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Derived category of moduli of pointed curves. 1

Ana-Maria Castravet and Jenia Tevelev

ABSTRACT

This is the first paper in a sequence devoted to the derived category of moduli spaces
of curves of genus 0 with marked points. We develop several approaches to describe
it equivariantly with respect to the action of the symmetric group permuting marked
points. We construct an equivariant full exceptional collection on the Losev—Manin
space which categorifies derangements.

1. Introduction

The special feature of moduli spaces of curves with marked points is the action of the symmet-
ric group permuting marked points, and our goal is to exhibit this action in the description of
the derived category. One can think about the derived category as an enhanced cohomological
invariant. Although there are many papers in the literature computing cohomology of M ,, the
moduli space of curves with n marked points, as a module over the symmetric group (for exam-
ple, [Get95, BM13]), the equivariant Euler—Poincaré polynomial is expressed as an alternating
sum, which therefore has no obvious categorification. On the other hand, it is often easy to get
some description of the derived category which, however, does not respect the group action. For
example, it is obvious that Db(ﬂom) has a full exceptional collection. Indeed, Mo,n has a Kapra-
nov model as an iterated blow-up of P*~3 in n — 1 points followed by the blow-up of (";1) proper
transforms of lines connecting points, etc. With a little work, Orlov’s theorem on the derived
category of the blow-up (see Section 3) gives a full exceptional collection. However, Kapranov’s
model is not unique: it depends on the choice of the ¥ class, that is, the choice of a marking,
and therefore this collection is not preserved by S, (it is preserved only by S,_1). The derived
categories of My, and related Hassett spaces and GIT quotients have been studied in [BFK19]
and [MS13], although not from the equivariant perspective.

Question 1.1. Is there a full exceptional S,,-invariant collection on Mg, ,?

This question of D. Orlov, communicated to us by A. Kuznetsov, will be investigated in
detail in the second paper in the series. Note that a striking and unexpected corollary of its
existence is that the K-group Ky (M(]’n) is a permutation representation of .S,. As a motivation,
one can argue that since MO,n is smooth over SpecZ, maybe it is somehow “defined over Fy”,
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DERIVED CATECORY OF MODULI OF POINTED CURVES. I

and therefore the same should be true of its K-theory as an S,,-module, and so perhaps it should
be a permutation representation.

In this paper, we suggest two general strategies which may have other applications and provide
an answer for the Losev—Manin space [LMO00].

One approach, which justifies why we consider the case of Losev—Manin spaces, is based on
an equivariant version of Orlov’s theorem on blow-ups (Section 2) and inspired by the work
of Bergstrom and Minabe in [BM13].

Let X be a smooth projective variety, and let Y7,...,Y, € X be smooth transversal sub-
varieties of codimension [. For any subset I C {1,...,n}, we denote the intersection N;crY;
by Y7. In particular, Y = X. Let ¢: X — X be an iterated blow-up of (proper transforms of)
Y1,...,Y,. In addition, let G be a finite group acting on X permuting Yi,...,Y,. Then G also
acts on X, and the morphism ¢ is G-equivariant. Let G; C G be a normalizer of Y; for each
subset I C {1,...,n} (in particular, Gy = G). We show in Lemma 2.3 that if D*(Y7) admits a full
Gr-equivariant exceptional collection for every subset I, then Db(f( ) admits a full G-equivariant
exceptional collection.

Next we generalize an inductive computation given in [BM13] of the equivariant Euler—
Poincaré polynomial of Mg ,. In the derived category setting, it gives the following theorem.
Fix integers [ > 1 and 0 < k < n. For a weight

1 1
=(1,...,1,—, ..., =
a <7 77l7 7l>

(with k copies of 1 and n — k copies of 1/1), let m’l be the Hassett moduli space [Has03] of
a-weighted stable rational curves. For example, Mg’l ~ My, and M&(n,l) /2] 1s a symmetric
GIT quotient (PY)™ / PGLs if n is odd and its Kirwan resolution if n is even.

THEOREM 1.2. If m,r(m k) admits a full (Sg xSy, —)-equivariant exceptional collection for every n

and every 0 < k < n—3, then M ,, admits a full S,,-equivariant exceptional collection for every n.
Here

|[(n—1)/2] ifk=0,
r(n,k):=<¢n—2 ifk=1,
n—=k ifk>2.
Concretely, we need the following spaces:
e the symmetric GIT quotient and its Kirwan resolution, which will be studied in the sequel
to this paper

) Min—% which is isomorphic to P"~3 via the Kapranov map (we can take any standard
exceptional collection on P"~3, for example O,...,O(n — 3))

. M;ﬂn_Q (this is the Losev—Manin space studied in this paper)
® spaces MZW_ i for k > 2 (these spaces are still too complicated for the calculations of the

derived category, and in the sequel to this paper, we will investigate their further equivariant
reductions).

We now discuss another strategy, which is the one we will use in this paper for the case of
the Losev—Manin spaces LM ,. We start with an example.

Ezample 1.3. Unlike Mo,g,, which has five Kapranov models and therefore five Orlov-style excep-
tional collections, the 2-dimensional Losev—Manin space, which we denote by LM 3 in this paper
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A .-M. CASTRAVET AND J. TEVELEV

(see below), has only two non-trivial ¥-classes 1)y and 1, realizing it as P? blown-up at three
points p1, p2, p3 in two ways, related by the Cremona involution. The corresponding exceptional
collection invariant under all automorphisms has three blocks and consists of line bundles

{=v0, Yoo}, {mO(-1),m0(-1),m30(-1)}, O, (1.1)
where m;: LM g — LMy ~ P! is a forgetful map, which can be thought of as a linear projection
P2 -—» P! from the point p;.

The last four line bundles in (1.1) are pull-backs under forgetful maps, but the first two have
a trivial derived pushforward by any forgetful map. To study situations of this sort more system-
atically, we introduce an inclusion-exclusion principle in triangulated categories (see Lemma 3.6)
and its application in the following set-up.

DEFINITION 1.4. Given a collection of morphisms of smooth projective varieties m;: X — X;
for i € I, we call an object E € D*(X) cuspidal® if

Rm,E =0 foreveryiel.
The cuspidal block is the full triangulated subcategory of cuspidal objects
Dl (X) C DU(X).

cusp

Philosophically, the cuspidal block captures information about the derived category not alre-
ady encoded in Db(Xi) for ¢ € I. We show in Theorem 3.5 that under quite general assumptions,
Dgusp(X ) is an admissible subcategory and in fact the first block in the “inclusion—exclusion”
semi-orthogonal decomposition of Db(X ). In our applications, morphisms m; are forgetful maps
such as Mo, — M1, and thus an S,-equivariant description of D’(X) can be reduced to an
Sp-equivariant description of D2 (X).

cusp

Question 1.5. Find a full S,-invariant exceptional collection in the cuspidal block Dgusp (Mo,n)

with respect to all the forgetful maps Mo,n — Mo,n—l-

An answer to Question 1.5 together with Proposition 1.6 (an application of Theorem 3.5) will
therefore answer Question 1.1.

PROPOSITION 1.6. We write My ~ MO,n for the moduli space of stable rational curves with
points marked by any n-element set N. Then Db (M N) admits a semi-orthogonal decomposition

biar b AT * b T

D (MN) - <Dcusp(MN)7 {WKDcusp(MN\K)}KcN70> ) (12)

where K runs over subsets with 1 < |K| < n — 4 in the order of increasing cardinality |K| and
TK: My — MN\K is the map that forgets markings in K.

We mention the answer to Question 1.5 in the first few small n cases.

Ezample 1.7. Let T(—log) be the rank n — 3 vector bundle on My, of vector fields tangent to its
(normal crossing) boundary divisor. It is easy to deduce from the results of [KT09] that T'(— log)
is an exceptional vector bundle and an element of Dgusp (Mo,n) for every m. This fact, which we
view as a manifestation of rigidity of My ,, was one of our original motivations for writing this
paper. For small n, the category D? (MO,n) has the following full S,-equivariant exceptional

cusp
collection:

!The terminology (suggested to us by A. Oblomkov) comes from cuspidal representations of representation theory.
When considering a single morphism, the cuspidal block is sometimes known as the null-category.
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e n=4: T(—log) (one object)
e n=>5: T(—log) (one object)
o n="06: Opipi(—1,-1), LY, T(—log) (twelve objects).

Here P! x P! C M are boundary divisors of type (3,3), and L is a pull-back of the symmetric
GIT polarization (the Segre cubic).

We apply this approach to the Losev—Manin moduli space [LMO00]. For an n-element set N, we
let N = {0, 00}UN. We write LM y for the moduli space of nodal linear chains of projective lines
P! marked by N with 0 on the left tail and co on the right tail of the chain. This is a “simplified”
version of My,, with linear chains replacing arbitrary trees. The stability conditions are as
follows:

e Marked points are never at the nodes.
e Only points marked by N are allowed to coincide with each other.

e Every P! has at least three special points (marked points or nodes).

The space LM y has an action by the group Sy x Sy permuting markings. The action of Sy,
which we call the Cremona action, interchanges oo and 0. Both -classes 1y and 1 induce
birational morphisms LMy — P*~ ! “Kapranov models”, which realize LM y as an iterated
blow-up of P"~! in n points (standard basis vectors) followed by blowing up (g) proper transforms
of lines connecting points, etc. (We note that the other i-classes of LM y are trivial.) In these
coordinates, the Cremona action is given by the standard Cremona involution

s (L 1),

The Losev—Manin space LM y is a toric variety of dimension n — 1. Its toric orbits (or their
closures, the boundary strata of the moduli space) can be described as follows. Every non-
trivial bipartition N = Nj LI Ny corresponds to the boundary divisor, which we denote by dy,,
parametrizing (degenerations of) chains of two lines P!, one with markings N; U{0} and another
with markings N2 U {co}. This notation is different from the standard notation for My, (where
an analogous divisor is denoted by 4 Nlu{o}) but more convenient for us. More generally, every
partition N = Nj LI --- L Ny with |V;| > 0 for every i corresponds to the boundary stratum

ZNl,...,Nk = 6N1 N 6N1UN2 n---N 5N1U---UN/9,1 ’

which parametrizes (degenerations of) linear chains of lines P! with points marked by, respec-
tively, N1 U {0}, No, ..., Nx_1, N U {cc}. We can identify

ZN1,---,Nk ~ L]WN1 X oo X LMNk,

where the left node of every P! is marked by 0 and the right node by oo.

We have a collection of forgetful maps
TK: WN — LM N\K

for every subset K C N with 1 < |K| < n—1. The map 7 is given by forgetting points marked
by K and stabilizing. In particular, we can define the cuspidal block D% (LM N), and applying

o cusp
Theorem 3.5, we show that we have a similar statement as for Mg, (Proposition 1.6).
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PROPOSITION 1.8. The derived category D° (LM N) admits the semi-orthogonal decomposition

D*(LM ) = (Deusy (LM x), {7 Dewsp (EM i) } e 3 O)

cusp cusp

where subsets K with 1 < |K| < n — 2 are ordered by increasing cardinality.

Next we construct a collection G of sheaves on LM y. We note that in this definition, and
in the rest of the paper, we do not always distinguish notationally between divisors and line
bundles.

