
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

BigMAC: Fine-Grained Policy Analysis of
Android Firmware

Grant Hernandez, University of Florida; Dave (Jing) Tian, Purdue University; Anurag
Swarnim Yadav, Byron J. Williams, and Kevin R.B. Butler, University of Florida

https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez

BIGMAC: Fine-Grained Policy Analysis of Android Firmware

Grant Hernandez1, Dave (Jing) Tian2, Anurag Swarnim Yadav1, Byron J. Williams1, and Kevin R. B. Butler1

1Florida Institute for Cyber Security (FICS) Research, University of Florida, Gainesville, FL, USA
{grant.hernandez,anuragswar.yadav,butler}@ufl.edu, byron@cise.ufl.edu

2Purdue University, West Lafayette, IN, USA
daveti@purdue.edu

Abstract
The Android operating system is the world’s dominant mo-

bile computing platform. To defend against malicious appli-
cations and external attack, Android relies upon a complex
combination of discretionary and mandatory access control
mechanisms, including Linux capabilities, to maintain least
privilege. To understand the impact and interaction between
these layers, we created a framework called BIGMAC that
combines and instantiates all layers of the policy together in
a fine grained graph supporting millions of edges. Our model
filters out paths and types not in use on actual systems that
policy analysis alone would consider. Unlike previous work
which requires a rooted device, using only static firmware and
Android domain knowledge, we are able to extract and recreate
the security state of a running system, achieving a process cre-
dential recovery at best 74.7% and a filesystem DAC and MAC
accuracy of over 98%. Using BIGMAC, we develop attack
queries to discover sets of objects that can be influenced by
untrusted applications and external peripherals. Our evaluation
against Samsung S8+ and LG G7 firmwares reveals multiple
policy concerns, including untrusted apps on LG being able to
communicate with a kernel monitoring service, Samsung S8+
allowing IPC from untrusted apps to some root processes, at
least 24 processes with the CAP_SYS_ADMIN capability, and
system_server with the capability to load kernel modules. We
have reported our findings to the corresponding vendors and
release BIGMAC for the community.

1 Introduction

The Android operating system is the world’s most dominant
mobile computing platform. As smartphones increasingly
become primary computing devices, Android commands an
overwhelming market share, representing 88% of all end-user
smartphone sales in the second quarter of 2018 [16]. As such,
assuring the security of Android devices is of paramount im-
portance.

To this end, Android supports a complex combination of ac-
cess control mechanisms. Substantial past work has examined

the security model of the Android middleware layer, which
mediates access decisions made by Android applications [13].
However, underneath this middleware lies a Linux kernel and
at this layer, the security model is similar to that of many other
Linux-based systems. The access control framework includes
not only a discretionary access control (DAC) mechanism
common to UNIX operating systems, but supports mandatory
access control (MAC) as well through Security-Enhanced An-
droid (SEAndroid) [37], a customized version of SELinux.
Moreover, other mechanisms such as Linux capabilities are
also used to assure least privilege and to minimize trusted pro-
cesses. To maintain the integrity of an Android system against
local and remote adversaries, all of these mechanisms must
work in conjunction with each other; however, the complexity
of creating and interacting with SEAndroid policies, MAC rule
interactions, labeled filesystems, capabilities, and DAC poli-
cies creates a challenging environment for assuring security
goals.

In this paper, we introduce a framework called BIGMAC
for reasoning about the complex Android policy environment
based on extracting policies and metadata from Android device
firmware images. BIGMAC goes beyond the analysis of the
SEAndroid MAC policy to consider how policy is instantiated
on devices through processes, objects, and inter-process com-
munication endpoints, SELinux type relationships between
Android objects, filesystem extended attributes, and Linux ca-
pabilities. BIGMAC recovers system init scripts and simulates
the behavior of commands that affect the filesystem in order to
accurately model filesystem contexts and Android credentials.
We demonstrate that compared to the ground truth provided by
a running Android device, BIGMAC successfully labels over
98% of DAC and MAC filesystem metadata, and up to 74.7%
of running process metadata can be identically reconstructed.

