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Derived category of moduli of pointed curves. I

Ana-Maria Castravet and Jenia Tevelev

Abstract

This is the first paper in a sequence devoted to the derived category of moduli spaces
of curves of genus 0 with marked points. We develop several approaches to describe
it equivariantly with respect to the action of the symmetric group permuting marked
points. We construct an equivariant full exceptional collection on the Losev–Manin
space which categorifies derangements.

1. Introduction

The special feature of moduli spaces of curves with marked points is the action of the symmet-
ric group permuting marked points, and our goal is to exhibit this action in the description of
the derived category. One can think about the derived category as an enhanced cohomological
invariant. Although there are many papers in the literature computing cohomology of M0,n, the
moduli space of curves with n marked points, as a module over the symmetric group (for exam-
ple, [Get95, BM13]), the equivariant Euler–Poincaré polynomial is expressed as an alternating
sum, which therefore has no obvious categorification. On the other hand, it is often easy to get
some description of the derived category which, however, does not respect the group action. For
example, it is obvious that Db(M0,n) has a full exceptional collection. Indeed, M0,n has a Kapra-
nov model as an iterated blow-up of Pn−3 in n−1 points followed by the blow-up of

(
n−1
2

)
proper

transforms of lines connecting points, etc. With a little work, Orlov’s theorem on the derived
category of the blow-up (see Section 3) gives a full exceptional collection. However, Kapranov’s
model is not unique: it depends on the choice of the ψ class, that is, the choice of a marking,
and therefore this collection is not preserved by Sn (it is preserved only by Sn−1). The derived
categories of M0,n and related Hassett spaces and GIT quotients have been studied in [BFK19]
and [MS13], although not from the equivariant perspective.

Question 1.1. Is there a full exceptional Sn-invariant collection on M0,n?

This question of D. Orlov, communicated to us by A. Kuznetsov, will be investigated in
detail in the second paper in the series. Note that a striking and unexpected corollary of its
existence is that the K-group K0

(
M0,n

)
is a permutation representation of Sn. As a motivation,

one can argue that since M0,n is smooth over SpecZ, maybe it is somehow “defined over F1”,
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Derived category of moduli of pointed curves. I

and therefore the same should be true of its K-theory as an Sn-module, and so perhaps it should
be a permutation representation.

In this paper, we suggest two general strategies which may have other applications and provide
an answer for the Losev–Manin space [LM00].

One approach, which justifies why we consider the case of Losev–Manin spaces, is based on
an equivariant version of Orlov’s theorem on blow-ups (Section 2) and inspired by the work
of Bergström and Minabe in [BM13].

Let X be a smooth projective variety, and let Y1, . . . , Yn ⊆ X be smooth transversal sub-
varieties of codimension l. For any subset I ⊆ {1, . . . , n}, we denote the intersection ∩i∈IYi
by YI . In particular, Y∅ = X. Let q : X̃ → X be an iterated blow-up of (proper transforms of)
Y1, . . . , Yn. In addition, let G be a finite group acting on X permuting Y1, . . . , Yn. Then G also
acts on X̃, and the morphism q is G-equivariant. Let GI ⊆ G be a normalizer of YI for each
subset I ⊆ {1, . . . , n} (in particular, G∅ = G). We show in Lemma 2.3 that if Db(YI) admits a full
GI -equivariant exceptional collection for every subset I, then Db(X̃) admits a full G-equivariant
exceptional collection.

Next we generalize an inductive computation given in [BM13] of the equivariant Euler–
Poincaré polynomial of M0,n. In the derived category setting, it gives the following theorem.
Fix integers l > 1 and 0 6 k 6 n. For a weight

a =

(
1, . . . , 1,

1

l
, . . . ,

1

l

)
(with k copies of 1 and n − k copies of 1/l), let M

n
k,l be the Hassett moduli space [Has03] of

a-weighted stable rational curves. For example, M
n
0,1 ' M0,n, and M

n
0,b(n−1)/2c is a symmetric

GIT quotient (P1)n // PGL2 if n is odd and its Kirwan resolution if n is even.

Theorem 1.2. If M
n
k,r(n,k) admits a full (Sk×Sn−k)-equivariant exceptional collection for every n

and every 0 6 k 6 n−3, then M0,n admits a full Sn-equivariant exceptional collection for every n.
Here

r(n, k) :=


b(n− 1)/2c if k = 0 ,

n− 2 if k = 1 ,

n− k if k > 2 .

Concretely, we need the following spaces:

• the symmetric GIT quotient and its Kirwan resolution, which will be studied in the sequel
to this paper

• Mn
1,n−2, which is isomorphic to Pn−3 via the Kapranov map (we can take any standard

exceptional collection on Pn−3, for example O, . . . ,O(n− 3))

• Mn
2,n−2 (this is the Losev–Manin space studied in this paper)

• spaces M
n
k,n−k for k > 2 (these spaces are still too complicated for the calculations of the

derived category, and in the sequel to this paper, we will investigate their further equivariant
reductions).

We now discuss another strategy, which is the one we will use in this paper for the case of
the Losev–Manin spaces LMn. We start with an example.

Example 1.3. Unlike M0,5, which has five Kapranov models and therefore five Orlov-style excep-
tional collections, the 2-dimensional Losev–Manin space, which we denote by LM3 in this paper
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(see below), has only two non-trivial ψ-classes ψ0 and ψ∞, realizing it as P2 blown-up at three
points p1, p2, p3 in two ways, related by the Cremona involution. The corresponding exceptional
collection invariant under all automorphisms has three blocks and consists of line bundles

{−ψ0,−ψ∞} , {π∗1O(−1), π∗2O(−1), π∗3O(−1)} , O , (1.1)

where πi : LM3 → LM2 ' P1 is a forgetful map, which can be thought of as a linear projection
P2 99K P1 from the point pi.

The last four line bundles in (1.1) are pull-backs under forgetful maps, but the first two have
a trivial derived pushforward by any forgetful map. To study situations of this sort more system-
atically, we introduce an inclusion-exclusion principle in triangulated categories (see Lemma 3.6)
and its application in the following set-up.

Definition 1.4. Given a collection of morphisms of smooth projective varieties πi : X → Xi

for i ∈ I, we call an object E ∈ Db(X) cuspidal1 if

Rπi∗E = 0 for every i ∈ I .

The cuspidal block is the full triangulated subcategory of cuspidal objects

Db
cusp(X) ⊂ Db(X) .

Philosophically, the cuspidal block captures information about the derived category not alre-
ady encoded in Db(Xi) for i ∈ I. We show in Theorem 3.5 that under quite general assumptions,
Db

cusp(X) is an admissible subcategory and in fact the first block in the “inclusion–exclusion”

semi-orthogonal decomposition of Db(X). In our applications, morphisms πi are forgetful maps
such as M0,n →M0,n−1, and thus an Sn-equivariant description of Db(X) can be reduced to an
Sn-equivariant description of Db

cusp(X).

Question 1.5. Find a full Sn-invariant exceptional collection in the cuspidal block Db
cusp

(
M0,n

)
with respect to all the forgetful maps M0,n →M0,n−1.

An answer to Question 1.5 together with Proposition 1.6 (an application of Theorem 3.5) will
therefore answer Question 1.1.

Proposition 1.6. We write MN ' M0,n for the moduli space of stable rational curves with
points marked by any n-element set N . Then Db

(
MN

)
admits a semi-orthogonal decomposition

Db(MN ) =
〈
Db

cusp

(
MN

)
,
{
π∗KD

b
cusp

(
MN\K

)}
K⊂N ,O

〉
, (1.2)

where K runs over subsets with 1 6 |K| 6 n − 4 in the order of increasing cardinality |K| and
πK : MN →MN\K is the map that forgets markings in K.

We mention the answer to Question 1.5 in the first few small n cases.

Example 1.7. Let T (− log) be the rank n−3 vector bundle on M0,n of vector fields tangent to its
(normal crossing) boundary divisor. It is easy to deduce from the results of [KT09] that T (− log)
is an exceptional vector bundle and an element of Db

cusp

(
M0,n

)
for every n. This fact, which we

view as a manifestation of rigidity of M0,n, was one of our original motivations for writing this
paper. For small n, the category Db

cusp

(
M0,n

)
has the following full Sn-equivariant exceptional

collection:

1The terminology (suggested to us by A. Oblomkov) comes from cuspidal representations of representation theory.
When considering a single morphism, the cuspidal block is sometimes known as the null-category.
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• n = 4: T (− log) (one object)

• n = 5: T (− log) (one object)

• n = 6: OP1×P1(−1,−1), L∨, T (− log) (twelve objects).

Here P1 × P1 ⊂M0,6 are boundary divisors of type (3, 3), and L is a pull-back of the symmetric
GIT polarization (the Segre cubic).

We apply this approach to the Losev–Manin moduli space [LM00]. For an n-element set N , we
let Ñ = {0,∞}tN . We write LMN for the moduli space of nodal linear chains of projective lines
P1 marked by Ñ with 0 on the left tail and∞ on the right tail of the chain. This is a “simplified”
version of M0,n, with linear chains replacing arbitrary trees. The stability conditions are as
follows:

• Marked points are never at the nodes.

• Only points marked by N are allowed to coincide with each other.

• Every P1 has at least three special points (marked points or nodes).

The space LMN has an action by the group S2 × SN permuting markings. The action of S2,
which we call the Cremona action, interchanges ∞ and 0. Both ψ-classes ψ0 and ψ∞ induce
birational morphisms LMN → Pn−1, “Kapranov models”, which realize LMN as an iterated
blow-up of Pn−1 in n points (standard basis vectors) followed by blowing up

(
n
2

)
proper transforms

of lines connecting points, etc. (We note that the other ψ-classes of LMN are trivial.) In these
coordinates, the Cremona action is given by the standard Cremona involution

(x1 : · · · : xn)→
(

1

x1
: · · · : 1

xn

)
.

The Losev–Manin space LMN is a toric variety of dimension n− 1. Its toric orbits (or their
closures, the boundary strata of the moduli space) can be described as follows. Every non-
trivial bipartition N = N1 t N2 corresponds to the boundary divisor, which we denote by δN1 ,
parametrizing (degenerations of) chains of two lines P1, one with markings N1∪{0} and another
with markings N2 ∪ {∞}. This notation is different from the standard notation for M0,n (where
an analogous divisor is denoted by δN1∪{0}) but more convenient for us. More generally, every
partition N = N1 t · · · tNk with |Ni| > 0 for every i corresponds to the boundary stratum

ZN1,...,Nk
= δN1 ∩ δN1∪N2 ∩ · · · ∩ δN1∪···∪Nk−1

,

which parametrizes (degenerations of) linear chains of lines P1 with points marked by, respec-
tively, N1 ∪ {0}, N2, . . . , Nk−1, Nk ∪ {∞}. We can identify

ZN1,...,Nk
' LMN1 × · · · × LMNk

,

where the left node of every P1 is marked by 0 and the right node by ∞.

We have a collection of forgetful maps

πK : LMN → LMN\K

for every subset K ⊂ N with 1 6 |K| 6 n− 1. The map πK is given by forgetting points marked
by K and stabilizing. In particular, we can define the cuspidal block Db

cusp

(
LMN

)
, and applying

Theorem 3.5, we show that we have a similar statement as for M0,n (Proposition 1.6).
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Proposition 1.8. The derived category Db
(
LMN

)
admits the semi-orthogonal decomposition

Db
(
LMN

)
=
〈
Db

cusp

(
LMN

)
,
{
π∗KD

b
cusp

(
LMN\K

)}
K⊂N ,O

〉
,

where subsets K with 1 6 |K| 6 n− 2 are ordered by increasing cardinality.

Next we construct a collection Ĝ of sheaves on LMN . We note that in this definition, and
in the rest of the paper, we do not always distinguish notationally between divisors and line
bundles.

Definition 1.9. Let GN =
{
G∨1 , . . . , G

∨
n−1
}

be the set of the following line bundles on LMN :

Ga = aψ0 ⊗O

(
−(a− 1)

∑
k∈N

δk − (a− 2)
∑
k,l∈N

δkl − · · · −
∑

J⊂N, |J |=a−1

δJ

)

for every a = 1, . . . , n− 1. Let Ĝ be the collection of sheaves

Ĝ =
⋃
Z

(iZ)∗
[
G∨N1

� · · ·�G∨Nt

]
on LMN of the form

T = (iZ)∗L , L = G∨a1 � · · ·�G
∨
at

for all strata Z = ZN1,...,Nt with Ni > 2 for every i and for all 1 6 ai 6 |Ni| − 1. Here
iZ : Z ↪→ LMN is the inclusion map. If t = 1, we get line bundles GN , and for t > 2, these
sheaves are torsion sheaves.

Theorem 1.10. The set Ĝ is a full exceptional collection inDb
cusp

(
LMN

)
and is equivariant under

the group S2 × SN . The number of objects in Ĝ is equal to !n, the number of derangements of
n objects (permutation without fixed points).

This is our main theorem; its proof occupies Sections 4 and 5. It gives a new curious formula
for the number of derangements:2∑

k1+···+kt=n
k1,...,kt>2

(
n

k1 . . . kt

)
(k1 − 1) · · · (kt − 1) = !n , where

(
n

k1 . . . kt

)
=

n!

k1! · · · kt!
. (1.3)

As a corollary, we see that K-theory of LMN is a permutation representation of S2 × Sn in a
very concrete way, which should be contrasted with description of its equivariant Euler–Poincaré
polynomial as an alternating sum in [BM14].

