and L(Hθ,H0)→∞ as θ → π/4, showing Hθ is not strongly robust.

Hθ is not a strongly robust estimator in Example 1 as the first row of Hθ can be far from H0, the set of

underlying archetypes. Weak robustness implies that among recovered archetypes, there is at least one of

them which is close to the correct archetypes (for example, the second row of Hθ in Example 1 is close to the

first row of H0). On the other hand, strong robustness implies that all recovered archetypes are close to some

underlying archetype. This is true because considering the definition of L(H1,H2) in (5), strong robustness

limits the distance between each recovered archetype and the set of correct archetypes. However, weak

robustness limits the distance between each true archetype and the set of recovered archetypes, therefore,

this distance can be small even if some recovered archetypes are far. Theorem 1 below states that strong

robustness implies weak robustness (and in light of Example 1, this containment is strict).

Theorem 1 (Strong robustness implies weak robustness). Let us define the quantity

b(H0) = max
i,j∈[k]

‖H0
i,. −H

0
j,.‖2. (6)

Then for any H ∈ Rk×n≥0 we have

L(H0,H) ≤ 2kb(H0)2 + 2L(H ,H0). (7)

If H is a strongly robust estimator, L(H ,H0) is bounded and as b(H0) depends on the underlying

archetypes, b(H0) is finite. Therefore, the right hand side in (7) is bounded and L(H0,H) is bounded,

implying H is also weakly robust.

Theorem 2 shows that a weak/strong robust estimator H serves as a good approximation to the noiseless
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Figure 3: In this figure, blue crosses represent the data points in R2 and blue circles and line represent H0 and its
convex hull containing the data. Black circles and lines represent two candidate set of archetypes and their convex
hulls. Note that the set that is closer to H0 describes the data better as anticipated by Theorem 2.

data matrix X0.

Theorem 2. For any H ∈ Rk×n≥0 we have

D(X0,H)1/2 ≤
√
mmin

{
L(H0,H)1/2, k‖H0‖F + L(H ,H0)1/2

}
. (8)

If the right hand side in (8) is small, which means H is either a weakly or strongly robust estimator, then

the left hand side in (8) is small. This shows that the noiseless data is close to the convex hull of H—so

rows of H are good representatives of the noiseless data. See Figure 3 for an illustrative example.

3 Sparse AA

In this section, our primary goal is to show that under certain conditions, both weak and strong robustness

hold for the SAA estimator (3).

Theorem 3. Let X0,H0 be as described in Section 2.1 and Ĥ be a solution of problem (3). Set α = δ+ β

where δ = maxi∈[m] ‖Zi,.‖2 and β =
√
m‖P⊥` (H0)‖F . Moreover, let X = X0 +Z and X̃0 ∈ Rk×n be such

that

X̃
0

i,. = argmin
u∈{X0

j,.:j∈[m]}
‖u−H0

i,.‖2.

There exist constants4 c1, · · · , c10 depending on m,n, k, κ(H0), σmin(H0) such that the following bounds

hold:

1. (Weak Robustness)

L(H0, Ĥ)1/2 ≤ c1D(H0, X̃0)1/2 + c2 max
i∈[m]

‖Zi,.‖2 + c3‖P⊥` (H0)‖F (9)

4To aid readability, the precise expressions for these constants are presented in Section D.3.
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2. (Strong Robustness) If

c4D(H0, X̃0)1/2 + c5 max
i∈[m]

‖Zi,.‖2 + c6‖P⊥` (H0)‖F ≤ c7, (10)

we have the following strong robustness guarantee

L(Ĥ,H0)1/2 ≤ c8D(H0, X̃0)1/2 + c9 max
i∈[m]

‖Zi,.‖2 + c10‖P⊥` (H0)‖F . (11)

In Theorem 3, δ controls the amount of additive noise Z; and β =
√
m‖P⊥` (H0)‖F captures the sparsity

level of H0. If the data is noisy (i.e. δ is large) and/or H0 is not sparse (i.e. β is large), the value of α

in problem (3) is larger. This implies that D(Xi,., Ĥ) for i ∈ [m] can be potentially larger because of the

constraint D(Xi,.,H)1/2 ≤ α in problem (3)—Ĥ might not represent the data points well. However, this is

the price we pay to guarantee robustness.

If H0 is not `-sparse, or equivalently ‖P⊥` (H0)‖F > 0, problem (3) obtains a sparse estimator Ĥ, which

approximates H0. This is an example of model misspecification; and even in this case, Problem (3) leads to

an estimator that is weakly and strongly robust. In Theorem 3, the quantity D(H0, X̃0) determines how

close the underlying model is to the noiseless data; and it depends upon H0 and X0. Choosing H0 as in

(4) results in a smaller value of D(H0, X̃0) and improves our bounds. This constant can be zero which

is a generalization of the separable case (Donoho and Stodden, 2004), where the underlying archetypes are

assumed to be among noiseless data points. In addition, condition (10) ensures that the noise in the data is

not too large and the underlying archetypes are suitably sparse — this suffices to derive a strong robustness

guarantee for Ĥ.

In the special case where H0 is `-sparse (i.e., ‖P⊥` (H0)‖F = 0) and the underlying model is separable (i.e.,

D(H0, X̃0) = 0) the results of Theorem 3 can be simplified as in Corollary 1.

Corollary 1. Let Ĥ be the solution of problem (3). Under the assumption of Theorem 3 and assuming

‖P⊥` (H0)‖F = D(H0, X̃0) = 0, we have the following:

1. (Weak Robustness)

L(H0, Ĥ)1/2 ≤ [4mkκ(H0) + (1 +
√

2)
√
k(k + k3/2)] max

i∈[m]
‖Zi,.‖2

2. (Strong Robustness) If [(k + k3/2) + 2mk] maxi∈[m] ‖Zi,.‖2 ≤ σmin(H0)/(6
√
k),

L(Ĥ,H0)1/2 ≤ [7κ(H0)(k + k3/2) + 2(1 +
√

2)k3/2m] max
i∈[m]

‖Zi,.‖2.

Considering that m > k, the results in Corollary 1 can be summarized as

L(H0, Ĥ)1/2 = O(mkδ) and L(Ĥ,H0)1/2 = O(mk3/2δ)

where δ = maxi∈[m] ‖Zi,.‖2 (assuming κ(H0) is constant). This shows the bound for the strong robustness

quantity L(Ĥ,H0)1/2 is larger. This observation can be explained as follows: strong robustness bounds

the distance between each recovered archetype and the underlying archetypes, and as the location of each

recovered archetype is unknown and uncertain, the strong robustness quantity deals with more uncertainty
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compared to weak robustness and is harder to bound.

Comparison with Javadi and Montanari (2019): Although Javadi and Montanari (2019) do not

consider sparsity in their formulation, it is insightful to compare our results with theirs. The results of Javadi

and Montanari (2019) are valid under a specific uniqueness assumption on the model—this matches with our

assumption in the separable case. Therefore, to compare our results we consider the case β = D(H0, X̃0) = 0

as in Corollary 1. In this regime, the result of Javadi and Montanari (2019) is similar to the first part of

the Corollary 1 without any sparsity guarantee on the solution and with different coefficients. They do not

provide results similar to the second part of the corollary. Moreover, the bound of Javadi and Montanari

(2019) is L(H0, Ĥ)1/2 = O(k9/4δ) (assuming other parameters in their bound are constant) which is loose

compared to our bound if m = O(k5/4). This shows that our results are tighter when the number of data

points is small. Admittedly, the uniqueness assumption of Javadi and Montanari (2019) is more general than

the separable case, however, this assumption is difficult to verify except for very simple cases, as discussed

by the authors.

3.1 The penalized formulation

Theorem 3 presents robustness guarantees for the constrained SAA problem (3). From an algorithmic

viewpoint however, the penalized form:

Ĥλ ∈ argmin
H∈Rk×n≥0

D(X,H) + λD(H ,X) s.t. ‖H‖0 ≤ ` (12)

is more appealing, and we propose algorithms for this penalized form. In (12), D(X,H) is the data fidelity

term, D(H ,X) is the regularization term and λ is the regularization parameter. In fact, λ = 0 is equivalent

to setting α = 0 in problem (3) (which can lead to an infeasible problem) and λ → ∞ is equivalent to

removing the data fidelity constraint all together.

We show robustness properties of estimator (12). Proposition 1 establishes both weak (9) and strong

(11) robustness. For simplicity, we consider the separable case (D(H0, X̃0) = 0) where H0 is sparse

(‖P⊥` (H0)‖F = 0).

Proposition 1 (The penalized formulation (12)). Let Ĥλ be a solution to problem (12). Suppose the

assumptions of Theorem 3 hold; and in addition D(H0, X̃0) = ‖P⊥` (H0)‖F = 0. There exist constants5

c1λ, c
2
λ, c

3
λ depending on m, k, κ(H0), λ such that c1λ, c

2
λ, c

3
λ →∞ as λ→ 0 or λ→∞; and the following holds:

L(H0, Ĥλ)1/2 ≤ c1λ max
i∈[m]

‖Zi,.‖2. (13)

Moreover, if

c3λ max
i∈[m]

‖Zi,.‖2 ≤ c7, (14)

then

L(Ĥλ,H0)1/2 ≤ c2λ max
i∈[m]

‖Zi,.‖2. (15)

5The values of the constants can be found in the appendix, Section D.4
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Note that c1λ, c
2
λ →∞ as λ→ 0 or λ→∞—hence, there is no trivial value of λ that guarantees robustness.