BIGMAC is valuable as a means of determining potential
vectors of attack based on policy inconsistencies found, and
we demonstrate that past exploits can be modeled with it. We
are also, to our knowledge, the first to model the impact of
external peripherals (e.g., USB interfaces) and their relation
to a device’s security policy. Supporting millions of access

USENIX Association 29th USENIX Security Symposium 271

control edges, BIGMAC provides one of the finest-grained
frameworks for policy examination currently available for
reasoning about access control on Android devices. To benefit
the community, we will open source BIGMAC and all of the
collection scripts for reproducibility.1

Our contributions are as follows:

• We develop a new framework, BIGMAC, to extract,
graph, and query Android security policies from static
firmware images, without the need for a rooted device, and
recover runtime security state by instantiating processes,
files, and IPC objects with a 98% accuracy.

• We combine MAC, DAC, capabilities, and tagged exter-
nal input sources to create an instantiated, fine-grained,
whole-system attack-graph supporting millions of edges.
Our Prolog engine then provides an interactive user inter-
face to query the attack graph.

• We evaluate BIGMAC against Samsung S8+ and LG G7
firmware and discover apps on LG able to communicate
with a kernel monitoring service, Samsung apps able to
talk to multiple root processes via binder, at least 24 pro-
cesses with the dangerous CAP_SYS_ADMIN capability,
and system_server being able to load kernel modules. We
reported our findings to the corresponding vendors.

Outline The rest of this paper is structured as follows: Sec-
tion 2 develops the necessary background on Android security
policies. Section 3 describes the design of BIGMAC and Sec-
tion 4 the implementation. In Section 5 we evaluate BIGMAC
against multiple Android firmware images and demonstrate
how it can assist in discovering privilege escalation paths. We
discuss our findings in Section 6, compare key related work in
Section 7, and finally conclude in Section 8.

2 Background

Linux Access Control Historically, access control has been
implemented using object ownership, group membership, and
their respective permission bits for read, write, and execute.
On modern UNIX inspired systems, such as Linux, this model
persists with the creation and assignment of User IDs (UIDs)
and Group IDs (GIDs), along with read, write, and execute
permissions for each class of identifier. Privilege separation
is primarily based on different UID and GID assignments to
processes and file objects. This class of access control is for-
mally known as Discretionary Access Control (DAC) because
the permissions are assigned to new and owned objects at the
discretion of the users (i.e., subjects or processes). This means
that the system’s access matrix is not fixed at runtime and may
change dynamically, possibly leading to a loss of integrity. The
all-powerful root user with the UID of zero has hard-coded

1https://github.com/FICS/BigMAC

superuser permissions in the kernel’s code, allowing it to over-
ride all DAC permissions at will. For example, a root-owned
process can accidentally create a world-readable and writable
file that it trusts to be well-formed, but a lower privileged user
could take advantage of this hole to affect the runtime state of
the root owned process, possibly leading to confused deputy
style attacks or even a privilege escalation.

To help limit the damage of a root process compromise, the
Linux kernel divided up root’s permissions using a Capability-
like (CAP) system [22]. Currently there are 38 capabilities
with a wide-range of strengths. This works under the model
that processes that usually need root-like permissions do not
require all of its extensive set of capabilities. As such, sys-
tem administrators are free to permanently drop any capa-
bilities from processes that do not need them. For example,
a process, such as Apache HTTPD, that needs to listen on
privileged ports (those less than 1024) can only be granted
the CAP_NET_BIND_SERVICE capability instead of all 38. This
capability model works some applications, but its lack of gran-
ularity can still lead to over-permissioned processes, which
can be dangerous in the face of untrusted processes and users.

To further lock down Linux-based systems, a Mandatory
Access Control (MAC) scheme can also be deployed. MAC
unlike DAC has the last word on actions taken on objects and
is fixed at runtime (e.g., its access matrix is fixed). This has the
major advantage in that the policy can be written and verified
statically before being applied to a running system and set to
immutable. There have been many MAC systems proposed
in the literature, but today, the most popular implementation
of MAC on Linux-based systems is SELinux [38]. SELinux
has three core components: subjects, objects, and actions. The
subject is an active process or device that is responsible for
the flow of information between objects. Subjects are given
access to objects via “allow” rules that permits the process to
read or modify the object, leading to changes in the system
state. Objects are resources such as files, sockets, and network
interfaces which are accessed by subjects (i.e., active processes
and devices) and classified according to the resource they pro-
vide. Every object has a set of permissions and a class identifier
defining its purpose and services that the object handles. These
allow rules form a security policy that ideally grants the mini-
mal set of permissions required to complete a task (e.g., read
only when writing permission is unnecessary). Both subjects
and objects have a set of security attributes which the operating
system can query to determine whether a requested action is
allowed by the policy or not.