DEFINITION 1.9. Let Gy = {GY,...,G)/_;} be the set of the following line bundles on LM y:

Ga:a¢0®o<—(a—1)25k—(a—2) PIRTEEE 5J>

kEN kleN JCN, |J|=a—1
for every a =1,...,n — 1. Let G be the collection of sheaves

G =J(i2):[Gx, ¥ RGY]
Z

on LM y of the form
T = (iz)«L, EzGZl &~-®th
for all strata Z = Zy,,. N, with N; > 2 for every ¢ and for all 1 < a; < |N;| — 1. Here

iz: Z — LMy is the inclusion map. If ¢ = 1, we get line bundles Gy, and for ¢ > 2, these
sheaves are torsion sheaves.

b

cusp

THEOREM 1.10. The set G is a full exceptional collection in D,

the group So x Sy. The number of objects in G is equal to In, the number of derangements of
n objects (permutation without fixed points).

(LMN) and is equivariant under

This is our main theorem; its proof occupies Sections 4 and 5. It gives a new curious formula
for the number of derangements:?

n n n!
ki—1)-(k,—1) =1 h = — 1.3
2. (kk>( ) (= 1) =tn, W(kk) g 09

ki+-+ki=n
k1,...,ke>2
As a corollary, we see that K-theory of LM y is a permutation representation of Sy x S, in a
very concrete way, which should be contrasted with description of its equivariant Euler—Poincaré
polynomial as an alternating sum in [BM14].

The ordering of G that turns it into an exceptional collection is quite elaborate and discussed
in Section 4. The real difficulty though is to prove fullness, which is done in Section 5. Note that
fullness would follow at once if phantom subcategories (admissible subcategories with trivial
K-group) did not exist on smooth projective toric varieties.

Remark 1.11. The line bundles G4, ..., G,_1 on LM, may appear ad hoc, but in fact they have
a very nice description in terms of the (minimal) wonderful compactification PGL,, of PGL,,
(which contains LM, as the closure of the maximal torus). Namely, they are precisely the re-
strictions of generators of the nef cone of PGL,,; see Proposition 4.14 for a more precise statement.
It would be interesting to relate derived categories of PGL,, and LM,,.

2We are unaware of a combinatorial “bijective” proof of this identity.
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DERIVED CATECORY OF MODULI OF POINTED CURVES. I

It is worth noting that we do not know any smooth projective toric varieties X with an action
of a finite group I' normalizing the torus action which do not have a I'-equivariant exceptional
collection {E;} of maximal possible length (equal to the topological Euler characteristic of X).
Its existence would imply that the K-group Ko(X) is a permutation I-module. In the Galois
setting (when X is defined over a field which is not algebraically closed and T" is the absolute Ga-
lois group), an analogous statement was conjectured by A.S. Merkurjev and I. A. Panin [MP97].
Of course, one may further wonder whether { £;} is in fact full, which is related to the existence
or not of phantom categories on X, another difficult general open question.

We refer to [CT15, CT13, CT12] for background information on the birational geometry
of Moyn, the Losev—Manin space and other related spaces. We refer to [Huy06] for background
on semi-orthogonal decompositions.

2. An equivariant version of Orlov’s blow-up theorem

Orlov’s blow-up theorem Theorem 3.3 is a categorification of the following fact. Let X be a
smooth projective variety, and let Y C X be a smooth subvariety of codimension I. Let X be the
blow-up of X along Y. We have a decomposition of cohomology with integral coefficients; see,
for example, [Voi07, Theorem 7.31]

H*(X)~ [H*(Y)® HY (P™!)] @ H*(X). (2.1)
Now consider the following more general situation. Let Y7,...,Y,, C X be smooth transversal
subvarieties of codimension [. For any subset I C {1,...,n}, we denote the intersection N;c;Y;
by Y7. In particular, Y = X. Let ¢: X — X be an iterated blow-up of (proper transforms of)
Y1,...,Y,. Since the intersection is transversal, blow-ups can be done in any order. The analogue

of (2.1) in this situation was worked out in [BM13, Proposition 6.1]:
wX= @ [ronen @) Menx), (2.2

Ic{1,..,n}
140

which we are going to rewrite as
H*(X) ~ @ |:H*(Y'I) ® H+(Pl—1)®|l‘:| )
Ic{1,..,n}

The analogue of Theorem 3.3 is also straightforward. We fix the following notation. Let E; be
the exceptional divisor over Y; for every i = 1,...,n. For any subset I C {1,...,n}, let

Er=q (Y1) = Nic1Ei.
In particular, Ey = X. Let i;: Ef < X be the inclusion.

LEMMA 2.1. Let {FIB} be a (full) exceptional collection in D®(Y7) for every subset I C {1,...,n}.
There exists a (full) exceptional collection in D?(X) with blocks

Br.y = (i) [(LqEI)* (F)) (zn: JE)

for every subset I C {1,...,n} (including the empty set) and for every n-tuple of integers J such
that J; =0ifi¢ I and 1 < J; <Il—1foriel.

The blocks are ordered in any linear order which respects the following partial order: By j
precedes By y2 if Y1 JIE; = Y01, JEE; (as effective divisors).
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Proof. We argue by induction on n, the case n = 1 being Orlov’s theorem. We decompose
¢: X > X as a blow—up go: X' = X of Y,, and an iterated blow-up ¢': X — X’ of proper
transforms Y{,...,Y, _; of Y7,...,Y,_;. By Orlov’s theorem, X’ carries a (full) exceptional col-
lection E'“, namely

i [(q0l)" (F)) (0 = DB)],.... & (a0l B)" (F) (E)], Las (Fy) -

Here i': E < X' is the exceptional divisor, and qy|p is a projective bundle.

More generally, for every subset I’ C {1,...,n — 1}, let Y], = N;epY; be the proper trans-
form of Y/ isomorphic to the blow-up of Yy in Yy (). By Orlov’s theorem, Y], carries a (full)

exceptional collection F}’,B , namely

(1) Lol )" (Fpou) (@ = DB (050), [0l )™ (Fgoy) ()] Laolyy, )" (Fp) -

. / . . .o .
Here 4/, : El' — Y/, is the exceptional divisor over Y7, (n}-

Applying the inductive assumption gives an exceptional collection on X with blocks

(Ld'|E,)" (ZJE)

for every subset I’ C {1,...,n — 1} (including the empty set) and for every (n — 1)-tuple of
integers J such that J; =0if i ¢ I'and 1 < J; <l —1forieI'.

The blocks are ordered in any linear order which respects the following partial order: B
precedes By j2 if 2?2—11 JIE; > 2?2_11 J?E; (as effective divisors). We have to check that these
blocks are the same as in the statement of the lemma. It is clear that

(Ld'&,)" (Lqoly,)" (F17) = (Lalz,)" (Fp)
This takes care of the last element in FI/,ﬁ . For the rest, we have to show that
(i)« (Lq/|EI,)*((i/1/)*[((JO|E5)*( <ZJ1E> (Lqlg,)" (Ff) <ZJ7,E1>

i=1
where I = I’ U {n}. It suffices to show that

n—1 n
(15, )" (@) (wley)” (FF) ) (z JE> = (). [(mm)*(pf) (z JE)
=1 =1
where ¢: Fr < FEp is the inclusion. Applying the projection formula, we reduce this to

(L', )" (@) (a0l )" (FY)]) = (@)« [ (Lale,) " (F7)]

which follows by flat base change.

(1)«

(ir)-

)

The last order of business is to prove the claim about the order of the blocks. We made
a choice of blowing up Y,, first; accordingly, the collection has blocks By j for every subset
I' C{1,...,n—1} (including the empty set) and for every (n — 1)-tuple of integers J’ such that
Jl=0ifi ¢ I'"and 1 < J/ <1 —1fori e I' The blocks are ordered in any linear order which
respects the following partial order: By jn < Bype je if Z?;ll JLE; > Z:-L;ll JI?E; (as effective
divisors). Each block Bp j is a sequence of blocks By ; from the statement of the lemma, where
INn{l,...,n—1} =1I" and J; = J! for i < n. They are ordered in the decreasing order by J,. In
partlcular if Bp n precedes Br2 j2, then either " | JIE; — > | J2E; is an effective divisor,

or y 7] J 2B, >0 J 1 E; is not effective. Therefore, it sufﬁces to prove that for any two blocks
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DERIVED CATECORY OF MODULI OF POINTED CURVES. I

Bp jiand Bz g, if Y0 JIE; — E? L JZE; is not an effective divisor, then {Bp1 j1,Bj2 j2} is
an exceptional sequence. If Y 77 J 1B — S J2E is not effective, then we are done by the
above. But if it is effective, then 2222 JIE; — 2222 J2E; is not effective, and we are again done
by the above (by changing the order of blow-ups and blowing up Y; first). O

Remark 2.2. The same argument shows, more generally, that even in the absence of exceptional
collections, there exists a semi-orthogonal decomposition of D? (X ) with blocks

Br.j = (ir)« [(LQ\EI (Db(Y7)) (ZJE>

(with the same notation and order as in the lemma). We stated the lemma for exceptional
collections with an eye toward its equivariant version.

Continuing with the set-up of Lemma 2.1, let G be a finite group acting on X permuting
Y1,...,Y,. Then it also acts on X, and the morphism ¢ is G-equivariant. Let G; C G be the
normalizer of Y7 for each subset I C {1,...,n} (in particular, Gy = G).

LEMMA 2.3. Let {Ff} be a (full) Gr-equivariant exceptional collection in D®(Y;) for every
subset I C {1,...,n}. We assume that if Y; = gYy» for some g € G, then {F'B} = g{FIB/} There

exists a (full) G equivariant exceptional collection in D®(X) with blocks By y (the same as in
Lemma 2.1).

Proof. It suffices to observe that the blocks By ; are permuted by G. O

Next we recall a few facts and notation from [BM13] in order to prove Theorem 1.2. The
subgroup Sk X S,_r C S, preserves the weight a and therefore acts on M Z}l. We have (Sk X Sp—k)-
equivariant reduction morphisms

m,l — MZ,Q — m,r(n,k) ’ (23)

where the first map is an isomorphism. Each of the maps in (2.3) is an iterated blow-up of
transversal loci of the same codimension permuted by Sk X Sn_k- Specifically, for every subset
I c{k+1,...,n} of cardinality | + 1, let MZlH(I) - Mk, 1+1 be the closure of the locus where
points marked by I collide. The reduction morphism M, ki — M, 141 is the blow-up along the
transversal union Uy M, k1+1(I) of subvarieties of codimension I, where I runs over all subsets of
{k+1,...,n} of cardinality [+ 1; see [BM13, Lemma 3.1]. Intersections of these loci are described
in [BM13, Section 3.2] as follows. Let I,..., I, C {k+1,...,n} be subsets of cardinality [ + 1.
Then N2 1Mk 1+1(Li) # 0 if and only if the subsets Iy,..., I, are disjoint. In this case, the

intersection is isomorphic to M, +m7l +1- Moreover, the stabilizer of this stratum in Sj x S,
acts on it through a subquotient contained in Sk n—im—k—m- Applying Lemma 2.3 proves
Theorem 1.2.

3. The cuspidal block

Recall that by Definition 1.4, we call an object E € DY(X) cuspidal with respect to a given
collection of morphisms m;: X — X; (for i € I) between smooth projective varieties if

Rm,E =0 foreveryiel.
The cuspidal block is the full triangulated subcategory of cuspidal objects D% . (X) C Db(X).

cusp
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LEMMA—-DEFINITION 3.1. In the set-up of Definition 1.4, the support of any cuspidal object is
a union of irreducible closed subsets Z C X such that

dim m;(Z) < dim Z foreveryie S.