In fact, if we have λ = 0 (this is equivalent to normal NMF), the archetypes need not be close to the data

(which is approximated by the underlying archetypes)—they can be far from the underlying archetypes and

robustness is not guaranteed. If λ → ∞, we do not reduce the recovery error (D(X,H)) which does not

result in robustness. This shows the usefulness of using AA as a regularization term.

Remark 3. Results for the penalized form of AA as in Proposition 1 are not discussed in Javadi and

Montanari (2019), as far as we can tell.

4 SAA Algorithm

In this section, we propose algorithms to obtain good (feasible) solutions to the penalized SAA problem

(12). In Section 4.1, we present a block coordinate descent method and derive its convergence guarantees.

As problem (12) is nonconvex, Section 4.2 discusses an initialization scheme based on MIP techniques to

keep away from suboptimal solutions. To further improve the quality of the solution obtained from the block

coordinate method, we present a heuristic local search algorithm in Section 4.3.

4.1 A Block Coordinate Algorithm

We rewrite problem (12) as follows:

min
W ,W̃ ,H

Ψ(W , W̃ ,H) := ‖X −WH‖2F + λ‖H − W̃X‖2F (16)

s.t. H ≥ 0,W ≥ 0, W̃ ≥ 0

W1k = 1m, W̃1m = 1k, ‖H‖0 ≤ `.

We propose a proximal gradient based block coordinate descent algorithm (Xu and Yin, 2017) for (16). We

first note that the gradient of the objective function is Lipschitz for every block (W , W̃ ,H), that is,

‖∇HΨ(H1,W , W̃ )−∇HΨ(H2,W , W̃ )‖F ≤ L1(W )‖H1 −H2‖F ,

‖∇WΨ(H ,W 1, W̃ )−∇WΨ(H ,W 2, W̃ )‖F ≤ L2(H)‖W 1 −W 2‖F

‖∇W̃Ψ(H ,W , W̃ 1)−∇W̃Ψ(H ,W , W̃ 2)‖F ≤ L3(X)‖W̃ 1 − W̃ 2‖F

where L1(W ) = 2(λ + σmax(W )2), L2(H) = 2 max{σmax(H)2, ε} and L3(X) = 2λσmax(X)2 for any fixed

ε > 0. Our algorithm follows the block proximal update of Xu and Yin (2017). Specifically, for step size
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values 1/2L1(W j), 1/2L2(Hj), 1/2L3(X), at iteration j we perform the following updates:

Hj+1 = argmin
H≥0
‖H‖0≤`

∥∥∥∥H − (Hj −
1

2L1(W j)
∇HΨ(Hj ,W j , W̃ j)

)∥∥∥∥2

F

(17)

W j+1 = argmin
W≥0

W1k=1m

∥∥∥∥W −
(
W j −

1

2L2(Hj+1)
∇WΨ(Hj+1,W j , W̃ j)

)∥∥∥∥2

F

(18)

W̃ j+1 = argmin
W̃≥0

W̃1m=1k

∥∥∥∥W̃ −
(
W̃ j −

1

2L3(X)
∇W̃Ψ(Hj+1,W j+1, W̃ j)

)∥∥∥∥2

F

. (19)

After a sweep across the updates (17), (18) and (19) the objective decreases:

Ψ(Hj+1,W j+1, W̃ j+1) ≤ Ψ(Hj ,W j , W̃ j).

Algorithm 1 summarizes the above procedure, where Psimplex(W ) projects each row of W onto the unit

simplex. See Duchi et al. (2008) for an efficient algorithm to calculate Psimplex. Before proceeding to the

theoretical analysis of Algorithm 1, we need to define stationarity.

Definition 2. We say a point θ∗ = (H∗,W ∗, W̃
∗
) is stationary for problem (16) if update rules (17), (18)

and (19) initialized with θ∗ result in the same solution θ∗.

Remark 4. Definition 2 is a generalization of the notion of L-stationarity by Beck and Eldar (2013) to the

case of the block proximal method. Moreover, Definition 2 presents a necessary condition for optimality of

problem (16).

Algorithm 1: SparseAA(H0,W 0, W̃ 0, λ)

j = 0
while not converged do

π = Hj − [1/L1(W j)](−W T
j [X −W jHj ] + λ[Hj − W̃ jX])

Hj+1 = P` (max{π, 0})
W j+1 = Psimplex(W j − [1/L2(Hj+1)](X −W jHj+1)HT

j+1)

W̃ j+1 = Psimplex(W̃ j − λ[1/L3(X)](Hj+1 − W̃ jX)XT )
j = j + 1

end

In Theorem 4, first we show that problem (16) satisfies the convergence conditions of Xu and Yin (2017) and

therefore Algorithm 1 converges. Then, we show that the limit point of Algorithm 1 is a stationary point as

in Definition 2.

Theorem 4. Suppose λ > 0 and let {(Hj ,W j , W̃ j)}j≥1 be the sequence of solutions produced by Algorithm

1. The following results hold:

1. The sequence (Hj ,W j , W̃ j) converges to a feasible solution (H∗,W ∗, W̃
∗
) of (16)

2. Let

T = max{0,H∗ − [1/L1(W ∗)](−W ∗T [X −W ∗H∗] + λ[H∗ − W̃ ∗
X])} (20)
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and if ‖T ‖0 > `, assume T ]` > T ]`+1 where T ]1, · · · ,T
]
kn are entries of T ordered from largest to smallest.

Then, the limit point (H∗,W ∗, W̃
∗
) is a stationary point of (16).

The condition on T above is needed to make sure P`(T ) is unique. Otherwise, there will be multiple possible

solutions for update rule (17) when initialized with θ∗. Note however, that this condition is quite mild, and

is unlikely to be violated in practice (due to noise in data).

4.2 Initialization via Mixed Integer Programming (MIP)

Problem (16) is not convex, hence having a good initialization is critical to obtain a high-quality local

solution. To initialize Algorithm 1, we use a continuation method as discussed below. We first obtain a

solution to (16) for a large value of λ — this leads to the following problem:

min
W̃ ,H

‖H − W̃X‖2F s.t. H ≥ 0; W̃ ≥ 0; W̃1m = 1k; ‖H‖0 ≤ `. (21)

Note that Problem (21) has a convex quadratic objective in W̃ ,H and the only source of nonconvexity is

the cardinality constraint on H. This is a Mixed Integer Quadratic Problem (MIQP)—while these problems

are computationally difficult in the worst-case, recent work (Bertsimas and Van Parys, 2020; Bertsimas

et al., 2016; Hazimeh et al., 2020)6 has shown that they can be solved to near-optimality using specialized

algorithms for large-scale problems. Thusly motivated, we present new algorithms to solve (21) to optimality.

Once we obtain a near-optimal solution to (21), we decrease λ and use Algorithm 1 to obtain a feasible

solution for (21). We continue this process by successively decreasing λ, and using a solution obtained from

the previous (larger) value of λ to initialize Algorithm 1.

To formulate (21) as a MIQP, we first show that the solution of this problem is bounded.

Proposition 2. If (H∗, W̃
∗
) is an optimal solution to (21), we have the following bound on H∗:

‖H∗‖2F ≤ k
(

max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2
)2

:= b.

Based on Proposition 2, we reformulate problem (21) as the following MIQP:

min
H,W̃ ,Z

‖H − W̃X‖2F (22)

s.t. H ≥ 0, W̃ ≥ 0,Z ∈ {0, 1}k×n

W̃1m = 1k,
∑
i,j

Zi,j ≤ `

Hi,j ≤
√
bZi,j ∀(i, j) ∈ [k]× [n],

where b is as defined in Proposition 2. Note that the last constraint in (22) does not change the optimal

solution because of Proposition 2.

Problem (22) can be formulated and solved (to optimality) by off-the-shelf MIP solvers (e.g., Gurobi, CPLEX,

GLPK) for small/moderate instances—however, the runtimes become long as soon as m,n ∼ 100 or so. With

6Note that problem (16) does not admit a MIQP representation, unlike (21).
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efficiency in mind, we present a cutting plane approach to obtain a certifiably optimal solution7. To this

end, we rewrite (22) as a binary convex optimization problem:

min
Z

F (Z) s.t. Z ∈ {0, 1}k×n,
∑

(i,j)∈[k]×[n]

Zi,j ≤ ` (23)

where, for any Z ∈ [0, 1]k×n, the objective F (Z) is implicitly defined as the solution to the following convex

optimization problem:

F (Z) = min
H,W̃

‖H − W̃X‖2F (24)

s.t. H ≥ 0, W̃ ≥ 0, W̃1m = 1k

Hi,j ≤
√
bZi,j ∀(i, j) ∈ [k]× [n].

Proposition 3 presents some properties of the function F (Z).

Proposition 3. Let (H∗, W̃
∗
) be an optimal solution to the minimization problem (24). Then, we have

the following:

1. The function Z 7→ F (Z) is convex on Z ∈ [0, 1]k×n.

2. G = −
√
bΛ is a subgradient of F (Z), where for (i, j) ∈ [k]× [n],

Λi,j =

2(W̃
∗
X −H∗)i,j if (W̃

∗
X −H∗)i,j > 0

0 if (W̃
∗
X −H∗)i,j ≤ 0

.