2.1 Android Security Model
Today, Android OS’s kernel uses a modified version of Linux
that benefits from the above access control implementations.

DAC on Android Android’s use of DAC involves a fixed
set of UID/GIDs for system purposes and ranges of UIDs

272 29th USENIX Security Symposium USENIX Association

https://github.com/FICS/BigMAC

for dynamically installed applications. On Android, a strong
effort is made to limit the number of processes running as
root, and as such the typical high privileged process is usually
running as the system (UID 1000) user or a role-specific UID,
such as radio, or graphics instead. This denies most running
processes access to powerful root permissions, unless they
have been explicitly granted or inherited the capabilities. At
the app level, untrusted applications are each assigned a unique
UID from a fixed range, preventing them from owning any files
besides the ones included during their installation.

SEAndroid SELinux was introduced to the Android plat-
form with a targeted policy in 2013 [37]. These policies are a
set of rules which are based on file labels. These labels consist
of a user, role, type, and level. On Android, the type is the pri-
mary identifier. Policies are rules which determine what types
and actions a process has access to. From a security perspective,
items are grouped together based on their accessibility.

SEAndroid extends SELinux to support new Android spe-
cific hooks, such as Binder IPC. Additional extensions include
adding access classes for services, properties, etc. They also in-
clude modifying user-space configuration files and processes,
as shown in Figure 1, to help apply security labels to Android-
specific objects. Besides these changes, the core functionality
is largely unchanged, with the primary goal being mandatory,
system-wide, type enforcement. The Binder implementation
introduced new LSM hooks to the Binder driver which lets
SEAndroid monitor and control interprocess communication
between applications.

The SEAndroid user space introduced modifications to ex-
isting SELinux components including: init, Zygote, bionic (the
Android C library), and the package manager. The Android
init process is responsible for loading the security policy early
during the boot process, interpreting init.rc commands with-
out access to the shell, and enforcing aspects of the security
policy (i.e., access to system properties). The Zygote process
is responsible for spawning Android application processes.
Zygote starts when the system boots and loads common frame-
work code. Zygote can then set the security label of the socket
interfaces and the security context for running applications.
Bionic, Android’s specific libc implementation, was modified
to get and set extended file system attributes and to store file
security labels. The package manager makes decisions on per-
missions requested by an application to determine if requested
permissions can actually be granted. These user space com-
ponents enforce SEAndroid security policy beyond the kernel
layer [37].

Middleware Application writers are abstracted away from
the system access control models and instead focus on Android
middleware permissions. These permissions are capability-
like, but instead grant applications access to resources and
services provided by the Android operating system, not the
Linux kernel. For the purposes of this paper, we do not examine

property_contexts

file_contexts

service_contextsseapp_contexts

mac_permissions.xml

init

kernel

ueventd

zygote servicemanager

system_server

init.rc

/etc/services/*.rc

ueventd.rc

sepolicy

Object Read-by
Process Relation

Figure 1: The relationship between key Android processes and
their DAC and MAC configuration files.

Android middleware permissions and instead focus on the
combination of DAC, MAC, and capabilities and their impact
on the security of the system.

3 Design

To examine and query the security policy of an Android
firmware image, we design BIGMAC, as shown in Figure 2,
to extract, recover, simulate and fully instantiate all objects,
which include files, processes, and Interprocess Communica-
tion (IPC) end-points. This method is realized using a scalable
approach that combines Android domain knowledge and files
extracted from firmware images to recreate a running system’s
state. The recreation is possible without requiring complicated
emulation techniques that may not work on all device-specific
firmware images or on a diverse corpus of physical devices, of
which no rooting method may be available.2

To begin, we describe how we extract MAC, DAC, and ca-
pability (CAP) information from firmware images, including
saving key files, simulating Android’s init daemon, and asso-
ciating raw files with SELinux file types and domains. Next
we explain our dataflow graph which processes an SEPolicy’s
access vectors into a simplified read/write model. Then we
discuss how we recreate a running system’s process hierarchy
and process metadata from abstract SELinux domains. Fol-
lowing this discussion, we show how we flatten our dataflow
graph into true objects and expand our process tree into ac-
tual processes by propagating credentials using a fork/exec
model. Finally we overlay the dataflow graph onto the process
list to create an attack graph that contains all of the possible
read/write interactions between processes (e.g., IPC) and the
filesystem (e.g., files). Once we have a completed attack graph,
we convert this to facts for our query engine to explore the data

2If a rooted device is available (such as on a developer phone), BIGMAC
can work from runtime security policies too.