The ordering of Ĝ that turns it into an exceptional collection is quite elaborate and discussed
in Section 4. The real difficulty though is to prove fullness, which is done in Section 5. Note that
fullness would follow at once if phantom subcategories (admissible subcategories with trivial
K-group) did not exist on smooth projective toric varieties.

Remark 1.11. The line bundles G1, . . . , Gn−1 on LMn may appear ad hoc, but in fact they have
a very nice description in terms of the (minimal) wonderful compactification PGLn of PGLn
(which contains LMn as the closure of the maximal torus). Namely, they are precisely the re-
strictions of generators of the nef cone of PGLn; see Proposition 4.14 for a more precise statement.
It would be interesting to relate derived categories of PGLn and LMn.

2We are unaware of a combinatorial “bijective” proof of this identity.
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It is worth noting that we do not know any smooth projective toric varieties X with an action
of a finite group Γ normalizing the torus action which do not have a Γ-equivariant exceptional
collection {Ei} of maximal possible length (equal to the topological Euler characteristic of X).
Its existence would imply that the K-group K0(X) is a permutation Γ-module. In the Galois
setting (when X is defined over a field which is not algebraically closed and Γ is the absolute Ga-
lois group), an analogous statement was conjectured by A. S. Merkurjev and I. A. Panin [MP97].
Of course, one may further wonder whether {Ei} is in fact full, which is related to the existence
or not of phantom categories on X, another difficult general open question.

We refer to [CT15, CT13, CT12] for background information on the birational geometry
of M0,n, the Losev–Manin space and other related spaces. We refer to [Huy06] for background
on semi-orthogonal decompositions.

2. An equivariant version of Orlov’s blow-up theorem

Orlov’s blow-up theorem Theorem 3.3 is a categorification of the following fact. Let X be a
smooth projective variety, and let Y ⊆ X be a smooth subvariety of codimension l. Let X̃ be the
blow-up of X along Y . We have a decomposition of cohomology with integral coefficients; see,
for example, [Voi07, Theorem 7.31]

H∗
(
X̃
)
'
[
H∗(Y )⊗H+

(
Pl−1

)]
⊕H∗(X) . (2.1)

Now consider the following more general situation. Let Y1, . . . , Yn ⊆ X be smooth transversal
subvarieties of codimension l. For any subset I ⊆ {1, . . . , n}, we denote the intersection ∩i∈IYi
by YI . In particular, Y∅ = X. Let q : X̃ → X be an iterated blow-up of (proper transforms of)
Y1, . . . , Yn. Since the intersection is transversal, blow-ups can be done in any order. The analogue
of (2.1) in this situation was worked out in [BM13, Proposition 6.1]:

H∗(X̃) '
⊕

I⊂{1,...,n}
I 6=∅

[
H∗(YI)⊗H+

(
Pl−1

)⊗|I|]⊕H∗(X) , (2.2)

which we are going to rewrite as

H∗(X̃) '
⊕

I⊂{1,...,n}

[
H∗(YI)⊗H+

(
Pl−1

)⊗|I|]
.

The analogue of Theorem 3.3 is also straightforward. We fix the following notation. Let Ei be
the exceptional divisor over Yi for every i = 1, . . . , n. For any subset I ⊆ {1, . . . , n}, let

EI = q−1(YI) = ∩i∈IEi .

In particular, E∅ = X̃. Let iI : EI ↪→ X̃ be the inclusion.

Lemma 2.1. Let
{
F βI
}

be a (full) exceptional collection in Db(YI) for every subset I ⊆ {1, . . . , n}.
There exists a (full) exceptional collection in Db(X̃) with blocks

BI,J = (iI)∗

[(
Lq|EI

)∗(
F βI
)( n∑

i=1

JiEi

)]
for every subset I ⊆ {1, . . . , n} (including the empty set) and for every n-tuple of integers J such
that Ji = 0 if i 6∈ I and 1 6 Ji 6 l − 1 for i ∈ I.

The blocks are ordered in any linear order which respects the following partial order: BI1,J1

precedes BI2,J2 if
∑n

i=1 J
1
i Ei >

∑n
i=1 J

2
i Ei (as effective divisors).
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Proof. We argue by induction on n, the case n = 1 being Orlov’s theorem. We decompose
q : X̃ → X as a blow-up q0 : X ′ → X of Yn and an iterated blow-up q′ : X̃ → X ′ of proper
transforms Y ′1 , . . . , Y

′
n−1 of Y1, . . . , Yn−1. By Orlov’s theorem, X ′ carries a (full) exceptional col-

lection E′α, namely

i′∗
[(
q0|E

)∗(
F βn
)
((l − 1)E)

]
, . . . , i′∗

[(
q0|E

)∗(
F βn
)
(E)
]
, Lq∗0

(
F β∅
)
.

Here i′ : E ↪→ X ′ is the exceptional divisor, and q0|E is a projective bundle.

More generally, for every subset I ′ ⊆ {1, . . . , n − 1}, let Y ′I′ = ∩i∈I′Y ′i be the proper trans-
form of YI′ isomorphic to the blow-up of YI′ in YI′∪{n}. By Orlov’s theorem, Y ′I′ carries a (full)

exceptional collection F ′βI′ , namely(
i′I′
)
∗
[(
q0|EI′

n

)∗(
F βI′∪{n}

)
((l − 1)E)

]
, . . . ,

(
i′I′
)
∗
[(
q0|EI′

n

)∗(
F βI′∪{n}

)
(E)
]
, L
(
q0|Y ′

I′

)∗(
F βI′
)
.

Here i′I′ : E
I′
n ↪→ Y ′I′ is the exceptional divisor over YI′∪{n}.

Applying the inductive assumption gives an exceptional collection on X̃ with blocks

(iI′)∗

[(
Lq′|EI′

)∗(
F ′βI′
)( n−1∑

i=1

JiEi

)]
for every subset I ′ ⊆ {1, . . . , n − 1} (including the empty set) and for every (n − 1)-tuple of
integers J such that Ji = 0 if i 6∈ I ′ and 1 6 Ji 6 l − 1 for i ∈ I ′.

The blocks are ordered in any linear order which respects the following partial order: BI′1,J1

precedes BI′2,J2 if
∑n−1

i=1 J
1
i Ei >

∑n−1
i=1 J

2
i Ei (as effective divisors). We have to check that these

blocks are the same as in the statement of the lemma. It is clear that(
Lq′|EI′

)∗(
L
(
q0|Y ′

I′

)∗(
F βI′
))
'
(
Lq|EI′

)∗(
F βI′
)
.

This takes care of the last element in F ′βI′ . For the rest, we have to show that

(iI′)∗

[(
Lq′|EI′

)∗(
(i′I′)∗

[(
q0|EI′

n

)∗(
F βI
)
(JnE)

])( n−1∑
i=1

JiEi

)]
' (iI)∗

[(
Lq|EI

)∗(
F βI
)( n∑

i=1

JiEi

)]
,

where I = I ′ ∪ {n}. It suffices to show that(
Lq′|EI′

)∗(
(i′I′)∗

[(
q0|EI′

n

)∗(
F βI
)
(JnE)

])( n−1∑
i=1

JiEi

)
' (φ)∗

[(
Lq|EI

)∗(
F βI
)( n∑

i=1

JiEi

)]
,

where φ : EI ↪→ EI′ is the inclusion. Applying the projection formula, we reduce this to(
Lq′|EI′

)∗(
(i′I′)∗

[(
q0|EI′

n

)∗(
F βI
)])
' (φ)∗

[(
Lq|EI

)∗(
F βI
)]
,

which follows by flat base change.

The last order of business is to prove the claim about the order of the blocks. We made
a choice of blowing up Yn first; accordingly, the collection has blocks BI′,J ′ for every subset
I ′ ⊆ {1, . . . , n− 1} (including the empty set) and for every (n− 1)-tuple of integers J ′ such that
J ′i = 0 if i 6∈ I ′ and 1 6 J ′i 6 l − 1 for i ∈ I ′. The blocks are ordered in any linear order which
respects the following partial order: BI′1,J ′1 ≺ BI′2,J ′2 if

∑n−1
i=1 J

′1
i Ei >

∑n−1
i=1 J

′2
i Ei (as effective

divisors). Each block BI′,J ′ is a sequence of blocks BI,J from the statement of the lemma, where
I ∩ {1, . . . , n− 1} = I ′ and Ji = J ′i for i < n. They are ordered in the decreasing order by Jn. In
particular, if BI1,J1 precedes BI2,J2 , then either

∑n
i=1 J

1
i Ei −

∑n
i=1 J

2
i Ei is an effective divisor,

or
∑n−1

i=1 J
2
i Ei−

∑n−1
i=1 J

1
i Ei is not effective. Therefore, it suffices to prove that for any two blocks
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BI1,J1 and BI2,J2 , if
∑n

i=1 J
1
i Ei −

∑n
i=1 J

2
i Ei is not an effective divisor, then

{
BI1,J1 , BI2,J2

}
is

an exceptional sequence. If
∑n−1

i=1 J
1
i Ei −

∑n−1
i=1 J

2
i Ei is not effective, then we are done by the

above. But if it is effective, then
∑n

i=2 J
1
i Ei −

∑n
i=2 J

2
i Ei is not effective, and we are again done

by the above (by changing the order of blow-ups and blowing up Y1 first).

Remark 2.2. The same argument shows, more generally, that even in the absence of exceptional
collections, there exists a semi-orthogonal decomposition of Db

(
X̃
)

with blocks

BI,J = (iI)∗

[(
Lq|EI

)∗(
Db(YI)

)( n∑
i=1

JiEi

)]
(with the same notation and order as in the lemma). We stated the lemma for exceptional
collections with an eye toward its equivariant version.

Continuing with the set-up of Lemma 2.1, let G be a finite group acting on X permuting
Y1, . . . , Yn. Then it also acts on X̃, and the morphism q is G-equivariant. Let GI ⊆ G be the
normalizer of YI for each subset I ⊆ {1, . . . , n} (in particular, G∅ = G).

Lemma 2.3. Let
{
F βI
}

be a (full) GI -equivariant exceptional collection in Db(YI) for every

subset I ⊆ {1, . . . , n}. We assume that if YI = gYI′ for some g ∈ G, then
{
F βI
}

= g
{
F βI′
}

. There

exists a (full) G-equivariant exceptional collection in Db(X̃) with blocks BI,J (the same as in
Lemma 2.1).

Proof. It suffices to observe that the blocks BI,J are permuted by G.

Next we recall a few facts and notation from [BM13] in order to prove Theorem 1.2. The
subgroup Sk×Sn−k ⊆ Sn preserves the weight a and therefore acts on M

n
k,l. We have (Sk×Sn−k)-

equivariant reduction morphisms

M
n
k,1 →M

n
k,2 → · · · →M

n
k,r(n,k) , (2.3)

where the first map is an isomorphism. Each of the maps in (2.3) is an iterated blow-up of
transversal loci of the same codimension permuted by Sk × Sn−k. Specifically, for every subset
I ⊂ {k + 1, . . . , n} of cardinality l + 1, let M

n
k,l+1(I) ⊆Mn

k,l+1 be the closure of the locus where

points marked by I collide. The reduction morphism M
n
k,l → M

n
k,l+1 is the blow-up along the

transversal union ∪IM
n
k,l+1(I) of subvarieties of codimension l, where I runs over all subsets of

{k+1, . . . , n} of cardinality l+1; see [BM13, Lemma 3.1]. Intersections of these loci are described
in [BM13, Section 3.2] as follows. Let I1, . . . , Im ⊂ {k + 1, . . . , n} be subsets of cardinality l+ 1.
Then ∩mi=1M

n
k,l+1(Ii) 6= ∅ if and only if the subsets I1, . . . , Im are disjoint. In this case, the

intersection is isomorphic to M
n−lm
k+m,l+1. Moreover, the stabilizer of this stratum in Sk × Sn−k

acts on it through a subquotient contained in Sk+m,n−lm−k−m. Applying Lemma 2.3 proves
Theorem 1.2.

3. The cuspidal block

Recall that by Definition 1.4, we call an object E ∈ Db(X) cuspidal with respect to a given
collection of morphisms πi : X → Xi (for i ∈ I) between smooth projective varieties if

Rπi∗E = 0 for every i ∈ I .

The cuspidal block is the full triangulated subcategory of cuspidal objects Db
cusp(X) ⊂ Db(X).
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Lemma–Definition 3.1. In the set-up of Definition 1.4, the support of any cuspidal object is
a union of irreducible closed subsets Z ⊂ X such that

dim πi(Z) < dim Z for every i ∈ S .

We call any subset Z with this property (independently of whether they are the support of
a cuspidal object or not) massive. Recall that the topological support of an object E ∈ Db(X)
is the support of its cohomology sheaves.