The function F (Z) is convex and subdifferentiable. Specifically, for any Z0 ∈ Rk×n and any subgradient

G0 ∈ ∂F (Z0),

F (Z) ≥ F (Z0) + 〈G0,Z −Z0〉. (25)

MIP Algorithm: We present an outer approximation algorithm (Duran and Grossmann, 1986) to solve

the binary convex program (23). This algorithm starts from an initial point Z0 which is feasible for (23).

At iteration t, using a list of subgradient-based inequalities (25), we consider the following piecewise linear

lower bound of F (Z):

F (Z) ≥ max {F (Z0) + 〈G0,Z −Z0〉, · · · , F (Zt−1) + 〈Gt−1,Z −Zt−1〉} (26)

where Z0, · · · ,Zt−1 are feasible for Problem (23) and Gt ∈ ∂F (Zt) for all t. We define Zt as a minimizer

of the right hand side of (26) under the constraints of Problem (23). Mathematically, this can be written as

7That is, along with delivering a feasible solution, we also present a dual bound (aka lower bound) on the optimal objective
value of (22).
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a Mixed Integer Linear Program (MILP)

(Zt, ηt) ∈ argmin
Z,η

η (27)

s.t. Z ∈ {0, 1}k×n, η ∈ R

η ≥ F (Zi) + 〈Gi,Z −Zi〉 i = 0, · · · , t− 1∑
(i,j)∈[k]×[n]

Zi,j ≤ `.

The optimal objective value of (27) is a lower bound (aka dual bound) for (23); and these lower bounds

improve as the iterations progress (i.e., t increases). As the feasible set of problem (23) is finite, after finitely

many iterations t, an optimal solution to (23) is found. The optimality gap (OG) of the outer approximation

can be calculated as OG = (UB − LB)/UB where LB is the current (and the best) lower bound achieved

by the piecewise approximation and UB is the best upper bound for (23) found so far. We summarize the

procedure in Algorithm 2 where, ‘tol’ denotes a pre-specified tolerance level.

Algorithm 2: An outer approximation method to solve (23)

t = 1
while OG > tol do

(Zt, ηt) are solutions of (27).
Fbest = mini=0,··· ,t−1 F (Zi)
OG = (Fbest − ηt)/Fbest

t = t+ 1
end

The optimization Problem (24) is convex in (H, W̃ ) and we use an accelerated proximal gradient

method (Beck and Teboulle, 2009) to solve it.

Note that our proposed algorithm is different from that of Bertsimas and Van Parys (2020) who consider

the sparse linear regression problem with an additional ridge regularization. Bertsimas and Van Parys (2020)

use an outer approximation algorithm to solve an equivalent convex integer program, with an explicit closed-

form expression. In contrast, in our work, the function F (Z) is given (implicitly) by the solution to an

optimization problem. Furthermore, our formulation of (22) uses the binary variable as a linear constraint

— this is different from Bertsimas and Van Parys (2020) where, the binary variable appears as a nonlinear

expression within the objective function.

Numerical results are presented in Section 5.

4.3 Improving Algorithm 1 with Local Search

The block CD method (Algorithm 1) is guaranteed to deliver a stationary point for Problem (16). We

present some heuristics to improve the solution quality based on local search, drawing inspiration from the

work of Beck and Eldar (2013); Hazimeh and Mazumder (2020) who use local search ideas for a different

problem.

Once we are at a stationary point delivered by Algorithm 1, our local search algorithm swaps a coordinate

in the support of H with a coordinate from outside the support. That is, a nonzero coordinate of H is set
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to zero and a zero coordinate of H is allowed to become nonzero. Then, the optimization is solely done on

the coordinate entering the support. If this optimization leads to a lower objective value, we retain the new

support. Mathematically, let (H∗,W ∗, W̃
∗
) be a feasible solution of problem (16) with ‖H∗‖0 = `. This

solution can be an output of Algorithm 1. Suppose (i1, j1) ∈ S(H∗) (here, S(H∗) is the support ofH∗) leaves

the support and (i2, j2) /∈ S(H∗) enters the support. We perform an optimization on the coordinate (i2, j2)

of H to decide whether this change in the support improves the objective function. Let Ei1,j1 be a matrix

with all entries equal to zero except coordinate (i1, j1) equal to one. We denote H = H∗ −H∗i1,j1E
i1,j1 as

the solution with coordinate (i1, j1) removed from the support. The candidate solution with the new support

has the form H + tEi2,j2 for t ≥ 0. This leads to the following problem:

min
W ,W̃ ,t

‖X −WH − tWEi2,j2‖2F + λ‖H + tEi2,j2 − W̃X‖2F (28)

s.t. t ≥ 0,W ≥ 0, W̃ ≥ 0

W1k = 1m, W̃1m = 1k

where, we are optimizing over (W , W̃ , t) for a given (i2, j2) and (i1, j1). For a fixed value of t, the optimal

values of W and W̃ in (28) are given as

Ŵ ∈ argmin
W

‖X −W (H + tEi2,j2)‖2F s.t. W ≥ 0; W1k = 1m (29)

ˆ̃W ∈ argmin
W̃

‖H + tEi2,j2 − W̃X‖2F s.t. W̃ ≥ 0; W̃1m = 1k. (30)

Problems (29) and (30) are convex and can be efficiently solved by standard first order methods such as

proximal gradient. Note that these first order methods also benefit from warm-starts available from prior

estimates of (W , W̃ ). Once W and W̃ are updated by (29) and (30), the value of t that minimizes (28)

with W = Ŵ and W̃ = ˆ̃W is:

t = max

{∑m
r=1U r,j2W r,i2 − λV i2,j2

λ+ ‖W .,i2‖22
, 0

}
(31)

where U = X −WH and V = H − W̃X.

We use an alternating optimization scheme where the three updates (29),(30) and (31) are performed se-

quentially until convergence. These updates result in a descent method by construction, though there may

not be a strict decrease in the objective value (in which case, the swap may not result in a better solution).

In the discussion above, we assumed a fixed pair of indices (i1, j1) and (i2, j2). Ideally, we would like to

try all possible choices of such indices and consider the one that leads to the maximal decrease in objective

value (if any). As this is computationally intensive, we use a heuristic to select a suitable pair of indices.

We choose (i1, j1) to be the smallest nonzero entry in H∗:

(i1, j1) ∈ argmin
(i,j)∈S(H∗)

H∗i,j . (32)

For the pair (i2, j2) from outside the current support of H, we choose the coordinate of H∗ that has the
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Algorithm 3: A Local Search improvement for Algorithm 1

Initialize with H∗,W ∗, W̃
∗
.

while not converged do
if ‖H∗‖0 < ` then

Choose (i2, j2) as in (33).
H = H∗

end
else

Choose (i1, j1) as in (32) and (i2, j2) as in (33).
H = H∗ −H∗i1,j1E

i1,j1

end
while not converged do

Update W , W̃ and t via (29), (30) and (31).
end

if Ψ(H + tEi2,j2 ,W , W̃ ) < Ψ(H∗,W ∗, W̃
∗
) then

H∗ = H + tEi2,j2 ,W ∗ = W , W̃
∗

= W̃
end

end

smallest (most negative) gradient of the objective function:

(i2, j2) ∈ argmin
(i,j)∈[k]×[n]\S(H∗)

∂

∂Hi,j
Ψ(H∗,W ∗, W̃

∗
). (33)

The overall procedure of local search is shown in Algorithm 3.

5 Numerical Experiments

In this section, we discuss results of our numerical experiments on synthetic and real data and investi-

gate how our framework performs in practice. Our experiments are done on a computer equipped with

Intel(R) Core(R) i7 6700HQ CPU @ 2.60GHz, running Microsoft(R) Windows(R) 10 and using 16GB of

RAM. We have implemented all algorithms in Julia and we use Gurobi(R) to solve MILPs arising in our

initialization scheme. An implementation of our framework in Julia is available at:

https://github.com/kayhanbehdin/SparseAA.

5.1 Synthetic Data

In this section, we consider synthetic data to validate the theory we developed in Sections 3 and 4; and

gather further insights into the operating characteristics of SAA.

Dataset generation: The entries of H0 are drawn iid from Unif[0, 1] and 20% of entries are set to zero at

random to produce a matrix with at most 0.8nk nonzero entries. Independent of H0, the entries of W 0 are

drawn iid from Unif[0, 1] and each row is normalized to sum to one. The noiseless data is X0 = W 0H0 and

the noisy data is produced as X = max{X0 + Z, 0} where entries of Z are from an independent Gaussian

ensemble with mean zero and variance σ2
z .
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Figure 4: Figure comparing our method (SAA) with three other sparse NMF methods. We compare weak (left
panel) and strong (right panel) robustness for varying values of σz on the synthetic data in Section 5.1.

5.1.1 Understanding robustness

We compare the performance of our algorithm with other sparse NMF algorithms in terms of robustness of

the solution. We consider algorithms by Kim and Park (2007) (shown as KP), Peharz and Pernkopf (2012)

(shown as PP) and Hoyer (2004) (shown as Hoyer). We set m = 200, k = 15, n = 5000, λ = 1. We consider

two settings: First, we keep the sparsity level ` fixed and change the noise level σz; Second, we keep σz fixed

and vary the sparsity level `.

Robustness versus varying σz: First, we set `/nk = 0.5 and tune parameters for different algorithms

to get solutions with 0.5nk nonzeros. Specifically, as KP considers an `1 regularized version of NMF, we

start with a small value of the `1 regularization parameter and gradually increase it till we reach the target

sparsity-level. PP uses an `0 constrained version of original NMF (without archetypal regularization) so we

set the `0 sparsity level to `. The sparsity constraint of Hoyer is set such that the result has ` nonzeros.