USENIX Association 29th USENIX Security Symposium 273

0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0

1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1

BigMAC

Instantiated Policy Graph
Query
Input

SEPolicy Parsing

Policy Instantiation

Filesystem Extraction
DAC/CAP/Labels

Type Relations

Processes/Objects

File / Object IPC ObjectSubject / Process

Firmware
Filesystems

Real-System (Ideal)
Processes/Files

Attack Graph Ground Truth Comparison

Runtime

Extraction
Ctx.Ctx.

1 1

Process Tree
Credentials

File DAC/MAC

Figure 2: An overview of BIGMAC’s layers of abstraction from device firmware all the way to kernel object recovery.

paths between processes and the filesystem.

3.1 Security Policy Extraction
The Android ecosystem is made up of many Original Equip-
ment Manufacturers (OEMs), each with their own proprietary
extensions to the Android Open Source Project (AOSP). This
fragmentation also extends to the Android image distribution
formats, which vary wildly between OEMs. To canonicalize
firmware images, we use an open source Android image extrac-
tor [39]. With the extracted images, we walk the filesystems
to extract the DAC file permissions and extended attributes
(xattrs), which include SELinux MAC labels and Linux capa-
bilities. We save the filesystem metadata and extract all of the
files shown in Figure 1 which include Android object SELinux
associations (services, properties, and apps), the Android prop-
erty list, the raw SEPolicy binary file, and finally the init system
files which contain useful DAC/MAC/CAP metadata, plus a
list of native daemons started at boot.

Init Boot Simulation Without simulating a device boot, we
do not recover any policy information for the /data, /dev, and
/sys directories – all of which are crucial to model. These
directories and their files do not exist in the static firmware as
they are created during the boot process. In order to capture
these changes to the extracted security policy, we parse the
saved init system files, following the Android init daemon’s
specification [17].

Android’s init system is custom to the platform and has two
major components: the init daemon itself, which is respon-
sible for starting and managing native daemon services, and
the uevent daemon, which monitors the kernel for device state
change notifications. Init is the first process executed on the

system and it handles boot state changes, manages services,
and executes Run Commands (RC). These RCs include trig-
gers for handling boot and property change events, actions
which are executed in a trigger, and service definitions. Dur-
ing different phases of the boot process, files are created and
services are started. BIGMAC implements key RCs that affect
the security state to capture these changes before proceeding
further with the graph instantiation. These include the creation
of directories, files, and the changing of file owner, group, and
permission modes. Additionally, we save the service defini-
tions for later spawning of processes and simulation of their
runtime credentials.

Early in the boot process, init will spawn the uevent daemon.
This sets customized DAC information for certain files in the
/dev and /sys directories based off of a simplified configuration
file. The format is a single entry per line, with optional glob
match, containing a user, group, and permission. We heuris-
tically apply these customizations to the filesystem in order
to have properly labeled and credentialed objects for these
directories.

Backing File Recovery In order to fully instantiate abstract,
MAC-only, SELinux types into processes and objects, we need
to associate them with concrete files containing DAC and capa-
bility information. To start, we decompile the binary SEPolicy
back into a connected multi-edge directional graph representa-
tion, Gs, via the Access Vector rules (AVRules), which link a
source and target type via an action and a class. As shown in
Figure 3, Gs, is the subject graph and the genesis of all derived
graphs. This policy includes all of the types, T , and attributes,
A, used during SELinux type enforcement. From this abstract
policy, we divide all of the types into subjects (domains), S, and
objects, O, and begin to instantiate them by correlating their

274 29th USENIX Security Symposium USENIX Association

Subject

Dataflow
Flat Dataflow

Process Tree

Fully Instantiated
Attack Graph

Backing Files Subjects

Objects

Processes

Instantiate

Extract

Parse Tag/L
ink

Recover Instantiate

SEPolicy

F S

Gd Gf

OverlayGs Gp

O

P

Ga

Figure 3: The key graph derivations used by BIGMAC to create a fully-instantiated attack graph, Ga.

policy types to real files, F , on the filesystem (backing files).
For file objects this is straightforward as their types directly
link to filesystem object types captured during extraction. To
do this for subjects, we must invert Type Enforcement rules
(TERules) related to process transitions via an object execu-
tion. A TERule connects two domains Si and S j via a transition

using a 2-tuple containing object O j and classCp: Si
(O j ,Cp)−−−−→S j.

