Sparse Regression at Scale: Branch-and-Bound rooted in
First-Order Optimization

Hussein Hazimeh*, Rahul Mazumder! and Ali Saab?

Massachusetts Institute of Technology

April, 2021

Abstract

We consider the least squares regression problem, penalized with a combination of the ¢y and
squared /5 penalty functions (a.k.a. ¢yfy regularization). Recent work shows that the resulting
estimators are of key importance in many high-dimensional statistical settings. However, exact
computation of these estimators remains a major challenge. Indeed, modern exact methods,
based on mixed integer programming (MIP), face difficulties when the number of features p ~
10%. In this work, we present a new exact MIP framework for {yly-regularized regression that
can scale to p ~ 107, achieving speedups of at least 5000x, compared to state-of-the-art exact
methods. Unlike recent work, which relies on modern commercial MIP solvers, we design a
specialized nonlinear branch-and-bound (BnB) framework, by critically exploiting the problem
structure. A key distinguishing component in our framework lies in efficiently solving the node
relaxations using a specialized first-order method, based on coordinate descent (CD). Our CD-
based method effectively leverages information across the BnB nodes, through using warm starts,
active sets, and gradient screening. In addition, we design a novel method for obtaining dual
bounds from primal CD solutions, which certifiably works in high dimensions. Experiments
on synthetic and real high-dimensional datasets demonstrate that our framework is not only
significantly faster than the state of the art, but can also deliver certifiably optimal solutions

2004.06152v2 [stat.CO] 14 Apr 2021

.
.

arxiv

to statistically challenging instances that cannot be handled with existing methods. We open

source the implementation through our toolkit LOBnB.

*MIT Operations Research Center. Email: hazimeh@mit.edu
fMIT Sloan School of Management, Operations Research Center and MIT Center for Statistics.

rahulmaz@mit.edu

fAJO. Email: saab@mit.edu

Email:

1 Introduction

We consider the sparse linear regression problem with additional ¢y regularization [13, 32]. A
natural way to impose sparsity in this context is through controlling the ¢y (pseudo) norm of the
estimator, which counts the number of nonzero entries. More concretely, let X € R™*P be the data
matrix, with n samples and p features, and y € R™ be the response vector. We focus on the least
squares problem with a combination of £y and fo regularization:

1
in —|ly — XB|3 + A o181 1

where || 3]|o is defined as the number of nonzero entries in the regression coefficients 8 € RP, and || 3|3
is the squared ¢o-norm of § (also referred to as ridge regularization). The regularization parameters
Ao and Xy are assumed to be specified by the practitioner!. We note that the presence of ridge
regularization (i.e., Ay > 0) can be important from a statistical viewpoint—see for example [31, 39,
32] for further discussions on this matter. Statistical properties of ¢p-based estimators have been
extensively studied in the statistics literature [26, 46, 54, 19, 52, 39]. Specifically, under suitable
assumptions on the underlying data and appropriate choices of tuning parameters, global solutions
of (1) have optimal support recovery properties [52, 23]; and optimal prediction error bounds that do
not depend upon X [46]. Appealing prediction error bounds available from optimal solutions of (1)
for the low-signal regime are discussed in [39]. Such strong guarantees are generally not satisfied
by heuristic solutions to (1)—see [54] for theoretical support and [32] for numerical evidence. From
a practical perspective, the ability to certify the optimality of solutions (e.g., via dual bounds) is
important and can engender trust in mission critical applications such as healthcare.

Despite its appeal, Problem (1) is labeled as NP-Hard [42] and poses computational challenges.
Recently, there has been exciting work in developing Mixed Integer Programming (MIP)-based
approaches to solve (1), e.g., [17, 10, 41, 21, 13, 32, 12, 53, 6]. Specifically, [10] demonstrated that
off-the-shelf MIP solvers can handle problem instances for p up to a thousand. Larger instances
can be handled when g is sufficiently large and the feature correlations are low—for example, see
the approach of [13]; and the method in [20] for the classification variant of (1). The approaches
of [13, 20] rely on commercial MIP solvers such as Gurobi. While these state-of-the-art global
optimization approaches show very promising results, they are still relatively slow for practical
usage [31, 32]. For example, our experiments show that these methods cannot terminate in two
hours for typical instances with p ~ 10%. On the other hand, the fast Lasso solvers, e.g., glmnet [25],
and local optimization methods for (1), such as LOLearn [32], can handle much larger instances,
and they typically terminate in the order of milliseconds to seconds.

Our goal in this paper is to advance the computational methodology for the global optimization
of Problem (1). In particular, we aim to (i) reduce the run time for solving problem instances with
p ~ 10% from hours to seconds, and (ii) scale to larger problem instances with p ~ 107 in reasonable
times (order of minutes to hours). To this end, we propose a specialized nonlinear branch-and-
bound (BnB) framework that does not rely on commercial MIP solvers. We employ a first-order
method, which carefully exploits the problem structure, to solve the node relaxations. This makes
our approach quite different from prior work on global optimization for Problem (1), which rely
on commercial MIP solvers, e.g., Gurobi and CPLEX. These MIP solvers are also based on a BnB

'The choice of (Ao, A2) depends upon the particular application and/or dataset. We aim to compute solutions
to (1) for a family of (Mg, A2)-values.

framework, but they are equipped with general-purpose relaxation solvers and heuristics that do
not take into account the specific structure in Problem (1).

Our BnB solves a mixed integer second order cone program (MISOCP) that is based on a
perspective reformulation [24, 2, 27] of Problem (1). The algorithm exploits the sparsity structure
in the problem during different stages: when solving node relaxations, branching, and obtaining
upper bounds. The continuous node relaxations that appear in our BnB have not been studied
at depth in earlier work. A main contribution of our work is to show that these relaxations,
which involve seemingly complicated linear and conic constraints, can be efficiently handled using
a primal coordinate descent (CD)-based algorithm. Indeed, this represents a radical change from
the primal-dual relaxation solvers commonly used in state-of-the-art MIP solvers [8]. Our choice
of CD is motivated by its ability to effectively share information across the BnB nodes (such as
warm starts), and more generally by its high scalability in the context of sparse learning, e.g.,
see [25, 38, 32]. Along with CD, we propose additional strategies, namely, active set updates and
gradient screening, which reduce the coordinate update complexity by exploiting the information
shared across the BnB tree.

Although our CD-based algorithm for solving BnB node relaxations is highly scalable, it only
generates primal solutions. However, dual bounds are required for search space pruning in BnB.
Thus, we propose a novel method to efficiently generate dual bounds from the primal solutions. We
analyze these dual bounds and prove that their tightness is not affected by the number of features
p, but rather by the number of nonzeros in the primal solution. This result serves as a theoretical
justification for why our CD-based algorithm can lead to tight dual bounds in high dimensions.

Contributions and Structure: We summarize our key contributions below.

e We formulate Problem (1) as a MISOCP, based on a perspective formulation. We provide
a new analysis of the relaxation tightness, which identifies parameter ranges for which the
perspective formulation can outperform popular formulations (see Section 2).

e To solve the MISOCP, we design a specialized nonlinear BnB, with the following main con-
tributions (see Section 3):

— We show that the node relaxations, which involve linear and conic constraints, can be
reformulated as a least squares problem with a non-differentiable but separable penalty.
To solve the latter reformulation, we develop a primal CD algorithm, along with active
set updates and gradient screening that use information shared across the BnB tree to
reduce the coordinate update cost.

— We develop a new efficient method for obtaining dual bounds from the primal solutions.
We analyze these dual bounds and show that their tightness depends on the sparsity
level rather than p.

— We introduce efficient methods that exploit sparsity when selecting branching variables
and obtaining incumbents?.

e We perform a series of experiments on high-dimensional synthetic and real datasets, with p up
to 8.3 x 105. We study the effect of the regularization parameters and dataset characteristics
on the run time, and perform ablation studies. The results indicate that our approach can
be 5000x faster than the state of the art in some settings, and is capable of handling difficult

2An incumbent, in the context of BnB, refers to the best integral solution found so far.

statistical instances which were virtually unsolvable before (See Section 4). We open source
the implementation through our toolkit LOBnB:

https://github.com/alisaab/LOBnB

Related Work: As mentioned earlier, an impressive line of recent work considers solving Problem
(1), or its cardinality-constrained variant, to optimality. [10] used Gurobi on a Big-M formulation,
which can handle n ~ p ~ 10% in the order of minutes to hours. [13] scale the problem even further
by applying outer-approximation (using Gurobi) on a boolean reformulation [45] of the problem.
Their approach can handle p ~ 10° in the order of minutes when n and)y are sufficiently large,
and the feature correlations are sufficiently small. This outer-approximation approach has also
been generalized to sparse classification in [11]. [53] consider solving a perspective formulation
[24] of the problem directly using Gurobi and reported timings that compare well with [13]—the
largest problem instances they consider have p ~ 103. [20] show that a variant of Problem (1) for
classification can be solved through a sequence of MIPs (solved using Gurobi), each having a small
number of binary variables, as opposed to p binary variables in the common approaches. Their
approach can handle n = 103 and p = 50,000 in minutes if the feature correlations are sufficiently
small. Our specialized BnB, on the other hand, can solve all the instances mentioned above with
speed-ups that exceed 5000x, and can scale to problems with p ~ 107. Moreover, our numerical
experiments show that, unlike prior work, our BnB can handle difficult problems with relatively
small Ay and/or high feature correlations.

In addition to the global optimization approaches discussed above, there is an interesting body
of work in the broader optimization community on improved relaxations for sparse ridge regression,
e.g., [45, 21, 5, 53], and algorithms that locally optimize an fy-based objective [14, 7, 32].

There is also a rich literature on solving mixed integer nonlinear programs (MINLPs) using BnB,
e.g., see [36, 8]. Our approach is based on the nonlinear BnB framework [18], where a nonlinear
subproblem is solved at every node of the search tree. Interior point methods are a popular choice
for these nonlinear subproblems, especially for MISOCPs [36], e.g., they are used in MOSEK [3]
and are also one of the supported options in CPLEX [47]. Generally, interior point based nonlinear
solvers are not as effective in exploiting warm starts and sparsity as linear programming solvers
[8], which led to an alternative approach known as outer-approximation (OA) [22]. In OA, a
sequence of relaxations, consisting of mixed integer linear programs, are solved until converging to
a solution of the MINLP. State-of-the-art solvers such as BARON [48] and Gurobi [28] apply OA
on extended formulations—I48] laid the ground work for this approach. There is also a line of work
on specialized OA reformulations and algorithms for mixed integer conic programs (which include
MISOCPs), e.g., see [50, 37, 51] and the references therein. In this paper, we pursue a different
approach: making use of problem-specific structure, we show that the relaxation of the MISOCP
can be effectively handled by our proposed CD-based algorithm.

Notation and Supplementary Material: ~We denote the set {1,2,...,p} by [p]. For any
set A, the complement is denoted by A°. We let || - ||, denote the standard ¢, norm with ¢ €
{0,1,2, 00}. For any vector v € R¥, sign(v) € R* refers to the vector whose ith component is given
by sign(v;) = v;/|vi| if v; # 0 and sign(v;) € [-1,1] if v; = 0. We denote the support of § € RP
by Supp(8) = {i : B; # 0,i € [p]}. For a set S C [p], use Bs € RIS| to denote the subvector of 3
with indices in S. Similarly, Xg refers to the submatrix of X whose columns correspond to S. For
a scalar a, we denote [a]; = max{a,0}. Given a set of real numbers {a;}}*., and a scalar ¢, we

https://github.com/alisaab/L0BnB

use {a;}, - ¢ to denote {ca;})¥;. The proofs of all propositions, lemmas, and theorems are in the
appendix.

2 MIP Formulations and Relaxations

In this section, we present MIP formulations for Problem (1) and study their corresponding relax-
ations.

2.1 MIP Formulations

The Big-M Formulation: We assume that there is a finite scalar M > 0 (a-priori specified) such
that an optimal solution of Problem (1), say 8%, satisfies: ||8*|lcc < M. This allows for modeling
(1) as a mixed integer quadratic program (MIQP) using the following Big-M formulation:

) . 1 2 2
B(M): min Sy — X8I+ X0) =+ AallAl3
i€[p]
s.t. —MzigﬁigMzi, zG[p]

zi € {0,1}, 7 € [pl;

(2)

where each binary variable z; controls whether j; is zero or not via the first constraint in (2)—i.e.,
if z; = 0 then B; = 0. Such Big-M formulations are widely used in mixed integer programming
and have been recently explored in multiple works on ¢y regularization, e.g., [10, 39, 32, 53]. See
[10, 53] for a discussion on how to estimate M in practice.

The Perspective Formulation: In MIP problems where bounded continuous variables are
activated by indicator variables, perspective reformulations [24, 2, 27] can lead to stronger MIP
relaxations and thus improve the run time of BnB algorithms. Here, we apply a perspective
reformulation to the ridge term [|3]|2 in Problem (2). Specifically, we introduce the auxiliary
continuous variables s; > 0,i € [p] and rotated second order cone constraints 32 < s;2;, i € [p]. We
then replace the term ||3]|2 with > Thus, each s; takes the place of 32. This leads to the
following reformulation of (2):

i€lp) S

PR(M): min %Hy—XBH%JFAOZZﬁ)QZSi
” i€[p] i€[p]
st. B7 < sz, i € [p) (3)
— Mz < i < Mz, i € [p]
zi €4{0,1},8, >0, i € [p].