Proof. Let Z be the topological support of E ∈ Db(X). Suppose that Z contains an irreducible
component Z0 such that dimπi(Z0) = dimZ0. We write π := πi and Y := Xi as we will
not need other maps and spaces. By passing to an open subset of Y and taking its preimage
under π, we can assume that Z is a disjoint union of Z0 and Z1 (with Z1 possibly empty and
not necessarily irreducible). We may also assume that π|Z0 is finite. It is well known [Orl11,
Section 2] that by changing E to an isomorphic object, we may assume that E is a bounded
complex of sheaves supported on Z. Thus E = Ri∗Ẽ, where i : Z̃ ↪→ X is an infinitesimal
thickening of Z and Ẽ ∈ Db

(
Z̃
)
. Note that Z̃ is a disjoint union of subschemes Z̃0 and Z̃1 (with

reduced subschemes Z0 and Z1). In particular, Ẽ = Ẽ0 ⊕ Ẽ1, where Ẽ0 and Ẽ1 are pull-backs of
Ẽ to Z0 and Z1, respectively. It follows that Rπ̃∗

(
Ẽ0

)
= 0, where π̃ = π ◦ i. Since Ẽ0 6= 0 and the

map π̃ is affine, this gives a contradiction. Indeed, if π : X → Y is an affine morphism of schemes,
then Rπ∗E = 0 for some E ∈ DQCoh(OX) implies that E = 0; see [Sta20, Tag 0AVV].

We refer to the survey [Kuz16] for definitions and basic facts concerning semi-orthogonal
decompositions in algebraic geometry. The following is well known; see, for example, [Kuz08,
Lemma 2.4].

Proposition 3.2. Let π : X → Y be a morphism of smooth projective varieties such that
Rπ∗OX = OY . Then Lπ∗Db(Y ) is an admissible subcategory of Db(X), and there is a semi-
orthogonal decomposition

Db(X) =
〈
Db

cusp(X), Lπ∗Db(Y )
〉
.

In particular, Db
cusp(X) is an admissible subcategory.

Classical situations of this sort are provided by Orlov’s theorems [Orl93] on derived categories
of a projective bundle and of a blow-up, which can be reformulated as follows.

Theorem 3.3. Let π : X → Y be a projective bundle of rank r, with Y a smooth projective vari-
ety. Then Db

cusp(X) is an admissible subcategory of Db(X) and Db
cusp(X) has a semi-orthogonal

decomposition 〈
π∗Db(Y )⊗Oπ(−r), . . . , π∗Db(Y )⊗Oπ(−1)

〉
.

Theorem 3.4. Let p : X → Y be a blow-up of a smooth subvariety Z of codimension r + 1
of a smooth projective variety Y . Let i : E → X be the exceptional divisor, and let π = p|Z .
Then Db

cusp(X) is an admissible subcategory of Db(X) and has a semi-orthogonal decomposition〈
Ri∗
[
π∗Db(Z)⊗Oπ(−r)

]
, . . . , Ri∗

[
π∗Db(Z)⊗Oπ(−1)

]〉
.

In order to generalize Proposition 3.2 to the set-up of several morphisms, we impose com-
patibility conditions. In subsequent sections, we will consider several variants of moduli spaces
of rational pointed curves, which will all fit into this framework.
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Theorem 3.5. Let N be the category of finite subsets of a fixed set with inclusions as morphisms.
Let X be a contravariant functor from N to the category of smooth projective varieties. For every
T ⊆ S, we refer to the morphism XS → XT as the forgetful map and denote it by πS\T . We
impose three assumptions:

(1) We have

Rπi∗OXS
= OXS\{i} for every i ∈ S . (3.1)

(2) For all i, k ∈ S, i 6= k, the morphisms

πi : XS\{k} → XS\{i,k} , πk : XS\{i} → XS\{i,k} are Tor-independent (3.2)

(as defined in [Sta20, Definition 36.21.2]).

(3) If we let

Y := XS\{i} ×XS\{i,k} XS\{k}

and αi,k : XS → Y is the map induced by πi and πk, we have

Rαi,k∗OXS
= OY . (3.3)

Under these assumptions, we have a semi-orthogonal decomposition (s.o.d.)

Db(XS) =
〈
Db

cusp(XS),
{
Lπ∗KD

b
cusp(XS\K)

}
K⊂S , Lπ

∗
SD

b(X∅)
〉
,

where K runs over proper subsets of S in order of increasing cardinality. In particular, Db
cusp(XS)

is an admissible subcategory of Db(XS).

Following a suggestion of A. Kuznetsov, we start with an abstract “inclusion–exclusion” prin-
ciple in triangulated categories. Perhaps we should remark that semi-orthogonal decompositions
do not intersect well in general, as a simple example of Db(P1) = 〈O,O(1)〉 = 〈O(2),O(3)〉
shows. However, we have the following.

Lemma 3.6. Let T be a triangulated category with several semi-orthogonal decompositions

T = 〈A1, B1〉 = 〈A2, B2〉 = · · · = 〈An, Bn〉 .

Suppose that the projection functors βi : T → Bi (in the ith decomposition) have the property
that for every j,

βi(Aj) ⊂ Aj , βi(Bj) ⊂ Bj .
Then we have a s.o.d.

T = 〈TK〉K , where TK = (∩i 6∈KAi) ∩ (∩i∈KBi)

and K runs over subsets of {1, . . . , n} in the order of increasing cardinality. In particular, T∅ =
A1 ∩ · · · ∩An is an admissible subcategory of T .

Proof. For all subsets T ⊆ S := {1, . . . , n}, we consider a full triangulated subcategory AT =
∩i∈TAi. We prove, more generally, that there is a semi-orthogonal decomposition AT = 〈TK〉,
where K runs over subsets of S containing T in order of increasing cardinality. The case T = ∅
is the statement in the theorem.

We argue by induction on n = |S| and by downwards induction on |T | for a fixed n. If n = 1
or T = S, then there is nothing to prove. Let i ∈ S \ T . Without loss of generality, we assume
i = 1.
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We claim that the semi-orthogonal decomposition T = 〈A1, B1〉 induces a semi-orthogonal
decomposition

AT = 〈AT ∩A1, AT ∩B1〉 . (3.4)

Indeed, the semi-orthogonality is obvious, and, moreover, every object X in AT fits into a distin-
guished triangle β1(X) → X → Y → with Y ∈ A1. Since β1 preserves AT by our assumptions,
β1(X) ∈ AT ∩B1. It follows that Y ∈ AT as well.

By the induction assumption, we have semi-orthogonal decompositions

AT ∩A1 = AT∪{1} = 〈TK〉 and AT = 〈T ′K′〉 ,

where K runs over subsets of S containing T ∪ {1} and K ′ over subsets of S\{1} containing T and

T ′K′ =
(
∩i 6∈K∪{1}Ai

)
∩
(
∩i∈KBi

)
.

We claim that the semi-orthogonal decomposition AT = 〈T ′K′〉 induces the semi-orthogonal de-
composition

AT ∩B1 =
〈
T ′K′ ∩B1

〉
=
〈
TK′∪{1}

〉
.

Indeed, the semi-orthogonality is clear. By the definition of the semi-orthogonal decomposition,
for every object X ∈ AT ∩B1, we can write a sequence of morphisms (“filtration”)

0→ · · · → TK′1 → TK′2 → · · · → X → 0

such that every morphism is included in the distinguished triangle

TK′1 → TK′2 → XK′1
→

with XK′1
∈ T ′K′1 . Applying the functor β1 to this sequence and using our assumptions gives

a filtration of X with subquotients β1
(
XK′1

)
∈ T ′K′1 ∩B1.

Combining these observations with (3.4), we get a semi-orthogonal decomposition

AT =
〈
TK , TK′∪{1}

〉
,

where K runs over subsets of S containing T ∪ {1} and K ′ runs over subsets of S \ {1} contain-
ing T , both in order of increasing cardinality.

Finally, we have to show that we can reorder blocks to put them in the order of increasing
cardinality. If |K1| < |K2|, then choose an index j ∈ K2 \K1. Then TK1 ⊂ Aj and TK2 ⊂ Bj .
Thus TK1 ⊂ T ⊥K2

.

Proof of Theorem 3.5. By Proposition 3.2, we have s.o.d.’s Db(XS) = 〈Ai, Bi〉, where

Ai =
{
E ∈ Db(XS) |Rπi∗E = 0

}
and Bi = Lπ∗i

(
Db
(
XS\{i}

))
.

We now apply Lemma 3.6 to 〈Ai, Bi〉. The projection operators are

βi = Lπ∗iRπi∗ .

Note that for all i, k ∈ S with i 6= k and all E ∈ Db(XS\{k}), we have

Rπi∗Lπk
∗E ' Lπk∗Rπi∗E (3.5)

since, by assumption, πi and πk are Tor-independent. This follows from assumption (2) combined
with cohomology and base change: if π′i and π′k are the projection maps from Y = XS\{i}×XS\{i,k}
XS\{k} and α : XS → Y is the canonical map, we have

Rπi∗Lπ
∗
kE = Rπ′i∗Rα∗Lα

∗Lπ′k
∗
E = Rπ′i∗Lπ

′
k
∗
E = Lπk

∗Rπi∗E ,
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where the second equality is by the projection formula and (3.3). It follows that

Rπj∗Lπ
∗
iRπi∗ = Lπ∗iRπj∗Rπi∗ = Lπ∗iRπi∗Rπj∗ ,

and in particular βi(Aj) ⊂ Aj . Also,

Lπ∗iRπi∗Lπ
∗
j = Lπ∗i Lπ

∗
jRπi∗ = Lπ∗jLπ

∗
iRπi∗ ,

and thus βi(Bj) ⊂ Bj .
It remains to show that, in the notation of Lemma 3.6, we have Db(XS)K = Lπ∗KD

b
cusp

(
XS\K

)
for every subset K ⊂ T . Equivalently,⋂

i∈K
Bi = Lπ∗KD

b
(
XS\K

)
. (3.6)

We can assume that K = {1, . . . , k}. Then it follows from (3.5) that β1 ◦ · · · ◦ βk = Lπ∗KRπK∗.
Thus every object from the left-hand side of (3.6) is isomorphic to an object from the right-hand
side, and vice versa.

Example 3.7. Let XS =
(
P1
)S

with projections as forgetful maps. Conditions (1), (2) and (3) of
Theorem 3.5 are clearly satisfied. The subset XS is the only massive one. Applying Theorem 3.3
repeatedly, it follows that

Db
cusp(XS) = 〈O(−1,−1, . . . ,−1)〉 ;

that is, every object in Db
cusp(XS) is isomorphic to O(−1,−1, . . . ,−1) ⊗k K, where K is a

complex of vector spaces. Moreover, the semi-orthogonal decomposition of Theorem 3.5 is induced
by a standard exceptional collection of 2|S| line bundles O(n1, . . . , n|S|), where ni = 0 or −1
for every i.

Note that this collection is obviously equivariant under the action of Aut(XS), which is the
semidirect product of Sn and (PGL2)

n for n = |S|. Various moduli spaces considered in this
paper can be viewed as “compactified quotients” of this basic example modulo Gm or PGL2.

Proof of Proposition 1.6. Recall that we need to prove that Db
(
MN

)
admits a semi-orthogonal

decomposition

Db
(
MN

)
=
〈
Db

cusp

(
MN

)
,
{
π∗KD

b
cusp

(
MN\K

)}
K⊂N ,O

〉
, (3.7)

where K runs over subsets with 1 6 |K| 6 n− 4 in order of increasing cardinality |K|. We apply
Theorem 3.5. All conditions (1), (2) and (3) are satisfied. Recall that a simple criterion for Tor-
independence for maps X → S and T → S is that one of them is flat. Hence, condition (2) holds
as the forgetful maps πi : M0,n → M0,n−1 are flat. Condition (3) holds as the map is birational
and the image has rational singularities [Kee92, Introduction, p. 548].

The following proof is similar.

Proof of Proposition 1.8. Recall that we need to prove that Db
(
LMN

)
admits the semi-ortho-

gonal decomposition

Db
(
LMN

)
=
〈
Db

cusp

(
LMN

)
,
{
π∗KD

b
cusp

(
LMN\K

)}
K⊂N ,O

〉
,

where subsets K with 1 6 |K| 6 n − 2 are ordered by increasing cardinality. We apply Theo-
rem 3.5 to the forgetful maps

πi : LMN → LMN\{i} (i ∈ N) .
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All conditions (1), (2) and (3) are satisfied. Note again that the forgetful maps πi for i ∈ N are
flat (they give the universal family); hence, condition (2) holds. Condition (3) holds because αij
is birational and Y has toroidal, and therefore rational, singularities.

4. The exceptional collection Ĝ on the Losev–Manin space

Proposition 4.1. An irreducible subset Z ⊂ LMN is massive if and only if Z is a boundary
stratum of the form ZN1,...,Nt with |Ni| > 2 for i = 1, . . . , t.

Proof. Let Z be a boundary stratum. If Ni = {a} for some i, then πa restricted to Z is one-
to-one. Hence Z is not a massive subset. On the other hand, if |Ni| > 2 for every i, then Z
is a massive subset. It remains to show that if Z is a proper irreducible subset of a boundary
stratum which intersects its interior, then Z is not massive. But the interior of any stratum is
an algebraic torus Gr

m, and projections onto coordinate subtori are realizable as forgetful maps.
Thus Z cannot be massive.

Proposition 4.2. The ranks of the K-groups of Db
(
LMn

)
and Db

cusp

(
LMn

)
are equal to n! and

!n, respectively.

Proof. Since LMN is a toric variety, its K-group is a free Abelian group and its topological Euler
characteristic (and thus the rank of its K-group) is equal to the number of torus fixed points,
which are clearly parametrized by permutations of N . The second part of the proposition follows
because both the rank of the K-group of Db

cusp

(
LMn

)
(by Proposition 1.8) and !n (by obvious

reasons) satisfy the same recursion

n! = !n+
∑

16k6n−1

(
n

k

)
!(n− k) + 1 . (4.1)

Hence these numbers agree.