We call any subset Z with this property (independently of whether they are the support of
a cuspidal object or not) massive. Recall that the topological support of an object E € D*(X)
is the support of its cohomology sheaves.

Proof. Let Z be the topological support of E € Db (X). Suppose that Z contains an irreducible
component Zy such that dimm;(Zy) = dim Zp. We write 7 := m; and Y = X; as we will
not need other maps and spaces. By passing to an open subset of Y and taking its preimage
under 7, we can assume that Z is a disjoint union of Zy and Z; (with Z; possibly empty and
not necessarily irreducible). We may also assume that 7|z, is finite. It is well known [Orll1,
Section 2| that by changing F to an isomorphic object, we may assume that E is a bounded
complex of sheaves supported on Z. Thus E = Ri,E, where i: Z < X is an infinitesimal
thickening of Z and E € Db (Z ) Note that Z is a disjoint union of subschemes Zy and Z; (with
reduced subschemes Z and Z7). In particular, E = Ey® Ey, where Ey and F; are pull-backs of
E to Zy and Z1, respectively. It follows that R7, (Eo) = 0, where ™ = mo1i. Since EO # 0 and the
map 7 is affine, this gives a contradiction. Indeed, if 7: X — Y is an affine morphism of schemes,
then Rm,E = 0 for some E € Dgcon(Ox) implies that E = 0; see [Sta20, Tag 0AVV]. O

We refer to the survey [Kuzl6] for definitions and basic facts concerning semi-orthogonal
decompositions in algebraic geometry. The following is well known; see, for example, [Kuz08,
Lemma 2.4].

PROPOSITION 3.2. Let w: X — Y be a morphism of smooth projective varieties such that
Rm.Ox = Oy. Then Ln*Db(Y) is an admissible subcategory of D®(X), and there is a semi-
orthogonal decomposition

DY(X) = (Db, (X), Lt*D*(Y)).

cusp

b

cusp(X) is an admissible subcategory.

In particular, D,

Classical situations of this sort are provided by Orlov’s theorems [Or]193] on derived categories
of a projective bundle and of a blow-up, which can be reformulated as follows.

THEOREM 3.3. Let m: X — Y be a projective bundle of rank r, with Y a smooth projective vari-
ety. Then D% . (X) is an admissible subcategory of D*(X) and D?,. (X) has a semi-orthogonal

cusp cusp
decomposition

(*D"(Y)® Or(~71), ..., DY) ® Ox(~1)).

THEOREM 3.4. Let p: X — Y be a blow-up of a smooth subvariety Z of codimension r + 1
of a smooth projective variety Y. Let i: E — X be the exceptional divisor, and let m = p|z.
Then Db . (X) is an admissible subcategory of D*(X) and has a semi-orthogonal decomposition

(Ri [m*D*(Z) ® Or(~7)], ..., Ri,[7*D"(Z) 2 Or(-1)]).

In order to generalize Proposition 3.2 to the set-up of several morphisms, we impose com-
patibility conditions. In subsequent sections, we will consider several variants of moduli spaces
of rational pointed curves, which will all fit into this framework.
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THEOREM 3.5. Let N be the category of finite subsets of a fixed set with inclusions as morphisms.
Let X be a contravariant functor from N to the category of smooth projective varieties. For every
T C S, we refer to the morphism Xg — X as the forgetful map and denote it by mg\7. We
impose three assumptions:

(1) We have
Rmi.Oxg = Oxg;, foreveryieS. (3.1)
(2) For all i,k € S, i # k, the morphisms
it Xovgky = Xs\giky>  Tr: Xs\giy — Xs\iky are Tor-independent (3.2)
(as defined in [Sta20, Definition 36.21.2]).
(3) If we let
Y= Xo\(i} XXo\ i X5\(k)
and o; . Xg — Y Is the map induced by m; and 7, we have
R, Oxg = Oy . (3.3)
Under these assumptions, we have a semi-orthogonal decomposition (s.o.d.)

Db(XS) = <D2usp(XS)? {LW?(DIc)usp(XS\K)}KcswLﬂng(XQ)» )

where K runs over proper subsets of S in order of increasing cardinality. In particular, D’gusp(X s)
is an admissible subcategory of D*(Xg).

Following a suggestion of A. Kuznetsov, we start with an abstract “inclusion—exclusion” prin-
ciple in triangulated categories. Perhaps we should remark that semi-orthogonal decompositions
do not intersect well in general, as a simple example of D*(P!) = (O, 0(1)) = (O(2),0(3))
shows. However, we have the following.

LEMMA 3.6. Let T be a triangulated category with several semi-orthogonal decompositions
T = <A1)Bl> = <A27B2> == <AnaBn> .
Suppose that the projection functors B;: T — B; (in the ith decomposition) have the property
that for every j,
Bi(Aj) C A;,  Bi(Bj) C Bj.
Then we have a s.o.d.
T =(Tk)x, where T = (NigrA;) N (Nick B;)

and K runs over subsets of {1,...,n} in the order of increasing cardinality. In particular, Ty =
AjN---N A, is an admissible subcategory of T .

Proof. For all subsets T' C S := {1,...,n}, we consider a full triangulated subcategory Ap =
NierA;. We prove, more generally, that there is a semi-orthogonal decomposition Ap = (Tk),
where K runs over subsets of S containing 7' in order of increasing cardinality. The case T = ()
is the statement in the theorem.

We argue by induction on n = |S| and by downwards induction on |T'| for a fixed n. If n =1
or T'= S, then there is nothing to prove. Let i € S\ T. Without loss of generality, we assume
1 =1.
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We claim that the semi-orthogonal decomposition 7 = (A1, By) induces a semi-orthogonal
decomposition

Ar = <ATﬁA1,ATﬂBl> . (34)
Indeed, the semi-orthogonality is obvious, and, moreover, every object X in A fits into a distin-

guished triangle 51(X) — X — Y — with Y € A;. Since (1 preserves Ap by our assumptions,
B1(X) € Apr N By. It follows that Y € Ar as well.

By the induction assumption, we have semi-orthogonal decompositions
Ar Ay = Apopy = (Tk) and  Ar = (Tgr)
where K runs over subsets of S containing 7'U {1} and K’ over subsets of S\{1} containing T' and
Ticr = (NigrugyAi) N (Niex Bi) -

We claim that the semi-orthogonal decomposition A7 = (7},) induces the semi-orthogonal de-
composition

AT N Bl - <T]/{/ N Bl> = <TK’U{1}> .
Indeed, the semi-orthogonality is clear. By the definition of the semi-orthogonal decomposition,
for every object X € Apr N By, we can write a sequence of morphisms (“filtration”)

0= =Tk =T, = > X =0
such that every morphism is included in the distinguished triangle
with X K| € T;r - Applying the functor $; to this sequence and using our assumptions gives

1
a filtration of X with subquotients /31 (XKi) eT., NB.
1
Combining these observations with (3.4), we get a semi-orthogonal decomposition
Ar = (Tx, Trog1y)

where K runs over subsets of S containing 7'U {1} and K’ runs over subsets of S\ {1} contain-
ing T', both in order of increasing cardinality.

Finally, we have to show that we can reorder blocks to put them in the order of increasing
cardinality. If |K;| < |K32|, then choose an index j € Ky \ Ki. Then Tg, C A; and Tk, C B;.
Thus Tk, C Tg,- O

Proof of Theorem 3.5. By Proposition 3.2, we have s.0.d.’s D*(Xg) = (A;, B;), where
A;={E € D"(Xg)|Rmi,E =0} and B;= Lr}(D"(Xs\(y))-
We now apply Lemma 3.6 to (A;, B;). The projection operators are
Bi = L7} Rmjx .
Note that for all i,k € S with i £ k and all F € Db(XS\{k}), we have
Rm; Lmi,*E ~ Lm,*Rm; E (3.5)

since, by assumption, 7; and 7, are Tor-independent. This follows from assumption (2) combined
with cohomology and base change: if 7, and ), are the projection maps from ¥ = X S\{i} X X (1.6}
Xs\(xy and a: Xg — Y is the canonical map, we have

Rri L7 E = Rt Ra.La*Lm,"E = Rr, Ln, FE = Luy* R FE

732



DERIVED CATECORY OF MODULI OF POINTED CURVES. I

where the second equality is by the projection formula and (3.3). It follows that
Rmj Lm; Ry = Lmj Rmj Rmj = Lt} Ry Rmjoe
and in particular 3;(A;) C A;. Also,
Lz} Rm*Lﬂ; = L} Lﬂ;Rm* = LW;LW;‘ Ry,
and thus §;(B;) C Bj.

It remains to show that, in the notation of Lemma 3.6, we have D*(Xg)x = L} Db, (Xs\ i)
for every subset K C T'. Equivalently,

() Bi = Lric D" (X \x) - (3.6)
ieK
We can assume that K = {1,...,k}. Then it follows from (3.5) that o --- o f = Luj Rk

Thus every object from the left-hand side of (3.6) is isomorphic to an object from the right-hand
side, and vice versa. ]

Ezample 3.7. Let Xg = (Pl)s with projections as forgetful maps. Conditions (1), (2) and (3) of
Theorem 3.5 are clearly satisfied. The subset Xg is the only massive one. Applying Theorem 3.3
repeatedly, it follows that

Dgusp(XS) = <O<_17 -1,..., _1)> )
that is, every object in Dgusp(XS) is isomorphic to O(—1,—1,...,—1) ®; K, where K is a
complex of vector spaces. Moreover, the semi-orthogonal decomposition of Theorem 3.5 is induced
by a standard exceptional collection of 2151 line bundles O(ny,... Ny S|)7 where n; = 0 or —1

for every i.

Note that this collection is obviously equivariant under the action of Aut(Xg), which is the
semidirect product of S,, and (PGL3)" for n = |S|. Various moduli spaces considered in this
paper can be viewed as “compactified quotients” of this basic example modulo G,,, or PGLs.

Proof of Proposition 1.6. Recall that we need to prove that D? (HN) admits a semi-orthogonal
decomposition

D*(My) = {Deuep (M), {mic Deusp (M) } gecy> ©) (3.7)
where K runs over subsets with 1 < |K| < n—4 in order of increasing cardinality |K|. We apply
Theorem 3.5. All conditions (1), (2) and (3) are satisfied. Recall that a simple criterion for Tor-
independence for maps X — S and 7" — S is that one of them is flat. Hence, condition (2) holds
as the forgetful maps m;: Mo,n — Mo,n—l are flat. Condition (3) holds as the map is birational
and the image has rational singularities [Kee92, Introduction, p. 548|. ]

The following proof is similar.

Proof of Proposition 1.8. Recall that we need to prove that Db (LMN) admits the semi-ortho-
gonal decomposition

D"(IM ) = (Deusy (LM ), {7 Dewsy (EM i) } e 3 O)

cusp cusp

where subsets K with 1 < |K| < n — 2 are ordered by increasing cardinality. We apply Theo-
rem 3.5 to the forgetful maps

m:WN %WN\{Z} (Z EN).
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All conditions (1), (2) and (3) are satisfied. Note again that the forgetful maps m; for i € N are
flat (they give the universal family); hence, condition (2) holds. Condition (3) holds because «;;
is birational and Y has toroidal, and therefore rational, singularities. O

4. The exceptional collection G on the Losev—Manin space

PROPOSITION 4.1. An irreducible subset Z C LM y is massive if and only if Z is a boundary
stratum of the form Z, . n, with [N;| >2 fori=1,...,t.