Problem (3) can be expressed as a MISOCP. Similar to (2), formulation (3) is equivalent to Problem
(1) (as long as M is suitably chosen). Algorithms for formulation (3) will be the main focus of our
paper.

If we set M = oo in (3), then the constraints ; € [—-Mz;, M 2], 1 € [p] can be dropped, which makes
PR(c0) independent of a Big-M parameter. If Ao > 0, then PR(o0) is equivalent to (1)—this holds
since 32 < s;2; enforces z; =0 = B; = 0. We note that [21] have studied Problem (3) and focused
on the special case of PR(c0). [21] shows that PR(c0) is equivalent to the pure binary formulations
considered in [45, 13]. We also note that [53] have considered a similar perspective formulation for

the cardinality constrained variant of Problem (1). In Proposition 1 below, we present new bounds
that quantify the relaxation strengths of PR(M), PR(o0), and B(M). Moreover, we are the first
to present a tailored BnB procedure for formulation (3).

2.2 Relaxation of the Perspective Formulation (3)

In this section, we study the interval relaxation of Problem (3), which is obtained by relaxing all
binary z;’s to the interval [0, 1]. Specifically, we present a new compact reformulation of the interval
relaxation that leads to useful insights and facilitates our algorithm development. We also discuss
how this reformulation compares with the interval relaxations of B(M) and PR(c0).

Theorem 1 shows that the interval relaxation of (3) can be reformulated purely in the S space.
This leads to a regularized least squares criterion, where the regularizer involves the reverse Hu-
ber [44] penalty—a hybrid between the ¢; and ¢ (squared) penalties. The reverse Huber penalty

B:R — R, is given by:
I it <1
B =4" (4)
(t*+1)/2 |t >1.

Theorem 1. (Reduced Relaxation) Let us define the functions 1, 11,12 as

{wl(ﬁi;Ao,m .= 200B(8i v/ A2/ o) if /Ao /As < M
P2 (Bi; Ao, Aas M) = (Ao/M + X M)|Bi]| if \/ Ao/ A2 > M.

The interval relazation of (3) is equivalent to:

Y(Bi; Ao, Ao, M) =

1
min F(8) = 5y~ XBI3+ 3 0(Bi Ao, do, M) st [|Bllso < M, (5)
i€(p]

and we let Vpgyry denote the optimal objective value of (5).

The reduced formulation (5) has an important role in both the subsequent analysis and the
algorithmic development in Section 3. Theorem 1 shows that the conic and Big-M constraints in the
relaxation of (3) can be completely eliminated, at the expense of introducing (in the objective) the
non-differentiable penalty function), 1(8;; Ao, A2, M) which is separable across the p coordinates
Bi, i € [p]. Depending on the value of \/\g/A2 compared to M, the penalty 1(3;; Ao, A2, M) is either
the reverse Huber penalty (i.e., ¥1) or the ¢; penalty (i.e., 12), both of which are sparsity-inducing.
In Figure 1 (left panel), we plot 11 (5; Ao, A2) for Ag = 1 at different values of \g. In Figure 1 (right
panel), we plot ¥ (8; Ao, A2, M) at \g = A2 = 1 and for different values of M. The appearance of a
pure /1 penalty in the objective is interesting in this case since the original formulation in (3) has
a ridge term in the objective. Informally speaking, when y/Ao/A2 > M, the constraint |5;| < Mz;
becomes active at any optimal solution, which turns the ridge term into an ¢; penalty—for further
discussion on this matter, see the proof of Theorem 1.

Next, we analyze the tightness of the perspective relaxation in (5).

Tightness of the Perspective Relaxation (5): [21] has shown that the interval relaxation of
PR(c0) can be written as:

. 1
Ver(eo) = min G(8) = 3lly = X513 + %wm@, Ao), (6)

-== M=y Ao/
— M= 0.5\/)\0/)\2
— M= 03\/)\0/)\2

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -20 -15 -1.0 =05 0.0 0.5 1.0 15 2.0

B B

Figure 1: [Left]: Plot of ¢1(8; Ao, 1) for different values of 9. [Right]: Plot of ¢(5;1,1, M) for
different values of M.

where ¥1(8i; Ao, A2) is defined in Theorem 1. Note that (6) can also be obtained from Theorem
1 (with M = o0). For \/Ag/A2 < M, the relaxation of PR(M) in Theorem 1 matches that in
(6), but with the additional box constraint ||8|cc < M. When M is large, this box constraint
becomes inactive, making the interval relaxations of PR(M) and PR(co) equivalent. However,
when /Ag/A2 > M, the interval relaxation of PR(M) can have a (strictly) larger objective than
that of both B(M) and PR(c0), as we show in Proposition 1.

Proposition 1. Let V) denote the optimal objective of the interval relaxation of B(M). Let
B* be an optimal solution to (5), and define the function h(A\g, Ao, M) = Ag/M + XaM — 2+/ApAa.
Then, the following holds for \/Ao/Aa > M:

Veray 2 Vaary + X2 (M |13 l1 — 18*113) (7)
Vpr(n) 2 VeR(co) + P(X0s A2, M) 8|1 (8)

We make a couple of remarks. For bound (7), we always have (M||8*|1 — ||8*||3) > 0 since
18*lcc < M. If there is an i € [p] with 0 < |Bf] < M, then (M||8*|x — ||B*|3) > 0, and
consequently Vpr(ar) > V() (as long as A2 > 0). In bound (8), for \/Ao/A2 > M, h(Xo, A2, M) is
strictly positive and monotonically decreasing in M, which implies that Vpgr(ar) > Ver(so) (as long
as * # 0). In Section 4.2.1, our experiments empirically validate Proposition 1: using PR(M) with
a sufficiently tight (but valid) M can speed up the same BnB solver by more than 90x compared
to PR(0).

Note that Proposition 1 does not directly compare Vpgr() with V(). In Proposition 2, we
establish a new result which compares Vpr(oo) With Vg(ar). Before we present Proposition 2, we
introduce some notation. Let S(A2) be the set of optimal solutions (in /) of the interval relaxation
of PR(oc0); and define

L(M):={Ay>0]38€S\) s.t. [|Blloe < M}. (9)

Proposition 2. Let L(M) be as defined in (9). Then, the following holds:

Vean) 2 Vereeo)s if M < 5/ X0/ X (10)
VB(M) < VPR(oo)7 if M > +\/Xo/ A2 and Ny € L(M). (11)

7

Proposition 2 implies that if Ay is relatively small (with other parameters remaining fixed),
then the relaxation of the Big-M formulation (with objective Vg(ys)) will have a higher objective
than the relaxation of PR(00). On the other hand, if A5 is sufficiently large, then the relaxation of
PR(o0) will have a higher objective.

We note that the result of Proposition 2 applies for any M > 0, even if it is mis-specified.
However, in the case of mis-specification, Vg(ar) (and also VPR(a)) may no longer correspond to a
valid relaxation of Problem (1). In contrast, Vpg(«) is always a valid relaxation of (1).

3 A Specialized Branch-and-Bound (BnB) Framework

In this section, we develop a specialized nonlinear BnB framework for solving the perspective
formulation in (3). First, we briefly recall the high-level mechanism behind nonlinear BnB, in the
context of our problem.

Nonlinear BnB at a Glance: The algorithm starts by solving the (nonlinear) interval relaxation
of (3), i.e., the root node. Then, it selects a branching variable, say variable j € [p|, and creates
two new nodes (optimization subproblems): one node with z; = 0 and another with z; = 1, where
all the other z;’s are relaxed to the interval [0, 1]. For every unvisited node, the algorithm proceeds
recursively, i.e., by solving an optimization subproblem at the current node and then branching on
a new variable to create two new nodes. This leads to a search tree with nodes corresponding to
optimization subproblems and edges representing branching decisions.

To reduce the size of the search tree, BnB prunes a node (i.e., does not branch on it) in either
one of the following situations: (i) an optimal solution to the relaxation at the current node has
an integral z or (ii) the objective of the current relaxation exceeds the best available upper bound
on (3). In case (ii), the relaxation need not be solved exactly: lower bounds on the relaxation’s
objective (a.k.a. dual bounds) can be used for pruning. However, in case (i), if the dual bound
does not exceed the best upper bound, the node should be solved to optimality in order to ensure
correctness of the pruning decision?.

As BnB explores more nodes, its (global) lower bound is guaranteed to converge to the optimal
objective of (3). In practice, we can terminate the algorithm early, if the gap between the best
lower and upper bounds is below a pre-specified user-defined threshold.

Overview of our Strategies: The discussion above outlines how nonlinear BnB operates in
general. The specific strategies used such as solving the relaxations, passing information across
the nodes, and selecting branching variables, can have a key impact on scalability. In the rest of
this section, we will give a detailed account of the strategies used in our BnB. We first provide an
overview of these strategies:

e A Primal Relaxation Solver: Unlike state-of-the-art approaches for nonlinear BnB, which
employ primal-dual interior point solvers for node relaxations [8], we rely solely on a primal
method which consists of a highly scalable CD-based algorithm. The algorithm solves the node
relaxations of (3) in the fB-space as opposed to the extended (S, s, z) space—these relaxations
are variants of the reduced relaxation introduced in (5). The algorithm heavily shares and
exploits warm starts, active sets, and information on the gradients, across the BnB tree. This
will be developed in Section 3.1.

3In practice, we solve the relaxation problem at the node to optimality by ensuring that the relative difference
between the primal and dual bounds is less than a small user-defined numerical tolerance.

e Dual Bounds: Dual bounds on the objective of node relaxations are required by BnB
for search space pruning, yet our relaxation solver works in the primal space for scalability
considerations. We develop a new efficient method for obtaining dual bounds from the primal
solutions. We provide an analysis of this method and show that the tightness of the dual
bounds depends on the sparsity level and not on the number of features p. See Section 3.2.

e Branching and Incumbents: We present an efficient variant of strong branching, which
leverages the solutions and active sets of previous node relaxations to make optimization
tractable. Moreover, we employ several efficient heuristics to obtain incumbents. See Section
3.3.

For simplicity of exposition, in the remainder of Section 3, we assume that the columns of X
and y have unit /2 norm.

3.1 Primal Relaxation Solver: Active-set Coordinate Descent

To simplify the presentation, we will focus on solving the root relaxation. To this end, we solve
the reduced formulation in the S-space (5). We operate on the reduced formulation compared to
the interval relaxation of (3) in the extended (3, s, z) space due to computational reasons. After
solving (5), we use the resulting solution, say /*, to construct a corresponding solution (5*, s*, z*)
to the interval relaxation of (3)—see the proof of Theorem 1 for how to obtain (8%, s*, z*) from g*.
We then use z* for branching. The rest of the nodes in BnB involve fixing some binary variables in
(3) to 0 or 1, so their subproblems can be obtained by minor modifications to the root relaxation.
For completeness, in Appendix B.2, we discuss how to formulate and solve these node subproblems.

Problem (5) is of the composite form [43]: the objective is the sum of a smooth loss function
and a non-smooth but separable penalty. In addition, the feasible set, consisting of the constraints
|Bi] < M, i € [p] is separable across the coordinates. This makes Problem (5) amenable to cyclic
CD [49]. To our knowledge, the use of cyclic CD for Problem (5) is novel. We also emphasize that
a direct application of cyclic CD to Problem (5) will face scalability issues, and more importantly,
it does not readily deliver dual bounds. The additional strategies we develop later in this section
are essential for both achieving scalability and obtaining (provably) high quality dual bounds.

Cyclic CD visits the coordinates according to a fixed ordering, updating one coordinate at a
time, as detailed in Algorithm 1.

Algorithm 1: Cyclic CD for Relaxation (5)
e Input: Initialization B
e While not converged:
— For i e p]:

B argminF(Bl, ey Biy e ,Bp) st |6l < M. (12)
Bi€R
Every limit point of Algorithm 1 is a global minimizer of (5) [49], and the algorithm has a sublinear
rate of convergence [34]. We will show that the solution of (12) can be computed in closed-form.
To this end, since the columns of X have unit {o-norm, we note that (12) is equivalent to:

min 36— 5P+ 0(Bdo e, M) st |G < M, (13)

where f; = (y — Zj# X jﬁj,Xl). Given non-negative scalar parameters a and m, we define the
boxed soft-thresholding operator T : R — R as

0 if [t| <a
T(t;a,m) =< (Jt| —a)sign(t) ifa<|t|<a+m
msign(t) otherwise.

For \/A\g/A2 < M, the solution of (13) is given by:

b — T(Bs; 2/ oAz, M) if |Bi] < 2v/XoAz + v/ Ao/ Az 14)
' T(Bi(1+2X2)~10,M) otherwise
and for \/Ag/A2 > M, the solution of (13) is:
Bi = T(Bi; Ao/ M + Ao M, M). (15)

Thus, update (12) in Algorithm 1 can be computed in closed-form using expressions (14) and (15).
See Appendix B.1 for a derivation of the update rules.