Proof of formula (1.3). Recall that formula (1.3) states that∑
k1+···+kt=n
k1,...,kt>2

(
n

k1 . . . kt

)
(k1 − 1) · · · (kt − 1) = !n , where

(
n

k1 . . . kt

)
=

n!

k1! . . . kt!
.

We denote the left-hand side by dn and set d0 = 1 and d1 = 0. Let

A =
∑
n>2

(n− 1)
xn

n!
= x2

(
ex − 1

x

)′
= ex(x− 1) + 1 .

Then we have ∑
m>0

dm
m!

xm = 1 +A+A2 +A3 + · · · = 1

1−A
=

e−x

1− x
.

But (4.1) implies that

1

1− x
=

(∑
m>0

!m
xm

m!

)(∑
n>0

xn

n!

)
(where we set !0 = 0! = 1). Hence dn = !n, and we are done.
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Lemma 4.3. (1) Every Ga is SN -invariant, and Cremona action takes it to Gn−a.

(2) We have G1 = ψ0 and Gn−1 = ψ∞.

(3) For every boundary divisor δ = δN1 ' LMN1 × LMN2 , we have

Ga|δ =


Ga �O if a < |N1| ,
O if a = |N1| ,
O �Ga−|N1| if a > |N1| .

Proof. Direct calculation.

Notation 4.4. For an object F ∈ Db(X), we often use the notation RΓ(F ) instead of RΓ(X,F )
when the space X is clear from the context.

Lemma 4.5. (1) Every Ga is nef (and hence globally generated), of relative degree 1 with respect
to any forgetful map πi, for i ∈ N .

(2) We have G∨a ∈ Db
cusp

(
LMn

)
. In particular, each G∨a is acyclic.

(3) We have RHom(Ga, Gb) = 0 if a 6= b.

(4) We have RΓ(−ψ0 +Ga −Gb) = RΓ(−ψ∞ +Gb −Ga) = 0 if a < b.

In particular, GN is an (S2 × Sn)-equivariant exceptional (in fact pairwise orthogonal) col-
lection of n− 1 line bundles in Db

cusp

(
LMN

)
.

Proof. Since LMn is a toric variety, part (1) will follow if Ga is non-negative on toric boundary
curves. This follows from Lemma 4.3(3) by induction on the dimension. Since the restriction
of G∨a to each fiber of πi has vanishing cohomology, part (2) follows by cohomology and base
change. Since RHom(Ga, Gb) = RΓ(−Ga +Gb) and we can assume a > b (by applying Cremona
action), parts (3) and (4) both follow from Lemma 4.6.

Lemma 4.6. Consider the divisor

D = −dH +
∑

mIEI

on M0,n or LMN written in some Kapranov model. The divisor D is acyclic if

1 6 d 6 n− 3 and 0 6 mI 6 n− 3−#I .

Proof. By consecutively restricting to boundary divisors EI starting with those with the largest
#I and continuing to those with smaller #I, we see that all the restrictions are acyclic; hence,
D has the same cohomology as −dH. Clearly, −dH is acyclic if and only if 1 6 d 6 n− 3.

Lemma 4.7. The set Ĝ is a collection of !n sheaves in Db
cusp

(
LMN

)
.

Proof. Follows from (1.3) and Lemma 4.5(2).

It is worth mentioning that if i : Z ↪→ X is a closed embedding of smooth projective varieties
and Z 6= X, then the functor Ri∗ : Db(Z) → Db(X) is in general not fully faithful. Therefore,
even though all sheaves in Ĝ are clearly exceptional in the derived category of their respective
support (being line bundles on a rational variety), we still have to prove the following.

Lemma 4.8. All sheaves in Ĝ are exceptional.
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Proof. All sheaves in Ĝ are of the form i∗i
∗L = Ri∗Li

∗L, where L is an invertible sheaf on LMN

and i is an embedding of some massive stratum Z. We have

RHom(Ri∗Li
∗L, Ri∗Li∗L) = RHom

(
L
L
⊗Ri∗OZ ,L

L
⊗Ri∗OZ

)
= RHom(Ri∗OZ , Ri∗OZ) .

So it suffices to prove that Ri∗OZ = i∗OZ is an exceptional object. Let Z be the intersection of
boundary divisors D1, . . . , Ds. Resolving i∗OZ by the Koszul complex

· · · → ⊕16i<j6sO(−Di −Dj)→ ⊕16i6sO(−Di)→ O → i∗OZ → 0 ,

we see that it suffices to prove that

RΓ(OZ(Di1 + · · ·+Dik)) = 0

for all 1 6 i1 < · · · < ik 6 s. Using that OZ(Di) has the form

O � · · ·�O �O(−ψ∞)�O(−ψ0)�O · · ·�O ,

we conclude that this is indeed the case.

Lemma 4.9. The set Ĝ is an exceptional collection with respect to the following order.
Let T , T ′ ∈ Ĝ. Let (k1, . . . , kt; a1, . . . , at) and (k′1, . . . , k

′
s; a
′
1, . . . , a

′
s) be the corresponding data.

Then T > T ′ if the sequence (a1,−k1, a2,−k2, . . . ) is lexicographically (that is, alphabetically)
larger than (a′1,−k′1, a′2,−k′2, . . . ).

Proof. Let Z and Z ′ be massive strata supporting sheaves T > T ′ in Ĝ. These sheaves have
the form RiZ∗L and RiZ′∗L′, respectively. We have to show that RHom(T , T ′) = 0. Let U be
the smallest stratum containing both Z and Z ′. Then U is the intersection of boundary divisors
D1, . . . , Ds (these divisors are precisely the divisors containing both Z and Z ′). We have

RHom(RiZ∗L, RiZ′∗L′) = RHom(LjZ′
∗RjZ∗L,L′) .

By [Huy06, Corollary 11.4(i)], it suffices to prove that

RHom(RjZ∗L, RjZ′∗L′(D)) = 0

for every D = Di1 + · · · + Dik with 1 6 i1 < · · · < ik 6 s, where jZ and jZ′ denotes the
embeddings of Z and Z ′, respectively, into U . Let W = Z ∩ Z ′. We can assume that W is
non-empty as otherwise there is nothing to prove. Let iW,Z : W ↪→ Z and iW,Z′ : W ↪→ Z ′ be the
inclusions. We note that Z and Z ′ intersect transversally along W in U , and therefore jZ and
jZ′ are Tor-independent. Next we apply cohomology and base change:

RHom(RjZ∗L, RjZ′∗L′(D)) = RHom(LjZ′
∗RjZ∗L,L′(D)) = RHom(RiW,Z′∗Li

∗
W,ZL,L′(D))

= RHom(Li∗W,ZL, Li!W,Z′L′(D)) ,

where for some morphism f : X → Y , we denote the adjoint functor to Rf∗(−) by Lf !(−).
By Grothendieck duality, we have for E ∈ Db(Y ) that Lf !(E) = Lf∗(E) ⊗ ωf [dim(f)]. Here,
ωf = ωX ⊗ f∗ω∗Y and dim(f) = dim(X)− dim(Y ). So it suffices to prove that

RHom
(
Li∗W,ZL, Li∗W,Z′L′ ⊗ (D + c1(N ))

)
= 0 ,

where c1(N ) is the first Chern class of the normal bundle N := NW,Z′ , that is, the sum of all
boundary divisors that cut out W inside Z ′ or, alternatively, the sum of boundary divisors that
cut out Z but do not contain Z ′.
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Now we proceed case by case. We write

W = LMK1 × LMK2 × · · · ,
RHom

(
LiW,Z

∗L , LiW,Z′∗L′(D +N)
)

= C1 � C2 � · · · ,

where C1 is computed on LMK1 , etc. Note that if N = N1t· · ·tNt and N = N ′1t· · ·tN ′t′ are the
two partitions corresponding to T and T ′, respectively (hence, |Ni| = ki and |N ′i | = k′i for all i),
then W 6= ∅ implies that either N1 ⊆ N ′1 or N ′1 ⊆ N1. In particular, we have |K1| = min(k1, k

′
1),

and if k1 = k′1, then we have N1 = N ′1.

Case 1. Suppose a1 > a′1. We would like to show that C1 = 0.

If k1 < k′1, then C1 = RHom(−Ga1 ,−Ga′1−ψ∞), where −ψ∞ is a contribution from N (there
is no contribution to C1 from D). Hence, C1 = 0 by Lemma 4.5(4).

If k1 = k′1, then there is no contribution from c1(N ) to C1, and we have that either C1 =
RHom(−Ga1 ,−Ga′1) = 0 (if D does not include DK1) or C1 = RHom(−Ga1 ,−Ga′1 − ψ∞) = 0
(if D includes DK1).

Finally, if k1 > k′1, then there are no contributions from c1(N ) or D to C1 and C1 =
RHom(L,−Ga′1) = 0, where L = −Ga1 if a1 < k′1 and L = O otherwise. In both cases, C1 = 0
by Lemma 4.5.

Case 2. Suppose a1 = a′1 and k1 < k′1. As in case 1, we have that

C1 = RHom(−Ga1 ,−Ga1 − ψ∞) = 0 .

Case 3. Suppose a1 = a′1, k1 = k′1 and that D includes DK1 .

In this case also, C1 = RHom(−Ga1 ,−Ga1 − ψ∞) = 0.

Case 4. Suppose a1 = a′1, k1 = k′1 and that D does not include DK1 .

In this case, C1 = RHom(−Ga1 ,−Ga1) = C is useless. However, we can now proceed exactly
as above, restricting to the next Losev–Manin factor LMK2 in W . Note that, in general, the
factors LMKi appearing in W need not be positive-dimensional, but in this case, since K1 = K ′1,
we must have that |K2| > 2, and we can proceed by induction. The lemma follows.

The Cremona action gives another possible linear order.

Corollary 4.10. The set Ĝ is an exceptional collection with respect to the order <′:

(k1, . . . , kt; a1, . . . , at) >
′ (k′1, . . . , k

′
t; a
′
1, . . . , a

′
t)

if the sequence (kt−at,−kt, kt−1−at−1,−kt−1, . . . ) is lexicographically larger than (k′s−a′s,−k′s,
k′s−1 − a′s−1,−k′s−1, . . . ).

Remark 4.11. The linear orders < and <′ are clearly not (S2 × SN )-equivariant. The lemma
shows that both orders refine the (S2 × SN )-equivariant relation ≺ given by paths in the quiver
with arrows

T → T ′ ⇐⇒ RHom(T , T ′) 6= 0 .

In other words, this quiver has no cycles. It would be nice to describe it combinatorially. It would
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be even better to explicitly describe the algebra⊕
T ≺T ′

RHom(T , T ′) .

Here are some easy observations about the quiver:

(1) If there is an arrow between T and T ′, then the corresponding strata have a non-empty
intersection.

(2) The line bundles can be arranged to be at the right of torsion sheaves in the collection:
for any torsion sheaf T ′ in Ĝ and any line bundle T = G∨a , we have (in the notation
of the proof of Lemma 4.9)

RHom(T , T ′) = RΓ
(
Ga|Z′ ⊗ T ′

)
= C1 � C2 � · · ·

and C1 = RHom
(
L,G∨a′1

)
, where L = Ga1 if a1 < k′1 and L = O otherwise. In both cases,

C1 = 0 by Lemma 4.5.

(3) It is not true in general that sheaves can be pre-ordered by codimension of support. For
example, on LM8, the sheaf T ′ with data (3, 2, 3; 2, 1, 1) and support Z ′ has to be to the
right of the sheaf T with data (3, 5; 1, 3) and support Z with Z ′ ⊆ Z, as an easy computation
as above shows that RHom(T , T ′) 6= 0.

Let us give more information about the quiver. We first introduce some terminology.

Definition 4.12. Let T ∈ Ĝ with support Z:

Z = LMK1 × LMK2 × · · · × LMKt ,

T = G∨a1 � · · ·�G
∨
at .

(1) We call LMK1 the first component of Z, LMK2 the second component of Z, etc. and LMKt

the last component of Z.

(2) We say that we remove the component LMKi from T if we consider the sheaf T̃ given by

Z̃ = LMK1 × · · · × LMKi−1 × LMKi+1 × · · · × LMKt ,

T̃ = G∨a1 � · · ·�G
∨
ai−1
�G∨ai+1

� · · ·�G∨at .

(3) We say that the end data of T is (k1, kt; k1 − a1, at). Clearly, different objects in Ĝ could
have the same end data.

(4) Recall from the proof of Lemma 4.9 that to show that RHom(T , T ′) = 0, it suffices to show
that

RHom
(
Li∗W,ZT , Li∗W,Z′T ′ ⊗ (N +D)

)
= 0 ,

where W = Z ∩Z ′, N is the first Chern class of the normal bundle NW,Z′ , that is, the sum
of boundary divisors that cut out Z, and D = Di1 + · · ·+Dir is a (possibly empty) sum of
boundary divisors containing both Z and Z ′. We let

W = LMS1 × LMS2 × · · · ,
RHom

(
iW,Z

∗T , iW,Z′∗T ′(N +D)
)

= CS1 � CS2 � · · · .

In what follows, we will refer to the CSi as the components of RHom(T , T ′).