We vary σz and plot the average value of weak (L(H0,H)) and strong (L(H ,H0)) robustness quantities.

The results for this scenario are shown in Figure 4. As it can be seen, SAA almost always outperforms

other algorithms in terms of strong and weak robustness of solutions. Specifically, the difference between

SAA and other algorithms is most noticeable when the noise is small. This is expected as other algorithms

in our experiments do not use any regularization that results in robustness. Moreover, solutions of SAA

become less robust as noise is increased, as anticipated by Theorem 3 and Proposition 1. In addition, it

is interesting to note that the weak robustness quantity in Figure 4 [left panel] is smaller than the strong

robustness quantity in Figure 4 [right panel]. This is expected based on our discussions in Section 3.

Robustness versus varying `: To compare the performance of different algorithms for varying values of `,

we do another set of experiments. We consider a setup similar to the previous experiment. However, we fix

σz = 0.1 and change the value of ` (while keeping the underlying model sparsity fixed at 0.8nk). This shows

how well different algorithms can deal with misspecification in the underlying model. The results for this

case are shown in Figure 5. We see that SAA outperforms other algorithms and provides the most robust

solutions (both in terms of weak and strong robustness). In addition, we observe that as ` is decreased, the
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Figure 5: Comparison of robustness quantities for varying values of ` on the synthetic data in Section 5.1.

solution becomes less robust as anticipated by Theorem 3.

5.1.2 Usefulness of MIP-based Initialization and Local Search

We perform numerical experiments to show the usefulness of the initialization procedure in Section 4.2 and

the local search scheme in Section 4.3. We show these algorithms improve upon a baseline initialization. We

set m = 200, k = 20, n = 12000 and λ = 1 and vary σz and ` (see Table 1). We consider three cases:

(i) Algorithm 1 initialized with H = 0 (shown as Zero in Table 1).

(ii) Algorithm 1 with MIP initialization (see Section 4.2) and using warm-start continuation over 8 values

of λ on a logarithmic scale from 30 to 1. (Shown as SAA in Table 1).

(iii) Improving solution from (ii) with local search discussed in Section 4.3. This is denoted by SAA+LS

in Table 1.

Algorithm 2 is limited to 20 minutes of maximum runtime and the best solution is returned. The average

final cost function achieved by three methods explained above (over 5 independently generated datasets)

are reported in Table 1. As it can be seen, our initialization scheme achieves a significantly lower objective

value compared to the baseline (Zero) while being computationally feasible for such data size. In addition,

our local search algorithm can improve the objective value as well as the support in a reasonable time (the

number of changes in support for SAA+LS is reported in the parentheses). In our experiments, Algorithm

1 terminates in less than 15 seconds.

5.2 The Face Dataset (Samaria and Harter, 1994)

A classical application of sparse NMF is in face detection and recognition (Hoyer, 2004). The goal is to obtain

a low-rank representation of a dataset of human faces under different lighting and shadow conditions and

also different angles of photography. Hoyer (2004) show the effect of sparsity in finding such representations

of the data. In particular, they show that sparse NMF leads to part-based representations where each factor

represents one part of the face. Here, we are interested in finding the effect of AA as well as the combined

effect of AA and sparsity. We use the AT&T database of faces (Samaria and Harter, 1994) which consists
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σz Method `/nk = 0.5 `/nk = 0.65 `/nk = 0.8

0.01
Zero 47785 42123 37566
SAA 32193 29766 27139

SAA+LS 31867 (12.8) 29729 (13.4) 27091 (20.2)

0.1
Zero 69366 63776 59276
SAA 54784 52253 49228

SAA+LS 54465 (18.4) 52159 (19.8) 49131 (24)

0.5
Zero 448088 440974 434590
SAA 426238 420134 416901

SAA+LS 424776 (22.6) 419932 (26.8) 416628 (32)

Table 1: Comparison of zero initialization, SAA and SAA+LS in Section 5.1. The number in parentheses for
SAA+LS shows the number of changes in the support after local search.

of 40 different people and 10 different photos of each person, 400 images in total. Each image is a grayscale

92 × 112 image, which is converted to a vector of length 10304. We then concatenate these 400 vectorized

images into one matrix of size 400 × 10304 matrix. We consider k = 25 (following Hoyer (2004)) for this

dataset and do the factorization based on problem (12) for different values of λ and `. The estimated

representations of the data (rows of resulting H which are reshaped into 92 × 112 images) are shown in

Figure 6. We use the MIP initialization and continuation framework (over 8 values of λ) in Section 4.2.

In the rest of this section, we discuss the connections between the robustness theory we developed and our

numerical results.

We first explore the difference between AA and basic NMF. By comparing Figures 6 (a), (b), we deduce

that as λ is increased, the resulting factors appear to become more similar to human faces—making it easier

to recognize the people in the dataset. As λ is decreased, the results become more abstract and the images

do not resemble human faces anymore. Considering that the theory we developed in Section 3 holds under

mild assumptions, the representation achieved from Problem (12) with λ = 0.4 more likely corresponds to a

robust solution—that is, the solution is closer to the underlying representation (we do not expect λ = 0 to

result in robustness). Intuitively, we expect the underlying model that produces the face images to resemble

the people in the dataset—this suggests that the solution achieved by λ = 0.4 is more robust.

As discussed by Hoyer (2004), adding sparsity to NMF produces part-based representations of the data.

This can be also seen in our experimental results in Figure 6. By forcing the solution H to be sparse, we

notice that each set of solutions (in Figures 6 (c), (d)) includes two groups of factors. The first group consists

of complete faces (columns and rows 2 to 4 in each set) and the second group consists of parts of a face

(the border factors). In fact, this can be interpreted as each face being a combination of an overall shape

of a human face and additional details arising from different parts of the face. The factors that contain a

complete face in Figures 6 (c), (d) represent the overall shape of a human face, while other factors represent

different parts of a face, like the forehead, cheeks, eyes and also the background of images. Once again,

considering that our theoretical development in Section 3 is valid in the sparse NMF case, we expect the

factors recovered by λ = 0.4 to be more robust. Our hypothesis is the solution with λ = 0.4 is more robust

as factors in Figure 6 (d) appear to more closely resemble human faces (compare the central columns in

Figures 6 (c), (d)).
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Figure 6: The resulting face images in Section 5.2: (a) λ = 0, `/k = 10304 (b) λ = .4, `/k = 10304 (c) λ = 0,

`/k = 4000 (d) λ = .4, `/k = 4000

5.3 Cancer Gene Expression Example (Ramaswamy et al., 2001)

It is well-known that a primary goal of AA is to find a few representative points for a collection of data points.

These representative points are useful in cluster analysis, where data points are put into a few clusters based

on a suitable similarity/dissimilarity measure. In AA, each archetype (i.e., a row of H) can be considered as

a cluster center and data points are assigned to clusters based on their proximity to different archetypes. As

a result, each row of matrix H (or each archetype) is considered as a center and each data point is assigned

to the closest row of H (Mørup and Hansen, 2012).

An important application area of sparse NMF for clustering is in computational biology. Specifically, this

problem has been considered by Kim and Park (2007) where the authors provide biological interpretations

of sparsity in the context of NMF and do an extensive analysis of sparse NMF for microarray data. Here,

we are interested in the clustering performance of our method. To this end, we consider a real dataset: the

14 Cancers Gene Expression dataset (Ramaswamy et al., 2001). This dataset consists of gene expression
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data of 198 samples and 14 different types of tumors. There are 16,063 features in the dataset, however,

the data is not nonnegative. Therefore, we use a trick introduced by Kim and Tidor (2003) to transform

the data: each feature is divided into two new features where one contains nonnegative coordinates (and

zero elsewhere) and the other one contains the absolute value of negative coordinates (and zero elsewhere).

Consequently, this leads to 32,126 nonnegative features—the data matrix is given by X ∈ R198×32126
≥0 . The

rank of the factorization is 14, the number of different types of tumors in the dataset. The i-th data point

(i ∈ [198]) belongs to the cluster ji:

ji = argmin
j∈[14]

‖Xi,. −Hj,.‖2

whereH is the resulting matrix of archetypes. To compare the performance of different algorithms (discussed

below), we use two metrics, Purity and Entropy (Kim and Park, 2008). Let for i ∈ [198], j∗i ∈ [14] denote

the true cluster of point i and ji ∈ [14] denote the estimated cluster for the same point. Let mu
r be the

number of samples that belong to the true cluster u but are estimated to be in cluster r. Equivalently,

mu
r = |{i ∈ [m] : j∗i = u, ji = r}|.

The metrics Purity and Entropy are defined as

Purity =
1

m

k∑
r=1

max
u∈[k]

mu
r and Entropy = − 1

m log2 k

k∑
r=1

k∑
u=1

mu
r log2

mu
r

mr

where mr =
∑k
u=1m

u
r . A larger value of Purity and a smaller value of Entropy imply a better clustering

performance.

The results of clustering performance of different algorithms is reported in Table 2. SAA is our proposed

framework (we use continuation over 8 values of λ from 30 to 1 as in Section 4.2), AA is the algorithm

proposed by Javadi and Montanari (2019) which does not enforce any sparsity. KP and PP are as introduced

before. We also include Kmeans in our experiments as a baseline for the clustering performance. Hoyer did

not provide interpretable results on this dataset and therefore is not included in the table. As it can be

seen, among algorithms that enforce sparsity, SAA performs the best in terms of clustering. In fact, SAA is

at par with Kmeans, while providing a solution that is two times more sparse. AA has the best clustering

performance, however, it fails to provide a sparse solution. Other algorithms provide sparse solutions, but

their clustering performance is not as good as SAA. In our experiments in this section, all NMF-based

methods terminated in less than a minute.