Warm Starts: Interior-point methods used in state-of-the-art nonlinear BnB solvers cannot
easily use warm starts. On the other hand, cyclic CD has proven to be very effective in exploiting
warm starts, e.g., see [25, 32]. For every node in BnB, we use its parent’s primal solution as a warm
start. Recall that the parent and children nodes have the same relaxations, except that a single
binary variable (used for branching) is fixed to zero or one in the children*. Intuitively, this can
make the warm start close to the optimal solution. Moreover, the supports of the optimal solutions
of the parent and children nodes are typically very close. We exploit this observation by sharing
information about the supports across the BnB tree, as we describe next in Section 3.1.1.

3.1.1 Active Sets

Update (12) in Algorithm 1 requires O(n) operations, so every full cycle (across all p coordinates)
of the algorithm has cost of O(np). This becomes a major bottleneck for large n or p, since CD
can require many cycles before convergence. In practice, the majority of the variables stay zero
during the course of Algorithm 1 (assuming that the regularization parameters are chosen so that
the optimal solution of the relaxation is sparse, and good warm starts are used). Motivated by this
observation, we run Algorithm 1 restricted to a small subset of the variables A C [p|, which we
refer to as the active set, i.e., we solve the following restricted problem:

BeargminF(8) st |[Bllee <M, Bac=0. (16)
BERP

After solving (16), we augment the active set with any variable i € Supp(3)¢ that violates the
following optimality condition:

0=argmin F(B1,...,5...,5) st |8 <M.
Bi€R

4Suppose the parent node branches on z;. After reformulating the node relaxations in the 8 space (as discussed
in Appendix B.2), the relaxation of the child with z; = 1 will be the same as the parent except that the penalty of
coordinate i in the parent, 1(8:; Ao, A2, M), will be replaced with Ao 4+ A2/37. For the child with z; = 0, the relaxation
will be similar to the parent but with g; fixed to 0.

10

We repeat this procedure of solving the restricted problem (16) and then augmenting A with
violating variables, until there are no more violations. The algorithm is summarized below.

Algorithm 2: The Active-set Algorithm?
e Input: Initial solution B and initial active set A.
e Repeat:

— Step 1: Solve (16) using Algorithm 1 to get a solution B.

— Step 2: V « {i € Supp(B)° | 0 # arg min g, <y F(Bi,....Bi ..., Bp)}.
— Step 3: If V is empty terminate, otherwise, A <+ AU V.

The quality of the initial active set affects the number of iterations in Algorithm 2. For example,
if A is a superset of the support of an optimal solution to (5), then V in the first iteration of
Algorithm 2 will be empty, and the algorithm will terminate in a single iteration. For every node
in BnB, we choose the initial active set to be the same as the final active set of the parent node.
This works well in practice because parent and children nodes typically have similar supports. For
the root relaxation, we obtain the initial active set by choosing a small subset of features which
have the highest (absolute) correlation with y.

In Section 3.2, we present a novel method that makes use of the updates in Algorithm 2 to obtain
provably high-quality dual bounds. We note that our approach goes beyond standard active-set
methods [25]. In particular, (i) we use active sets in the context of a BnB tree, percolating informa-
tion from parents to children (as opposed to warm-start continuation across a grid of regularization
parameters); and (ii) we exploit the active sets to deliver dual bounds. In the next remark, we
discuss how Step 1 in Algorithm 2 can be performed inexactly.

Remark 1. In practice, we solve the restricted optimization problem in Step 1 of Algorithm 2
wnexactly. Specifically, in Step 1, we terminate Algorithm 1 when the relative change in the objective
values is below a small numerical toleranceS. For Step 3, we ensure that V is (exzactly) empty before
terminating the algorithm, which guarantees that there are no optimality violations outside the
support. Having no optimality violations outside the support will be essential to obtain the tight
dual bounds discussed in Section 3.2.

3.1.2 Gradient Screening

Algorithm 2 effectively reduces the number of coordinate updates, through restricting optimization
to the active set. However, checking the optimality conditions outside the active set, i.e., performing
Step 2, requires O(np) operations. This is a bottleneck when p is large, even if a small number of
such checks (or passes) are performed. To mitigate this, we present a gradient screening method
which reduces the time complexity of these optimality checks. Our method is inspired by the
gradient screening technique proposed in [33] for a different problem: learning sparse hierarchical
interactions via a convex optimization formulation. In the current paper, the optimality checks

® Algorithm 2 solves the root relaxation. For other nodes, the objective function F(8) will need to be modified to
account for the fixed variables (as detailed in Appendix B.2), and all the variables fixed to zero at the current node
should be excluded from the set V in Step 2.

S1f upon termination, an integral z is obtained, we solve the relaxation to optimality, as discussed in the introduc-
tion of Section 3.

11

in Step 2 of Algorithm 2 essentially require computing a gradient of the least squares loss, in
order to construct V. Loosely speaking, gradient screening is designed to avoid computing the
“non-essential” parts of this gradient by using previously computed quantities in the BnB tree.

In the following proposition, we give an explicit way to construct the set V in Step 2 of Algorithm
2.

Proposition 3. Let B and Y be as defined in Algorithm 2, and define ¥ =y — XB. Then, the set
V can be equivalently written as follows:

V = {i € Supp(B)° | |7, Xi)| > c(Xo, A2, M)}, (17)

where X; denotes the i-th column of X; and c(Ao, A2, M) = 23/ XoA2 if /Ao/A2 < M, and
C()\o,)\Q,M) = ()\0/M+)\2M) if \/)\0/)\2 > M.

By Proposition 3, constructing V directly costs O(n(p — ||]|o)). Next, we will discuss how to
compute V with a lower cost, by making use of previously computed quantities. Suppose we have
access to a set V C [p] such that V C V. Then, we can construct V by restricting the checks in (17)
to V instead of Supp(B)C, i.e., the following holds:

V="{ieV||[(#X)|>c(ro, A2, M)} (18)

Assuming V is available, the cost of computing V in (18) is O(n|V|). This cost can be significantly
smaller than that of (17), if |V] is sufficiently small. Next, we present a method that can obtain a
relatively small V in practice, thereby speeding up the computation of V.

Computation of Vs Proposition 4 presents a method to construct a set V which satisfies V C V
(as discussed above), using information from a warm start 5% (e.g., the solution of the relaxation
from the parent node in BnB).

Proposition 4. Let 3 and V be as defined in Algorithm 2. Let 5° be an arbitrary vector in RP.
Definet =y — XB, 10 =y — XB° and e = || XB° — XB|l2. Then, the following holds:

V= {z e Supp(B)° | [(r°, X:)| > c(ho, Aoy M) — e}. (19)

The set V defined in (19) depends solely on € and the quantities |(r°, X;)|, i € Supp(3)¢, which
we will assume to be sorted and available along with the warm start $Y. This is in contrast
to a direct evaluation of V in (17), which requires the costly computation of the terms |(7, X;)|,
i€ Supp(B)C. Given the sorted values |(r%, X;)|, i € Supp(B)c, we can identify V in (19) with
O(log p) operations, using a variant of binary search. Thus, the overall cost of computing V using
(18) is O(n|V| 4 log p). We also note that in practice the inclusion V C V in (19) is strict.

Proposition 4 tells us that the closer X3° is to X f, the smaller V is, i.e., the lower is the cost
of computing V in (18). Thus, for the method to be successful, we need a good warm start 3°. In
practice, we obtain 3° for the current node in BnB from its parent, and we update 5% as necessary
during the course of Algorithm 2 (as detailed below). Let ez € (0,1) be a pre-specified parameter
for the gradient screening procedure. The procedure, which replaces Step 2 of Algorithm 2, is
defined as follows:

Gradient Screening

12

1. If this is the root node and the first iteration of Algorithm 2, then: update 0 « B, r0 =
y — X 3% compute and sort the terms |(r?, X;)|, i € [p]; compute V using (17); and skip all
the steps below.

2. If this is the first iteration of Algorithm 2, get 8° from the parent node in the BnB tree.
3. Compute V using (19) and then V using (18)7.
4. Tf |V| > €gsp, update 80 « B, 1 = y — X% re-compute and sort the terms |(r°, X;)|, i € [p].

If XY is not a good estimate of X A, then V might become large. To avoid this issue, we update
% in Step 4 above, every time the set V becomes relatively large (|]>| > €g5p). The parameter egg
controls how often 8° is updated. In our implementation, we use €gs = 0.05 by default, but we note
that the parameter can be generally tuned in order to improve the running time. The updated /3°
will be passed to the children in the BnB tree. While Step 4 above can be costly, it is not performed
often in practice as the solutions of the relaxations in the parent and children nodes are typically
close.

Based on our current implementation and experiments, we see notable benefits from gradient
screening when p > 10* (e.g., more than 2x speedup for p = 10%). For smaller values of p, we
typically observe a small additional overhead from gradient screening. Moreover, we note that
gradient screening will increase memory consumption, because each of the open nodes in the tree
will need to store a p-dimensional vector (consisting of the quantities |(r®, X;)|, i € [p], which are
maintained by gradient screening).

3.2 Dual Bounds

In practice, we use Algorithm 2 to obtain inexact primal solutions for relaxation (5), as discussed
in Remark 1. However, dual bounds are needed to perform search space pruning in BnB. Here,
we present a new efficient method to obtain dual bounds from the primal solutions. Moreover, we
prove that our method can obtain dual bounds whose tightness depends on the sparsity level of the
relaxation rather than p. We start by introducing a Lagrangian dual of relaxation (5) in Theorem
2.

Theorem 2. For \/A\o/Xo < M, a dual of Problem (5) is given by:

Ly e ‘
e, Mle) = —gllallz —a’y E v(e, i), (20)
i€lp]
where v : R"t1 = R is defined as follows:
(" X —)?
) = —_A} Mlyil. 21
() = [o], + M (21)

Otherwise, if \/Ao/A2 > M, a dual of Problem (5) is given by

1
h = _Zpl2 —)Ty —
emmax 2(p, 1) 2||pH2 Pty — M|l

st |pt Xy = i < Mo/M + XoM, i € [p].

(22)

"Each variable 4 fixed to zero by BnB at the current node should be excluded when computing V and 1%

13

Let B* be an optimal solution to Problem (5) and define r* =y — X[*. The optimal dual variables
for (20) are given by:

o =—r" and v =]l[|,8i*\:M](a*TXi — 2M g sign(a*?' X3)), 4 € [p]. (23)
Moreover, the optimal dual variables for (22) are:
pr=—r* and pf = Lyge a0 Xil = do/M — XoM),i € [p]. (24)

Note that strong duality holds for relaxation (5) since it satisfies Slater’s condition [9], so the
optimal objective of the dual in Theorem 2 matches that of (5).

Dual Feasible Solutions: Let B be an inexact primal solution obtained using Algorithm 2 and
definer =y — X B We discuss next how to construct a dual feasible solution using B, i.e., without
solving the dual in Theorem 2.

Case of \/\o/A2 < M: Here, we construct a dual solution (&, %) for Problem (20) as follows:

&= —7 and 4 € argmaxhy(&,7). (25)
YERP
The choice & = —7 is motivated by the optimality conditions in Theorem 2, while 4 maximizes

the dual objective (with « fixed to &). Note that the constructed solution is (trivially) feasible
since the dual in (20) is unconstrained. Since (20) is separable across the 7;’s, 4; is equivalently
the solution of min.,cr v(&,~;), whose corresponding solution is given by:

4 = T(&T Xi;2M Ny, 00). (26)

Thus, 4 can be obtained in closed-form using (26). Since £ is the output of Algorithm 2, we
know that the corresponding set V in Algorithm 2 is empty. Thus, by Proposition 3, we have
1PTX;| < 2y/AoAg for any i € Supp(B)¢. Using # = —a and /Ag/As < M in the previous in
inequality, we get |a7 X;| < 2M). Using the latter bound in (26), we get that 4; = 0 for any

i € Supp(B)¢. However, for i € Supp(f), 4; can be potentially nonzero.
Case of \/A\o/A2 > M: We construct a dual feasible solution (p, i) for (22) as follows:

p=—r and [€argmax ha(p,p) s.t. (p,p) is feasible for (22). (27)
HERP

Similar to (27), the choice p = —# is motivated by the optimality conditions in Theorem 2, whereas
the choice i maximizes the dual objective under the condition that p = —7 (while ensuring feasi-
bility). It can be readily seen that fi; is given in closed form by:

i = |1pT Xs| — Xo/M — Mo M . (28)

Note that for any i € Supp(3)¢, we have |p7 X;| = [T X;| < Ag/M + Ao M (by Proposition 3), which
implies that fi; = 0. However, for i € Supp(f), ft; can be potentially nonzero.

Quality of the Dual Bounds: In Theorem 3, we quantify the tightness of the dual bounds
obtained from the dual feasible solutions (25) and (27).