Lemmas 4.9 and 4.10 have the following corollary, which can be used as an algorithm to
determine, given a pair of torsion objects T and T ′ in Ĝ, whether RHom(T , T ′) = 0 or
RHom(T ′, T ) = 0.
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Corollary 4.13. Let T and T ′ be torsion sheaves in Ĝ with supports Z and Z ′ and end data
(k1, kt; b1, bt) and (k′1, k

′
s; b
′
1, b
′
s). If the inequalities

b1 + bt 6 b
′
1 + b′s , k1 + kt − b1 − bt > k′1 + k′s − b′1 − b′s

both hold and one of them is a strict inequality, then RHom(T , T ′) = 0. Moreover, if both
inequalities are equalities, then RHom(T , T ′) 6= 0 is only possible when

b1 = b′1 , bt = b′s , k1 = k′1 , kt = k′s

and the first and last components are the same, that is, K1 = K ′1 and Kt = K ′s. Whenever all
these conditions hold, we have that

RHom(T , T ′) = 0 if RHom(T̃ , T̃ ′) = 0 ,

where T̃ and T̃ ′ are the sheaves obtained from T and T ′, respectively, after removing the first
and last components LMK1 and LMKt .

Proof. Recall that we have

a1 = k1 − b1 , a′1 = k′1 − b′1 , at = bt , a′s = b′s .

By Lemma 4.9, if k1 − b1 > k′1 − b′1, then RHom(T , T ′) = 0. Similarly, by Lemma 4.10, if
kt − bt > k′s − b′s, then RHom(T , T ′) = 0. Since we assume

(k1 − b1) + (kt − bt) > (k′1 − b′1) + (k′s − b′s) ,

it follows that we must have k1 − b1 = k′1 − b′1, kt − bt = k′s − b′s. Now if −k1 > −k′1, again
by Lemma 4.9, we have RHom(T , T ′) = 0. Similarly, if −kt > −k′s, by Lemma 4.10, we have
RHom(T , T ′) = 0. Hence, we may assume k1 > k′1 and kt > k′s. But then (k1+k′1)−(kt+k

′
s) > 0,

while

(k1 + k′1)− (kt + k′s) = (b1 + bt)− (b′1 + b′s) > 0 .

Hence, we must have k1 = k′1 and kt = k′s and hence b1 = b′1 and bt = b′s.

If these equalities hold, for the intersection Z ∩ Z ′ to be non-empty, we must have that the
first and last components are the same, that is, K1 = K ′1 and Kt = K ′s. As in the proof of
Lemma 4.9 (case 4), we can remove the first and last components, LMK1 and LMKt , from Z
and Z ′ and proceed with the rest.

We finish this section by relating line bundles G1, . . . , Gn−1 on LMn to the wonderful com-
pactification of PGLn. Following [Bri07], we identify Pic PGLn with the weight lattice of PGLn.
Let α1, . . . , αn−1 be simple roots, and let ω1, . . . , ωn−1 be fundamental co-weights. It is shown
in [Bri07] that α1, . . . , αn−1 and ω1, . . . , ωn−1 span the effective cone and the nef cone, respec-
tively, of PGLn. We identify LMn with the closure of the maximal torus in PGLn.

Proposition 4.14. Divisors on PGLn corresponding to ω1, . . . , ωn−1 restrict to divisors
G1, . . . , Gn−1 on the Losev–Manin space LMn.

Proof. First we consider divisors D1, . . . , Dn on PGLn which correspond to simple roots
α1, . . . , αn−1. We will show that they restrict to total boundary divisors

∆1 =
∑

δ0i , . . . , ∆n−1 =
∑

δ0i1...in−1

on the Losev–Manin space LMn. Indeed, it is known (see, for example, [Bri07]) that D1, . . . , Dn−1
are the boundary divisors of PGLn, that is,

PGLn \ PGLn = D1 ∪ · · · ∪Dn−1 .
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In particular, every Di restricts to a linear combination of boundary divisors of LMn. Since each
of these divisors is PGLn-invariant (acting by conjugation), the restriction is invariant under Sn
(= Weyl group); that is, it is a linear combination of total boundary divisors.

The compactification PGLn is a spherical homogeneous space for the group PGLn × PGLn,
extending its action on PGLn by left and right translations. The group of semi-invariant functions
Λ = k(PGLn)(B)/k∗ (where B = B− × B is a Borel subgroup of PGLn × PGLn) is identified
with the root lattice of PGLn, which in turn is identified with the lattice of characters M =
k(T )(T )/k∗ of the maximal torus in PGLn via the restriction of the B-semi-invariant functions.
Every boundary divisor Di determines a functional ρ(Di) : Λ→ Z (and so an element of the dual
weight lattice Λ∗ = Zn/〈1, . . . , 1〉) by taking a divisorial valuation of a function in Λ along Di.
In fact, we have ρ(Di) = ωi = e1 + · · · + ei mod 〈1, . . . , 1〉, the fundamental coweight (see, for
example, [Bri07]). These vectors span the Weyl chamber, and the fan of LMn (as a toric variety)
is precisely the fan of its Weyl group translates. Moreover, vectors ωi are primitive vectors along
the rays which give boundary divisors δ0,1,...,i; see [LM00]. So we are done by [BK05, Lemma
6.1.6].

By pulling back a coordinate hyperplane in Pn−1 and symmetrizing, we get the formula

ψ0 =
n− 1

n
∆1 + · · ·+ 1

n
∆n−1 .

Combining it with Definition 1.9 yields the following formula for the Gi:

Gi =
n−1∑
j=1

Bij∆j ,

where Bij = i(n− j)/n if i 6 j and Bij = Bji if i > j. It is well known and easy to prove
that the inverse of the matrix B is the Cartan matrix of the root system An−1, and therefore
ψi =

∑n−1
j=1 Bijαj , which finishes the proof.

5. Fullness of the exceptional collection Ĝ

We will need the following more general set-up.

Definition 5.1. For every integer r > −1, define a contravariant functor Xr from N to the
category of smooth projective varieties as follows. Let Xr

N be an iterated blow-up of Pn+r in
n general points (marked by N) followed by the blow-up of the

(
n
2

)
proper transforms of the

lines passing through two points, the
(
n
3

)
proper transforms of the planes passing through three

points, etc. For example,

X−1N = LMN , Xr
∅ = Pr .

For every M ⊆ N , the forgetful morphism πN\M : Xr
N → Xr

M is induced by a linear projection
from points in N \M .

For every subset S ⊆ N of cardinality at most n + r − 1, we denote by ES ⊆ Xr
N the

exceptional divisor over a subspace spanned by points in S.

Proposition 5.2. All conditions of Theorem 3.5 are satisfied. Thus we have a semi-orthogonal
decomposition

Db(Xr
S) =

〈
Db

cusp

(
Xr
S

)
,
{
Lπ∗KD

b
cusp

(
Xr
S\K

)}
K⊂S , Lπ

∗
ND

b(Pr)
〉
,

where K runs over proper subsets of S in order of increasing cardinality.
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Notation 5.3. For every i ∈ N , we have a birational morphism

fi : X
r
N → Xr+1

N\i ,

obtained by blowing down exceptional divisors ES , for i ∈ S, in the order of decreasing cardi-
nality.

Definition 5.4 (Strata in Xr
N ). Consider partitions

N = N1 t · · · tNk , |Nu| > 0 (u = 1, . . . , k − 1) .

Set

ZN1,...,Nk
= EN1 ∩ EN1∪N2 ∩ · · · ∩ EN1∪···∪Nk−1

.

We call ZN1,...,Nk
a stratum in Xr

N . We call a stratum in Xr
N massive if it is the image of a massive

stratum in LMn+r+1 via the birational map LMn+r+1 → Xr
N which is the composition of the

maps fi for those i /∈ N .

For r > 0, each stratum ZN1,...,Nk
is the image of a stratum in LMn+r+1. For all r > −1, we

have an identification

ZN1,...,Nk
' LMN1 × · · · × LMNk−1

×Xr
Nk
,

where Xr
Nk

is the blow-up of P|Nk|+r at the linear subspaces spanned by the points in Nk. If r > 0,
a stratum ZN1,...,Nk

is massive if and only if |Nu| > 2 for all u = 1, . . . , k − 1 and |Nk|+ r > 0.

Definition 5.5. We let Ĝr
N be a collection of objects in Db(Xr

N ) defined inductively as follows:

Ĝ−1N := ĜN , Ĝr+1
N = Rfi∗(Ĝr

N ) .

Definition 5.6. Consider the following line bundles on Xr
N (for r > −1):

Gra
∨ = −aH + (a− 1)

∑
i∈N

Ei + (a− 2)
∑
i,j∈N

Eij + · · · (a = 1, . . . , n+ r)

(the coefficient in front of the exceptional divisor must be positive).

Lemma 5.7. For every E ∈ Db
cusp(Xr

N ), we have Rfi∗(E) ∈ Db
cusp

(
Xr+1
N\i
)
. In particular, the

collection Ĝr
N is contained in Db

cusp(Xr
N ). Moreover, we have

Rfi∗G
r
a
∨ = Gr+1

a
∨

(a = 1, . . . , n+ r) .

In particular, Ĝr
N contains the line bundles Gra

∨ (for 1 6 a 6 n + r) and the following torsion
objects:

T = (iZ)∗L , L = G∨a1 � · · ·�G
∨
ak−1
�Grak

∨

for all massive strata Z = ZN1,...,Nk
in Xr

N , all 1 6 au 6 |Nu| − 1 for u = 1, . . . , k − 1 and all
1 6 ak 6 |Nk|+ r.

Proof. The first statement follows from the commutative diagram

Xr
N Xr+1

N\i

Xr
N\j Xr+1

N\i,j .

fi

πj πj

fi

(5.1)
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To prove the rest of the lemma, it suffices to prove Rfi∗G
r
a
∨=Gr+1

a
∨

. Set t=min{a− 1, n}.
Note that

Lf∗i G
r+1
a
∨

= f∗i G
r+1
a
∨

= − aH + (a− 1)
∑

j∈N\{i}

Ej

+ (a− 2)
∑

j,k∈N\{i}

Ejk + · · ·+ (a− t)
∑

J⊆N\{i}, |J |=t

EJ , (5.2)

as the pull-backs f∗i EJ are simply the proper transforms of the divisors EJ under the blow-up
map fi. In particular, f∗i G

r+1
a
∨

= Gr+1
a
∨

+ F , where

F = (a− 1)Ei + (a− 2)
∑

j∈N\{i}

Eij + · · ·+ (a− t)
∑

J⊆N,i∈J, |J |=t

EJ .

Note that the coefficient a− |J | of any EJ appearing in F satisfies

1 6 a− |J | 6 n+ r − j < n+ r − j + 1 = codimXr
N
EJ .

This implies, after repeatedly applying Lemma 5.8 to the morphisms that successively blow
down the divisors EJ with i ∈ J , for a fixed |J | (starting from the larger |J | to the smaller), that
Rfi∗O(F ) = O. It follows that

Rfi∗G
r
a
∨ = Rfi∗

(
fi
∗Gr+1

a
∨ ⊗O(F )

)
= Gr+1

a
∨ ⊗Rfi∗O(F ) = Gr+1

a
∨
.

The following lemma is well known.

Lemma 5.8. Let p : X → Y be a blow-up of a smooth subvariety Z of codimension r + 1 of
a smooth projective variety Y . Let E be the exceptional divisor. Then for all 1 6 i 6 r, we have

Rp∗OX(iE) = OY .

Lemma 5.9. All sheaves in Ĝr
N are exceptional.

The proof is identical to that of Lemma 4.8, and we omit it. The same direct computation as
in Lemma 4.3 shows that the line bundles Gra satisfy the same restriction properties as the line
bundles Ga.

Lemma 5.10. For S ⊆ N , identifying the exceptional divisor ES ⊆ Xr
N with the product

LMS ×Xr
N\S , we have

Gra|ES
=


Ga �O if a < |S| ,
O if a = |S| ,
O �Gra−|S| if a > |S| .

The analogue of Lemma 4.5 is the following.

Lemma 5.11. (1) Every Gra is nef (hence, globally generated), of relative degree 1 with respect
to any forgetful map πi, for i ∈ N .

(2) Each (Gra)
∨ is acyclic.

(3) We have RHom(Ga, Gb) = 0 if a > b.

(4) We have RΓ(−ψ0 +Ga −Gb) = 0 if a < b.

The proof is identical to that of Lemma 4.5, and we omit it. Note that unlike in the case r =
−1, when r > 0, there is no more S2-symmetry, and it is generally false that RHom(Ga, Gb) = 0
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if a < b. For example, if r > 0, then RHom(G1, G2) = RΓ
(
H −

∑
i∈N Ei

)
6= 0. As a result,

the order < of Lemma 4.9 does not generally descend to an order on Ĝr
N which makes Ĝr

N

an exceptional collection (for example, if N = ∅). However, the order <′ from Corollary 4.10
descends to an order on Ĝr

N which makes Ĝr
N an exceptional collection.