SAA AA Kmeans KP PP
‖H‖0/kn 0.350 0.649 0.710 0.365 0.385

Purity 0.660 0.868 0.654 0.446 0.477
Entropy 0.361 0.216 0.375 0.723 0.690

Table 2: Performance of different algorithms for the gene expression dataset in Section 5.3
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5.4 Scene Categorization dataset (Xiao et al., 2010)

Finally, we consider another popular application of AA arising in the context of image categorization (Abrol

and Sharma, 2020; Chen et al., 2014). Given a collection of photos, AA can be used to identify a small subset

of photos as their representatives (archetypes). Based on the mathematical formulation of AA, archetypes

are expected to represent extreme scenes and objects present in the data, for instance, they should categorize

different indoor/outdoor settings or city/nature scenes.

As far as we can tell, NMF with an explicit `0 regularization has not been used before to address the prob-

lem of scene categorization. However, in view of Theorem 3, we do not anticipate that additional sparsity

will reduce the robustness properties of the estimator if the underlying matrix of archetypes is sparse. In

addition, a sparse model may be desirable in terms of compressed storage. We apply SAA on the Scene

Categorization dataset (Xiao et al., 2010). We select 12 different scenes that consist of different indoor and

outdoor settings (2617 images in total). These scenes are toll plaza, hospital exterior, harbor, electricity

station, underwater, youth hostel, valley, ski resort, football stadium, residential neighborhood, vineyard and

iceberg. We extract and concatenate GIST and HOG features (Xiao et al., 2010) and implement different

sparse NMF algorithms on the data with k = 12. As estimated archetypes in the feature space cannot be

visualized, we use the closest data point to each archetype to visualize the result.

First, we consider AA and SAA with `/kn = 0.5 (we use the continuation framework in Section 4.2 and

choose the value of λ that maximizes purity). The resulting visualization of archetypes for these two cases is

the same. The visualization of estimated archetypes is shown in Figure 7 (a). We observe that the resulting

archetypes appear to span the 12 different scenes in the dataset. Figure 7 (b) shows the resulting visual-

ization for PP where the resulting archetypes matrix is set to have at most 0.65nk nonzeros. As it can be

seen, PP can identify 10 distinct scenes and chooses the electricity station and the toll plaza twice. Figure 7

(c) shows the results for KP with the same sparsity as PP. This algorithm only identifies 5 distinct scenes.

In summary, our SAA algorithm works as well as AA in terms of identifying different scenes while provid-

ing a sparse solution. This shows a sparse solution can be achieved without losing categorization performance.

6 Conclusion

In this paper, we consider the problem of sparse NMF with archetypal regularization where the goal is to

represent a collection of data points as nonnegative linear combinations of a few nonnegative sparse factors.

Javadi and Montanari (2019) recently showed that NMF (without sparsity) with archetypal regularization

leads to robustness—factors learnt from noisy data are close to the underlying factors that generate the

noiseless data. We generalize the notion of robustness to (a) strong robustness that implies each estimated

archetype is close to the underlying archetypes and (b) weak robustness that implies there exists at least one

recovered archetype that is close to the underlying archetypes. Javadi and Montanari (2019) is an instance

of the notion of weak robustness presented herein. We show that under minimal assumptions, robustness

in sparse NMF can be achieved by considering a sparsity constrained regularized AA problem, even if the

underlying archetypes are not sparse. We present a block coordinate algorithm to get a good solution to

the sparse AA problem and also an initialization framework using mixed integer programming that leads to

better numerical results. We also present a local search algorithm that improves the quality of the solution of
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SAA (this paper)

PP (Peharz and Pernkopf, 2012)

KP (Kim and Park, 2007)

Figure 7: The visualization of archetypes achieved by different algorithm for the scene categorization data in Section

5.4: (a) SAA (b) PP (c) KP.

25



our block coordinate algorithm. Numerical experiments on synthetic and real datasets shed further insights

into the theoretical developments pursued in this paper.
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Proofs and Technical Details

A Additional Notation

We define

D̃(X,Y ) =

#row(X)∑
i=1

√
D(Xi,.,Y ) and L̃(X,Y ) =

#row(X)∑
i=1

min
j∈[#row(Y )]

‖Xi,. − Y j,.‖2. (34)

For a set S, Sc denotes the complement of the set. We use Ik to denote the identity matrix of size k.

B Technical Details of The Toy Example

For Figure 1 Panel (a), we let

H0 =

0.15 0.15

0.1 0.7

0.7 0.1


and produce 50 data points. To do so, each entry ofW 0 is drawn from an independent uniform distribution in

[0, 1] and each row is normalized to sum to one. The noiseless data matrix is X0 = W 0H0 and we add three

rows of H0 to this to a obtain separable problem. In this case, we can see D(X0,H0) = D(H0,X0) = 0

which is the exact AA solution of Cutler and Breiman (1994). The red convex hull is Conv(H0). Let

H1 =

0.05 0.05

1 0.1

0.1 1

 .
The black convex hull is Conv(H1) for which we have D(X0,H1) = 0 but D(H1,X0) > 0.

For Figure 1 Panel (b), the data X is produced by X = X0 + Z where Z has zero-mean iid normal

coordinates with variance of 0.1. In this case, we have for every data point i, D(Xi,.,H0) ≤ 0.1 making

H0 a feasible solution for the regularized AA of Javadi and Montanari (2019) and as D(H0,X) = 0, this

is the solution of the regularized AA problem (the red convex hull). However, we have D(X,H1) = 0 and

D(H1,X) > 0, so the black convex hull is not an optimal solution.

Finally, let

H2 =

 0 0

0 0.8

0.8 0

 .
In Figure 1 Panel (c), the red convex hull is Conv(H2) and the black one is Conv(H0). We have ‖H2‖0 = 2

and ‖H0‖0 = 6 so the black convex hull is not sparse. In addition, among all solutions that have ‖H‖0 = 2

and D(X0,H) = 0, the quantity D(H ,X0) is minimized for the red convex hull, making it the sparse

archetypal solution.
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C Technical Lemmas

Lemma 1. For any two matrices X ∈ Rm1×n and Y ∈ Rm2×n, we have:

1
√
m1

D̃(X,Y ) ≤ D(X,Y )1/2 ≤ D̃(X,Y ) (35)

1
√
m1
L̃(X,Y ) ≤ L(X,Y )1/2 ≤ L̃(X,Y ), (36)

where, recall D̃ and L̃ are as defined in (34).

Proof. Define the vector u ∈ Rm1 such that ui =
√
D(Xi,.,Y ). Note that

1
√
m1

D̃(X,Y ) =
1
√
m1
‖u‖1 ≤ ‖u‖2 = D(X,Y )1/2 ≤ ‖u‖1 = D̃(X,Y )

which establishes (35). The proof of (36) is similar.

Lemma 2. If D(A1,A2) ≤ D(B1,B2) where A1,A2 ∈ Rm×n,B1,B2 ∈ Rk×n , we have

D̃(A1,A2) ≤
√
mD̃(B1,B2).

Proof. We make use of Lemma 1. The proof follows from:

D̃(A1,A2) ≤
√
mD(A1,A2)1/2 ≤

√
mD(B1,B2)1/2 ≤

√
mD̃(B1,B2).

Lemma 3. Suppose X ∈ Rm1×n,Y ∈ Rm2×n,Z ∈ Rm3×n, then

D̃(X,Z) ≤ L̃(X,Y ) +m1D̃(Y ,Z).

Proof. Fix i ∈ [m1]. For any u ∈ Rn, we have√
D(Xi,.,Z) = min

v∈Conv(Z)
‖Xi,. − v‖2

≤ min
v∈Conv(Z)

{‖Xi,. − u‖2 + ‖u− v‖2} (37)

= ‖Xi,. − u‖2 + min
v∈Conv(Z)

‖u− v‖2.

Let

u = argmin
p∈{Y j,.:j∈[#row(Y )]}

‖Xi,. − p‖2.

As a result, noting that D̃(Y ,Z) =
∑m2

j=1

√
D(Y j,.,Z) and u is a row of Y ,

min
v∈Conv(Z)

‖u− v‖2 =
√
D(u,Z) ≤

m2∑
j=1

√
D(Y j,.,Z) = D̃(Y ,Z). (38)
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Using the definition of u and (38) we can bound the rhs in (37) to get:√
D(Xi,.,Z) ≤ min

j∈m2

‖Xi,. − Y j,.‖2 + D̃(Y ,Z).

By summing the above over i, we have:

D̃(X,Z) =

m1∑
i=1

√
D(Xi,.,Z)

≤
m1∑
i=1

min
j∈m2

‖Xi,. − Y j,.‖2 +

m1∑
i=1

D̃(Y ,Z)

= L̃(X,Y ) +m1D̃(Y ,Z)

which completes the proof.

Lemma 4 (Javadi and Montanari (2019)). If A,B ∈ Rm×n, m ≤ n are matrices with linearly independent

rows, we have

L(A,B)1/2 ≤ 2κ(A)D(A,B)1/2 + (1 +
√

2)
√
mD(B,A)1/2

where recall that κ(H) := σmax(H)/σmin(H) denotes the condition number of H.