14

Theorem 3. Let o*, v*, p*, and p* be the optimal dual variables defined in Theorem 2. Let 5*
be an optimal solution to (5), and B be an inezact solution obtained using Algorithm 2. Define the
primal gap € = | X (8* — B)||2. Let k = ||| denote the number of nonzeros in the inezact solution
to (5). For a fized (M, \2), the following holds for the dual solution (&,%) defined in (25):

hi(6,4) = ha(a®,7") = kO(e) — kO(e?), (29)
and for the dual solution (p, f1) defined in (27), we have:
hafs 1) > ha(s, 1*) — KO(e) — O(E). (30)

Interestingly, the bounds established in Theorem 3 do not depend on p, but rather on the support
size k. Specifically, the constants in O(e) and O(e?) only involve M and) (these constants are
made explicit in the proof). In practice, we seek highly sparse solutions, i.e., k < p—suggesting that
the quality of the dual bounds deteriorates with & and not p. The main driver behind these tight
bounds is Algorithm 2, which performs optimality checks on the coordinates outside the support.
If vanilla CD was used instead of Algorithm 2, then the term k appearing in the bounds (29) and
(30) will be replaced by p, making the bounds loose®.

Efficient Computation of the Dual Bounds: A direct computation of the dual bound
hi(&,4) or hao(p, i) costs O(np) operations. Interestingly, we show that this cost can be reduced to
O(n+nl|B]jo) (where we recall that 3 is a solution from Algorithm 2). First, we consider the case
of \/Ao/A2 < M, where the goal is to compute hi(&, 7). By Lemma 2 (in the appendix), we have

v(&,4;) = 0 for every ¢ € Supp(53)©. Thus, hi(&, %) can be simplified to:

A 1 R A
m@,y) = —5lald—aTy— 3 o(@5). (1)
i€Supp(B)

Now, we consider the case of \/A\g/A2 > M, where the goal is to evaluate ha(p, f1). By construction,
the solution (27) is dual feasible, which means that the constraints in (22) need not be checked

when computing the bound. Moreover, fi; = 0 for every i € Supp(5)© (see the discussion after
(28)). Thus, the dual bound can be expressed as follows:

. 1. . .
ha(p) = =5 1615 = pTy =M D il (32)

i€Supp(p)

The expressions in (31) and (32) can be computed in O(n + nl|3|o) operations.

3.3 Branching and Incumbents

Many branching strategies for BnB have been explored in the literature, e.g., random branching,
strong branching, and pseudo-cost branching [8, 15, 4, 1]. Among these strategies, strong branching
has proven to be very effective in minimizing the size of the search tree [4, 15, 8]. Strong branching
selects the variable which leads to the maximum increase in the lower bounds of the children
nodes. To select such a variable, two temporary node subproblems should be solved for every
non-integral variable in the current relaxation. This can become a computational bottleneck, as
each temporary subproblem involves solving a nonlinear optimization problem similar to (5). To

8This holds by using the argument in the proof of Theorem 3 for Algorithm 1 instead of Algorithm 2.

15

address this challenge, we use a fast (approximate) version of strong branching, in which we restrict
the optimization in these temporary subproblems to the active set of the current node (instead of
optimizing over all p variables). In practice, this often leads to very similar search trees compared
to exact strong branching, since the active set of the parent is typically close to the support of the
children.

We obtain the initial upper bound using LOLearn [32], which uses CD and efficient local search
algorithms to obtain good quality feasible solutions for Problem (3). Moreover, at every node in
the BnB tree, we attempt to improve the incumbent by making use of the support of a solution
to the node relaxation. Specifically, we solve the following ¢o regularized least squares problem
restricted to the relaxation’s support S: ming_cgis) %Hy — XsBsl13 + Xa||Bs]|3- Since S is typically
small, this problem can be solved efficiently by inverting a small |S| x |S| matrix. If S is similar
to the support of the parent node, then a solution for the current node can be computed via a
low-rank update [29].

4 Experiments

We perform a series of high-dimensional experiments to study the run time of our BnB, understand
its sensitivity to parameter and algorithm choices, and compare to state-of-the-art approaches.
While our dataset and parameter choices are motivated by statistical considerations, our focus here
is not to study the statistical properties of ¢y estimators. We refer the reader to [32] for empirical
studies on statistical properties.

4.1 Experimental Setup

Synthetic Data Generation: We generate a multivariate Gaussian data matrix with samples
drawn from MVN(0, %)), a sparse coefficient vector 37 € R? with k' equi-spaced nonzero entries

all set to 1, and a noise vector ¢; KN (0,02). We denote the support of the true regression
coefficients 81 by ST. The response is then obtained from the linear model y = X3 +¢. We define
the signal-to-noise ratio (SNR) as follows: SNR= Var(X!)/o?. Unless otherwise specified, we
set 02 to achieve SNR= 5—this is a relatively difficult setting which still allows for full support
recovery, under suitable choices of n, p, and ¥ (see [32, 40] for a discussion on appropriate levels
of SNR). We perform mean-centering followed by normalization (to have unit ¢ norm) on y and

each column of X. To help in exposition, we denote the resulting processed dataset by (7, X) and
the (scaled) regression coefficients by 3.

Warm Starts, \gp, Ao, and M: The parameters Ay and M can affect the run time significantly, so
we study the sensitivity to these choices in our experiments. We consider choices that are relevant
from a statistical perspective, as we discuss next. For a fixed Ay, let 5(A2) be the solution of ridge
regression restricted to the support of the true solution Bt

B
B(Xe) € argmin o [[§ — XBI3 + Xal|Bl5 st Bsnye =0, (33)
peRP

We define A5 as the Ay which minimizes the {2 estimation error of 5(\2), i.e.,

% € angmin |7 — B(2) (34)

220

16

We estimate A} using grid search, with 50 points equi-spaced on a logarithmic scale in the range
[107%,10%]. In the experiments, we report our Ay choices as a fraction or multiple of \j (e.g.,
A2 = 0.1A3). Moreover, for each Ag, we define M*(A2) = ||8(A\2)]|c and report our choices of the
Big-M in terms of M™*(\y)—we also use the notation M* to refer to M*(A2) when Ag is clear from
context. Note that if Problem (1) has a unique solution, and this solution has support ST, then
M*(Az2) is the smallest valid choice of M in formulation (3). Unless otherwise specified, for each
A2 considered, we fix \g to a value Aj (which is a function of \2) that leads to the true support
size k. We obtain Ay using LOLearn® [32]. Note that Ap might not exist in general, but in all the
experiments we considered, LOLearn was able to such a value. Moreover, Section 4.2.3, presents an
experiment where A\ is varied over a range that is independent of LOLearn.

We obtain warm starts from LOLearn'® and use them for all the MIP solvers considered.

Solvers and Settings: Our solver, LOBnB'!, is written in Python with critical code sections
optimized using Numba [35]. We compare LOBnB with Gurobi (GRB), MOSEK (MSK), and
BARON (B) on formulation (3). We also compare with [13] who solve the cardinality-constrained
variant of (1) with the number of nonzeros set to k'. In all solvers (including LOBnB), we use the
following settings:

e Relative Optimality Gap: Given an upper bound UB and a lower bound LB, the relative
optimality gap is defined as (UB — LB)/UB. We set this to 1%.

e Integer Feasibility Tolerance (e;): This tolerance is used to determine whether a variable
obtained from a node relaxation will be declared as integral (for the purpose of branching).
Specifically, in our context, if a variable z; is within € from 0 or 1, then it is declared as
integral. We set ;¢ = 1074,

e Primal-Dual Optimality Gap (epq): This is the relative gap between the primal and dual
bounds at a given node, which is used as termination criterion for the subproblem solver.
We set epq = 10~°. In LOBnB, this gap is satisfied when an integral solution to a node’s
relaxation is encountered.

Gradient Screening in LOBnB: As discussed in Section 3.1.2, our gradient screening implementation
leads to noticeable speed-ups for large p (> 10* in our experience). For smaller values of p, we do
not observe run time improvements. In the experiment of Section 4.2.1 (Table 6), where we vary
p, we report the running time with and without gradient screening. In the other experiments, we
do not use gradient screening.

Reproducibility and Additional Details: In the spirit of reproducibility, the function used to
generate and process the synthetic datasets is publicly available on LOBnB’s Github page. In all
experiments, we report the values of M,)9, and A9 (either in the main text or in Appendix C).
Moreover, for all approaches, we report the number of BnB nodes explored in Appendix C.

9LOLearn computes a data-dependent grid of Ao values. When CD is used to optimize (1), each A in the grid
leads to a different support size. See Section 4.1 of [32] for more details.

10%We use the default CD-based algorithm in LOLearn, which does not depend on any Big-M parameter. We remind
the reader that LOLearn is a local optimization method that does not provide certificates of global optimality.

"https://github.com/alisaab/10bnb

17

https://github.com/alisaab/l0bnb

4.2 Comparison with State-of-the-art solvers
4.2.1 Varying Number of Features

In this section, we study the scalability of the different solvers in terms of the number of features p.
We generate synthetic datasets!'? with n = 103, p € {103, 104,105, 10%}, and kT = 10. We consider a
constant correlation setting, where 3;; = 0.1 Vi # j and 1 otherwise. The parameters Ao and M can
have a significant effect on the run time. Thus, we report the timings for different choices of these
parameters. In particular, in Table 1 (top panel), we report the timings for Ay € {0.1A3, A5, 10A\5},
where for each \g, we fix M = 1.5M*(\2) (where A3 and M* are defined in Section 4.1). In Table
1 (bottom panel), we fix Ay = A5 and report the timings for M € {M*(\2),2M*(\2),4M*(X2), 00}.
Note that the results for LOBnB in Table 1 are without gradient screening; in Table 6 in Appendix
C.1, we report the timings with gradient screening enabled. Moreover, in Appendix C.1, we report
the values of A\ and A3, along with the number of BnB nodes explored.

Table 1: (Sensitivity to A2 and M) Running time in seconds for solving (1) (via formulation (3)) by
our proposal (LOBnB), Gurobi (GRB), MOSEK (MSK), and BARON (B). The method [13] solves the
cardinality-constrained variant of (1). For methods that do not terminate in 4 hours: the optimality gap is
shown in parenthesis, and a dash (-) is used in the special case of a 100% gap. [Top panel] For each Ay, we
use M = 1.5M*()2). [Bottom panel] We use Ay = A}, and four different values of M. The Big-M values
are based on: M*(A\3) = 0.232, M*(0.1A3) = 0.164, and M*(10A5) = 0.243. The true solution satisfies:
15]lso = 0.208. In the bottom panel, we found that PR(M*) and PR(co) have the same optimal solution.

Ao = A} Ao = 0.1)3 Ao = 10X}
p |LOBnB GRB MSK B [13] [LOBnB GRB MSK B [13]|L0OBnB GRB MSK B [13]
103 0.7 70 92 (4%) (34%)| 2 57 154 - - | 0.01 148 28 (5%)0.08
104 3 (15%) 1697 - (78%)| 12 (12%) 3872 - - | 0.06 (11%) 314 - 5
10°| 34 - - - (86%)| 545 - - - -] 05 - - - 8
1090 1112 - - - - (23%) - - - - 8 - - - 46
M = M* M =2M* M = 4M* M = o

p |[LOBnB GRB MSK B [LOBnB GRB MSK B[LOBnB GRB MSK B[LOBnB GRB MSK B
103 0.2 27 57 (2%) 0.8 112 128 -| 0.8 1219 137 -| 0.8 3974 91 -

10* 0.9 10571 665 - 5 (24%) 3260 -| 5 (50%) 3289 -| 6 - 9025 -
10° 8 - - - 70 - - -] 81 - - -] 81 - - -
106 121 - - - 19265 - - -|10986 - - -|11010 - - -

The results in the top panel of Table 1 indicate significant speed-ups, reaching over 200, 000x
compared to Gurobi, 28,000x compared to MOSEK, and 20,000x compared to [13]. At Ag = A5,
LOBnB is the only solver that can handle p > 10°, and can, in fact, handle p = 10° in less than
20 minutes. Recall that A5 minimizes the 5 estimation error and leads to an estimator that is the
closest to the ground truth. When the ridge parameter is weak i.e., for Ao = 0.13, LOBnB is again
the only solver that can handle p > 10°. When the ridge parameter is large, i.e., for Ay = 1073, the

12To ensure that the same estimates of A5 and M™ are used for the different choices of p, we generate a single data
matrix with 10° features. For each p, we take a submatrix that consists of all the rows and a subset of p columns
(which includes the true support).

18

optimization problem seems to become easier: LOBnB can be more than 100x faster compared to
A%, and [13] can handle up to p ~ 105. The speed-ups for Ay = 10\ can be attributed to the fact
that a larger Ao adds a large amount of regularization to the objective (via the perspective term)—
improving the performance of the relaxation solvers'®. It is also worth emphasizing that LOBnB
is prototyped in Python, as opposed to the highly efficient BnB routines available in commercial
solvers such as Gurobi and MOSEK.

Ideally, we desire a solver that can solve Problem (1) over a range of A9 values, which includes
values in the neighborhood of A\5. However, the results in Table 1 suggest that the state-of-the-art
methods (except LOBnB) seem to only work for quite large values of Ay (which, in this case, do
not correspond to solutions that are interesting from a statistical viewpoint). On the other hand,
LOBnB seems to be the only method that can scale to p ~ 10% while being relatively robust to the
choice of \g.