Lemma 5.12. For all r > −1, the set Ĝr
N is an exceptional collection with respect to the following

order. Let T , T ′ ∈ Ĝr
N . Let (k1, . . . , kt; a1, . . . , at) and (k′1, . . . , k

′
s; a
′
1, . . . , a

′
s) be the corresponding

data. Then T >′ T ′ if the sequence

(kt − at,−kt, kt−1 − at−1,−kt−1, . . . )

is lexicographically (that is, alphabetically) larger than

(k′s − a′s,−k′s, k′s−1 − a′s−1,−k′s−1, . . . ) .
Proof. The proof is similar to that of Lemma 4.9. We sketch the proof for completeness. Let
Z and Z ′ be massive strata supporting sheaves T > T ′ in Ĝ. These sheaves have the form
RiZ∗L and RiZ′∗L′, respectively. We have to show that RHom(T , T ′) = 0. Let U be the smallest
stratum containing both Z and Z ′. Then U is the intersection of codimension 1 strata (exceptional
divisors) D1, . . . , Ds containing both Z and Z ′. Let W = Z ∩Z ′. We can assume that W is non-
empty as otherwise there is nothing to prove. Let iW,Z : W ↪→ Z and iW,Z′ : W ↪→ Z ′ be the
inclusions. As in the proof of Lemma 4.9, it suffices to prove that

RHom(Li∗W,ZL, Li∗W,Z′L′(D + c1(N ))) = 0 ,

where c1(N ) is the first Chern class of the normal bundle N := NW,Z′ , that is, the sum of all
the exceptional that cut out Z but do not contain Z ′. We write

W = LMK1 × LMK2 × · · · × LMKs−1 ×Xr
Kt
,

RHom(LiW,Z
∗L, LiW,Z′∗L′(D + c1(N ))) = C1 ⊗ C2 ⊗ · · · ⊗ Ct ,

where C1 is RHom between components of line bundles LiW,Z
∗L and LiW,Z′

∗L′(D + c1(N ))
corresponding to LMK1 , etc.

Case 1. Suppose kt−at > k′t−a′t. We prove that Ct = 0. If kt < k′t, then a′t > at+(k′t−kt) >
(k′t − kt). Hence,

Ct = RHom(−Gat ,−Ga′t−(k′t−kt) − ψ∞) ,

where −ψ0 is a contribution from c1(N ) (there is no contribution from D). As a′t− (k′t−kt) > at,
it follows that Ct = 0 by Lemma 5.11(4).

If kt = k′t, then a′t > at. As there is no contribution from c1(N ) to Ct, we have that either
Ct = RHom(−Gat ,−Ga′t) = 0 (if D does not include DK1), or Ct = RHom(−Gat ,−Ga′t−ψ0) = 0
(if D includes DK1).

If kt > k′t, then there are no contributions from c1(N ) or D to Ct and

Ct = RHom(L,−Ga′t) = 0 ,

where L = −Gat−(kt−k′t) if at > kt−k′t and L = O otherwise. As, by assumption, at−(kt−k′t) < a′t,
it follows that in both cases, Ct = 0 by Lemma 4.5.

Case 2. Suppose kt−at = k′t−a′t and kt < k′t. Then a′t = (k′t−kt)+at and hence a′t > (k′t−kt).
As in case 1, we have

Ct = RHom(−Gat ,−Ga′t−(k′t−kt) − ψ0) = RHom(−Gat ,−Gat − ψ0) = 0 .
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Case 3. Suppose at = a′t, kt = k′t and that D includes DKt . In this case, we have

Ct = RHom(−Gat ,−Gat − ψ0) = 0 .

Case 4. Suppose at = a′t, kt = k′t and that D does not include DKt . In this case,

Ct = RHom(−Gat ,−Gat) = C

is useless. However, we can now use Corollary 4.10 as the remaining factors are Losev–Manin
spaces (or, alternatively, proceed exactly as above, by restricting to the next Losev–Manin fac-
tor LMKt−1 in W ). The lemma follows.

Lemma 5.13. Let r > −1. For every T ∈ Ĝr+1
N and every j ∈ N , we have

Rπj∗Lfi
∗T = 0 .

Proof. We use the commutative diagram (5.1). Since πj is flat and Xr
N\j×Xr+1

N\ij
Xr+1
N\i has toroidal,

and hence rational, singularities, the claim follows by cohomology and base change.

To finish the proof of Theorem 1.10, we prove the following crucial result.

Lemma 5.14. Let r > −1. For every T ∈ Ĝr+1
N ,

Cone [Lπi
∗Rπi∗Lfi

∗T → Lfi
∗T ]

belongs to the subcategory generated by Ĝr
N .

We postpone the proof of Lemma 5.14 to the end of this section. We use Lemma 5.14 to prove
the following result (that implies Theorem 1.10).

Proposition 5.15. If N 6= ∅, the subcategory Db
cusp(Xr

N ) is generated by Ĝr
N .

This proves the following theorem.

Theorem 5.16. For all r > −1, the set Ĝr
N is a full exceptional collection in Db

cusp(Xr
N ).

In particular, when r = −1, this gives that the set ĜN is a full exceptional collection in
Db

cusp

(
LMN

)
(Theorem 1.10).

Proof of Proposition 5.15. We argue by induction on the dimension n+r and for a fixed n+r, by
induction on n. The base of induction is Xr−1

1 . Note that we have a P1-bundle π1 : Xr−1
1 → Pr−1.

By Orlov’s Theorem 3.3, the category Db
cusp

(
Xr−1

1

)
is generated by

π∗1D
b
(
Pr−1

)
⊗O(−E1) = 〈O(−rH + (r − 1)E1), . . . ,O(−2H + E1),O(−H)〉 ,

which is precisely our claim in this case.

Assume n > 2. Choose an object E ∈ Db
cusp(Xr

N ) such that RHom(T , E) = 0 for every

T ∈ Ĝr
N . We need to show that E = 0. We first show that Rfi∗E = 0 for all i ∈ N . Let i ∈ N .

By Lemma 5.7, we have Rfi∗E ∈ Db
cusp(Xr+1

N\{i}). By the inductive assumption, to prove that

Rfi∗E = 0, it is sufficient to prove that RHom(T , Rfi∗E) = 0 for every T ∈ Ĝr+1
N\{i}. Note that

RHom(T , Rfi∗E) = RHom(Lf∗i T , E) .

If we let C = Cone [Lπi
∗Rπi∗Lfi

∗T → Lfi
∗T ], it follows by Lemma 5.14 that RHom(C,E) = 0.

Using the distinguished triangle

Lπi
∗Rπi∗Lfi

∗T → Lfi
∗T → C → Lπi

∗Rπi∗Lfi
∗T [1]
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and the fact that for all F ∈ Db
(
Xr
N\{i}

)
, we have (since E ∈ Db

cusp(Xr
N ))

RHom(Lπi
∗F,E) = RHom(F,Rπi∗E) = 0 ,

it follows that RHom(Lf∗i T , E) = 0. This proves that Rfi∗E = 0 for all i ∈ N . In particular, by
Lemma 3.1, the support SuppE of E is contracted by all birational maps fi, for i ∈ N :

SuppE ⊆ Exc(f1) ∩ · · · ∩ Exc(fn) .

Since Exc(fi) =
⋃
i∈S ES and ES ∩ ET 6= ∅ if and only if S ⊆ T or T ⊆ S, this implies that

Exc(f1)∩· · ·∩Exc(fn) can be non-empty only if r > 1, in which case this intersection is contained
in EN , the exceptional divisor corresponding to blowing up the proper transform ∆N

∼= LMN

of the subspace spanned by the points in N (the last blow-up). It follows that

SuppE ⊆ EN ∼= ∆N × Pr .

For every i ∈ N , we can decompose fi = f ′i ◦ p, where p : Xr
N → Y blows down EN (with

image ∆N ) and f ′i : Y → Xr+1
N\{i} is the composition of blow-downs of ES for S ( N containing i.

If we write E′S = p(ES), it is still the case that E′S ∩ E′T 6= ∅ if and only if S ⊆ T or T ⊆ S. It
follows that

Exc(f ′1) ∩ · · · ∩ Exc(f ′n) = ∅ . (5.3)

Since Rf ′i∗Rp∗E = Rfi∗E = 0 for all i, equation(5.3) and Lemma 3.1 imply that Rp∗E = 0.
Let α : EN ↪→ Xr

N be the inclusion map. By Orlov’s Theorem 3.4, the object E belongs to the
subcategory in Db(Xr

N ) with semi-orthogonal decomposition〈
Rα∗

[
Db
(
LMN

)
�OPr(−r)

]
, . . . , Rα∗

[
Db
(
LMN

)
�OPr(−1)

]〉
.

In particular, there exist morphisms

0 = E0 → E1 → · · · → Er = E

that fit into exact triangles

Ei−1 → Ei → Fi → Ei−1[1] with Fi ∈ Rα∗
[
Db
(
LMN

)
�OPr(−i)

]
.

Claim 5.17. We have Fi ∈ Rα∗
[
Db

cusp

(
LMN

)
�OPr(−i)

]
for all 1 6 i 6 r.

The proposition now follows immediately from Claim 5.17: by the inductive hypothesis, the
subcategory Rα∗

[
Db

cusp

(
LMN

)
�OPr(−i)

]
is generated by sheaves that belong to Ĝr

N , but the
latter have no non-zero morphisms into E. Thus E = 0.

Proof of Claim 5.17. Let Fi = Rα∗(Hi �OPr(−i)) for some Hi ∈ Db
(
LMN

)
. We have to show

that Hi ∈ Db
cusp

(
LMN

)
for all i.

Let j ∈ N , and let αj : LMN\{j} × Pr ↪→ Xr
N\{j} be the inclusion. Then

Rπj∗Fi = Rπj∗Rα∗(Hi �OPr(−i)) = Rαj∗(Rπj∗Hi �OPr(−i)) ,

where Rπj∗Hi ∈ Db
(
LMN\{j}

)
. In particular, Rπj∗Hi = 0 if and only if Rπj∗Fi = 0. Note that

Rπj∗Fi belongs to the subcategory

Rαj∗
[
Db
(
LMN\{j}

)
�OPr(−i)

]
.

Suppose Rπj∗Fp 6= 0 for some j ∈ N , and choose the maximal p with this property. Apply-
ing Rπj∗ to the filtration gives morphisms

0 = Rπj∗E0 → Rπj∗E1 → · · · → Rπj∗Er = Rπj∗E = 0
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that fit into exact triangles

Rπj∗Ei−1 → Rπj∗Ei → Rπj∗Fi → Rπj∗Ei−1[1] .

In particular, Rπj∗Ep = Rπj∗Ep+1 = · · · = Rπj∗Er = Rπj∗E = 0 and Rπj∗Fp ' Rπj∗Ep−1[1].
However, Rπj∗Ep−1[1] belongs to the subcategory generated by

Rαj ∗
[
Db
(
LMN ′

)
�OPr(−i)

]
for i < p and thus cannot have a non-zero morphism to Rπj∗Fp.

We now prove Lemma 5.14. The proof occupies the rest of this section. We first prove the
case when T ′ = Gr+1

a
∨

on Xr+1
N\{i} in Lemma 5.18.

Lemma 5.18. Let r > −1. For all 1 6 a 6 n+ r and i ∈ N , we have

πi∗
(
f∗i G

r+1
a
∨)

= 0 ,

R1πi∗
(
f∗i G

r+1
a
∨)

=

{
Gra−1

∨ ⊕Gra−2∨ ⊕ · · · ⊕Gr1∨ if a > 2 ,

0 if a = 1 ,

Cone
[
Lπi

∗Rπi∗Lfi
∗Gr+1

a
∨ → Lfi

∗Gr+1
a
∨
]

= Gra
∨ ⊕Gra−1

∨ ⊕ · · · ⊕Gr1
∨ .

Proof. If a = 1, then f∗i G
r+1
1
∨

= −H = Gr1
∨ and the statements follow at once as Gr1

∨ is
a cuspidal object. Now, assume a > 2. For clarity, first consider the situation when a 6 n. In
this case, we have

(Gra)
∨ = −aH + (a− 1)

∑
j∈N\i

Ej + · · ·+ 1 ·
∑

J⊆N\i, |J |=a−1

EJ .

Define divisors on Xr
N as follows:

Es =
∑

i∈I⊆N, |I|=s

EI (1 6 s 6 a− 1) ,

Fs = E1 + E2 + · · ·+ Es = Ei +
∑
j

Eij +
∑
j,k

Eijk + · · ·+
∑

i∈I⊆N, |I|=s

EI ,

H1 = f∗i G
r+1
a , H2 = H1 + F1 , H3 = H2 + F2 , . . . , Ha = Ha−1 + Fa−1 = Gra

∨ .

There are two sets of exact sequences that we will use, identifying as usual divisors with the
corresponding line bundles:

(A)
0→ H1 → H2 → H2|F1

→ 0 ,

0→ H2 → H3 → H3|F2
→ 0 ,

...

0→ Ha−1 → Ha → Ha|Fa−1
→ 0 .

(B) For 2 6 k 6 a− 1 and 1 6 s 6 k − 1, letting

Qks+1 =
(
Hk+1 − Fs

)
|Es+1 =

⊕
i∈I⊆N, |I|=s+1

(
Hk+1 − Fs

)
|EI

,
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we have exact sequences

0→ Qk2 → Hk+1|F2
→ Hk+1|F1

→ 0 ,

0→ Qk3 → Hk+1|F3
→ Hk+1|F2

→ 0 ,

...

0→ Qkk → Hk+1|Fk
→ Hk+1|Fk−1

→ 0 .

Note that Fs+1 = Fs + Es+1 and that the sequences of type (B) are obtained by tensoring with
Hk+1 the canonical sequence

0→ O(−Fs)|Es+1 → OFs+1 → OFs → 0 . (5.4)

Lemma 5.18 follows at once from taking k = 1 in parts (A1) and (A2) in Claim 5.19.
Parts (B1)–(B3) in the claim refer to the exact sequences of type (B), while parts (A1)–(A2)
in the claim refer to the exact sequences of type (A). Parts (B1)–(B3) will be used to prove
parts (A1)–(A2) (this is why they appear first).