Lemma 5. Suppose H ∈ Rk×n, X0 ∈ Rm×n and Z ∈ Rm×n is such that maxi∈[m] ‖Zi,.‖2 ≤ δ. Let

X = X0 +Z. We have

D̃(H ,X) ≤ D̃(H ,X0) + kδ (39)

D̃(X,H) ≤ D̃(X0,H) +mδ. (40)

Proof. Let us denote the m-dimensional unit simplex by:

∆m = {α ∈ Rm :
m∑
i=1

αi = 1,αi ≥ 0}.
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We have for any i ∈ [k]

D̃(Hi,.,X) = min
α∈∆m

‖Hi,. −
m∑
j=1

αjXj,.‖2

= min
α∈∆m

‖Hi,. −
m∑
j=1

αjX
0
j,. −

m∑
j=1

αjZj,.‖2

≤ min
α∈∆m

‖Hi,. −
m∑
j=1

αjX
0
j,.‖2 + ‖

m∑
j=1

αjZj,.‖2


≤ min
α∈∆m

‖Hi,. −
m∑
j=1

αjX
0
j,.‖2 +

m∑
j=1

αj‖Zj,.‖2


≤ min
α∈∆m

‖Hi,. −
m∑
j=1

αjX
0
j,.‖2 + (

m∑
j=1

αj) max
j∈[m]

‖Zj,.‖2


≤ min
α∈∆m

‖Hi,. −
m∑
j=1

αjX
0
j,.‖2 + δ

= D̃(Hi,.,X0) + δ.

Using the above bound, we have:

D̃(H ,X) =
k∑
i=1

D̃(Hi,.,X) ≤
k∑
i=1

D̃(Hi,.,X0) + kδ = D̃(H ,X0) + kδ

which establishes (39). We now show (40). For a fixed i ∈ [m], we have

D̃(Xi,.,H) = min
α∈∆k

‖Xi,. −
k∑
j=1

αjHj,.‖2

= min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,. +Zi,.‖2

≤ min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖2 + ‖Zi,.‖2

≤ min
α∈∆k

‖X0
i,. −

k∑
j=1

αjHj,.‖2 + δ

= D̃(X0
i,.,H) + δ.

By summing the above bound over i, we arrive at (40).

Lemma 6. Suppose H ∈ Rk×n, k ≤ n, has full row rank and X ∈ Rm×n is such that Conv(X) ⊆ Conv(H).
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Let X̃ ∈ Rk×n be a matrix with its i-row given by:

X̃i,. = argmin
u∈{Xj,.:j∈[m]}

‖u−Hi,.‖2 (41)

for all i ∈ [k]. Then,

L(H ,X)1/2 ≤ 2kκ(H)D(H , X̃)1/2. (42)

Proof. Fix any ε > 0. There is a matrix Zε ∈ Rk×n such that ‖Zε‖F ≤ ε (therefore, maxi∈[m] ‖Zεi,.‖2 ≤ ε)

and X̃ +Zε has full row rank. We have for any i ∈ [k]

L̃(Hi,.,X) = L̃(Hi,., X̃)

= min
j∈[k]
‖Hi,. − X̃j,.‖2

= min
j∈[k]
‖Hi,. − X̃j,. + (Zε)j,. − (Zε)j,.‖2

≤ min
j∈[k]
‖Hi,. − X̃j,. − (Zε)j,.‖2 + ‖(Zε)j,.‖2

≤ L̃(Hi,., X̃ +Zε) + ε. (43)

Note that we have the following inequalities:

L(H ,X)1/2
(a)

≤ L̃(H ,X)

=

k∑
i=1

L̃(Hi,.,X)

(b)

≤ L̃(H , X̃ +Zε) + kε

(c)

≤
√
kL(H , X̃ +Zε)

1/2 + kε, (44)

where, (a), (c) are results of Lemma 1 and (b) is a result of (43). In addition, by Lemmas 1 and 5, we have:

D(H , X̃ +Zε)
1/2 ≤ D̃(H , X̃ +Zε) ≤ D̃(H , X̃) + kε (45)

and

D(X̃ +Zε,H)1/2 ≤ D̃(X̃ +Zε,H) ≤ D̃(X̃,H) +mε = mε, (46)

where the last equality in (46) follows from the fact that D̃(X̃,H) = 0 (as Conv(X) ⊆ Conv(H)).

Starting with (44), we have

L(H ,X)1/2 ≤
√
kL(H , X̃ +Zε)

1/2 + kε (47)

≤ 2
√
kκ(H)D(H , X̃ +Zε)

1/2 + k(1 +
√

2)D(X̃ +Zε,H)1/2 + kε (48)

≤ 2
√
kκ(H)D̃(H , X̃) + ε(k +mk(1 +

√
2) + 2

√
k3κ(H)) (49)

≤ 2kκ(H)D(H , X̃)1/2 + ε(k +mk(1 +
√

2) + 2
√
k3κ(H)) (50)
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where above, inequality (48) is a result of Lemma 4; (49) follows from (45) and (46). Finally, inequality (50)

is a result of Lemma 1. As inequality (50) is true for any ε > 0, taking the limit ε ↓ 0+, we arrive at (42).

D Proofs of Main Results

D.1 Proof of Theorem 1

Proof. For any i, let us denote:

ji = argmin
j∈[k]

‖Hi,. −H0
j,.‖2.

We have

L(H0,H) =
k∑
i=1

min
j∈[k]
‖H0

i,. −Hj,.‖22

≤
k∑
i=1

‖H0
i,. −Hi,.‖22

=

k∑
i=1

‖H0
i,. −H

0
ji,. +H0

ji,. −Hi,.‖22

≤ 2
k∑
i=1

‖H0
i,. −H

0
ji,.‖

2
2 + 2

k∑
i=1

‖H0
ji,. −Hi,.‖22

≤ 2kb(H0)2 + 2L(H ,H0),

where, the last line follows from the definition of b(H) in (6).

D.2 Proof of Theorem 2

Proof. For any given matrices H and H0, there exists a matrix U1 ∈ {0, 1}k×k such that it has exactly one

1 in each row, such that

L(H ,H0) = ‖H −U1H0‖2F . (51)

In fact, for any i ∈ [k], we have U1
i,ji = 1 where

ji = argmin
j∈[k]

‖Hi,. −H0
j,.‖2.

Noting the noiseless data X0 is given as X0 = W 0H0 where W 0 ≥ 0 and W 01k = 1m, one has

D(X0,H)1/2 = min
W≥0

W1k=1m

‖X0 −WH‖F ≤ ‖X0 −W 0H‖F

= ‖W 0H0 −W 0(H −U1H0 +U1H0)‖F
= ‖W 0(Ik −U1)H0 +W 0(H −U1H0)‖F
≤ ‖W 0(Ik −U1)H0‖F + ‖W 0(H −U1H0)‖F . (52)
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Note that each row of W 0 sums to 1 and is nonnegative. Therefore, for each row, ‖W 0
i,.‖22 ≤ 1 and

‖W 0‖2F =
m∑
i=1

‖W 0
i,.‖22 ≤ m. (53)

Using (52), we have the following inequalities:

D(X0,H)1/2 ≤ ‖W 0(Ik −U1)H0‖F + ‖W 0(H −U1H0)‖F
≤
√
m‖H0‖F ‖Ik −U1‖F +

√
m‖H −U1H0‖F

≤ k
√
m‖H0‖F +

√
mL(H ,H0)1/2

where the second inequality makes use of (53); and the last inequality uses (51) and ‖Ik −U1‖F ≤ k (since,

Ik −U1 is a matrix with every entry between -1 and 1).

Similar to U1 in the definition (51), we can consider U2 ∈ {0, 1}k×k such that

L(H0,H) = ‖H0 −U2H‖2F . (54)

Since U21k = 1k; and using the fact that every row of W 0 sums to one, we have: W 0U21k = 1m and

W 0U2 ∈ {W : W ≥ 0,W1k = 1m}. (55)

Note that we have the following:

D(X0,H)1/2 = min
W≥0

W1k=1m

‖X0 −WH‖F
(a)

≤ ‖X0 −W 0U2H‖F

= ‖W 0H0 −W 0U2H‖F
(b)

≤
√
m‖H0 −U2H‖F

(c)
=
√
mL(H0,H)1/2,

where, (a) uses feasibility condition (55), (b) is due to (53) and (c) uses (54).
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D.3 Proof of Theorem 3

Note that the constants in this theorem are listed below.

c1 =4
√
k3κ2(H0) + (1 +

√
2)
√
k3

c2 =4mkκ(H0) + (1 +
√

2)
√
k(k +

√
k3)

c3 =2
√
m3kκ(H0) + (1 +

√
2)k2

c4 =k + 2
√
k3κ(H0)

c5 =(k +
√
k3) + 2mk

c6 =
√
k3 + k

√
m3

c7 =
σmin(H0)

6
√
k

c8 =7kκ(H0) + 2(1 +
√

2)k2κ(H0)

c9 =7κ(H0)(k +
√
k3) + 2(1 +

√
2)
√
k3m

c10 =7κ(H0)
√
k3 + (1 +

√
2)
√
k3
√
m3.

(56)

We first present Lemmas 7 and 8 useful for the proof of Theorem 3.

Lemma 7. Under the assumptions of Theorem 3, P`(H0) is feasible for problem (3).