For process transitions, this reads as domain Si uses the ob-
ject O j, which is an instance of Fj, to transition to the domain
of S j via the class Cp, which is a process. This is an explicit
encoding of a process transition during the exec of a binary
Fj. By parsing these rules, we can back-propagate the binaries
associated with subject types. We define the set of subjects
with at least one backing file to be SB. Subjects may have more
than one backing file, but if they have none, they cannot be
fully instantiated. Example rules from an SEPolicy to allow
init to execute mediaserver are:

allow init mediaserver_exec:file {open,
read, execute};

allow init mediaserver:process
{transition};

type_transition init
mediaserver_exec:process mediaserver;

Where Si = init, S j = mediaserver, O j = mediaserver_exec,
and Cp=process.

Not all Android domains have an explicit TERule due to a
type of AVRule called dyntransition. A dynamic transition is
encoded from a subject to another subject via the process class.
It is the same as the TERule, minus the backing object, which
means a subject does not need to exec to change its MAC
label. The common Android platform domains that perform
these transitions are init and Zygote. Zygote is started by init
upon boot and is used as a warmed-up virtual-machine process
source to fork app processes. As such, depending on the class of
app (untrusted, system, privileged, etc.) the new forked process
will be dynamically transitioned to a new domain. Applications
are dynamically installed by the user and as such cannot have
hardcoded TERules. This leads to all applications of a certain
class sharing the same security label, unless customized by
seapp_contexts. By recovering these dynamic transition
edges, we are able to recreate the entire subject type hierarchy
for later use in recovering the instantiated process tree.

3.2 Dataflow Graph

Now with a full set of subject nodes, S, and those that have
concrete backing files, SB, we begin to create a dataflow graph,
Gd , from the subject graph, Gs. Figure 3 shows this and the
relationships between the other derived graphs of BIGMAC.
In our model, we want to capture the dataflow between subjects
as we are primarily interested in privilege escalation attacks,
which involve other higher privileged subjects. To be clear,
our dataflow model captures the potential transfer of bytes
from one node to another following a directed edge. In the raw
SEPolicy, each AVRule contains individual multiple access
vectors, such as read, write, open, getattr, and so on. For our
model, we are only interested in the vectors that imply a read
or a write. As such we define a reduction mapping of AVRule
actions to the simple dataflow properties of read (R) or write
(W) as is listed in Table 8 in the Appendix.

As we are interested in an instantiated graph, we do not
include any S not in SB. Without at least one associated exe-
cutable, the subject is considered abstract. Therefore, for each
SB, we examine all AVRules to other S or O nodes. We also
ignore subject to subject edges and instead infer an implicit
object to maintain a strict object-subject edge invariant.3 Our
model divides objects into two sets: IPC objects OIPC and file
objects OFile. The key difference between objects is that IPCs
have a single owning subject (the creator/manager), inheriting
its credentials, while file objects contain one or more backing
files, Fi, each with separate MAC/DAC/CAP data. This split
allows us to selectively and intelligently instantiate objects
depending on their usage and context. For IPC objects we con-
solidate many individual AVRule classes into this object and
tag it with the underlying AV class. For instance, all classes
derived from socket commons class and Android’s custom
binder class are all considered IPC objects. Android defines
specific AV classes for use in middleware, including property
service and service_manager. For the property service, which
in Android’s case is the init process, we omit these flows as
they allow for too many easy, and less likely to be exploitable
paths to init from many processes. For the service manager, we
examine the AVRules that have the AV of add, which allows us
to find the owning domain. This is important for having correct
service IPC credentials and edges. Once we have inferred an

3The only subject-subject edges are self-edges (domain can interact with
itself), file descriptor transfer (fd:use), and ptracing.

USENIX Association 29th USENIX Security Symposium 275

object from an AVRule edge, we insert it into Gd with a read
and/or write edge to the adjacent subject.