In the bottom panel of Table 1, the results also indicate that LOBnB significantly outperforms
Gurobi, MOSEK, and BARON for different choices of M. For all the solvers, the run time increases
with M, and the longest run times are for M = oo. This empirically validates our result in
Proposition 1, where we show that for a sufficiently small (but valid) value of M, PR(M) can be
better than PR(00), in terms of the relaxation quality. However, even with M = oo, LOBnB can
solve p = 10% in around 3 hours, whereas all other solvers have a 100% gap after 4 hours. We also
note that Table 1 considers both the two settings in Theorem 1: \/Ag/A2 > M and \/Ag/A2 < M.
Specifically, we have \/A§/\5 > M for M € {M*()\3),1.5M*()\3),2M*(A5)}, and /Aj/A5 < M for
M € {4M*(X\3),00}. LOBnB achieves notable improvements over other solvers for both of these
settings.

4.2.2 Varying Signal-to-Noise Ratio (SNR)

Here we investigate the effect of SNR on the running time of the different solvers. To this end, we
generate synthetic datasets with n = 103, p = 10%, kT = 10, under a constant correlation setting,
where ¥;; = 0.1 Vi # j and 1 otherwise. We vary SNR in {0.5,1,2,3,4,5}. We set A\g = Aj, A2 = A3
(where A\§ and A3 depend on SNR), and M = 1.5M*(\2). We report the running time versus SNR
in Table 2. The corresponding values of A\j and A}, and the number of BnB nodes are reported
in Appendix C.2. The results indicate that LOBnB is much faster, and less sensitive to changes
in SNR, compared to the other solvers. For example, LOBnB can handle SNR=0.5 in less than 4
minutes, whereas the fastest competing solver (MOSEK) takes around 46 minutes.

4.2.3 Varying A\g and o

In the experiment of Section 4.2.1, we studied the running time for A\g = Aj so that the model
recovers the true support size. In this experiment, we study the running time over a grid of \g and
A2 values, which includes various support sizes. We consider synthetic instances with p € {103, 10%},
n = 103, k' = 10, under a constant correlation setting, where ¥i; = 0.1 Vi # j and 1 otherwise.
We vary Xp € {0.1,0.5,1,2,10} - X5 and Ao € {0.5,0.1,0.01} - A{*, where A{" is a value of A\ which
sets all coefficients to zero. Following [32]™, we use A" = (2 + 4X9) | XTy|%,. Next, we describe,

13Gurobi is the only exception to this observation. We investigated this: Gurobi generates additional cuts only for
the case of 10\5, which seem to slow down the relaxation solver.

14[32] shows that AP is the smallest choice of Ao for which 8 = 0 is a coordinate-wise minimizer for Problem (1).
In this experiment, we verified numerically that 5 = 0 is a global minimizer at Ag'.

19

Table 2: Running time (seconds) for solving (3) on a synthetic dataset with n = p = 103, at different SNR
levels. The parameter Ay is set to the optimal choice A%, which depends on the current SNR level. For
methods that do not terminate in 2 hours: the optimality gap is shown in parenthesis, and a dash (-) is used
in the special case of a 100% gap.

SNR| M |LOBnB GRB MSK B
0.5 [0.269| 231 (2%) 2757 -
0.307| 1.7 1213 1046 -
0.333] 1.4 119 288 -
0.346| 1.3 102 173 -
0.347| 1.0 77 113 -
0.348| 0.8 77 92 -

T = W NN =

how given a pair (Ao, A2) in the grid, we estimate the corresponding Big-M value M (X, \2). Let
B(Xo, A2) be the solution of Problem (1) restricted to the true support:

1
B(Xo, Ae) € arggnm;w — XBII3+ XollBllo + A2llBI3 st Bstye =0

We compute (Ao, A2) exactly using formulation (3) with M = co. We then compute an estimate of
the Big-M value: M(Xg, A2) := ||B(Ao, A2)||oe- For every (Ao, A2) in the grid, we solve Problem (3)
for M (Mo, \2) = 1.5M(A0, A2). In Table 3, we report the running time for p = 10® (top panel) and
p = 10* (bottom panel). The values of A3 and)g, along with the number of BnB nodes explored,
are reported in Appendix C.3.

In Table 3, for all values of Ay considered and Ao € {0.5,0.1} - A\§*, LOBnB is faster than the
competing methods, with speed-ups exceeding 10,000x compared to both Gurobi and MOSEK.
However, for Ay = 0.01\7", none of the solvers are able to solve the problem in 1 hour, and the gaps
seem to be comparable. We also note that for p = 10, LOBnB is able to solve (to optimality) 13
out of the 20 instances in the 1 hour limit. In contrast, Gurobi could not solve any of the instances
and MOSEK could only solve 6.

4.3 Sensitivity to Data Parameters

We study how LOBnB’s running time is affected by the following data specific parameters: number
of samples (n), feature correlations (X), and number of nonzero coefficients (k'). In the experiments
below, we fix Ao = A\ and M = 1.5M*(\3). For all the experiments in this section, the values of
Ao, A2, and M used are reported in Appendix C.4.

Number of Samples: We fix kf = 10, p = 10%, and consider a constant correlation setting
¥;; = 0.1 for i # j and 1 otherwise!®. The timings for n € {10%,10%,10%,10°} are in Table 4. The
results indicate that the problem can be solved in reasonable times (order of seconds to minutes)
for n > 103. The problems can be solved the fastest when n is close to p, and the extreme cases
n = 102 and n = 10° are the slowest. We contend that for large n, the CD updates (which cost
O(n) each) become a bottleneck. For n = 102, the CD updates are cheaper, however, the size of the

15We choose p = 10* to ensure that the matrix fits into memory when n is large.

20

Table 3: Running time for solving (3) over a grid of A\g and Ay values. “NNZ” is the number of nonzeros
in the solution to (3) (or the best incumbent if all solvers cannot terminate in 1 hour). For methods that
do not terminate in 1 hour: the optimality gap is shown in parenthesis, and a dash (-) is used in the special
case of a 100% gap. The true solution satisfies: ||5]|s = 0.208.

p =103
A2 Ao NNZ M |LoBnB GRB MSK B
0.5A7" 5 0.293 1 (3%) 158 -
10A5 0.1A% 10 0.245 | 0.01 (5%) 5 -
0.01A* 36 0.245 | (12%) (17%) (16%) -
0.5A7" 4 0.491 3 651 2737 -
205 0.1AF 10 0.332 0.1 68 106 -

0.01A2 15 0.332| (3%) (5%) (4%) -
05AF 3 0524 20 2648 1278 -

X5 01AR 10 0348 | 0.3 109 65 -
0.01A2 10 0.348 | (10%) (11%) (6%) -
0.5M2 3 0542 | 59 965 (6%) -

0505 0.1A® 10 0356 | 1 63 172 -

0.01A2 10 0.356 | (19%) (16%) (12%) -
05\ 3 0557 | 128 697 (8%) -
0.1A3 0.1A 10 0364 | 1 58 303 -
0.01A 10 0.364 | (47%) (32%) (55%) -

=104
o o NNZ M |LoBnB GRB MSK B
0.5\ 5 0.293 2 - 1617 -
10A3 01N 10 0245 | 0.1 - 62 -
0.01A" 45 0.245 | (3%) - (%) -
0.5\ 8 0.491 | 263 - (13%) -
2\5 0.1A® 10 0332 | 0.7 - 2459 -
0.01A 17 0.332 | (15%) - (15%) -
0.5\ 3 0.524 | 1920 - (18%) -
A 0.1\ 10 0.348 2 - 3338 -
0.01A" 14 0.348 | (29%) - (24%) -
0.5\ 3 0542 | (3%) (29%) (26%) -
0.5\5 0.1A 10 0.356 5 - 3483 -
0.01IAT 14 0.356 | (42%) - (36%) -
0.5\ 3 0557 | (8%) - (19%) -
0.1\3 0.1A® 10 0.364 24 - (46%) -
0.01A" 13 0.364 | (73%) - (77%) -

21

search tree is significantly larger—suggesting that a small value of n can lead to loose relaxations
and require more branching. Note also that the underlying statistical problem is the most difficult
for n = 10? compared to other larger values of n.

Feature Correlations: We generate synthetic datasets with p € {10%,10°}, n = 103, kT = 10,
and ¥ = Diag(E(l), @ E(kT)) is block-diagonal. Such block structures are commonly used

in the sparse learning literature [55]. Each ©() is a correlation matrix with the same dimension.
]
(]
i,j € [p/k'], i.e., the correlation is exponentially decaying in each block. We report the timings for
different values of the parameter p in Table 4. The results indicate that higher correlations lead

Given a correlation parameter p € (0,1), for each I € [k!], we assume that .7 = pl*=Jl for any

to an increase in the run time, but even the high correlation instances can be solved in reasonable
time. For example, when p = 10%, p = 0.9 can be solved in less than 10 minutes. When p = 10°,
p = 0.8 can be solved in around 13 minutes, and p = 0.9 can be solved to a 13% gap in 2 hours.
Sparsity of the Regression Coefficients: We consider datasets with n = 103, p = 104, and
the same correlation setting as the experiment for the number of samples. The results in Table 4
show that problems with 15 nonzeros can be handled in 166 seconds, and for 20 and 25 nonzeros,
decent gaps (< 10%) can be obtained in 2 hours. We also note that for larger Ay or tighter M
choices, larger values of k' can be handled.

Table 4: Run time in seconds (denoted by t) for LOBnB. If LOBnB does not solve the problem in a 2 hour
time limit, the optimality gap is shown in parenthesis.

Varying correlation coefficient p

Varying n Varying k'
p 0.10.30.5/0.710.8| 0.9
n| 102 (103104 10° kfl10[15| 20 | 25
t(p=10%)|4 |4 |5|16|55| 530
t|(42%)| 11 [301701 t [4166|(10%)|(6%)
t(p = 10°)|35/39 |60 |231(808|(13%)

4.4 Real Data and Ablation Studies (Algorithm Settings)

High-dimensional Real Data: Here we investigate the run time of LOBnB on the Riboflavin
dataset [16]—a genetics dataset used for predicting Vitamin B2 production levels. The original
dataset has p = 4088 and n = 71. We augment the dataset with pairwise feature interactions
to get p = 8,362,004. We mean center and normalize the response and the columns of the data
matrix. We then run 5-fold cross-validation in LOLearn (with default parameters) to find the
optimal regularization parameters Mo and Ao. We set M to be 10 times the 5, norm of the solution
obtained from cross-validation. In LOBnB, we solve the problem for Ay € {0.15\2, 5\2} and vary Ag
to generate solutions of different support sizes. The run time, for each Ao, as a function of the
support size is reported in Figure 2. Interestingly, at 5\2, all the support sizes obtained (up to 15
nonzeros) can be handled in less than a minute. Moreover, the increase in time is relatively slow
as the number of nonzeros increases. When Ay becomes smaller (i.e., Ay = 0.1;\2), the run times
increase (though they are reasonable) as the problem becomes more difficult. When an optimal
solution has six nonzeros, LOBnB for Ay = 0.15\2 is approximately 20x slower than Ay = 5\2.

Ablation Study: We perform an ablation study to measure the effect of key choices in our BnB
on the run time. Particularly, we consider the following changes: (i) replacing our relaxation solver

22

with MOSEK, (ii) turning off warm starts in our solver, and (iii) turning off active sets in our
solver. We measure the run time before and after these changes on synthetic data with n = 103,
Et = 10, Y;j = 0.1 for all 7 # j and 1 otherwise. We use the parameters A\g = A\j, A2 = A3, and
M = 1.5M*(\5) (with the same values as those used in the experiment of Section 4.2.1). The
run times for different choices of p are reported in Table 5. The results show that replacing our
relaxation solver with MOSEK will slow down the BnB by more than 1200x at p = 10%. The results
for MOSEK are likely to be even slower for p = 10° as it still had a 100% gap after 2 hours. We
note that MOSEK employs a state-of-the-art conic optimization solver (based on an interior point
method). The significant speed-ups here can be attributed to our CD-based algorithm, which is
designed to effectively exploit the sparsity structure in the problem. The results also indicate that
warm starts and active sets are important for run time, e.g., removing warm starts and active sets
at p = 10° can slow down the algorithm by more than 16x and 67x, respectively.

Table 5: Time (seconds) after the following changes

800
to our relaxation solver: (i) replacing it with MOSEK, 200 — A
(ii) removing warm starts, and (ili) removing active _ 600 0.14,
sets. Gap is shown in parenthesis if the method does g 500
not terminate in 2 hours. 8 400
OEJ 300
P 104 10° 106 F 200
100 A
LOBnB| 3 34 1112 ol
2 ; 6 3) 2 '
(i) 3802 (13%) (100%)) NumberofNonl—zeros1 B
(ii) 25 560 (21%) Figure 2: LOBnB run time on a real genomics dataset
1boflavin) with n = and p ~ 8.3 X .
(iil) | 66 2291 (23%) Riboflavin) with n = 71 and p ~ 8.3 x 10°

5 Conclusion

We considered the exact computation of estimators from the £gfo-regularized least squares problem.
While current approaches for this problem rely on commercial MIP-solvers, we propose a highly
specialized nonlinear BnB framework for solving the problem. A key workhorse in our approach is
a fast coordinate descent procedure to solve the node relaxations along with active set updates and
gradient screening, which exploit information across the search tree for computational efficiency.
Moreover, we proposed a new method for obtaining dual bounds from our primal coordinate descent
solutions and showed that the quality of these bounds depend on the sparsity level, rather than the
number of features p. Our experiments on both real and synthetic data indicate that our method
exhibits over 5000x speedups compared to the fastest solvers, handling high-dimensional instances
with p = 8.3 x 10° in the order of seconds to few minutes. Our method appears to be more robust
to the choices of the regularization parameters and can handle difficult statistical problems (e.g.,
relatively high correlations or small number of samples).