Proof. By our model-setup, there is a nonnegative W 0 with W 01k = 1m such that X0 = W 0H0. For

i ∈ [m], let

vi = W 0
i,.P`(H0) ∈ Conv(P`(H0)).

Using the definition of vi above, we have

D(X0, P`(H0)) =

m∑
i=1

min
u∈Conv(P`(H0))

‖X0
i,. − u‖22 ≤

m∑
i=1

‖X0
i,. − vi‖22

= ‖X0 −W 0P`(H0)‖2F . (57)

For i ∈ [m], we have:

D(X0
i,., P`(H0))1/2

(a)

≤ D(X0, P`(H0))1/2

(b)

≤ ‖X0 −W 0P`(H0)‖F
= ‖W 0(H0 − P`(H0))‖F
= ‖W 0P

⊥
` (H0)‖F ≤ ‖W 0‖F ‖P⊥` (H0)‖F (58)

where (a) uses the definition of D(X,H) and (b) is a result of (57). By (53) and (58), we have:

D(X0
i,., P`(H0))1/2 ≤

√
m‖P⊥` (H0)‖F = β. (59)

In what follows, for notational convenience, we denote H = P`(H0). Note that H satisfies the sparsity
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constraint in (3). We have the following:

D(Xi,.,H)1/2 ≤ D̃(X0
i,. +Zi,.,H) ≤ D̃(X0

i,.,H) + ‖Zi,.‖2
≤ D(X0

i,.,H)1/2 + max
i
‖Zi,.‖2︸ ︷︷ ︸
δ

≤
√
m‖P⊥` (H0)‖F + δ = β + δ. (60)

where the first inequality is a result of Lemma 1 and the fact X = X0 + Z; the second inequality is a

result of Lemma 5 (we use (40) with m = 1); and the third inequality uses (59). Bound (60) shows that

H = P`(H0) is a feasible solution for problem (3).

Lemma 8. Under the assumptions of Theorem 3, one has

D(Ĥ,H0)1/2 ≤
√
kD(H0, X̃0)1/2 +

√
k3/mβ + (k +

√
k3)δ (61)

D(H0, Ĥ)1/2 ≤2
√
k3κ(H0)D(H0, X̃0)1/2 + 2mkδ +mkβ.(k +

√
k3)δ. (62)

Proof. We first prove (61). To this end, note that Conv(X0) ⊆ Conv(H0), so

D(Ĥ,H0)1/2 ≤ D(Ĥ,X0)1/2 ≤ D̃(Ĥ,X0)

where the second inequality is a result of Lemma 1. In addition, as Ĥ is the optimal solution of (3) and

P`(H0) is feasible for problem (3) (by Lemma 7), we have D(Ĥ,X) ≤ D(P`(H0),X) and by Lemma 2,

D̃(Ĥ,X) ≤
√
kD̃(P`(H0),X). (63)

Therefore, one can write

D(Ĥ,H0)1/2
(a)

≤ D̃(Ĥ,X0) = D̃(Ĥ,X −Z)
(b)

≤ D̃(Ĥ,X) + kδ

(c)

≤
√
kD̃(P`(H0),X) + kδ =

√
kD̃(H0 − P⊥` (H0),X) + kδ

(d)

≤
√
kD̃(H0,X) +

√
k3 max

j∈[k]
‖P⊥` (H0)j,.‖2 + kδ

≤
√
kD̃(H0,X) +

√
k3‖P⊥` (H0)‖F + kδ

≤
√
kD̃(H0,X) +

√
k3/mβ + kδ

(e)

≤
√
kD̃(H0,X0) +

√
k3/mβ + (k +

√
k3)δ

(f)

≤
√
kD̃(H0, X̃0) +

√
k3/mβ + (k +

√
k3)δ

where (a) is a result of Lemma 1, (b), (d), (e) are results of Lemma 5, (c) is a result of (63), and (f) is true

as
√
kD̃(H0,X0) ≤

√
kD̃(H0, X̃0) because Conv(X̃0) ⊆ Conv(X0). This establishes (61).
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We now proceed to show (62). To this end, using Lemma 3,

D(H0, Ĥ)1/2 ≤ D̃(H0, Ĥ) ≤ L̃(H0,X0) + kD̃(X0, Ĥ). (64)

Note that by Lemma 6,

L̃(H0,X0) ≤ 2
√
k3κ(H0)D(H0, X̃0)1/2. (65)

In addition,

D̃(X0, Ĥ) = D̃(X −Z, Ĥ)
(a)

≤ D̃(X, Ĥ) +mδ

(b)

≤
√
mD(X, Ĥ)1/2 +mδ

(c)

≤
√
m

√√√√ m∑
i=1

(δ + β)2 +mδ

≤ m(δ + β) +mδ = 2mδ +mβ (66)

where (a) is a result of Lemma 5, (b) is a result of Lemma 1 and (c) is due to the constraint D(Xi,.,H)1/2 ≤
δ + β in Problem (3). Therefore, by (64), (65) and (66),

D(H0, Ĥ)1/2 ≤ 2
√
k3κ(H0)D(H0, X̃0)1/2 + 2mkδ +mkβ

which establishes (62).

Proof of Theorem 3. Part 1) If Ĥ has linearly independent rows, the desired result is achieved by sub-

stituting (61) and (62) into Lemma 4 with A = H0 and B = Ĥ. If Ĥ does not have linearly independent

rows, for ε > 0 there exists Ĥε with linearly independent rows such that ‖Ĥε − Ĥ‖F ≤ ε. Following a path

similar to the proof of Lemma 6 and taking the limit ε ↓ 0+ the desired result is achieved.

Part 2) By summing (61) and (62),

D(Ĥ,H0)1/2 +D(H0, Ĥ)1/2 ≤ c4D(H0, X̃0)1/2 + c5 max
i∈[m]

‖Zi,.‖2 + c6‖P⊥` (H0)‖F

(a)

≤ σmin(H0)

6
√
k

where (a) is a result of condition (10). As a result,

D(Ĥ,H0)1/2 +D(H0, Ĥ)1/2 ≤ σmin(H0)

6
√
k

.

Therefore, condition (B.42) of Javadi and Montanari (2019) holds and by Lemma B.3 of Javadi and Montanari

(2019), we have

κ(Ĥ) ≤ 7

2
κ(H0), (67)

which shows Ĥ has linearly independent rows. The rest of the proof is achieved by substituting (67), (61)

and (62) into Lemma 4 with A = Ĥ and B = H0.
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D.4 Proof of Proposition 1

The constants in this proposition are listed below:

c1λ =
(

2κ(H0)
[
k
√
m
√
m+ λk2 +mk

]
+ (1 +

√
2)
√
k
[√

mk/λ+ k3 + k
])

c2λ =
(

7κ(H0)
[√

mk/λ+ k3 + k
]

+ (1 +
√

2)
√
k
[
k
√
m
√
m+ λk2 +mk

])
c3λ =

[
(1 +m)k + k

√
m
√
m+ λk2 +

√
mk/λ+ k3

]
.

(68)

Lemma 9. Under the assumptions of Proposition 1, one has

D(Ĥλ,H0)1/2 ≤
√
k

√
mδ2

λ
+ k2δ2 + kδ, (69)

D(H0, Ĥλ)1/2 ≤ k
√
m
√
mδ2 + λk2δ2 +mkδ. (70)

Proof. Recall that in this proposition, we assume P`(H0) = H0 (β = 0) and

D(H0, X̃0) = D̃(H0,X0) = 0. (71)

From (60), we have

D(X,H0) =
m∑
i=1

D(Xi,.,H0) ≤ mδ2. (72)

In addition, we have

D(H0,X)1/2
(a)

≤ D̃(H0,X) = D̃(H0,X0 +Z)
(b)

≤ D̃(H0,X0) + kδ
(c)
= kδ (73)

where (a) is due to Lemma 1, (b) is due to Lemma 5 and (c) is true because of (71). Therefore, from (73)

we have:

D(H0,X) ≤ [D̃(H0,X)]2 ≤ k2δ2.

Let u = mδ2 and v = k2δ2. Note that as Ĥλ is the optimal solution of the penalized problem (12), by (72)

and (73) we have

D(X, Ĥλ) + λD(Ĥλ,X) ≤ u+ λv. (74)

Note that we have the following:

D(Ĥλ,H0)1/2
(a)

≤ D(Ĥλ,X0)1/2
(b)

≤ D̃(Ĥλ,X0)

= D̃(Ĥλ,X −Z)
(c)

≤ D̃(Ĥλ,X) + kδ

(d)

≤
√
kD(Ĥλ,X)1/2 + kδ

(e)

≤
√
k

√
u

λ
+ v + kδ, (75)

where (a) is because Conv(X0) ⊆ Conv(H0), (b), (d) are due to Lemma 1, (c) is due to Lemma 5; and in

(e) we use the observation D(Ĥλ,X) ≤ u/λ+ v (which follows from (74)). This proves (69).
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We will now prove (70). We obtain the following set of inequalities:

D(H0, Ĥλ)1/2
(a)

≤ L̃(H0,X0) + kD̃(X0, Ĥ)

(b)

≤ 2
√
k3κ(H0)D(H0, X̃0)1/2 + kD̃(X0, Ĥ)

(c)
= kD̃(X0, Ĥλ)

(d)

≤ kD̃(X, Ĥλ) +mkδ

(e)

≤ k
√
mD(X, Ĥλ)1/2 +mkδ

(f)

≤ k
√
m
√
u+ λv +mkδ (76)

where (a) is a result of (64), (b) is due to (65), (c) is due to (71), (d) is due to Lemma 5 with X0 = X −Z,

(e) is true by Lemma 1; and (f) is a result of (74). This establishes (70).