As all subjects and objects are iterated through, we also
expand attributes As. These attributes contain members that
are common to all AVRules. Instead of leaving these attributes
linked into the graph, we fully expand all of their edges into
each member. This means we have a large increase in edge
count, but no longer have to consider attribute membership
during graph queries. This graph is bipartite and in the worst
case hasO(|S|∗|O|) edges andO(|S|+|O|) nodes.

3.3 Process Inflation
Using the subject hierarchy and backing files we recovered in
Section 3.1, we can now begin to fully instantiate the subject
nodes into individual process instances with virtual Process
Identifiers (PIDs). Starting at the root kernel subject, we fork
the init subject and assign the starting credentials of root (uid=0,
gid=0, groups=[], sid=u:r:init:s0, cap=ALL). The kernel is as-
signed a PID of zero and init a PID of one. From here, we bring
back the service definitions extracted in Section 3.1 in order to
examine and filter all the children of init. For each child sub-
ject of init and for each backing file of that subject, we lookup
a service definition that matches the backing file path in our
virtual filesystem, is enabled, and not a oneshot process. With
a potential match, we use the service security options, if any,
to determine the process’s user, group, supplemental groups,
credentials, and security identifier. The defaults if these aren’t
included are to fork a service as root with all capabilities [17].

Once a process has been assigned credentials, it is inserted
into a concrete process tree, Gp, with proper Linux process
semantics (parent, children, inherited credentials, etc.). With
boot now simulated, we employ Android domain knowledge
to fix the processes forked by Zygote. These include apps
and the system_server. The credentials for the system server
are hardcoded in the Zygote source code and we apply them
manually.

3.4 Attack Graph Instantiation
To begin our final instantiation, we must first fully expand all
object nodes within Gd . Specifically, we split all file nodes into
individual file instances. For example, the system_data_file ob-
ject has many backing files. To make sure that each file’s DAC
information is considered, we split this node while duplicating
edges to and from the original adjacent nodes. This greatly
increases the edge count, but allows for a concrete yes or no
answer for future DAC and MAC queries. We call this new
graph G f . With the two primary input graphs, G f for flattened
dataflow and Gp for the process tree we, for each process Pi of
subject S j in Gp, we copy all in and out edges from S j in G f to
Pi in the process tree. We effectively overlay the dataflow graph
onto the process tree, giving the concrete processes concrete
edges to all objects allowed to be read from or written to by the

original MAC policy. This final graph, Ga, is used to generate
facts for all of our future attack queries using the logic engine.

3.5 Logic-based Query Engine
To explore our BIGMAC attack graph, we design a Prolog-
based query engine as the backend, providing multiple query
interfaces to end users, as shown below:

query_mac(S,T,C,P).
query_mac_dac(S,T,C,P).
query_mac_dac_cap(S,T,C,B,P).
query_mac_dac_cap_ext(S,T,C,B,E,P).

S represents the starting node; T stands for the target node;
C is the cut-off parameter used to limit the length of a path;
B specifies the target Linux capability; E determines the
external attack surface type, such as USB and Bluetooth; and
P contains the returned paths of the query. Both the starting
node and the target node can be a process or a object (e.g., a
file or IPC). They can also be wildcards, which is represented
by underscore (_) in Prolog. Each query interface applies
different policy layers and filtering mechanisms. For example,
query_mac_dac_cap_ext(_,zygote,3,CAP_SYS_ADMIN,usb,P).

requests all (attack) paths which target the Zygote process,
pass both MAC and DAC checking, have a maximum path
length of 3, achieve CAP_SYS_ADMIN capability, and can
be launched from USB connections. As the attack graph is
built upon the MAC policy, each viable path within the graph
is allowed by the MAC. To support different query interfaces,
we apply different policy and filtering checks on a viable
path. For instance, query_mac_dac_cap_ext predicate finds a
viable path within the graph, such that:

find_a_path(S,T,C,B,E,P) :-
graph_travel(S,T,[S],P,C),
dac_path(P),
cap_path(P,B),
ext_path(P,E).