Proof. Let Z be a boundary stratum. If N; = {a} for some 4, then 7, restricted to Z is one-
to-one. Hence Z is not a massive subset. On the other hand, if |NV;| > 2 for every i, then Z
is a massive subset. It remains to show that if Z is a proper irreducible subset of a boundary
stratum which intersects its interior, then Z is not massive. But the interior of any stratum is
an algebraic torus GJ,, and projections onto coordinate subtori are realizable as forgetful maps.
Thus Z cannot be massive. O

PROPOSITION 4.2. The ranks of the K-groups of D® (LM,) and ch’usp (LM,) are equal to n! and
In, respectively.

Proof. Since LM y is a toric variety, its K-group is a free Abelian group and its topological Euler
characteristic (and thus the rank of its K-group) is equal to the number of torus fixed points,
which are clearly parametrized by permutations of V. The second part of the proposition follows
because both the rank of the K-group of Dlgusp (LM,) (by Proposition 1.8) and !n (by obvious
reasons) satisfy the same recursion

nl=lnt+ Y (Z)!(n—k)+1. (4.1)

Hence these numbers agree. O

Proof of formula (1.3). Recall that formula (1.3) states that

n n n!
ey — 1) (ky—1) = h S——
2. (kzl...kt>(1 )k —1)=lIn, where (k‘l...k‘t) Tl k!

ki+-+ki=n
K1,k >2

We denote the left-hand side by d,, and set dy = 1 and d; = 0. Let

A:Z(n—nfj:xQ(ex_1>/:ex(x—1)+1.

x
n=2

Then we have

d 1
Yo mgm =1 A A2 B =
m! 1-4 1-=
m=0
But (4.1) implies that
1 ™ "
— | _ _
11—z (Z'mm!> (Z n!)
m=0 n=0
(where we set 10 = 0! = 1). Hence d,, = !n, and we are done. O
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LEMMA 4.3. (1) Every G, is Sy-invariant, and Cremona action takes it to G,—q.
(2) We have G1 = g and Gp—1 = oo.
(3) For every boundary divisor § = 6, ~ LMy, X LM y,, we have

G, O ifa < |Nyf,
Ga|5 == O ifa = ‘N1|,
O&Ga_“\]ﬂ ifa>|N1|.

Proof. Direct calculation. O

Notation 4.4. For an object F € D(X), we often use the notation RI'(F) instead of RI'(X, F)
when the space X is clear from the context.

LEMMA 4.5. (1) Every G, is nef (and hence globally generated), of relative degree 1 with respect
to any forgetful map m;, for i € N.
(2) We have G € Db, (LMy). In particular, each Gy is acyclic.
(3) We have RHom(Gy, Gy) = 0 if a # b.
(4) We have RT'(—to 4+ G4 — Gp) = RI (=Yoo + Gy — G4) =0 if a < b.
In particular, Gy is an (S2 x Sy)-equivariant exceptional (in fact pairwise orthogonal) col-
lection of n — 1 line bundles in D? (WN)

cusp

Proof. Since LM, is a toric variety, part (1) will follow if G, is non-negative on toric boundary
curves. This follows from Lemma 4.3(3) by induction on the dimension. Since the restriction
of G} to each fiber of m; has vanishing cohomology, part (2) follows by cohomology and base
change. Since RHom(G,, Gy) = RI'(—G, + Gp) and we can assume a > b (by applying Cremona
action), parts (3) and (4) both follow from Lemma 4.6. O

LEMMA 4.6. Consider the divisor
D=—dH+ ) m/E;
on Mg,n or LM n written in some Kapranov model. The divisor D is acyclic if

1<d<n—3 and 0<my<n—3—#I.

Proof. By consecutively restricting to boundary divisors E; starting with those with the largest
#1 and continuing to those with smaller #1, we see that all the restrictions are acyclic; hence,
D has the same cohomology as —dH. Clearly, —dH is acyclic if and only if 1 <d<n—-3. O

LEMMA 4.7. The set G is a collection of !n sheaves in D? (WN)

cusp

Proof. Follows from (1.3) and Lemma 4.5(2). O

It is worth mentioning that if i: Z < X is a closed embedding of smooth projective varieties
and Z # X, then the functor Ri,: D*(Z) — D’(X) is in general not fully faithful. Therefore,
even though all sheaves in G are clearly exceptional in the derived category of their respective
support (being line bundles on a rational variety), we still have to prove the following.

LEMMA 4.8. All sheaves in G are exceptional.
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Proof. All sheaves in G are of the form i+i*L = Ri,Li*L, where L is an invertible sheaf on LM y
and 7 is an embedding of some massive stratum Z. We have
L L
RHom(Ri,Li* L, Ri,Li*L£) = RHom (E ® Ri.Oz, L& Ri*(’)z>
= RHom(Ri*(’)Z, RZ*Oz) .

So it suffices to prove that Ri.Oz = i,Oz is an exceptional object. Let Z be the intersection of
boundary divisors Dy, ..., Ds. Resolving i,Oz by the Koszul complex

s = Di<icj<sO(=D; — Dj) = ®1<i<sO(—=D;) = O = .07 — 0,
we see that it suffices to prove that
RT(Oz(Di, +---+Dj,)) =0
for all 1 <iy < --- < i < s. Using that Oz(D;) has the form
OX-- KON O(—9)oo) RO(—1pg) KO --- KO,

we conclude that this is indeed the case. O

LEMMA 4.9. The set G is an exceptional collection with respect to the following order.
Let T,T' € G. Let (ki,...,ki;a1,...,a¢) and (K}, ..., kL;ad}, ..., dl) be the corresponding data.

Vs

Then T > T’ if the sequence (a1, —k1, a2, —ks,...) is lexicographically (that is, alphabetically)
larger than (ay, —k},ab, —kb,...).

Proof. Let Z and Z' be massive strata supporting sheaves 7 > T’ in G. These sheaves have
the form Riz, L and Riz L', respectively. We have to show that RHom(7,7’) = 0. Let U be
the smallest stratum containing both Z and Z’. Then U is the intersection of boundary divisors
Dy, ..., Dy (these divisors are precisely the divisors containing both Z and Z’). We have
RHom(Riz, L, Rig L) = RHom(Ljz*Rjz, L, L').
By [Huy06, Corollary 11.4(i)], it suffices to prove that
RHom(Rjz,.L, Rjz L (D)) =0

for every D = D;, + ---+ D;, with 1 < 43 < --- < 4 < s, where jz and jz denotes the
embeddings of Z and Z’, respectively, into U. Let W = Z N Z'. We can assume that W is
non-empty as otherwise there is nothing to prove. Let iy z: W < Z and iy 2z : W — Z’ be the
inclusions. We note that Z and Z’ intersect transversally along W in U, and therefore jz and
jz are Tor-independent. Next we apply cohomology and base change:

RHom(Rjz,L, Rjz,L(D)) = RHom(Ljz* Rjz,L, £'(D)) = RHom(Riw, 2, Lty ,£, £'(D))
= RHom(Lijy 4L, Liy, ;L' (D)),
where for some morphism f: X — Y, we denote the adjoint functor to Rf.(—) by Lf'(-).

By Grothendieck duality, we have for E € D(Y) that Lf'(E) = Lf*(E) ® wy[dim(f)]. Here,
wr =wx ® ffwy and dim(f) = dim(X) — dim(Y"). So it suffices to prove that

RHom (Lijy, 7 £, Lijy 7 £ @ (D + ¢1(N))) =0,

where ¢ (N) is the first Chern class of the normal bundle N := Ny, 2z, that is, the sum of all
boundary divisors that cut out W inside Z’ or, alternatively, the sum of boundary divisors that
cut out Z but do not contain Z’.
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Now we proceed case by case. We write

W:WKl XWKQ Xoeee
RHom (Liw,z*L, Liw,z " L'(D+ N)) =Ci RCo K - -+,

where C} is computed on LM g, , etc. Note that if N = NjU---UN; and N = NjU- - U}, are the
two partitions corresponding to 7 and 77, respectively (hence, |N;| = k; and |N/| = k. for all i),
then W # () implies that either Ny C N{ or N{ C Nj. In particular, we have | K| = min(ky, k}),
and if k; = Kk, then we have N = N7.

Case 1. Suppose a1 > a}. We would like to show that Cy = 0.
If ky <k, then Cy = RHom(—Gq,, —Go; —Yoo), where —1)os is a contribution from NV (there
is no contribution to C; from D). Hence, C; = 0 by Lemma 4.5(4).

If k1 = k{, then there is no contribution from ¢;(N) to C1, and we have that either C; =
RHom(—Gq,, =Gy ) = 0 (if D does not include Dk, ) or C1 = RHom(—Go,, =Gy — o) = 0
(if D includes Dk, ).

Finally, if k1 > k|, then there are no contributions from ¢;(N) or D to C; and Cy =
RHom(L, _Ga’l) = 0, where L = —G, if a1 < k] and L = O otherwise. In both cases, C; = 0
by Lemma 4.5.

Case 2. Suppose a; = a} and k; < kj. As in case 1, we have that

C1 = RHom(—Gy,, —Ga, — ¥eo) = 0.

Case 3. Suppose a1 = a}, k; =k} and that D includes D, .
In this case also, 1 = RHom(—Gy,, —Ga; — ¥oo) = 0.

Case 4. Suppose a1 = a}, k; = k} and that D does not include Dg; .

In this case, C; = RHom(—G,,, —G4,) = C is useless. However, we can now proceed exactly
as above, restricting to the next Losev—Manin factor LM g, in W. Note that, in general, the
factors LM g, appearing in W need not be positive-dimensional, but in this case, since K1 = K1,
we must have that | K| > 2, and we can proceed by induction. The lemma follows. O

The Cremona action gives another possible linear order.

COROLLARY 4.10. The set G is an exceptional collection with respect to the order <':
(kl,...,kt; al,...,at) >/( 1,...,]{;; a’l,...,a;)
if the sequence (ky — ay, —ky, ky—1 —ag—1, —ki—1, . .. ) is lexicographically larger than (ki — a’,, — k.,
/ / /
s—1 — Qg—15s "Rg_15- - )

Remark 4.11. The linear orders < and <’ are clearly not (S2 x Sy)-equivariant. The lemma
shows that both orders refine the (S x Sy )-equivariant relation < given by paths in the quiver
with arrows

T — T <= RHom(T,T’) #0.

In other words, this quiver has no cycles. It would be nice to describe it combinatorially. It would
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be even better to explicitly describe the algebra
EB RHom(T,T').
T=<T'
Here are some easy observations about the quiver:
(1) If there is an arrow between 7 and T, then the corresponding strata have a non-empty
intersection.
(2) The line bundles can be arranged to be at the right of torsion sheaves in the collection:
for any torsion sheaf 77 in G and any line bundle 7 = GY, we have (in the notation
of the proof of Lemma 4.9)
RHom(T,T") =RI (Gajz7 @ T') =C1KRC, K - -
and C; = RHom (L, GZ, ), where L = G, if a1 < k] and L = O otherwise. In both cases,
1
C7 =0 by Lemma 4.5.