Our work demonstrates for the first time that carefully designed first-order methods can be
highly effective within a BnB framework; and can perhaps, be applied to more general mixed
integer programs involving sparsity. There are multiple directions for future work. [6] recently
showed that safe screening rules, which eliminate variables from the optimization problem, can be

23

a very effective preprocessing step for ¢pfs regularized regression. One promising direction is to
extend such rules to dynamically eliminate variables during the course of BnB. Another important
direction is to develop specialized methods that can dynamically infer and tighten the Big-M values
used in our formulation.

Acknowledgements

Hussein Hazimeh acknowledges research support from the Office of Naval Research ONR-N000141812298.
Rahul Mazumder acknowledges research funding from the Office of Naval Research ONR-N000141812298
(Young Investigator Award), the National Science Foundation (NSF-1IS-1718258) and IBM. The
authors would like to thank the referees for their constructive comments, which led to an improve-
ment in the paper.

References

[1] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters
33(1), 42-54 (2005)

[2] Aktiirk, M.S., Atamtiirk, A., Giirel, S.: A strong conic quadratic reformulation for machine-job
assignment with controllable processing times. Operations Research Letters 37(3), 187-191
(2009)

[3] Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method
for conic quadratic optimization. Mathematical Programming 95(2), 249-277 (2003)

[4] Applegate, D., Bixby, R., Cook, W., Chvétal, V.: On the solution of traveling salesman
problems (1998)

[6] Atamturk, A., Gomez, A.: Rank-one convexification for sparse regression. arXiv preprint
arXiv:1901.10334 (2019)

[6] Atamturk, A., Gomez, A.: Safe screening rules for 10-regression from perspective relaxations.
In: H.D. III, A. Singh (eds.) Proceedings of the 37th International Conference on Machine
Learning, Proceedings of Machine Learning Research, vol. 119, pp. 421-430. PMLR (2020).
URL http://proceedings.mlr.press/v119/atamturk20a.html

[7] Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: Optimality conditions and
algorithms. STAM Journal on Optimization 23(3), 1480-1509 (2013). DOI 10.1137/120869778.
URL https://doi.org/10.1137/120869778

[8] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer
nonlinear optimization. Acta Numerica 22, 1-131 (2013)

[9] Bertsekas, D.: Nonlinear Programming. Athena scientific optimization and computation series.
Athena Scientific (2016). URL https://books.google.com/books?id=TwOujgEACAAJ

[10] Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern optimization lens.
The Annals of Statistics 44(2), 813-852 (2016)

24

http://proceedings.mlr.press/v119/atamturk20a.html
https://doi.org/10.1137/120869778
https://books.google.com/books?id=TwOujgEACAAJ

[11]

[12]

[13]

[16]

[17]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Bertsimas, D., Pauphilet, J., Van Parys, B.: Sparse classification: a scalable discrete optimiza-
tion perspective. arXiv preprint arXiv:1710.01352 (2017)

Bertsimas, D., Pauphilet, J., Van Parys, B.: Sparse regression: Scalable algorithms and em-
pirical performance. arXiv preprint arXiv:1902.06547 (2019)

Bertsimas, D., Van Parys, B., et al.: Sparse high-dimensional regression: Exact scalable algo-
rithms and phase transitions. The Annals of Statistics 48(1), 300-323 (2020)

Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Applied
and computational harmonic analysis 27(3), 265-274 (2009)

Bonami, P., Lee, J., Leyffer, S., Wachter, A.: More branch-and-bound experiments in convex
nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Labora-
tory, Mathematics and Computer Science Division (2011)

Bithlmann, P., Kalisch, M., Meier, L.: High-dimensional statistics with a view toward appli-
cations in biology (2014)

Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based
optimization. AIChE Journal 60(6), 2211-2227 (2014). DOI https://doi.org/10.1002/aic.
14418. URL https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.14418

Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The computer
journal 8(3), 250-255 (1965)

David, G., Ilias, Z.: High dimensional regression with binary coefficients. estimating squared
error and a phase transtition. In: Conference on Learning Theory, pp. 948-953 (2017)

Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: Continuous and mixed
integer optimization perspectives. arXiv preprint arXiv:2001.06471 (2020)

Dong, H., Chen, K., Linderoth, J.: Regularization vs. Relaxation: A conic optimization per-
spective of statistical variable selection. ArXiv e-prints (2015)

Duran, M.A., Grossmann, [.LE.: An outer-approximation algorithm for a class of mixed-integer
nonlinear programs. Mathematical programming 36(3), 307-339 (1986)

Fletcher, A.K., Rangan, S., Goyal, V.K.: Necessary and sufficient conditions for sparsity
pattern recovery. IEEE Transactions on Information Theory 55(12), 5758-5772 (2009)

Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0—1 mixed integer programs.
Mathematical Programming 106(2), 225-236 (2006)

Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software 33(1), 1-22 (2010). URL http://www.
jstatsoft.org/v33/i01/

Greenshtein, E., et al.: Best subset selection, persistence in high-dimensional statistical learn-
ing and optimization under 11 constraint. The Annals of Statistics 34(5), 2367-2386 (2006)

25

https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.14418
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

Giinliik, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs
with indicator variables. Mathematical programming 124(1-2), 183-205 (2010)

Gurobi Optimization, I.: Gurobi optimizer reference manual. URL http://www. gurobi. com
(2020)

Hammarling, S., Lucas, C.: Updating the qr factorization and the least squares problem.
Manchester Institute for Mathematical Sciences, University of Manchester (2008)

Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical pro-
grams in python. Mathematical Programming Computation 3(3), 219-260 (2011)

Hastie, T., Tibshirani, R., Tibshirani, R.J.: Extended comparisons of best subset selection,
forward stepwise selection, and the lasso. arXiv preprint arXiv:1707.08692 (2017)

Hazimeh, H., Mazumder, R.: Fast best subset selection: Coordinate descent and local com-
binatorial optimization algorithms. Operations Research 68(5), 1517-1537 (2020). DOI
10.1287/0pre.2019.1919. URL https://doi.org/10.1287/opre.2019.1919

Hazimeh, H., Mazumder, R.: Learning hierarchical interactions at scale: A convex optimization
approach. In: International Conference on Artificial Intelligence and Statistics, pp. 1833-1843.
PMLR (2020)

Hong, M., Wang, X., Razaviyayn, M., Luo, Z.Q.: Iteration complexity analysis of block coor-
dinate descent methods. Mathematical Programming 163(1-2), 85-114 (2017)

Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1-6 (2015)

Lee, J., Leyffer, S.: Mixed integer nonlinear programming, vol. 154. Springer Science &
Business Media (2011)

Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-integer con-
vex programming. In: International Conference on Integer Programming and Combinatorial
Optimization, pp. 102-113. Springer (2016)

Mazumder, R., Friedman, J.H., Hastie, T.: Sparsenet: Coordinate descent with nonconvex
penalties. Journal of the American Statistical Association 106(495), 1125-1138 (2011). DOI
10.1198/jasa.2011.tm09738. URL https://doi.org/10.1198/jasa.2011.tm09738. PMID:
25580042

Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: Sparse linear
modeling when the snr is low. arXiv preprint arXiv:1708.03288 (2017)

Mazumder, R., et al.: Discussion of “best subset, forward stepwise or lasso? analysis and
recommendations based on extensive comparisons”. Statistical Science 35(4), 602-608 (2020)

Miyashiro, R., Takano, Y.: Subset selection by mallows’ cp: A mixed integer programming
approach. Expert Systems with Applications 42(1), 325-331 (2015)

Natarajan, B.K.: Sparse approximate solutions to linear systems. STAM journal on computing
24(2), 227-234 (1995)

26

https://doi.org/10.1287/opre.2019.1919
https://doi.org/10.1198/jasa.2011.tm09738

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

[54]

Nesterov, Y.: Gradient methods for minimizing composite functions. Mathematical Program-
ming 140(1), 125-161 (2013)

Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemporary Mathematics 443(7),
59-72 (2007)

Pilanci, M., Wainwright, M.J., El Ghaoui, L.: Sparse learning via boolean relaxations. Math-
ematical Programming 151(1), 63-87 (2015)

Raskutti, G., Wainwright, M.J., Yu, B.: Minimax rates of estimation for high-dimensional
linear regression over [,-balls. IEEE transactions on information theory 57(10), 6976-6994
(2011)

Studio-CPLEX, I.I.C.O.: Users manual-version 12 release 6. IBM ILOG CPLEX Division:
Incline Village, NV, USA (2013)

Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimiza-
tion. Mathematical programming 103(2), 225-249 (2005)

Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable mini-
mization. Journal of Optimization Theory and Applications 109(3), 475-494 (2001). DOI
10.1023/A:1017501703105. URL http://dx.doi.org/10.1023/A:1017501703105

Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound
algorithm for mixed-integer conic quadratic programs. INFORMS Journal on Computing
20(3), 438-450 (2008)

Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed integer
conic quadratic programming. Mathematical Programming Computation 9(3), 369-418 (2017)

Wainwright, M.J.: Information-theoretic limits on sparsity recovery in the high-dimensional
and noisy setting. IEEE Transactions on Information Theory 55(12), 5728-5741 (2009)

Xie, W., Deng, X.: Scalable algorithms for the sparse ridge regression. SIAM Journal on
Optimization 30(4), 3359-3386 (2020)

Zhang, Y., Wainwright, M.J., Jordan, M.I.: Lower bounds on the performance of polynomial-
time algorithms for sparse linear regression. In: Conference on Learning Theory, pp. 921-948.
PMLR (2014)

Zhao, P., Yu, B.: On model selection consistency of lasso. Journal of Machine learning research
7(Nov), 2541-2563 (2006)

27

http://dx.doi.org/10.1023/A:1017501703105

A Proofs of Technical Results

Proof of Theorem 1: The interval relaxation of (3) can be expressed as:

mﬁin {ny XB|3 + Z HLllIZl (Mozi +)\281)} (35a)
87 < sizi, i € [p] (35b)
— Mz < B; < Mz, i € [p] (35¢)
z; €10,1],8; >0, i € [p] (35d)

Let w(Bi; Ao, A2, M) = ming, ;, (Xozi + A2s;) s.t. (35b), (35¢), (35d). Next we obtain an expression
for w(Bi; Mo, A2, M).

Let (B, 2, si) be a feasible solution for (35). Note that z; := max{i gl 2'} is the smallest possible
value of z;, which satisfies constraints (35b) and (35c) (for the case of 3; = s; = 0, we define
B2/s; = 0). Thus, the objective value corresponding to (8;, 2;, 8;) is less than or equal to that of

a feasible solution (Bi,zi,si) This implies that we can replace constraints (35b) and (35c¢) with

1B

the constraint z; = max{f L, |} without changing the optimal objective of the problem. This

replacement leads to:

i W}, €[0,1], s> 0.

OJ(,BZ‘; A0y A2, M) = min ()\ozi +)\281') s.t. 2z, = maX{ s M

5iy2i
In the above, we can eliminate the variable z;, leading to:

2
w(ﬁi;)\o,)\g,M):minmax{ b —I—)\zsl,)\omz‘

Si

+)\281'} s.t. s; > ﬁ?, |ﬁl| <M. (36)
Case I Case II

Suppose that Case I attains the maximum in (36). This holds if s; < |B;|M. The function

2
)\Oi—? + Ags; is convex in s;, and the optimality conditions of this function imply that the optimal

solution is s = |Bi|\/Ao/A2 if |Bi] < /Ao/A2 < M and sf = B2 if \/Ao/A2 < |Bi] < M. Plugging
s} into (36) leads to w(fBi; Ao, A2, M) = 2X0B(Bi/ A2/ o), assuming y/Ag/A2 < M.

Now suppose Case II attains the maximum in (36). This holds if s; > |3;|M. The function
/\0% + Ags; is monotonically increasing in s;, where s; is lower bounded by |5;|M and Bl-z. But we
always have |3;|M > (2 (since |3;] < M), which implies that the optimal solution is s = |3;|M.
Substituting s} into (36) we get w(S;; Ao, A2, M) = (Ao/M + Ao M)|B;], and this holds as long as

\/)\0/)\2 > M.

Proof of Proposition 1: First, we show (7). Note that Vg(5s) can be simplified to:

Voqn =, min H(B) = ¢ |y~ XBI3+ 3 (3216 + 28?). (37

o <M
18lle< =

Recalling Theorem 1 and the definition of F'(3) in (5), note that for \/Ag/A2 > M:

A
Vo = Veon 2 F(8) — H(8) =3 {val87: 0, he, M) = S1B!] = Xa(5)?}
=Y, (MIB| - (B)?)

28

where the inequality holds since 8*, an optimal solution to (5), is feasible for (37). This establishes
(7).