Proof of Proposition 1. Part 1) If Ĥλ has linearly independent rows, this part of the proposition is a

direct result of (69) and (70) together with Lemma 4 with A = H0 and B = Ĥλ. If Ĥλ does not have

linearly independent rows, a perturbation argument similar to the proof of Theorem 3 Part 1 suffices.

Part 2) Similar to the proof of Theorem 3, condition (14) guarantees κ(Ĥλ) ≤ (7/2)κ(H0). The rest of the

proof follows from (69) and (70) together with Lemma 4 with A = Ĥλ and B = H0.

D.5 Proof of Theorem 4

Proof. Part 1) The proof of convergence is based on Theorem 2 of Xu and Yin (2017). Following Xu and

Yin (2017), we define the maximum and minimum of Lipschitz constants across three blocks (H ,W , W̃ ) at

iteration j as

Lj = max{L1(W j), L2(Hj), L3(X)} and `j = min{L1(W j), L2(Hj), L3(X)}

respectively. By substituting the values of L1(W j), L2(Hj), L3(X),

Lj = max{2(‖W T
jW j‖2 + λ), 2 max{‖HjH

T
j ‖2, ε}, 2λ‖XX

T ‖2} (77)

`j = min{2(‖W T
jW j‖2 + λ), 2 max{‖HjH

T
j ‖2, ε}, 2λ‖XX

T ‖2}. (78)

As W j , W̃ j are simplex matrices and bounded, and considering the cost function Ψ(., ., .) is bounded from

above, Hj needs to be bounded. Consequently, Lj is uniformly bounded from above. In addition, by the

assumption λ > 0, `j is uniformly bounded away from zero. As a result, the Lipschitz constants across three

blocks are uniformly bounded from above and bounded away from zero from below—a condition of Theorem

2 of Xu and Yin (2017). Other conditions of Theorem 2 of Xu and Yin (2017) are satisfied and therefore,

this implies the convergence of Algorithm 1.

Part 2) Let

T j = max{0,Hj − [1/L1(W j)](−W j
T [X −W jHj ] + λ[Hj − W̃ jX])}. (79)
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Note that T j → T where T is defined in (20). In addition by the assumption of the second part of the

theorem on T , P`(T ) is unique. First, we show that P`(T j)→ P`(T ). Let us consider two cases:

1. ‖T ‖0 > `: In this case, there exists i∗ ≥ 1 such that the support of P`(T i) and P`(T ) are the same for

i ≥ i∗. Therefore, for i ≥ i∗, for (r, u) ∈ S(P`(T i)) = S(P`(T )) [recall that S(T ) is the support of T ],

P`(T i)r,u = T ir,u → T r,u = P`(T )r,u

and for (r, u) ∈ S(P`(T i))
c = S(P`(T ))c,

P`(T i)r,u = 0 = P`(T )r,u.

2. ‖T ‖0 ≤ `: In this case, S(T ) = S(P`(T )) and there exists i∗ ≥ 1 such that for i ≥ i∗, S(T ) ⊆ S(P`(T i)).

As a result, for i ≥ i∗, for (r, u) ∈ S(T ),

P`(T i)r,u = T ir,u → T r,u = P`(T )r,u

and for (r, u) ∈ S(T )c,

P`(T i)r,u ∈ {0,T ir,u}

and as T ir,u → T r,u = 0,

P`(T i)r,u → P`(T )r,u = 0.

In addition, note that for any bounded convex set C ⊆ Rm, if xi → x∗, PC(xi)→ PC(x∗) where PC is the

projection onto C. This along with the fact that P`(T j)→ P`(T ), is sufficient to show stationarity:

H∗ = lim
j→∞

Hj+1

(a)
= lim

j→∞
P` (T j)

(b)
= P` (T )

= P`(max{0,H∗ − [1/L1(W ∗)](−W ∗T [X −W ∗H∗] + λ[H∗ − W̃ ∗
X])})

= argmin
H≥0
‖H‖0≤`

∥∥∥∥H − (H∗ − 1

2L1(W ∗)
∇HΨ(H∗,W ∗, W̃

∗
)

)∥∥∥∥2

F

where (a) is by the definition of the iterate Hj+1 and (b) was proved above, showing stationarity for the

block H.

D.6 Proof of Proposition 2

Proof. Let φ(H , W̃ ) = ‖H − W̃X‖2F be the objective function of (21). Suppose H∗, W̃
∗

are optimal

solutions to problem (21) and let H ′ = 0. Suppose j is such that ‖Xj,.‖2 = minu∈[m] ‖Xu,.‖2 and ej ∈ Rm

is the vector with all coordinates equal to zero except coordinate j equal to one. Let W̃
′

= 1ke
T
j . Hence,

W̃
′
X = 1kXj,.. Note that H ′, W̃

′
are feasible for (21).
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We prove the statement of this proposition by the method of contradiction. Suppose there exists i0 ∈ [k]

such that

‖H∗i0,.‖2 > max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2. (80)

Note that for any v ∈ Conv(X), there exists α1, · · · , αm ≥ 0 such that they sum to one and v =
∑m
i=1 αiXi,..

As a result,

‖v‖2 = ‖
m∑
i=1

αiXi,.‖2 ≤
m∑
i=1

αi‖Xi,.‖2 ≤
m∑
i=1

αi max
u∈[m]

‖Xu,.‖2 = max
u∈[m]

‖Xu,.‖2

which when used with (80) leads to:

‖H∗i0,.‖2 ≥ ‖v‖2. (81)

One has

k min
u∈[m]

‖Xu,.‖22
(a)
= φ(H ′, W̃

′
)

(b)

≥ φ(H∗, W̃
∗
)

≥ ‖H∗i0,. − W̃ i0,.X‖22
≥ D(H∗i0,.,X) = min

v∈Conv(X)
‖H∗i0,. − v‖

2
2

(c)

≥ min
v∈Conv(X)

|‖H∗i0,.‖2 − ‖v‖2|
2

(d)

≥ |‖H∗i0,.‖2 − max
v∈Conv(X)

‖v‖2|2

= (‖H∗i0,.‖2 − max
u∈[m]

‖Xu,.‖2)2

(e)
> k min

u∈[m]
‖Xu,.‖22,

where (a) is true by definition of H ′, W̃
′
, (b) is due to the optimality of H∗, W̃

∗
, (c) is true as for any two

vectors a, b, ‖a−b‖22 ≥ (‖a‖2−‖b‖2)2, (d) is due to (81) and (e) is because of (80). This is a contradiction.

Hence, for any i ∈ [k],

‖H∗i ‖2 ≤ max
u∈[m]

‖Xu,.‖2 +
√
k min
u∈[m]

‖Xu,.‖2.

D.7 Proof of Proposition 3

Proof. Part 1) The cost function of (24) is jointly convex in H, W̃ ,Z and the feasible set of (24) is convex.

Therefore, F is a marginal minimization of a jointly convex function (w.r.t. H, W̃ ) over a convex set and is

convex (see Section 3.2.5 of Boyd et al. (2004)).
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Part 2) For the second part, note that we can rewrite (24) as:

F (Z) = min
H,W̃ ,U

‖H −U‖2F (82)

s.t. H ≥ 0, W̃ ≥ 0, W̃1m = 1k

Hi,j ≤
√
bZi,j ∀(i, j) ∈ [k]× [n]

U = W̃X.

We start by obtaining the dual problem of (82). Note that by enhanced Slater’s condition (Boyd et al.,

2004), strong duality holds for this problem. The Lagrangian of (82) can be written as

L(H , W̃ ,U ,M ,Λ,µ) =‖H −U‖2F − 〈M1,H〉 − 〈M2, W̃ 〉+ 〈M3,U − W̃X〉

+ 〈µ, W̃1m − 1k〉+ 〈Λ,H −
√
bZ〉

=
[
‖H −U‖2F − 〈M1 −Λ,H〉+ 〈M3,U〉

]
+
[
−〈M2, W̃ 〉 − 〈M3, W̃X〉+ 〈µ, W̃1m〉

]
(83)

+
[
−〈µ,1k〉 − 〈Λ,

√
bZ〉

]
,

where M1,M2,M3,µ,Λ are the corresponding Lagrangian variables. By considering the optimality condi-

tions wrt H,U , W̃ , we achieve

2(H −U) = M1 −Λ, (84)

2(H −U) = M3, (85)

M2 +M3X
T = µ1Tm. (86)

Using (84), (85), (86) in (83), we get the dual of (82):

F (Z) = max
M1,M2,Λ≥0,M3,µ

− 1

4
‖M3‖2F − 〈µ,1k〉 − 〈Λ,

√
bZ〉 (87)

s.t. M2 +M3X
T = µ1Tm

M1 −Λ = M3.

At optimality, note that for (i, j) ∈ [k]×[n], Λi,j = −M3
i,j ifM3

i,j < 0 and otherwise Λi,j = 0 as Λi,j ,Zi,j ≥ 0

and the cost function is higher if Λi,j is smaller. By using Danskin’s Theorem (Bertsekas, 1997), if Λ is the

optimal solution to (87), −
√
bΛ is a subgradient of F . In addition, at optimality, based on KKT conditions,

M3 = 2(H −U) by (85) and U = W̃X by feasibility, completing the proof.
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