(3) It is not true in general that sheaves can be pre-ordered by codimension of support. For
example, on LMg, the sheaf 7' with data (3,2,3;2,1,1) and support Z’ has to be to the
right of the sheaf 7 with data (3,5; 1,3) and support Z with Z’ C Z, as an easy computation
as above shows that RHom(7,T") # 0.

Let us give more information about the quiver. We first introduce some terminology.
DEFINITION 4.12. Let 7 € G with support Z:
Z=LMpg, x LMg, x ---x LMk, ,
TzGCVL1 X---XKGy, .
(1) We call LM g, the first component of Z, LM g, the second component of Z, etc. and LM ,

the last component of Z.

(2) We say that we remove the component LM ¢, from T if we consider the sheaf 7~ given by
Z=ILMg, x---x LMg,_, X LM ¢,y x -+ x LM,
T=G/ X - KG, KNG, K- KGY.

ait1
(3) We say that the end data of T is (ki,ki; k1 — a1, a). Clearly, different objects in G could
have the same end data.

(4) Recall from the proof of Lemma 4.9 that to show that RHom(7,7") = 0, it suffices to show
that

RHom (Lijy, , T, Liyy, T’ ® (N + D)) =0,
where W = ZNZ', N is the first Chern class of the normal bundle Ny 2/, that is, the sum
of boundary divisors that cut out Z, and D = D;, +---+ D, is a (possibly empty) sum of
boundary divisors containing both Z and Z’. We let
I/V:L]\JS1 XWSQ Xoeee
RHom (iw,z*T ,iw,z*T'(N + D)) = Cs, K Cg, K - - - .
In what follows, we will refer to the Cg, as the components of RHom(7,T").
Lemmas 4.9 and 4.10 have the following corollary, which can be used as an algorithm to

determine, given a pair of torsion objects 7 and 7’ in G, whether RHom(7,7’) = 0 or
RHom(T7',T) = 0.
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COROLLARY 4.13. Let T and T’ be torsion sheaves in G with supports Z and Z' and end data
(k1, ke; b1, b)) and (KY, kL; b, )). If the inequalities

by +b <V +V,, ki+k—b—b >k +k—b -V,

both hold and one of them is a strict inequality, then RHom(T,T’) = 0. Moreover, if both
inequalities are equalities, then RHom (T ,T") # 0 is only possible when

by=b, b=V, k=K, k=K

and the first and last components are the same, that is, K1 = K| and K; = K. Whenever all
these conditions hold, we have that

RHom(7,7') =0 if RHom(T,7')=0,

where T and T’ are the sheaves obtained from T and T, respectively, after removing the first
and last components LM g, and LM g, .

Proof. Recall that we have

! ! / / /
ar=Fk1—b1, a=k-b, a=b, a,=0;.

By Lemma 4.9, if k1 — by > k} — ¥}, then RHom(7,7’) = 0. Similarly, by Lemma 4.10, if
ki — by > kI — b, then RHom(7,7") = 0. Since we assume

(k1 = 1) + (ke — be) > (ky — b)) + (kg — b)

it follows that we must have k; — by = kj — b}, ky — by = k., — V. Now if —k; > —k, again
by Lemma 4.9, we have RHom(7,7’) = 0. Similarly, if —k; > —k., by Lemma 4.10, we have
RHom(T,T') = 0. Hence, we may assume k; > k] and k; > k.. But then (k1 +k}) — (ks +k.) > 0,
while

(k1 + k) — (ke + k) = (b1 +be) — (B +55) > 0.
Hence, we must have k; = k] and k; = kI, and hence by = b} and b, = V..

If these equalities hold, for the intersection Z N Z’ to be non-empty, we must have that the
first and last components are the same, that is, K3 = K| and K; = K. As in the proof of
Lemma 4.9 (case 4), we can remove the first and last components, LM g, and LMk, , from Z
and Z' and proceed with the rest. ]

We finish this section by relating line bundles G1,...,Gn_1 on LM, to the wonderful com-
pactification of PGL,,. Following [Bri07], we identify Pic PGL,, with the weight lattice of PGL,,.
Let a1,...,a,_1 be simple roots, and let wy,...,w,—1 be fundamental co-weights. It is shown
in [Bri07] that aq,...,a,—1 and wi,...,wy—1 span the effective cone and the nef cone, respec-
tively, of PGL,,. We identify LM, with the closure of the maximal torus in PGL,,.

ProproSITION 4.14. Divisors on PGL, corresponding to wi,...,wp_1 restrict to divisors
G1,...,G,—1 on the Losev—Manin space LM ,,.

Proof. First we consider divisors Di,...,D, on PGL, which correspond to simple roots
ai, ..., a,—1. We will show that they restrict to total boundary divisors

Ay = Z%i, ey Apr = 2501‘1...%,1

on the Losev—Manin space LM,,. Indeed, it is known (see, for example, [Bri07]) that Dy,..., Dy
are the boundary divisors of PGL,,, that is,

PGL, \PGL, = D;U---UD,_; .
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In particular, every D; restricts to a linear combination of boundary divisors of LM,,. Since each
of these divisors is PGL,-invariant (acting by conjugation), the restriction is invariant under .S,
(= Weyl group); that is, it is a linear combination of total boundary divisors.

The compactification PGL, is a spherical homogeneous space for the group PGL,, x PGL,,
extending its action on PGL,, by left and right translations. The group of semi-invariant functions
A = k(PGL,)®)/k* (where B = B~ x B is a Borel subgroup of PGL, x PGL,) is identified
with the root lattice of PGL,, which in turn is identified with the lattice of characters M =
E(T)™) /k* of the maximal torus in PGL,, via the restriction of the B-semi-invariant functions.
Every boundary divisor D; determines a functional p(D;): A — Z (and so an element of the dual
weight lattice A* = Z"/(1,...,1)) by taking a divisorial valuation of a function in A along D;.
In fact, we have p(D;) = w; = e1 +---+¢; mod (1,...,1), the fundamental coweight (see, for
example, [Bri07]). These vectors span the Weyl chamber, and the fan of LM,, (as a toric variety)
is precisely the fan of its Weyl group translates. Moreover, vectors w; are primitive vectors along
the rays which give boundary divisors do1,..;; see [LMO00]. So we are done by [BK05, Lemma
6.1.6].

By pulling back a coordinate hyperplane in P! and symmetrizing, we get the formula

Yo =

Combining it with Definition 1.9 yields the following formula for the G;:

n—1

1
A+ Ay .
n

n—1
Gi =) BijA;,
j=1
where B;; = i(n—j)/n if i < j and B;; = Bj; if ¢ > j. It is well known and easy to prove
that the inverse of the matrix B is the Cartan matrix of the root system A,_1, and therefore
T Z?:_ll B;joj, which finishes the proof. O

5. Fullness of the exceptional collection G
We will need the following more general set-up.

DEFINITION 5.1. For every integer r > —1, define a contravariant functor X" from N to the
category of smooth projective varieties as follows. Let X} be an iterated blow-up of P"*" in
n general points (marked by NN) followed by the blow-up of the (g) proper transforms of the
lines passing through two points, the (g) proper transforms of the planes passing through three
points, etc. For example,
Xy'=LMy, Xj=P".

For every M C N, the forgetful morphism 7\ X3 — X, is induced by a linear projection
from points in N \ M.

For every subset S C N of cardinality at most n + r — 1, we denote by Eg C X} the
exceptional divisor over a subspace spanned by points in S.

PROPOSITION 5.2. All conditions of Theorem 3.5 are satisfied. Thus we have a semi-orthogonal
decomposition

D(X§) = (Deusp (X5), { Lk Deusp (X3\1) } e g0 LTND (1))

where K runs over proper subsets of S in order of increasing cardinality.

740



DERIVED CATECORY OF MODULI OF POINTED CURVES. I

Notation 5.3. For every ¢ € N, we have a birational morphism

fir Xy — X0

obtained by blowing down exceptional divisors Eg, for i € S, in the order of decreasing cardi-
nality.
DEFINITION 5.4 (Strata in X). Consider partitions

N=N;U--- N, ‘Nu’>0 (u:l,...,k—l).

Set

ZNl,...,Nk = EN1 N EN1UN2 n---N EN1U---UN]9,1 .
We call Zy, ... N, a stratum in X5;. We call a stratum in X}, massive if it is the image of a massive

stratum in LM, 4,41 via the birational map LM, 4,41 — X} which is the composition of the
maps f; for those i ¢ N.

For r > 0, each stratum Zy, . n, is the image of a stratum in LM, 4,41. For all r > —1, we
have an identification

NN, 2 LMy, X --- x LMy, | X X]"Vk ,
where Xﬂfk is the blow-up of PIVel*7 at the linear subspaces spanned by the points in Ng. If r > 0,
a stratum Zn,, . n, is massive if and only if |[N,| > 2 forall u =1,...,k — 1 and |Ng| + 7 > 0.

DEFINITION 5.5. We let G?V be a collection of objects in Db(X]Q) defined inductively as follows:
Gy =Gy, GY'=Rf,(GY).
DEFINITION 5.6. Consider the following line bundles on X7}, (for r > —1):
G =—aH+(@-1)Y Ei+(-2) Y Ej+- (a=1...,n+r)
i€EN i,jEN
(the coefficient in front of the exceptional divisor must be positive).

LEMMA 5.7. For every E € Db (X}), we have Rf;,(E) € Dgusp(X]T\,J@). In particular, the

collection G' is contained in Dgusp(Xﬁ,). Moreover, we have

Rfi, G =G (a=1,....n+7).
In particular, GTN contains the line bundles G (for 1 < a < n+ r) and the following torsion
objects:
T=_(iz)L, L=G, K K G;/k_l X GZkv
for all massive strata Z = Zn,,.. N, in Xy, all 1 <a, <|Ny|—1foru=1,...,k—1 and all
1 <ap <|Ni|+r.

Proof. The first statement follows from the commutative diagram

N\i

ﬂ{ inj (5.1)
fi +1

Xy — X -
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To prove the rest of the lemma, it suffices to prove Rf;, G"" :GZHV. Set t=min{a — 1,n}.
Note that
LEGHY = et = —aH +(a—1) > B
JEN\{i}
+(@=2) > Ept+--+la—t) Y. Ey, (5.2)
JkeN\{i} JCN\{i},|J|=t
as the pull-backs fFE; are simply the proper transforms of the divisors E; under the blow-up
map f;. In particular, fi*GZ“V = &Y 4 F, where
F=(a—1)Ei+(a—2) Y Ej+-+(-t) >  Ej.
JjEN\{i} JCNied, |J|=t
Note that the coefficient a — |J| of any E; appearing in F' satisfies
I1<a—-|J|<n+r—j <n+r—j+1=codimyy E;.

This implies, after repeatedly applying Lemma 5.8 to the morphisms that successively blow
down the divisors Ey with ¢ € J, for a fixed |J| (starting from the larger |J| to the smaller), that
Rf; O(F) = O. It follows that

Rf.G,Y = Rfi(f7GH ®© O(F)) = G @ RfLO(F) = Gy 0
The following lemma is well known.