We now discuss the case when a > n. In this case, we have

(Gra)
∨ = −aH + (a− 1)

∑
j∈N\i

Ej + · · ·+ (a− (n− 1))EN\i .

We define Fs as above in the range 1 6 s 6 n and let

Fa−1 = · · · = Fn+1 = Fn = E1 + E2 + · · ·+ En .

We define Hk as above, for all 1 6 k 6 a. As before, Ha = (Gra)
∨. We use the exact

sequences of type (A). In order to analyze the sheaves Hk+1|Fk
, there are two cases to consider:

(1) 1 6 k 6 n < a and (2) n < k 6 a − 1. For a fixed k, we consider the sequences (5.4) of
type (B), where for 1 6 s 6 k − 1, the quotient Qks+1 is defined as before if s 6 n − 1, while if
k − 1 > s > n, we let

Qkn+1 = · · · = Qkk = 0 .

Hence, the exact sequences of type (B) that we consider are

0→ Qk2 → Hk+1|F2
→ Hk+1|F1

→ 0 ,

0→ Qk3 → Hk+1|F3
→ Hk+1|F2

→ 0 ,

...

0→ Qkn → Hk+1|Fn
→ Hk+1|Fn−1

→ 0 .

The rest of the proof is identical, as Claim 5.19 still holds.

Claim 5.19. (B1) For 2 6 k 6 a− 1 and 1 6 s 6 min{k − 1, n− 1}, we have

Rπi∗Q
k
s+1 = 0 .

(B2) For all 1 6 s 6 k 6 a− 1, we have

Rlπi∗
(
Hk+1|Fs

)
= 0 for all l > 0 and πi∗

(
Hk+1|Fs

)
=
(
Grk
)∨
.

(B3) For all 1 6 s 6 k 6 a− 1, the canonical map

πi
∗πi∗

(
Hk+1|Fs

)
→
(
Hk+1|Fs

)
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is surjective with kernel π∗i (G
r
k)
∨ ⊗O(−Fs). Moreover,

Cone
[
Lπi

∗Rπi∗
(
Hk+1|Fs

)
→
(
Hk+1|Fs

)]
=
(
π∗i
(
Grk
)∨ ⊗O(−Fs)

)
[1] .

In particular,

Cone
[
Lπi

∗Rπi∗
(
Hk+1|Fk

)
→
(
Hk+1|Fk

)]
=
(
Grk
)∨

[1] .

(A1) For all 1 6 k 6 a− 1, we have

πi∗
(
Hk

)
= 0 and R1πi∗

(
Hk

)
=
(
Gra−1

)∨ ⊕ (Gra−2)∨ ⊕ · · · ⊕ (Grk)∨ .
(A2) For all 1 6 k 6 a, we have

Cone
[
Lπi

∗Rπi∗
(
Hk

)
→
(
Hk

)]
=
(
Gra
)∨ ⊕ (Gra−1)∨ ⊕ · · · ⊕ (Grk)∨ .

Proof. We prove parts (B1)–(B3). From the commutative diagram

LM I ×Xr
N\I = EI Xr

N

LMJ ×Xr
N\I = EJ Xr

N\i ,

(πi,Id) πi (5.5)

it follows that

Rπi∗
(
−ψx �

(
Grk−s

)∨)
= Rπi∗(−ψx)�

(
Grk−s

)∨
= 0

as Rπi∗(−ψx) = 0. Hence, (5.20) implies that Rπi∗Q
k
s+1 = 0, thus proving part (B1). Note that

it suffices to prove parts (B2) and (B3) for 1 6 s 6 min{k, n}, as Fn = Fn+1 = · · · = Fa−1.
Clearly, part (B2) follows immediately from part (B1), the exact sequences of type (B) and the
diagram (5.10). We now prove part (B3) by induction on s (for a fixed k). Set

hs : πi
∗πi∗

(
Hk+1|Fs

)
→
(
Hk+1|Fs

)
, Ks = Ker(hs) .

We use the following two observations: (1) for any sheaf T , the canonical map πi
∗πi∗(T )→ T

is non-zero whenever πi∗(T ) is non-zero, and (2) if F ⊂ X is an effective divisor and L is a line
bundle on X, the only non-zero morphism L → L|F is the restriction map (with kernel L(−F )).

When s = 1, we have from part (B2) and (5.10) that

πi∗
(
Hk+1|F1

)
=
(
Grk
)∨
, πi

∗πi∗
(
Hk+1|F1

)
= πi

∗(Grk)∨ ,
Hk+1|F1

=
(
Grk
)∨

=
(
πi
∗(Grk)∨)|F1

on F1 = Ei .

Hence, it follows from observations (1) and (2) that h1 is surjective and K1 = π∗i (G
r
k)
∨⊗O(−F1).

Now assume that hs is surjective and Ks = π∗i (G
r
k)
∨ ⊗ O(−Fs). By applying π∗i πi∗(−) to the

exact sequence

0→ Qks+1 →
(
Hk+1

)
|Fs+1

→
(
Hk+1

)
|Fs
→ 0 , (5.6)

it follows from part (B1) that there is a commutative diagram

0 0 πi
∗πi∗

(
Hk+1|Fs+1

)
πi
∗πi∗

(
Hk+1|Fs

)
0

0 Qks+1

(
Hk+1|Fs+1

) (
Hk+1|Fs

)
0 .

hs+1 hs

By our inductive assumption, hs is surjective. By the snake lemma, there is an exact sequence

0→ Ks+1 → Ks → Qks+1 → Coker(hs+1)→ 0 .
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The induced map Ks → Qks+1 is non-zero. Otherwise, Qks+1
∼= Coker(hs+1), which implies that the

exact sequence (5.6) is split since there is a retract
(
Hk+1|Fs+1

)
→ Qks+1. But the sequence (5.6)

is obtained by tensoring the canonical sequence (5.4) with a line bundle, and (5.4) is not split,
as there are no non-zero morphisms OFs+1 → OEs+1(−Fs):

Hom
(
OFs+1 ,OEs+1(−Fs)

)
= H0

(
OEs+1(−Fs)

)
= 0

by (5.7), and we have a contradiction. We have Ks = π∗i (G
r
k)
∨ ⊗ O(−Fs) by the induction

assumption. By (5.20), we have Qks+1 =
(
π∗i (G

r
k)
∨⊗O(−Fs)

)
|Es+1 . Hence, Qks+1 = (Ks)|Es+1 . By

observation (2), the map Ks → Qks+1 is surjective, that is, Coker(hs+1) = 0, and furthermore

Ks+1 = Ks
(
−Es+1

)
= π∗i (G

r
k)
∨ ⊗O

(
−Fs − Es+1

)
= π∗i (G

r
k)
∨ ⊗O(−Fs+1) .

This proves the first statement in part (B3). In particular, this gives

Cone
[
Lπi

∗Rπi∗
(
Hk+1|Fk

)
→
(
Hk+1|Fk

)]
=
(
π∗i (G

r
k)
∨ ⊗O(−Fk)

)
[1] ,

and now the last statement in part (B3) follows from

Grk
∨ = π∗i (G

r
k)
∨ ⊗O(−Fk) .

We now prove parts (A1) and (A2). Apply πi∗(−) to the exact sequences of type (A). Then
part (A1) follows from part (B2) and downward induction, using the fact that there are no non-
trivial extensions between (Grk)

∨ and (Grk′)
∨ for k 6= k′. Similarly, to prove part (A2), we use

downward induction on 1 6 k 6 a and the exact sequences of type (A). As Ha = (Gra)
∨, we have

Cone
[
Lπi

∗Rπi∗
(
Ha

)
→
(
Ha

)]
= (Gra)

∨ .

Note that if π : X → Y is a morphism between smooth projective varieties and 0→ A1 → A2 →
A3 → 0 is an exact sequence of sheaves on X, there is a distinguished triangle relating the cones
Ci = Cone [Lπ∗Rπ∗Ai → Ai]:

C1 → C2 → C3 → C1[1] .

Then part (A2) follows from part (B3) by using the fact that there are no non-trivial extensions
between Grk

∨ and Grk′
∨ for k 6= k′.

Claim 5.20. For all subsets I ⊆ N with i ∈ I, where |I| = s + 1 with 1 6 s 6 n − 1, on
EI ∼= LM I ×Xr

N\I , we have

Fs|EI
= ψx �O (5.7)

(here x is the attaching point). Now, assume 1 6 k 6 a−1 and 1 6 s 6 min{k−1, n−1}. Then

Hk+1|EI
= O �

(
Grk−s

)∨
=
(
π∗i (G

r
k)
∨)
|EI

. (5.8)

Hence, we have (
Hk+1 − Fs

)
|EI

= (−ψx)�
(
Grk−s

)∨
=
(
π∗i (G

r
k)
∨ ⊗O(−Fs)

)
|EI

,

Qks+1 =
⊕

i∈I⊆N, |I|=s+1

(−ψx)�
(
Grk−s

)∨
=
(
π∗i (G

r
k)
∨ ⊗O(−Fs)

)
|Es+1 . (5.9)

Moreover, on Ei ∼= Xr
N\{i}, we have

Hk+1|Ei
= (Grk)

∨ . (5.10)
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Proof. To prove (5.7), we let I = J ∪ {i}. Then |J | = s. We have

(Fs)|EI
=

(
Ei +

∑
j∈N\i

Eij + · · ·+
∑

K⊆N\i, |K|=s−1

EK

)
|EI

= δJ∪{x} +
∑
j∈J

δ(J\{j})∪{x} + · · ·+
∑
j∈J

δjx

(as divisors on LM I). Using the ψx Kapranov model of LM I , we have

(Fs)|EI
= ΛJ +

∑
j∈J

EJ\{j} + · · ·+
∑
j∈J

Ej = H .

Here ΛJ denotes the class of the proper transform in LM I of the hyperplane in Ps spanned by
the points in J . This proves (5.7).

To see (5.8) and (5.10), recall that if 1 6 k 6 a− 1, then

Hk+1 = H1 + F1 + · · ·+ Fk ,

H1 = −aH + (a− 1)
∑

j∈N\{i}

Ej + (a− 2)
∑

j,k∈N\{i}

Ejk + · · ·+ (a− t)
∑

K⊆N\{i}, |K|=t

EK ,

where t = min{a− 1, n− 1}. There are two cases to consider:

(1) k 6 n (with either n 6 a− 1 or a− 1 6 n)

(2) k > n, in which case we must have a− 1 > n and t = n− 1. Note that we must have r > 2
as n+ r − 1 > a− 1 > n.

In case (1), we have

F1 + · · ·+ Fk = kEi + (k − 1)
∑

j∈N\{i}

Eij + · · ·+ 1 ·
∑

i∈K⊆N, |K|=k

EK .

In case (2), we have

F1 + · · ·+ Fk = kEi + (k − 1)
∑

j∈N\{i}

Eij + · · ·

· · ·+ (k − n+ 2)
∑

i∈K⊆N, |K|=n−1

EK + (k − n+ 1)EN .

Now let 1 6 s 6 min{k − 1, n − 1}, and let I ⊆ N , with i ∈ I and |I| = s + 1 for some
0 6 s 6 k − 1. Let

O(Hk+1)|EI
= O

(
H ′
)
�O

(
H ′′
)
,

where H ′ is the component on LM I and H ′′ is the component on Xr
N\I . We now compute H ′

and H ′′. Note that only the divisors EK with I ⊆ K ⊆ N contribute to H ′′. For example, H1

does not; that is, we have

H ′′ =
(
F1 + · · ·+ Fk

)
|EI

.
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In case (1), we have

H ′′ = (k − s)(−ψx) + (k − s− 1)
∑
k∈N\I

δk,x

+ (k − s− 2)
∑

k,l∈N\I

δk,l,x + · · ·+ 1 ·
∑

K⊆N\I, |K|=k−s−1

δK∪{x} .

(as a divisor on M0,N\I), while in case (2), we have

H ′′ = (k − s)(−ψx) + (k − s− 1)
∑
k∈N\I

δk,x

+ (k − s− 2)
∑

k,l∈N\I

δk,l,x + · · ·+ (k + 1− n)δ(N\I)∪{x} .

In both cases, H ′′ =
(
Grk−s

)∨
as by the definition of Grk−s on Xr

N\I ,(
Grk−s

)∨
= (k − s)H − (k − s− 1)

∑
j∈N\I

Ej − · · · − (k − s− t′)
∑

K⊆N\I, |K|=t′
EK

(in the Kapranov model given by ψx), where t′ = min{k− s− 1, n− s− 1}; that is, t′ = k− s− 1
in case (1), and t′ = n− s− 1 in case (2).