We now show (8). Since |5f| < M and \/Ao/A2 > M, we must have 11 (85; Mo, A2) = 2|85 [V Aor2
(this corresponds to the first case in (4)). Also recall that Vpgr(o) = ming G(8), where G(f) is
defined in (6) (this follows from applying Theorem 1 with M = o0). The following then holds:

Veran — Vemee) 2 F(89) = G(8) =30 {a(8: 00, 0. M) = wn (81, ho)}
=h(Ao, A2, M) 8|1,

where the inequality holds since 5*, an optimal solution to (5), is feasible for (6).

(38)

Proof of Proposition 2: First, we recall that Vpr(o) = ming G(8), where G(f) is defined
n (6), and that Vg(sy) is defined in (37). Define a function ¢ : R — R as follows

t(Bi) = 200B(Biv/ A2/ o) — al \51'! — Aaf3.

Next, we prove (10).

Proof of (10): Suppose that M < %\/ and |Bi| < M. Using the fact that |5;| < /Ao/A2
and the definition of B, we have B(5;1/\ = v/A2/Ao|Bi]- This leads to:

)= (2 m—f)w ~ Mo} <0, (39)

where the inequality follows since 2v/AgAa — Ao/M < 0 for M < %\/)\0 /X2. Now, let 3T be an
optimal solution to (37). Then, the following holds:

Vi) = Vereeo) 2 H(BT) =G8N = =3 #(8)) >0, (40)

where the first inequality follows from Vg(3) = H (1) and VPR(oo) < G (81). The second inequality
n (40) follows from (39). This establishes (10).
To show (11), we will need the following lemma.

Lemma 1. Let M > \/A\o/A2, then for any B; € [—M, M|, we have t(;) > 0.

Proof of Lemma 1. Suppose that M > (/Ag/A2 and |3;| < M. There are two cases to consider

here: Case (i): |8i| < /Ao/A2 and Case (ii): |5i| > / Ao/ Az
For Case (i), from the definition of B, we have 2X\oB(f; \/ A2 /o) = 24/ XoA2|Bi|. Therefore,

t(Bi) = (AoA2 — *) 1Bl — X235

In the above, it is easy to check that for M > \/Ao/ A2 and |5;] < \/Ao/A2, we have t(3;) > 0. Now
for Case (ii), we have 2X0B(Bi1/A2/Xo) = Ao + A2f37—this leads to t(3;) = Ao (1 - |]BV}|>, which is

non-negative since we assume that |3;| < M. This establishes Lemma 1. O

Proof of (11): Define v*(M) = min g < G(B) (recall, G(3) is defined in (6)) and let 5* be an
optimal solution i.e., v*(M) = G(B8*). Suppose that M > \/Ag/A2. Then, the following holds:

V(M) = Ve = G(8*) — H(B*) = > _t(B) =0 (41)
i€[p]

29

where the first inequality holds since 3* is a feasible solution to (37) so V() < H(B*), and the
last inequality is due to Lemma 1.

Now suppose that Ay € L(M) (defined in (9)) and let § € S()\%) (i.e., A is optimal for (6))
be such that it satisfies ||B]lc < M. Since Vpr() < v*(M) and 3 is feasible for the problem
corresponding to v*(M), then v*(M) = G(8). But by (41) we have v*(M) > Vg(ar), which com-
bined with v*(M) = G(f), leads to G(8) > V- This establishes (11) (since by definition
G(B) = VpRr(sc)); and completes the proof of Proposition 2.

Proof of Proposition 3: Fix some i € Supp(ﬁ)c. Recall that the one-dimensional problem:
ming, < F(Bi,....Bi ..., Bp) is equivalent to Problem (13), where f; = (y — >t Xij,X¢>.
Since §; = 0, we have 3; = (7, X;) where, 7 = y — X 3. For VAo/A2 < M, (14) implies that the
solution of (13) is nonzero iff |3;| > 2v/AgA. Similarly, for \/Ag/Az > M, by (15), the solution of
(13) is nonzero iff |3;| > Ao/M + Ao M. Using these observations in the definition of V in Algorithm
2, leads to the result of the proposition.

Proof of Proposition 4: Fix some 7 € V. Note that
(7, Xi) = (r%, X)| = (X 8% = XB, Xi)| < || XB° = XBja]| Xill2 < e.
Using the triangle inequality and the bound above, we get:
(7, Xa)] < [, Xa)| + (7, Xa) — (%, Xa)| < 100, X)) + e
Therefore, if i € V, i.e., [(7, X;)| > (Ao, A2, M), then [(r% X)) + € > ¢(Ao, A2, M), implying that
i €V, as defined in (19).

Proof of Theorem 2: Problem (5) can be written equivalently as:

erH2+Zw Biz Ao, Ao, M) sit. r=y—XB, |B;| <M, Vi€ lp. (42)

BGRP TER"
i€(p|

Case of \/Ag/A2 < M: We first consider the case when y/Ag/A2 < M. We dualize all the
constraints in (42), leading to the following Lagrangian dual:

max min L(B,r, « 43
aeaneRgo BERP,reR™ (ﬁ’) ”I’]) ()

where L(8,7, a,n) is the Lagrangian function defined as follows:
1
L(B,r,a,n) := §\|T||% + > (B do, do) + ol (r—y+ XB) + D nillBi] — M).
ic[p] i€[p]
Next, we discuss how to solve the inner minimization problem in (43). Let us write:
g

néurn L(B,r,a,n) = mrln{gﬂrH%—i-aTr} ;mm{ }—a y— ;Mm (44)

1€[p] i€lp

where D;(8;) := ¥1(Bi; Mo, Aa) +aT X;8;+n;|8:|. Note that the minimizer wrt r is given by 7 = —a.
In what follows, we consider some i € [p] and derive an optimal solution ; of ming, D;(5;). There
are two cases to consider here.

30

Case 1: ’,Bl| < \/)\0/)\2. Here, 1/)1(,6“)@,)\2) = 2\//\0)\2|ﬁ,“. Note that
N 0 if 2o\ i — aTX;] >0
Bf = argmin D;(B;) = ! 0A2 + 1 — o Xi| >
Bi —+v/Xo/Azsign(al X;) otherwise

and as we will see, the second case above is a special case of Case 2 below.
Case 2: |5;] > \/Ao/A2. In this case, 11 (5i; Ao, A2) =)\2,87;2 + A\g. Note that

Bf = argmin D;(B;) = arg min Ao + o’ XiB; + il Bi| = T(—a® Xi;mi,00)/(2)2) (46)
Bi

i

(45)

where, T' above is the soft-thresholding operator [25]. But 3} in (46) should satisfy |3f] > \/Xo/)2 in
this case. Using the definition of T'(.), the latter condition can be written as: (|a” X;| —n;)/(2\2) >
v/ Ao/A2, which simplifies to |aTXi| — 1 > 2v/AoA2. In this case, D;(]) can be written as:

~ 2

Combining (45) and (47), we have: D;(3}) = — [W -)\0} . Plugging the above expression
+

of Dz(@*) along with 7 = —a in (43), we get the following dual problem:

p

1 2 T [(OZTXi’ — i) z
max — —||af||5 —a"y — ——A] — M. 48
aeaneRgo 9 H HQ Yy Zzl 4)\2 0 n Zzl i ()
Note we can drop the non-negativity constraint n; > 0 above. Using a new variable ~ in place

of n (note that n; = |y;| for all ¢), Problem (48) can be reformulated as:

p

max _,” 2oty — Z[QX %)°] ZM’% (49)

acR” yeRP

which is the formulation in (20).

We now show (23). Let (a*,n*) be an optimal solution of (48). First, it is easy to see m* =
argmin, L(8*,r,a*,n*) = —a*. For the second part of (23), note by complementary slackness: if
|6}| < M then n} = 0 and consequently v = 0. Next, we will derive +; for the case of |3}| = M > 0.
We first consider the case of 57 = M. Using (46) with the identifications: Bl* =M, a =a* and
n=n* weget M = (—a*T X; —nfsign(—a*T X;))/(2A2), where sign(a*? X;) = —1. Using this along
with the fact that v = n’sign(a*? X;), we obtain 7} = o7 X;+2 oM = o*T X; 2\ Msign(a*T X;).
Using this identity along with a similar argument for 5; = —M, we arrive at the expression in (23).

Case of \/Ag/A2 > M: The proof for this case follows along the lines similar to what was
shown above. We omit the proof.

The following lemma is useful for proving Theorem 3.

Lemma 2. Suppose \/Ao/Ao < M. Let B be a solution from Algorithm 2 and (&,%) be the corre-
sponding dual solution defined in (25). Let * and r* be as defined in Theorem 2, and define the
primal gap € = | X(8* = B)|l2. Then, for every i € Supp(B)°, we have v(&,%;) = 0 (see (21) for
definition of v); and for every i € Supp(B), we have

(6, %) < cie+ (Ah) T + (), (50)
where ¢; = (2A2) 1 if |BF| < M, and ¢; = M if |Bf| = M

31

Proof of Lemma 2. Fix some i € Supp(ff)c. Since 3 is the output of Algorithm 2, the set V in
Algorithm 2 must be empty. Thus, using Proposition 3, we have: |7 X;| < 2v/Agha. As # = —@,
and consequently using the definition of 4 in (26), we have 4; = 0. Thus,

(67X — %)%/ (4h2) = (77 X:)?/(4X2) < X,

which implies that v(&,4;) = 0.
Now fix some i € Supp(83), and let a := (& — a*)TX; and b := o*T X; — 7. By (25) and the
definition of hy in (20), we have 4; = argmin, v(&,7;), which leads to v(&,%;) < v(&,7;). An

upper bound on v(&,4;) can be then obtained as follows:

A . (a1 X; —v7)?
N < ¥\ —z_A} *
v(@ %) < o(@) = | oy o++MhA
(& — o)Xy + T X; — ~7)?
— _/\] MI~*
] 4)\2 0 ++ h/l’
-2 2
a®+2ab+b
:Aggggf—A} M|y
a? + 2al|b| b?
< & T elalibl ——)\] M |~*
< e+l Ml Mk
a? + 2|al|b
§7| | ‘+v(a*,ﬁ)- (51)
4o

Next, we obtain upper bounds on |a| and |b|. By the Cauchy-Schwarz inequality, we have |a| <
| X (B* — B)ll2]| Xill2 = €]| Xil|2. Since the columns of X are normalized, the bound simplifies to

la| < e. Since, ||y|l2 =1 and a* = —r* (see Theorem 2), we have:
Sl I3 = Sl 13 < F(87) < F(0) = SIll3 = 5,

implying that ||a*[|2 < 1.
We now present a bound on |b| = |a*7 X; — 47| by considering two cases:

Case 1: (|8f| < M): From the definition of 4 in (23), we have 7 = 0, which leads to
bl = [o*" X;] < o2 Xill2 < 1.

Case 2: (|8f| = M): By (23), v/ = o*T X; — 2M Ay sign(a*? X;), which leads to |b] < 2M).
Plugging |a| < € and the bounds on |b| (above) into (51), we arrive to (50). O

Proof of Theorem 3: We consider two cases based on y/Ag/A2 < M or \/A\g/A2 > M.
Showing bound (29): First, we consider the case of \/Ag/A2 < M, i.e., we will establish the
bound in (29). Note that the following holds:
1 ~ 112 ~T 1 ~ * *112 ~ * *\T
Slal3 +aTy = Jla —a* +a | + (@ - a” +a")Ty
1 ~ * A * * 1 * ~ * *
= Sla—a* B+ (@ —at)Ta" + a3+ (@ —)Ty +a Ty

1 o1
< s+ ella’lla + o’ + elyllz + 0Ty, (52

32

where the inequality above follows by applying Cauchy-Schwarz and noting that ||& — a*|2 =
| X (8" — B)||]2 = €. Using |ly|]l2 =1 and ||a*||2 < 1 (this was established in the proof of Lemma 2)
in (52), we get:

1 1 1
Sl +aTy < 2+ 26+ Lo’ 3 + 0Ty, (53)
Plugging (53) into the objective function in (20) (with a = & and v = #4):
hi(@9) 2 =3 la”l§ - a Ty - 2¢ = & = 3" u(@,%) (54)
1) -) 2 9 e[p} s 1)
1

By Lemma 2, for every i € Supp(ﬁ)c, we have v(&,4;) = 0, which implies v(&, ;) < v(a*, 7)) (since
v is a non-negative function).
Using the inequality v(&, ;) < v(a*,~)) for every i € Supp(f)¢; and inequality (50) for every

~

i € Supp(f), in (54), we get:
A 1 * * * * 1 —
m(6,9) = —5lla’l3 =Ty =D vat) —2e = 5= D0 (ae+ (1))
i€[p] iGSupp(B)

* % 1 2 1.2
=hi(« ,7)—26—56 — Z A (cie+(4)\2) e). (55)
i€Supp(B)

Let
ky = |{i € Supp(B) | |B:| < M}| and ko = |{i € Supp(B) | |Bi] = M}|.