LEMMA 5.8. Let p: X — Y be a blow-up of a smooth subvariety Z of codimension r + 1 of
a smooth projective variety Y. Let E be the exceptional divisor. Then for all 1 < i < r, we have

Rp*OX(iE) = Oy .
LEMMA 5.9. All sheaves in G’j\, are exceptional.

The proof is identical to that of Lemma 4.8, and we omit it. The same direct computation as

in Lemma 4.3 shows that the line bundles G}, satisfy the same restriction properties as the line
bundles G,.

LEMMA 5.10. For S C N, identifying the exceptional divisor Es C X}, with the product
LMg x X]"V\S, we have
G,XO ifa < |S],
GZ‘ES: (@] ifa=|5],
O&Gg_‘s‘ ifa>1S]|.

The analogue of Lemma 4.5 is the following.

LEMMA 5.11. (1) Every G, is nef (hence, globally generated), of relative degree 1 with respect
to any forgetful map m;, for i € N.

(2) Each (G%)V is acyclic.

(3) We have RHom(G,, Gp) =0 if a > b.

(4) We have RT' (=g + G, — Gp) =0 if a < b.

The proof is identical to that of Lemma 4.5, and we omit it. Note that unlike in the case r =
—1, when r > 0, there is no more Se-symmetry, and it is generally false that RHom(Gy, Gy) = 0
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if a < b. For example, if r > 0, then RHom(G1,G2) = RF(H Yien E ) # 0. As a result,

the order < of Lemma 4.9 does not generally descend to an order on G which makes G;"V
an exceptional collection (for example, if N = ()). However, the order <’ from Corollary 4.10
descends to an order on G?V which makes G?V an exceptional collection.

LEMMA 5.12. For allr > —1, the set GN is an exceptional collection with respect to the following
order. Let T, T € G’?\/ Let (ki,... ka1, ... a) and (KY, ... kL al, ...
data. Then T >' T if the sequence

(kt —at, —ke ko1 — a1, ki1, .. )
is lexicographically (that is, alphabeticaﬂy) larger than

,at) be the corresponding

(k/_a sv é 1 a/sfh_ ;717“')'

Proof. The proof is similar to that of Lemma 4.9. We sketch the proof for completeness. Let
Z and Z' be massive strata supporting sheaves 7 > T’ in G. These sheaves have the form
Riz, L and Riy L' respectively. We have to show that RHom(7,7") = 0. Let U be the smallest
stratum containing both Z and Z’. Then U is the intersection of codimension 1 strata (exceptional
divisors) Dy, ..., Dy containing both Z and Z’. Let W = Z N Z'. We can assume that W is non-
empty as otherwise there is nothing to prove. Let iy, z: W — Z and dw,z: W — Z’ be the
inclusions. As in the proof of Lemma 4.9, it suffices to prove that

RHom(Liyy, 7L, Liyy, 7. L' (D + c1(N))) = 0,
where ¢;(N) is the first Chern class of the normal bundle N := Ny 2z, that is, the sum of all
the exceptional that cut out Z but do not contain Z’. We write
W =LMpg, x LM, x -+ x LMg_, x Xf, ,
RHom(Liw,z*L, Liyw,z* L' (D 4+ c1(N)) =C1 @ Co @ -+ - @ Cy,

where C; is RHom between components of line bundles Liw, z*L and Liyw,z* L' (D + c¢1(N))
corresponding to LM g, , etc.

Case 1. Suppose ky—a; > k;—aj. We prove that Cy = 0. If ky < kj, then a} > a;+ (k; — k) >
(k; — k). Hence,

Ct = RHom(~Ga,, —Goy— (k) —ky) — Yoo) 5

where —t)y is a contribution from ¢1(A') (there is no contribution from D). As aj — (k} — kt) > ay,
it follows that C; = 0 by Lemma 5.11(4).

If k; = kj, then a} > a;. As there is no contribution from ¢1(N) to Cy, we have that either
Cy = RHom(—Gg,, =Gy ) = 0 (if D does not include Dy, ), or C¢ = RHom(—Gg,, —Goy —tp0) = 0
(if D includes Dg; ).
If k¢ > kj, then there are no contributions from ¢, (N) or D to C; and
Ct = RHom(L, —G,) =0
where L = —G o, _(r,—k) if at > ki—k; and L = O otherwise. As, by assumption, a;—(k;—k}) < ay,
it follows that in both cases, C; = 0 by Lemma 4.5.

Case 2. Suppose k;—a; = k}—a} and k; < kj. Then a} = (kj—k:)+a; and hence a; > (kj—ky).
As in case 1, we have

Ct = RHOHI(—Gat, G L= (K —ke) — ﬂ)(]) RHOHI(—GM, —Gat - wo) =0.

743



A .-M. CASTRAVET AND J. TEVELEV

Case 3. Suppose a; = a;, ky = kj and that D includes Dg,. In this case, we have

Cy = RHom(—Gq,, —Gq, — 100) = 0.

Case 4. Suppose a; = a, ky = k} and that D does not include Dp,. In this case,
Cy = RHom(—G,,,—G,,) =C

is useless. However, we can now use Corollary 4.10 as the remaining factors are Losev—Manin
spaces (or, alternatively, proceed exactly as above, by restricting to the next Losev—Manin fac-
tor LM g, , in W). The lemma follows. O

LEMMA 5.13. Let r > —1. For every T € G’ﬁl and every j € N, we have
Rrm; Lfi*T =0.

Proof. We use the commutative diagram (5.1). Since 7; is flat and X X xr X};;S has toroidal,
N\ij
and hence rational, singularities, the claim follows by cohomology and base change. O

To finish the proof of Theorem 1.10, we prove the following crucial result.
LEMMA 5.14. Let r > —1. For every T € G'J!,
Cone [Lm;* R Lfi*T — Lf;*T]
belongs to the subcategory generated by GTN

We postpone the proof of Lemma 5.14 to the end of this section. We use Lemma 5.14 to prove
the following result (that implies Theorem 1.10).

PROPOSITION 5.15. If N # (), the subcategory D2 (X% is generated by G}"\,

cusp
This proves the following theorem.

THEOREM 5.16. For all v > —1, the set G% is a full exceptional collection in D sp (X3

In particular, when r = —1, this gives that the set Gy is a full exceptional collection in
Dbyp (LM n) (Theorem 1.10).

cusp

Proof of Proposition 5.15. We argue by induction on the dimension n+r and for a fixed n+r, by
induction on n. The base of induction is X7 . Note that we have a P'-bundle 7 : X] ' — P"—1.
By Orlov’s Theorem 3.3, the category D (X 1 _1) is generated by

cusp
DY (P" ) @ O(—E1) = (O(=rH + (r — 1)E),...,0(=2H + E1),O(—H)),
which is precisely our claim in this case.

Assume n > 2. Choose an object E € Db (X%) such that RHom(7,E) = 0 for every

cusp
T € G}. We need to show that £ = 0. We first show that Rf;, £ =0 for all i € N. Let i € N.
By Lemma 5.7, we have Rf; . E € Dgusp(X]’;;C{i}). By the inductive assumption, to prove that

Rf;,E =0, it is sufficient to prove that RHom(7, Rf;,E) = 0 for every T € @711\?\1{@ Note that
RHom(T, Rfi, E) = RHom(LfT,E).

If we let C = Cone [Lm;* Rm; Lf;*T — Lf;*T], it follows by Lemma 5.14 that RHom(C, E) = 0.
Using the distinguished triangle

L * R Lfi*T — Lf;*T — C — Lr;* Ry Lf;* T[]
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and the fact that for all F' € DP (XR,\{Z.}), we have (since E € Dgusp(X};,))

RHom(Lw;*F, E) = RHom(F, Rm;,E) =0,
it follows that RHom (L f7T, E) = 0. This proves that Rf;,E = 0 for all i € N. In particular, by
Lemma 3.1, the support Supp E of E is contracted by all birational maps f;, for i € N:

Supp E C Exc(f1) N---NExc(fyn) .

Since Exc(f;) = U;eg Es and Es N Ep # () if and only if S C T or T' C S, this implies that
Exc(f1)N---NExc(f,) can be non-empty only if 7 > 1, in which case this intersection is contained
in Ey, the exceptional divisor corresponding to blowing up the proper transform Ay = LM y
of the subspace spanned by the points in N (the last blow-up). It follows that

SuppE C Eny &2 Any X P".

For every ¢ € N, we can decompose f; = f! o p, where p: X}, — Y blows down Ey (with

image Ay) and f/: Y — X]’“Vﬂi} is the composition of blow-downs of Eg for S C N containing .

If we write Ey = p(Eg), it is still the case that E5 N B} # 0 if and only if S CT or T C S. It
follows that

Exc(f1)N---NExc(f,) =0. (5.3)

Since Rf] Rp+E = Rf; E = 0 for all i, equation(5.3) and Lemma 3.1 imply that Rp,E = 0.

Let a: Ey — X} be the inclusion map. By Orlov’s Theorem 3.4, the object £ belongs to the
subcategory in D° (X}) with semi-orthogonal decomposition

(Ra, [DY (LM ) ® Opr (=1)], ..., Ray[D* (LM y) B Opr(—1)] ) .
In particular, there exist morphisms
O=Fy—>F —---—FE.=F
that fit into exact triangles
Ei1 — E; —» F; — E;_4[1] with F, € Ro,[D*(LMy) B Opr(—1)] .
CLAIM 5.17. We have F; € Ra, [D?,(LM ) ® Opr(—i)| for all 1 <i <r.

cusp
The proposition now follows immediately from Claim 5.17: by the inductive hypothesis, the

subcategory Rov, [Dé’usp (LM N) X O]pr(—i)] is generated by sheaves that belong to @}"\,, but the

latter have no non-zero morphisms into £. Thus £ = 0. 0

Proof of Claim 5.17. Let F; = Ra.,(H; ® Opr(—i)) for some H; € D*(LM y). We have to show
that H; € Db (WN) for all 4.

cusp

Let j € N, and let o;: WN\{]} X P"— X}”\,\{j} be the inclusion. Then
Rﬂ'j*FZ‘ = RT[']‘*RCY*(HZ' X O[pr(—i)) = Raj*(Rﬂ'j*Hi X Opr(—i)) y

where Rm; H; € Db (LMN\{j}). In particular, Rm; H; = 0 if and only if Rm; F; = 0. Note that
Rm; F; belongs to the subcategory

Raj* [Db(WN\{]}) X OPT(—i)] .

Suppose Rm; F), # 0 for some j € N, and choose the maximal p with this property. Apply-
ing Rm;, to the filtration gives morphisms

OZRﬂ'j*Eo—>R7Tj*E1 — —)R?Tj*Er :RT(']'*E:O
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that fit into exact triangles
Rm; Ei_ 1 — Rm; E; — Rmj F; — Rm; E; 1[1].
In particular, Rm; E, = Rn; Eyp1 = - - = Rnj E, = Rn; £ =0 and Rrnj F, ~ Rrj E, [1].
However, Rm; E,_1[1] belongs to the subcategory generated by
Ra;j + [DY(LM nv) ® Opr (—i)]

for i < p and thus cannot have a non-zero morphism to Rm;_F),. O

We now prove Lemma 5.14. The proof occupies the rest of this section. We first prove the
_ v +1
case when 77/ = G/ on X\ gy in Lemma 5.18.
LEMMA 5.18. Letr > —1. Foralll1 <a <n+r and i € N, we have
Wi*(fi*GZJrlv) = 07
1 1V r 1\/@GT Qv@"‘@qu 1fa>27
Rim (fGeT) =4 " “ )
0 ifa=1,
Cone [Lm*Rm*Lfi*GZ“v — Lfi*GZ“v] =GVoG, Vo - 0GY.