We now calculate H ′. Let I = J ∪ {i}. Since |J | = s 6 min{k − 1, n − 1}, we have s 6 t =
min{a− 1, n− 1}. Using the ψ0 Kapranov model of LM I , we obtain that the contribution from
H1 to H ′ comes from

−aH + (a− 1)
∑
j∈J

Ej + · · ·+ (a− (s− 1))
∑

K⊆J, |K|=s−1

EK + (a− s)EJ

and equals

−aH + (a− 1)
∑
j∈J

Ej + · · ·+ (a− (s− 1))
∑

K⊆J, |K|=s−1

EK + (a− s)ΛJ ,

while the contribution from F1 + · · ·+ Fk to H ′ comes from

kEi + (k − 1)
∑
j∈J

Eij + · · ·+ (k − (s− 2))
∑

K⊆J, |K|=s−2

EK∪{i}

+ (k − (s− 1))
∑

K⊆J, |K|=s−1

EK∪{i} + (k − s)EJ ,

and equals

kEi + (k − 1)
∑
j∈J

Eij + · · ·+ (k − (s− 2))
∑

K⊆J, |K|=s−2

EK∪{i}

+ (k − (s− 1))
∑

K⊆J, |K|=s−1

ΛK∪{i} + (k − s)(−ψx) .

Here ΛS (for S ⊆ I with |S| = s) denotes the class of the proper transform in LM I of the
hyperplane in Ps spanned by the points in S, that is,

ΛS = H −
∑

K⊆S, 16|K|6s−1

EK .
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We now sum up these two terms and compute the coefficient of H to be

−a+ (a− s) + (k − s+ 1)s− (k − s)s = 0 .

Here we use that on LM I , the class of ψx in the ψ0 Kapranov model is

ψx = sH − (s− 1)
∑
j∈I
−(s− 2)

∑
j,k∈I

− · · · .

Similarly, the coefficient of EK for K ⊆ J with |K| = l is

(a− l)− (a− s)− (k − s+ 1)(s− l) + (k − s)(s− l) = 0 ,

while the coefficient of EK∪{i} for K ⊆ J with |K| = l is

(k − l)− (k − s+ 1)(s− l) + (k − s)(s− l − 1) = 0 .

Hence, H ′ = 0 and O(Hk+1)|EI
= O �

(
Grk−s

)∨
.

To see that
(
π∗i (G

r
k)
∨)
|EI

= O �
(
Grk−s

)∨
, we use the commutative diagram (5.5). Note the

equality of line bundles (Grk)
∨
|EJ

= O�
(
Grk−s

)∨
(Remark 5.10). This finishes the proof of (5.8).

The case when EI = Ei corresponds to the case s = 0, and the above computation shows (5.10).
Clearly, (5.20) follows from (5.8) and (5.7).

To prove the general case of Lemma 5.14, we need the following.

Lemma 5.21. If πi : X
r
N → Xr

N\i is the forgetful map, then for all 1 6 a 6 n + r − 1, the line

bundle π∗i
(
Gra
)∨ ⊗O(−Ei) belongs to the subcategory generated by Ĝr

N .

Proof. Let t = min{a− 1, n− 1}. Keeping the notation of the proof of Lemma 5.18, consider the
divisors Fs on Xr

N , for 1 6 s 6 t+ 1, defined by

Fs = E1 + E2 + · · ·+ Es = Ei +
∑
j

Eij +
∑
j,k

Eijk + · · ·+
∑

i∈I⊆N, |I|=s

EI ,

and let

L1 = π∗i
(
Gra
)∨ − F1 , L2 = π∗i

(
Gra
)∨ − F2 , . . . , Lt+1 = π∗i

(
Gra
)∨ − Ft+1 .

We claim that π∗i
(
Gra
)∨−Ft+1 = (Gra)

∨. This is clear if one considers separately the two cases
a 6 n and a > n. For example, if a > n, then

(Gra)
∨ = −aH + (a− 1)

∑
j∈N

+ · · ·+ (a− n)EN = π∗i (G
r
a)
∨ − Fn .

We have to prove that L1 belongs to the subcategory generated by Ĝr
N . We use the exact

sequences

0→ L2 → L1 →
⊕
j∈N\i

(
L1
)
|Eij
→ 0 ,

0→ L3 → L2 →
⊕

j,k∈N\i

(
L2
)
|Eijk

→ 0 ,

...

0→ Lt+1 → Lt →
⊕

J⊆N\{i},
|J |=t

(
Lt
)
|EJ∪{i}

→ 0 .
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Clearly, it is enough to prove that for all 1 6 s 6 t and J ⊆ N \ {i} with |J | = s, the sheaves
(Ls)|EJ∪{i} are in the subcategory generated by Ĝr

N . Note that EJ∪{i} is a massive stratum in Xr
N

as

|J ∪ {i}| = s+ 1 > 2 , |N \ J |+ r = n− s+ r > 0

since s 6 t 6 n− 1 and when r = −1, we have t = a− 1 and a 6 n− 1.

As in (5.8), we have (
π∗iG

r
a
∨)
|EJ∪{i}

= O � (Gra−s)
∨ ,

while by (5.7), we have

O(−Fs)|EJ∪{i} = (−ψx)�O .

It follows that (Ls)|EJ∪{i} is one of the objects in Ĝr
N , as it equals (−ψx)� (Gra−s)

∨.

Proof of Lemma 5.14. Consider the case when T is a torsion sheaf. Let

T = (iZ)∗L, L = G∨a1 � · · ·�G
∨
al−1
�Gr+1

al

∨
,

where Z = ZN1,N2,...,Nl
is the massive stratum in Xr+1

N\{i} corresponding to a partition N1t· · ·tNl

of N \ {i}. Since Z is massive, we have |Nt| > 2 for every 1 6 t 6 l− 1 and |Nl|+ r+ 1 > 0. The
preimage Z ′ = f−1i (Z) is a massive stratum in Xr

N , and there is a commutative diagram

Z ′ = f−1i (Z ′) Xr
N

Z Xr+1
N\i ,

iZ′

Id×fNl
i

fi

iZ

where iZ′ and iZ are the canonical inclusions, we identify

Z = LMN1 × · · · × LMNl−1
×Xr+1

Nl
, Z ′ = LMN1 × · · · × LMNl−1

×Xr
Nl∪{i}

and fNl
i denotes the blow-up map Xr

Nl∪{i} → Xr+1
Nl

(we write fi whenever there is no risk of

confusion). Let T ′ = Lf∗i T ′. Then

T ′ = (iZ′)∗L′ , L′ = (Id×fi)∗L′ = G∨a1 � · · ·�G
∨
al−1
� f∗i G

r+1
al

∨
.

We compute Cone [Lπi
∗Rπi∗T ′ → T ′] by the exact same argument as in the proof of Lem-

ma 5.18. We define divisors H1, H2, . . . ,Hal on Xr
Nl∪{i} exactly as before, so that we have

H1 = f∗i
(
Gr+1
al

)∨
, Hal =

(
Gral
)∨
.

On Xr
Nl∪{i}, consider the exact sequences of type (A) in the proof of Lemma 5.18. After

taking the box product with G∨a1 � · · ·�G
∨
al−1

, one obtains exact sequences on Z ′. It is enough
to prove that for all 1 6 k 6 al − 1, the object Cone [Lπi

∗Rπi∗Tk → Tk] is in the subcategory
generated by Ĝr

N , where

Tk = (iZ′)∗
(
G∨a1 � · · ·�G

∨
al−1
�
(
Hk+1|Fk

))
.

On Xr
Nl∪{i}, we consider the exact sequences of type (B) in the proof of Lemma 5.18 after taking

the box product with G∨a1 � · · ·�G
∨
al−1

. Let

Tk,s = (iZ′)∗
(
G∨a1 � · · ·�G

∨
al−1
�Qks+1

)
,

T̃k = (iZ′)∗
(
G∨a1 � · · ·�G

∨
al−1
�
(
Hk+1|F1

))
.
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Then Cone
[
Lπi

∗Rπi∗Tk → Tk
]

is in the subcategory generated by Ĝr
N if and only if

Cone
[
Lπi

∗Rπi∗Tk,s → Tk,s
]

and Cone
[
Lπi

∗Rπi∗T̃k → T̃k
]

are in the subcategory generated by Ĝr
N . By (5.20), the sheaf Qks+1 is a direct sum of objects

in Ĝr
Nl∪{i}. Hence, Tk,s is a direct sum of objects in Ĝr

N . In particular, Cone
[
Lπi

∗Rπi∗Tk,s →
Tk,s

]
= Tk,s. We are left to prove that Cone

[
Lπi

∗Rπi∗T̃k → T̃k
]

is in the subcategory generated

by Ĝr
N .

For simplicity, set T̃ = T̃k. Let Z := πi(Z
′). We make the identification

Z = LMN1 × · · · × LMNl−1
×Xr

Nl
.

Then π−1i (Z) = Z1 ∪ · · · ∪ Z l, where

Z l = Z ′ = LMN1 × · · · × LMNl−1
×Xr

Nl∪{i} ,

Zt = LMN1 × · · · × LMNt∪{i} × · · · × LMNl−1
×Xr

Nl
, 1 6 t 6 l − 1 .

As the divisor Ei in Xr
Nl∪{i} can be identified with LM{i} × Xr

Nl
, the sheaf T̃ is supported on

the non-massive stratum

Z l ∩ Z l−1 = LMN1 × · · · × LMNl−1
× LM{i} ×Xr

Nl
,

T̃ =
(
iZl∩Zl−1

)
∗M , M = G∨a1 � · · ·�G

∨
al−1
�O �Grk

∨ ,

where iZl∩Zl−1 : Z l ∩ Z l−1 → Xr
N is the canonical inclusion. Denote by

v : Z l ∩ Z l−1 → πi
−1(Z) , u : πi

−1(Z)→ Xr
N

the canonical inclusions. Then iZl∩Zl−1 = u ◦ v. Let ρ = πi|πi−1(Z). There is a commutative
diagram

πi
−1(Z) = Z1 ∪ · · · ∪ Z l Xr

N

Z Xr
N\i .

u

ρ πi

iZ

The restriction maps ρ|Zt : Zt → Z are induced by the forgetful maps LMNt∪{i} → LMNt if t < l

and Xr
Nl∪{i} → Xr

Nl
for t = l. Note that the restriction map ρ|Zl∩Zl−1 : Z l ∩ Z l−1 → Z is an

isomorphism. Let

M = Rρ∗(Rv∗M) = G∨a1 � · · ·�G
∨
al−1
�Grk

∨ .

For all 1 6 t 6 l − 1, we have(
ρ∗M

)
|Zt = G∨a1 � · · ·� π

∗
i

(
Grat
∨) · · ·�G∨al−1

�Grk
∨ , (5.11)

while (
ρ∗M

)
|Zl = G∨a1 � · · ·�G

r
at
∨ · · ·�G∨al−1

� π∗i
(
Grk
∨) . (5.12)

The strata Z1, . . . , Z l intersect: if t < s, then Zt ∩ Zs 6= ∅ if and only if s = t+ 1. There are
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exact sequences

0→ OZ1∪···∪Zl−1

(
−Z l

)
→ OZ1∪···∪Zl → OZl → 0 ,

0→ OZ1∪···∪Zl−2

(
−Z l−1

)
→ OZ1∪···∪Zl−1

(
−Z l

)
→ OZl−1

(
−Z l

)
→ 0 ,

...

0→ OZ1

(
−Z2

)
→ OZ1∪Z2

(
−Z3

)
→ OZ2

(
−Z3

)
→ 0 .

We also consider the exact sequence

0→ OZl

(
−Z l−1

)
→ OZl → OZl∩Zl−1 → 0 .

We tensor all the above sequences with ρ∗M. If we write

N t = ρ∗M⊗OZt

(
−Zt+1

)
(1 6 t 6 l − 1) , N 0 = ρ∗M⊗OZl

(
−Z l−1

)
,

F t = ρ∗M⊗OZ1∪···∪Zt

(
−Zt+1

)
(1 6 t 6 l − 1) ,

then we have exact sequences on Z1 ∪ · · · ∪ Z l

0→ F l−2 → ρ∗M→
(
ρ∗M

)
|Zl → 0 ,

0→ F l−3 → F l−2 → N l−1 → 0 ,

0→ F l−4 → F l−3 → N l−2 → 0 ,

...

0→ F1 = N 1 → F2 → N 2 → 0

and, furthermore,

0→ N 0 →
(
ρ∗M

)
|Zl → v∗M→ 0 .

Consider the push-forwards via u∗(−) to Xr
N of all of the above exact sequences. Recall that

T̃ = u∗(v∗M). To prove that Cone
[
Lπi

∗Rπi∗T̃ → T̃
]

is in the subcategory generated by Ĝr
N ,

it suffices to prove that for N among

ρ∗M , N 1 , . . . , N l−1 , N 0 ,

we have that Cone
[
Lπi

∗Rπi∗(u∗N ) → (u∗N )
]

is in the subcategory generated by Ĝr
N . This is

clear for ρ∗M, as u∗ρ
∗M = π∗i iZ∗M (since πi is flat), and we have Cone

[
Lπi

∗Rπi∗Lπ
∗
iA →

Lπ∗iA
]

= 0 for any A. As

OZt

(
−Zt+1

)
= OLMN1

� · · ·�OLMNt
(−δi,y)� · · ·�OXr

Nl∪{i}
,

where y is one of the attaching points of LMNt , using (5.11) and Lemma 5.21, it follows that u∗N t

is in the subcategory generated by Ĝr
N . In particular,

Rπi∗
(
u∗N t

)
= 0 and Cone

[
Lπi

∗Rπi∗
(
u∗N t

)
→
(
u∗N t

)]
= u∗N t .

Similarly, u∗N 0 is in the subcategory generated by Ĝr
N since

OZl

(
−Z l−1

)
= OLMN1

� · · ·�OXr
Nl∪{i}

(−Ei)

and we may use (5.12) and Lemma 5.21.
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