Using the expressions for ¢;s (from Lemma 2) in (55), we get:
1
h(6,3) = ha(a*,y) =26 = 5~y ((2)\2)_16 n (4A2)—162) . (Me + (4A2)—162)

Rearranging the terms in the above and using the fact that & = k1 + ko, we get:

A % _ 1 k
hi(@, %) > hi(a®,v*) — (2 + k1(2)2) 1+k2M)—e2(§+@>,

which leads to (29).
Showing bound (30): Now, we consider the case of \/A\g/A2 > M, where we will establish the
bound in (30). By the same argument used in deriving (54), we have:

- L. * 1 N
ha(py 1) = =5 llp*[13 = ™y = 2¢ = 5 = Ml (56)
Next, we fix some 7 € Supp(,@’) and we upper bound ji; as follows:
] = (|67 Xil = Ao/M = AaM] <[5 = o) Xil + |07 Xil = Ao/M — AaM]

+
<15 = 0" Kol + [I977 Xi| = do/M = AaM |

33

where in the last step above we use Cauchy-Schwarz for the first term (noting that p* = —r*); and
for the second term, we use Theorem 2 along with the following;:

1T X < Mo/M + XM if |8 < M and |p*T X;| > No/M + \oM if |BF| = M. (58)

Conditions in (58) follow from the optimality of (p*,p*) for (22). (For || < M, (24) implies
that p = 0, which leads to [p*7 X;| < A\o/M + X\aM from the feasibility condition in (22). When
|8¥| = M, we will establish (58) via contradiction: If [p*7 X;| < A\g/M + Ao M holds true, then (24)
implies p7 < 0, which would violate optimality for (22).)

For i € Supp(f)¢, we have ji; = 0 (see the discussion after (28)), which implies |fi;] < |pf]. Using

the inequalities |f;| < |[uf], ¢ € Supp(5)© and (57) (for all i € Supp(f)) in (56), and simplifying, we
get:

ha(p,) > ha(p", 1) — (2 4+ M) — /2, (59)

which leads to (30).

B Additional Technical Details

B.1 Derivation of solutions to Problem (13)

First, we consider the setting of /Ao/A2 < M. From Theorem 1, the penalty ¢ (8;; Ao, Ao, M) =
P1(Bi; Moy A2) = 2X0B(Bin/A2/Xo). Using the definition of B in (4), we have:

Dr(Bei Do, o) = {2\/A0A2m| if 16;] < VAo/ A2
s B2+ X 1B > Ao/ e

Case of |3;] < \/Ao/A2: The penalty in this case is 21/AgA2|3;|, and the first-order optimality
conditions imply that the solution of Problem (13) is given by a capped version (due to the box
constraint on ;) of the soft thresholding operator [25]: 85 = T'(B:; 2v/AoA2, M); and this is optimal
as long as: |Bf] < /Ao/X2, ie., |T(Bi;2vA0h2, M)| < /Ao/A2. Therefore, if |3;] < /Ao/Xa +
2v/Ao)a, the solution is given by T'(8;; 2v/AgAa, M).

Case of |3;] > \/Ao/X2: Here the penalty is A232 + Ao, and the solution is given by T(Bi(l +
2X2)~1:0, M). The latter solution is optimal as long as |T'(3;(1 + 2X2)~*;0, M)| > \/Ao/Aa, which
can be simplified to || > v/Ao/Az + 2v/ oAz
This completes the derivation of (14).

Finally, we consider the setting of \/Ag/A2 > M. By Theorem 1, the penalty is ©(8;; Ao, A2, M) =
(Mo/M + XoM)|Bi|. Thus, using arguments similar to the above, the solution is T'(fs; Ao/M +
Ao M, M). This completes the derivation of (15).

B.2 Node Subproblems

In Theorem 1, we presented a reformulation of the root relaxation in the 5 space. Here we discuss
how to similarly reformulate and solve the subproblem at an arbitrary node in the search tree.
Recall that at any node, some z;s can be fixed to 0 or 1 (this depends on the branching decisions
made until reaching the node). At a given node, let Z and N be the sets of indices of the z;s that

34

are fixed to 0 and 1, respectively. Then, the following convex subproblem needs to be solved at the
node:

1
min - Slly = X8I+ X0 > 2+ 2 Y s
T i€(p] i€(p]

st. B7 < sz, i€ [p)
— Mz < B; < Mz, i€ [p]
si >0, i€ [p]
zi=0,i€Z, zi=1ieN, 2z €[0,1],i€[p]\ (ZUN).

(60)

Define the penalty dNJ(ﬁi; Ao, A2) = Ao+)\262-2. Then, using an argument similar to that in the proof
of Theorem 1, Problem (60) can be equivalently expressed in the 8 space as:

- 1 -
min F(8) := zlly — XBl3+ Y ¥(Bis Ao A2, M) + > (85 Ao, A2)

st. ||Bllec <M, B;i=0,ic Z.

Note that Problem (61) is similar to Problem (5), except that (i) the variables corresponding to
N use the penalty 1%(51-; Ao, A2) instead of ¥(fi; Ao, A2, M), and (ii) the variables corresponding
to Z are fixed to zero. To optimize Problem (61) using cyclic CD, the coordinates in (N U Z)°
are updated exactly as described in Section 3.1. Next, we discuss how cyclic CD updates the
coordinates in N. For any i € N, the algorithm updates coordinate ¢ by solving the problem:

min (b1 Bi Bp) s 18i| <

Assuming the columns of X have unit ¢, norm, the problem above is equivalent to (13) but with
U(Bi; Ao, A2, M) replaced with ¥(5;; Mo, A2); and the corresponding solution is given by: T'(5;(1 +
2)\2)71; 0, M)

C Additional Experimental Results and Details

C.1 Experiment of Section 4.2.1

In Table 6, we report the running time of LOBnB, with and without gradient screening. The number
of nodes explored by the different solvers is reported in Table 7. In this experiment: A5 = 0.0409;
and Aj is equal to 0.012, 0.0115, and 0.0132, for Ay set to A3, 0.1A3, and 103, respectively.

C.2 Experiment of Section 4.2.2

The parameters A\g and A2, and the number of BnB nodes explored are reported in Table 8.

C.3 Experiment of Section 4.2.3

The parameter \5 = 0.0409. The parameter Ao and the number of BnB nodes explored are reported
in Table 9.

35

Table 6: Running time in seconds for LOBnB, with and without gradient screening (GS). This experiment
is based on the same data and parameters as Table 1. Both approaches explore exactly the same BnB tree.

Ao = \b A2 = 0.1\ A2 = 10)\}

p |No GS With GS|No GS With GS|No GS With GS
103 0.7 0.9 1.6 2.1 0.011 0.011
104 3.3 2.9 11.5 11.3 | 0.06 0.05
10°| 34 19 545 459 0.5 0.5
109 1112 414 | (23%) (8%) | 8.1 7.3

M = M* M =2M* M = 4M* M =0
p |No GS With GS|No GS With GS|No GS With GS|No GS With GS
103/ 0.16 0.25 0.8 0.98 0.8 1.1 0.8 1.1
104 0.9 0.6 4.9 4.3 5.4 4.8 5.5 4.8
10°| 7.5 3.9 70 43 81 50 81 50
108 121 52 9265 4640 |10986 5639 |[11010 5612

Table 7: Number of BnB nodes explored in the experiment of Section 4.2.1. For [13], we report the number
of cuts used by the cutting-plane algorithm. A dash indicates that the method could not solve more than 1

node in 4 hours.

Ay = A} A2 = 0.1 Ay = 10X}
p |LOBnB GRB MSK B [13] [LOBnB GRB MSK B [13] [LOBnB GRB MSK B [13]
103 159 532 161 29895 329 31 13 - 35563 3 374 347 - 9

10% 225 506 382 - 4769 531 3 13 - 5212 3 357 1143 - 9
10°| 385 - - - - | 4337 - - - - 3 - - - 10
106 1087 - - - - 10104 - - - - 3 - - - 11

M = M* M = 2M* M = AM* M = oo

p |LOBnB GRB MSK B|LOBnB GRB MSK B|L0BnB GRB MSK B|LOBnB GRB MSK B
103 49 65 48 3| 185 714 258 -| 193 2120 261 -| 193 658 273 -

104 61 128 67 -| 287 2 867 -| 305 1 852 -| 305 - 1403 -
10°| 75 - - -| 693 - - - 761 - - | 761 - - -
106 119 - - -] 8919 - - 110059 - - -] 9805 - - -

36

Table 8: The parameters A\g and Ay, and the number of nodes explored by the different solvers in the

experiment of Section 4.2.2. The parameter M is reported in the main text.

SNR| A} A5 |LOBnB GRB MSK B
0.5 0.00402| 0.126 | 34155 85402 7784 1
0.005710.0869| 223 4020 2840 1
0.0097 |0.0596| 217 868 736 1
0.0113]0.0409| 221 461 400 1
0.0121]0.0409| 189 428 227 1
0.0120 0.0409| 159 532 161 1

QL = W N =

C.4 Experiment of Section 4.3

The number of nodes for all experiments of Section 4.3, and the parameters for varying n and k
are presented in Table 10. For varying correlation coefficient: for p = 10%, we have Ay = 0.0326,
A5 = 0.0091, and M = 0.465 (for all values of p). For p = 10°, we have A} = 0.0298, \5 = 0.00202,
and M = 0.449 for all p, except for p = 0.9 which has A\§ = 0.0304.

C.5 Computing Setup and Software

We used four machines in our experiments, each using an Intel(R) Xeon(R) Platinum 8252C CPU
and 48GB of RAM. We ran Gurobi and MOSEK using their Python APIs, BARON using the
Pyomo Python API [30], and [13]’s OA approach using the SubsetSelectionCIO toolkit [11] in
Julia. Relevant software versions: Ubuntu 18.04.3, Python 3.7.10, R 3.6.3, Julia 0.6.4, Gurobi
9.0.1, MOSEK 9.2.3, BARON 2021.1.13, Pyomo 5.7.1, and LOLearn 2.0. For Julia, exceptionally,
we used Gurobi 8.0.1 due to compatibility issues with Gurobi 9.

37

Table 9: The parameter Ay and the number of BnB nodes explored in the experiment of Section 4.2.3.

p =103
A2 Ao LOBnB GRB MSK B
0.02692 343 60303 376 1
10A35 0.00538 1 27103 1 1
0.00054 | 270993 2056 10271 1
0.04207 | 1051 55882 1764 1
205 0.00841 27 354 89 1
0.00084 | 187743 2045 9977 1
0.04526 | 2825 26721 7564 1
A5 0.00905 71 343 237 1
0.00091 | 175876 27259 9819 1
0.04704 | 6417 18821 10959 1
0.5A5 0.00941 113 242 394 1
0.00094 | 66769 18817 9884 1
0.04856 | 11811 12518 13643 1
0.1A5 0.00971 175 218 802 1
0.00097 | 22096 19983 10228 1
p = 10?
Ao Ao LOBnB GRB MSK B
0.02692 343 1 3718 1
10A5 0.00538 1 1 1 1
0.00054 | 56504 1 826 1
0.04207 | 10097 1 901 1
2)\5 0.00841 37 1 470 1
0.00084 | 49358 1 820 1
0.04526 | 43745 1 886 1
A3 0.00905 111 1 801 1
0.00091 | 32142 1 824 1
0.04704 | 75893 353 915 1
0.5A5 0.00941 191 1 906 1
0.00094 | 18253 1 822 1
0.04856 | 96091 1 857 1
0.1A5 0.00971 507 1 1056 1
0.00097 | 10433 1 828 1

38

Table 10: Problem parameters and number of nodes for the experiment of Section 4.3.

Varying n Varying k'

n 102 103 104 | 10° kf 10 15 20 25

Ao | 0.0104 |0.0121 | 0.0152 |0.0181 Ao [0.0119(0.00615/0.00415|0.00275

A2 | 0.0409 0.00139]0.00295(0.0001 A2 0.0409(0.0409 | 0.0596 | 0.126

M 0.410 | 0.337 | 0.329 | 0.316 M]0.348| 0.275 | 0.224 | 0.186
Nodes|1386125| 383 259 | 421 Nodes| 225 | 5261 [218667|139353

Varying correlation coefficient p

p 0.1/0.3{0.5] 0.7 | 0.8 | 0.9
Nodes (p = 10%)|597|613(845(2295| 7913 | 86083
Nodes (p = 10°)|589|633|943|3145/11873|127267

39

	1 Introduction
	2 MIP Formulations and Relaxations
	2.1 MIP Formulations
	2.2 Relaxation of the Perspective Formulation (3)

	3 A Specialized Branch-and-Bound (BnB) Framework
	3.1 Primal Relaxation Solver: Active-set Coordinate Descent
	3.1.1 Active Sets
	3.1.2 Gradient Screening

	3.2 Dual Bounds
	3.3 Branching and Incumbents

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison with State-of-the-art solvers
	4.2.1 Varying Number of Features
	4.2.2 Varying Signal-to-Noise Ratio (SNR)
	4.2.3 Varying 0 and 2

	4.3 Sensitivity to Data Parameters
	4.4 Real Data and Ablation Studies (Algorithm Settings)

	5 Conclusion
	A Proofs of Technical Results
	B Additional Technical Details
	B.1 Derivation of solutions to Problem (13)
	B.2 Node Subproblems

	C Additional Experimental Results and Details
	C.1 Experiment of Section 4.2.1
	C.2 Experiment of Section 4.2.2
	C.3 Experiment of Section 4.2.3
	C.4 Experiment of Section 4.3
	C.5 Computing Setup and Software