Proof. 1f a = 1, then fi*G1£+1v = —H = G7Y and the statements follow at once as G} is
a cuspidal object. Now, assume a > 2. For clarity, first consider the situation when a < n. In
this case, we have

(Go)Y =—aH+(a=1) Y Ej+---+1- >  EJ

FEN\ JCN\s, |J|=a—1
Define divisors on X}, as follows:
E°= ) B (1<s<a-1),
i€ICN, |I|=s
F=FE'+E*+ - +E°=E+Y Ej+» Ey+---+ >  Er,
J Jisk i€ICN,|I|=s
Hy=f{G!", Hy=Hi+F, Hy=Ho+Fo, ... , Hy=Hy 1+F,1=G".

There are two sets of exact sequences that we will use, identifying as usual divisors with the
corresponding line bundles:

(A)
0—>H1—>H2—>H2‘F1—>0,

0—>H2—>H3—>H3‘F2—>0,

0—+H,.1 —>H,— Ha|Fa_1 —0.

(B) For2<k<a-—1and1<s<k-—1,letting

Q§+1 = (Hk+1 - FS)‘Es-ﬁ—l = @ (Hk+1 - FS)|E1 )
i€ICN, |I|=s+1
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we have exact sequences
k

k
0— Q3 — Hk+1\F3 — Hk+1|F2 — 0,

k
0= Qp = Hyp1p, = Hi1yp,_, = 0.

Note that Fy,1 = Fs + E*T! and that the sequences of type (B) are obtained by tensoring with
Hj, 1 the canonical sequence

O—)O(—F5)|Es+1 —>0F3+1 —)OFS —0. (5.4)

Lemma 5.18 follows at once from taking k¥ = 1 in parts (Al) and (A2) in Claim 5.19.
Parts (B1)—(B3) in the claim refer to the exact sequences of type (B), while parts (A1l)-(A2)
in the claim refer to the exact sequences of type (A). Parts (B1)—(B3) will be used to prove
parts (A1)—(A2) (this is why they appear first).

We now discuss the case when a > n. In this case, we have

(Gp)Y =—aH+(a=1) Y Ej+-—+(a—(n—1)En;.
JEN\i

We define F; as above in the range 1 < s < n and let
Foq=--= n+1:Fn:E1+E2+"'+En-

We define Hj, as above, for all 1 < k < a. As before, H, = (G)Y. We use the exact
sequences of type (A). In order to analyze the sheaves H, k+1{F there are two cases to consider:
(I)1<k<n<aand (2) n < k < a— 1. For a fixed k, we consider the sequences (5.4) of
type (B), where for 1 < s < k — 1, the quotient le€+1 is defined as before if s < n — 1, while if
k—1>s2>n, welet

k k
Qn+1:"':Qk:0-
Hence, the exact sequences of type (B) that we consider are

k
0= Q3 = Hiv1yp, = Hipryp, — 0,

k
0= Q3 = Hiy1jpy, = Hipyyp, = 0,

0— Qp — Hys1yp, = Hipayp,_, — 0.
The rest of the proof is identical, as Claim 5.19 still holds. O
CrAam 5.19. (B1) For2<k<a—1and1<s<min{k—1,n— 1}, we have
RTri*Q’;H =0.
< a—1, we have

(B2) Foralll<s<k
is(Hep1p,) =0 foralll>0 and m(Hpprpp,) = (GF)"
k

Rl
(B3) For all 1 < s < k < a—1, the canonical map

7 T (Het1 ) = (His1yp,)
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is surjective with kernel 7} (GY)" ® O(—F;). Moreover,
Cone|L;* Ry (Hisvyp,) — (Hiryp,)] = (77(Gh)" @ O(=F))[1].
In particular,
Cone[Ln;* R (Hit1p,) — (Hirr )] = (G7) [1].-
(Al) For all1 < k< a—1, we have
Hy) =0 and R'm,(Hy) = (G_) @ (G) @--o(ap)".
(A2) For all 1 < k < a, we have
Cone [Lm*Rm* (Hk) — (Hk)] = (GZ)v o ( T )V b P (GZ)V.

a—1

—

T x

Proof. We prove parts (B1)—(B3). From the commutative diagram

W[XX;,\I:E[ E— X};[

(m,ld)l lm (5.5)

WJXX};{\I:EJ — X}“V\z’

it follows that

R~ ® (G5_)") = Rmin(—,) B (Gh_,) " =0
as Rm;,(—1,) = 0. Hence, (5.20) implies that Rm*QfH = 0, thus proving part (B1). Note that
it suffices to prove parts (B2) and (B3) for 1 < s < min{k,n}, as F,, = Fyqy1 = -+ = F4_;.
Clearly, part (B2) follows immediately from part (B1), the exact sequences of type (B) and the
diagram (5.10). We now prove part (B3) by induction on s (for a fixed k). Set

hs: m*m*(HkﬂlFs) — (Hk+1\pg) , Ks=Ker(hs).

We use the following two observations: (1) for any sheaf 7, the canonical map m;*m;.(T) — T
is non-zero whenever 7;,(7) is non-zero, and (2) if F' C X is an effective divisor and £ is a line
bundle on X, the only non-zero morphism £ — L is the restriction map (with kernel £(—F)).

When s = 1, we have from part (B2) and (5.10) that
Tis(Hit1)p,) = (GZ)V, 7 Wi (Hp1 |y ) = TFi*(G};)v,
Hyi1)p, = (GZ)V = (m*(G’,;)V)‘Fl on 1 =F;.
Hence, it follows from observations (1) and (2) that h; is surjective and K1 = 7} (G},)" @ O(—Fy).

Now assume that hy is surjective and Ky = 7/ (G})" ® O(—Fs). By applying 7} m;.(—) to the
exact sequence

0—Qby — (Hk+1)\FS+1 — (Hk+1)‘FS -0, (5.6)

it follows from part (B1) that there is a commutative diagram

0 > 0 m*m*(HkaH) — m*m*(HkHlFs) — 0

| [ b

0 —— Qb —— (Hyrayp,,,) —— (Hks1p,) —— 0.

By our inductive assumption, hg is surjective. By the snake lemma, there is an exact sequence

0= K1 — Ks = Q¥ — Coker(hsy1) — 0.
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The induced map Ky — Q’; 1 is non-zero. Otherwise, Q’; 11 = Coker(hgy1), which implies that the
exact sequence (5.6) is split since there is a retract (H, k41 FS+1) — Q% ;. But the sequence (5.6)
is obtained by tensoring the canonical sequence (5.4) with a line bundle, and (5.4) is not split,
as there are no non-zero morphisms Op,,, = Ogst1(—Fj):

Hom (Op,,,, Ops+1(—Fs)) = HY(Opst1 (= Fy)) =0
by (5.7), and we have a contradiction. We have K; = nf(G})Y ® O(—Fs) by the induction
assumption. By (5.20), we have Q% | = (7} (G})V ® O(—FS))|E8+1. Hence, Q% | = (Ks)gs+1. By

s

observation (2), the map s — Q’;H is surjective, that is, Coker(hs4+1) = 0, and furthermore
Ksi1 = Ks(=E*tY) = 77 (Gh)Y @ O(—Fs — E5™) = 77(G})Y ® O(—Fyy1) -
This proves the first statement in part (B3). In particular, this gives
Cone [LTFi*RWi*(HkH\Fk) — (Hk-i-l\Fk)] = (7] (G})Y @ O(—Fy))[1],
and now the last statement in part (B3) follows from

G} = (G})Y ® O(—Fy).

We now prove parts (A1) and (A2). Apply 7;.(—) to the exact sequences of type (A). Then
part (A1) follows from part (B2) and downward induction, using the fact that there are no non-
trivial extensions between (G})Y and (G},)Y for k # k’. Similarly, to prove part (A2), we use
downward induction on 1 < k < a and the exact sequences of type (A). As H, = (G")", we have

Cone [LTFZ'*Rﬂ'i*(Ha) — (Ha)] = (Gp)Y .

Note that if 7: X — Y is a morphism between smooth projective varieties and 0 — A1 — Ay —
Az — 0 is an exact sequence of sheaves on X, there is a distinguished triangle relating the cones
C; = Cone [L7*Rm, A; — Ajl:

Cl—>02—>03—>01[1].

Then part (A2) follows from part (B3) by using the fact that there are no non-trivial extensions
between G." and G, for k # k. O

CLAII\L&QO. For all subsets I C N with ¢ € I, where |I| = s+ 1 with 1 < s < n—1, on
Er= LMy x X};,\I, we have

Fsg, =9, XO (5.7)

(here x is the attaching point). Now, assume 1 < k < a—1 and 1 < s < min{k—1,n—1}. Then
4 *

Hiy1)p, = OK (Grs) = (m; (G};)V)% : (5.8)

Hence, we have
(Hi1 = Fy) 1, = (—02) B (Gh,) " = (75 (G})Y © O(=F)) 1,

Q= D (IR = (m(G) @ O(F)) e (5.9)

1€ICN, |I|=s+1

. r
Moreover, on E; = X N\{ip e have

Hyt1yp, = (GR)" (5.10)
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Proof. To prove (5.7), we let I = JU {i}. Then |J| = s. We have

(Fs)ig, = (EH‘ Z Eij+---+ Z EK>
|Er

jEN\I KCN\G, |K|=s—1
= Ss00 + D Onphute) + o+ D e
jeJ jeJ

(as divisors on LM 7). Using the v, Kapranov model of LM, we have
(Fi, =As+) Epgy+-+ ) Ej=H.
Jje€J Jj€J
Here Aj denotes the class of the proper transform in LM of the hyperplane in P® spanned by
the points in J. This proves (5.7).
To see (5.8) and (5.10), recall that if 1 < k < a — 1, then

Hgaw=H +FA+ -+ Fg,

Hi=-aH+(-1) > E+(@-2 Y Eg+-+(@-t > Er,

JEN\{i} J-keN\{i} KCN\{i}, |K|=t

where ¢t = min{a — 1,n — 1}. There are two cases to consider:

(1) k< n (witheithern<a—1lora—1<n)
(2) k> n, in which case we must have a — 1 > n and ¢t = n — 1. Note that we must have r > 2

asn+r—1>2a—1>n.

In case (1), we have

Fy+-+F=kE+(k-1) Y Ej+--+1- Y  Egk.
jEN\{z} iIEKCN, |K|=k

In case (2), we have

Fi+-+Fe=kE+(k-1) > Ej+--
]GN\{}
ot (k—n+2) > Ex+(k—n+1)Ey
1€EKCN, |K|=n—1

Now let 1 < s < min{k — 1,n — 1}, and let I C N, with ¢ € I and |I| = s + 1 for some
0<s<k—1. Let
O(Hpy1)p, = O(H') RO(H") ,
where H' is the component on LM; and H” is the component on X7+ We now compute H !

and H”. Note that only the divisors Ex with I C K C N contribute to H”. For example, H;
does not; that is, we have

H' = (F1+-~+Fk)‘EI
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In case (1), we have

H' = (k= s)(~a) + (k=5 —1) 3 G

keN\I

t(k—5-2) > Opiat--+1- > OKU{x} -

kJEN\I KCN\I,|K|=k—s—1
(as a divisor on Mg ), while in case (2), we have

H' = (k—s)(=¢s)+(k—s=1) > Opo

keN\T

+(k=5-2) Y Gppet+ (k1= n)dnnog) -
kleN\I

In both cases, H" = (G’,;is)v as by the definition of G},__ on X

(Gr ) =(k—s)H—(k—s-1) > Ej—-—(k—s—t) >  Eg
JEN\I KCN\I,|K|=t'
(in the Kapranov model given by ,), where ¢ = min{k —s—1,n—s—1}; thatis, ' =k—s—1
in case (1), and ¢ =n — s — 1 in case (2).
We now calculate H'. Let I = J U {i}. Since |J| = s < min{k — 1,n — 1}, we have s <t =
min{a — 1,n — 1}. Using the 1y Kapranov model of LM, we obtain that the contribution from
H to H' comes from

—aH+(a-1)> Ej+-+(a—(s—1) >  Ex+(a—s)Ey
jeJ KCJ,|K|=s—1
and equals
—aH+(a—-1)> Ej+--+(a—(s—1) >  Ex+(a—s)Ay,
jeJ KCJ,|K|=s—1
while the contribution from Fy + --- + F} to H' comes from
kEi+ (k=1 Ej+-+((k-(s-2) Y Exuy
jeJ KCJ,|K|=s—2

+(k—(s—=1) > Egug+(k—s)E,,
KCJ,|K|=s—1

and equals
k:EZ-+(k:—l)ZEij+---+(k—(s—2)) Z Erugi
jeJ KCJ,|K|=s—2

tk=(s=1) > Agup (k= s)(~vs).

KCJ,|K|=s—1

Here Ag (for S C I with |S| = s) denotes the class of the proper transform in LM of the
hyperplane in P® spanned by the points in .5, that is,

AS:H— Z EK~

KCS,1<|K|<s—1
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We now sum up these two terms and compute the coefficient of H to be
—a+(a—s)+(k—s+1)s—(k—s)s=0.
Here we use that on LM, the class of 9, in the 19 Kapranov model is
Yp=sH—(s—1)) —(s=2) > —---.
jeI jkel
Similarly, the coefficient of Ex for K C J with |K| =1 is
(a—=0)—(a—s)—(k—s+1)(s=1)+(k—s)(s—1)=0,
while the coefficient of Er ;) for K C J with |K| =1 is
(k=0)—(k—s+1)(s=1)+(k—s)(s—=1—1)=0.
Hence, H' = 0 and O(Hj11)|5, = O X (G};_S)V.

To see that (W;k(G’,;)V)|EI =0K (G};_S)v, we use the commutative diagram (5.5). Note the
equality of line bundles (G’,;)V|EJ = OK( 2_8)\/ (Remark 5.10). This finishes the proof of (5.8).
The case when Ej = E; corresponds to the case s = 0, and the above computation shows (5.10).
Clearly, (5.20) follows from (5.8) and (5.7). O

To prove the general case of Lemma 5.14, we need the following.

LEmMMA 5.21. If m: Xy — X}"V\i is the forgetful map, then for all 1 < a < n+ r — 1, the line
bundle 7} (GZ)V ® O(—F;) belongs to the subcategory generated by (@?V
Proof. Let t = min{a —1,n —1}. Keeping the notation of the proof of Lemma 5.18, consider the
divisors Fs on X}, for 1 < s <t + 1, defined by
F;=FE'+E*+ -+ E°=E+Y Ej+» Ey+---+ >  Er,
J gk i€ICN,|I|=s
and let
=G —F, LP=x(G) —F, ... , L' =x(G")" - Fy1.

We claim that 7} (GZ)V — F;11 = (G%)Y. This is clear if one considers separately the two cases
a < n and a > n. For example, if ¢ > n, then

(G)Y =—aH +(a—=1) Y +---+(a=n)Ey =7/(G})" = Fy.
JEN
We have to prove that L! belongs to the subcategory generated by GTN We use the exact
sequences
2 1 1

0—L°—L'— EB (L )|Eij -0,
JEN\I

0L =L~ @ (L)
J,kEN\G

—0
|Eijk ’

0— L 5 1t — @ (L)
JCN\{i},
7=t

— 0.
|E 014}
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Clearly, it is enough to prove that for all 1 < s <t and J C N\ {i} with |J| = s, the sheaves
(L*) are in the subcategory generated by G'y. Note that ;) is a massive stratum in X
as

|E 0y

[ Ju{i}|=s+1>2, |IN\Jl+r=n—s+r>0
since s <t<n—1and whenr = —1, we havet =a—1and a <n — 1.
As in (5.8), we have
=0 (Go_y)”,

(ﬂ: GZV) IEsugiy

while by (5.7), we have
O(_FS)‘EJU“} = (_ww) XO.

It follows that (L*) is one of the objects in G}”V, as it equals (—1,) X (Gh_.)V. O

|E sy
Proof of Lemma 5.14. Consider the case when T is a torsion sheaf. Let

T:(ZZ)*»Cy E:Gg/lggG\/ gGZj_1V7

ar—1

where Z = Zn, N,,...,n, is the massive stratum in X}u\,ﬁ:b} corresponding to a partition NiL---LN;

of N\ {i}. Since Z is massive, we have |N| > 2 for every 1 <t <[!—1 and |[N)|+7+1 > 0. The
preimage 7' = f;l(Z ) is a massive stratum in X}, and there is a commutative diagram

7 — fz‘_1<Z/) iy X7
Id xfi]\’ll lfi
iz +1
J —= X};,\Z. ,

where iz and iz are the canonical inclusions, we identify
Z=1LMpy, x---x LMy,_, x XpM,  Z' = LMy, x - x LMn,_, X X§000

and fl-Nl denotes the blow-up map X3 | @ X}”le (we write f; whenever there is no risk of
confusion). Let 7' = Lf7T’. Then

T =(iz).L, £ =dxf)L =GR - KRG

ar—1

* r+1V
Ixfl Gal :

We compute Cone [L7;* Rm;, 7' — T'] by the exact same argument as in the proof of Lem-
ma 5.18. We define divisors Hy, Ho, ..., Hy, on valu{i} exactly as before, so that we have

* v v
Hy = f; (sz_l) , He = (GZZ) .
On X&U{i}, consider the exact sequences of type (A) in the proof of Lemma 5.18. After

taking the box product with Gy, X --- K Gy, one obtains exact sequences on Z’. It is enough

to prove that for all 1 < k < a; — 1, the object Cone [Lm;* Rm; T — Ti| is in the subcategory
generated by G';, where

T = (iz)«(Go, B+ KRGy, | W (Hppayp,)) -
On XJT\,IU [ e consider the exact sequences of type (B) in the proof of Lemma 5.18 after taking
the box product with G, X--- K Gy . Let

aj—1°
Ths = (iz)«(Gy, B RGY ®KQE,),
ﬁ:(iZ,)*(GCVng...XGV &(HH”FI)).

ar—1
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Then Cone [Lm*Rm*’ﬁ; — E] is in the subcategory generated by G’]"V if and only if
Cone [Lm*Rm*ﬁ,s — 77{’3] and Cone [Lm*Rm*ﬁ — ﬁ]

are in the subcategory generated by G}"V By (5.20), the sheaf Q¥ 1 is a direct sum of objects
in G?Vlu{i}' Hence, 7Ty s is a direct sum of objects in G’]"V In particular, Cone [Lm*Rm*’ﬁw —
77973] = Ti,s- We are left to prove that Cone [LWZ'*RM*’E — 7}] is in the subcategory generated

by Gy
For simplicity, set 7 = Tj. Let Z := m;(Z’). We make the identification
Z=LMpy, x---x LMy,_, x X} .
Then 7; Y(Z) = Z' U--- U Z!, where
Z'=27' =TMp, x ---x LMy, | X X oy -
Z'=LMp, x -+ x LMy, gy X -+ x LMpy,_, x X, 1<t<l—1.

As the divisor E; in X;flu{i} can be identified with LM g X X}, the sheaf T is supported on

the non-massive stratum

Z'N 2"V =LMy, x -+ x LMy, | x LMy x Xy,
T = (igpp) M, M=G! R---RG RORG},
where i yinz-1: 20N 250 — X is the canonical inclusion. Denote by
v: 20z 5 7 YZ), wm N (2) = XY
the canonical inclusions. Then izi~71-1 = wov. Let p = Ti|r,—1(Z)" There is a commutative
diagram
m N 2)=2 v uZh s XY

N

— Zf
Z » X

The restriction maps p|z:: Z t — Z are induced by the forgetful maps LM Nufiy = LMy, ittt <1
and XJTVlu{z‘} — X}, for ¢ = I. Note that the restriction map p|zizi-1: Z'nz1 - 7 is an
isomorphism. Let

M = Rp,(Ru,M) =G K- KRGy KG}".

ap—1

For all 1 <t <1l—1, we have

(P" M),y = Ga, B R (GL,Y) - KG,_ KRG, (5.11)
while
(P M) = Ga, B KRGy, - KRGy Rl (GLY). (5.12)

The strata Z!,..., Z" intersect: if t < s, then Z; N Z; # 0 if and only if s = t + 1. There are
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exact sequences
0= Ogiy..uzi—1 (—Zl) = Oziy.uzt = Oz — 0,
0— OZlLJ---UZl*Q (—Zl_l) — Ole,,,Uzlfl (—Zl) — Ozlfl (—Zl) —0,

0— Ozl (—Zz) — OZ1UZ2 (—Z3) — Oz2 (—ZS) — 0.
We also consider the exact sequence
O — Ozl (—Zlil) — Ozl — Ozlmzl—l — O

We tensor all the above sequences with p* M. If we write
N =p M@ Oy (-2 (1<t<l-1), N'=pMe0u(-2""),
Fl=p"M®O0z0.0z(-2") (1<t<l-1),
then we have exact sequences on Z'U--- U Z!
0— FI72 5 p"M — (p*ﬂ)w =0,
0— FI3 5 Fi2 s N0,

0—Ft 5 FI3 s N2 0,

0> F =N F2 5 N? =0
and, furthermore,
0= N = (p" M), ;1 = v.M = 0.

Consider the push-forwards via u.(—) to X}, of all of the above exact sequences. Recall that
T = ux(veM). To prove that Cone [Lm*Rm*T — T] is in the subcategory generated by Gy,
it suffices to prove that for A/ among

p*m, Nl, e Nl_l, NO,

we have that Cone [Lm;* R, (usN) — (wN)] is in the subcategory generated by G?V This is
clear for p*M, as u.p*M = 7} ig*ﬂ (since m; is flat), and we have Cone [Lﬂ'i*Rﬂ'i*Lﬂ';-k A —
LW;‘A] =0 for any A. As

Oz (2" = Ozary, B+ MOz, (—0iy) B K Ox

r )
Nyu{i}

where y is one of the attaching points of LM y,, using (5.11) and Lemma 5.21, it follows that u, N
is in the subcategory generated by G'y. In particular,

Rm;, (u*/\/'t) =0 and Cone [Lm*Rm* (u*/\/'t) — (u*/\/'t)] = u Nt
Similarly, u,N? is in the subcategory generated by G’]"V since
-1

and we may use (5.12) and Lemma 5.21. O
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