The graph_travel predicate uses Depth First Search (DFS) to
find a path, which is based on the MAC policy. The dac_path
predicate then checks the corresponding DAC policy by look-
ing into every adjacent pair of nodes within the path using
the dac predicate. Each pair of nodes (A,B) is a combination
of a process and a system object with any ordering. The dac
predicate checks for root user, owner, group, and others based
on the DAC information within each node. We perform the
following query, ∀A,B∈S∪T , perform:

dac(A,B) :-
dac_sub_obj(A,B);
dac_obj_sub(A,B).

dac_sub_obj(A,B) :-
is_sub(A),
dac_sub_obj_allow(A,B).

dac_obj_sub(A,B) :-
is_obj(A),
dac_obj_sub_allow(A,B).

dac_sub_obj_allow(A,B) :-

276 29th USENIX Security Symposium USENIX Association

is_root(A);
is_owner(A,B);
group_sub_obj_allow(A,B);
other_sub_obj_allow(A,B).

dac_obj_sub_allow(A,B) :-
is_root(B);
is_owner(B,A);
group_obj_sub_allow(A,B);
other_obj_sub_allow(A,B).

The cap_path predicate checks if a given path can achieve a
certain Linux capability by examining the last node within the
path. In case of the last node being a system object, we also
need to look at the previous node which is the last process node
within the path. Because each process node has its capability
information encoded, the final check is to see if the requested
capability is contained within the capability list of the node.

cap_path(P,C) :-
cap_last(P,C);
cap_prev(P,C).

cap_last(P,C) :-
last(P,A),
is_sub(A),
cap_supp(A,C).

cap_prev(P,C) :-
prev(P,A),
is_sub(A),
cap_supp(A,C).

Similarly, the ext_path predicate checks if a given path starts
from an external attack surface, e.g., USB, by inspecting the
starting node within the path. If the starting node is a system
object and can be reached via external connections, the path is
an attack path that can be triggered externally. Because each
system object has its external connection information encoded,
the final check is also a membership checking between the
specific external attack and the surface list of the node.

ext_path(P,E) :-
first(P,A),
is_obj(A),
ext_supp(A,E).

4 Implementation

Our implementation of BIGMAC is based upon Python 3.5 and
SWI-Prolog, and it employs the NetworkX library for graphing
and the SETools package [7] 4 for decompiling SEPolicies into
their original types and rules.

4.1 Firmware Extraction
BIGMAC uses an open source extraction library for the raw
firmware, which supports 18 firmware vendors across many
Android versions [39]. We extended this tool to support newer
8.0 Samsung images, which use the LZ4 compression on the

4SETools does not recover the policy source, but it recovers the effective
policy after the source has had all of its macros expanded, comments removed,
and neverallow rules checked.

raw disk images. For this paper, we only extracted Google,
Samsung, and LG images, but we would be able to support
many other vendors as the files we extract from disk images
are standardized by the platform.

The extraction tool starts by recursively unzipping firmware
images, handling each layer based on the file type. We hook
into the ext4 disk image extraction routine and disable the per-
mission changes to maintain the original DAC and MAC infor-
mation. Then in our separate frontend, we perform a filesystem
walk of each disk image to extract out all metadata provided
by the stat, getxattr, and readlink calls. We store this in a
dictionary indexed by filename. Next we walk our in-memory
Virtual Filesystem (VFS) using regular expressions to extract
out every file shown in Figure 1. Additionally we extract out the
build.prop files to resolve properties containing key meta-
data like the Android version and the hardware configuration.
We save all of these raw files in an image-specific database
for later processing. There are some quirks between different
Android major versions that our tool also takes into account.
Most of these involve the major changes to the security policy
file splitting by Project Treble [18]. Effectively, the platform
(Google) and the vendor now have separate files for all of those
shown in Figure 1. Our tool handles this transparently, allowing
us to analyze version 7.0 and above.

4.2 System Boot Emulation

To recover an approximate state of a running system, we com-
bine all known policy files at various stages. The most impor-
tant set of files besides the raw SEPolicy are the Android init
scripts. These are text based, shell-like commands that exe-
cute sequentially in blocks, but do not support constructs for
control-flow or looping [17]. This is a significant advantage
for BIGMAC as we do not have to support arbitrary code and
can instead selectively handle the most important commands.
We implemented the mkdir, chown, chmod, trigger, enable,
and mount commands. The first three change the state of the
filesystem, including DAC information; trigger raises an
event that causes other sections to be executed; enable starts
a service; and mount mounts a filesystem to a hardpoint. The
mount command is particularly important to handle as it af-
fects the effective SEContext that files are assigned during our
simulated restorecon process. During device ground-truth
analysis, most of the wrong MAC/DAC data came from not
handling these quirks. Each vendor and device model comes
with its own set of quirks in the init system. For example, on a
Pixel 8.1.0 image, we had to set the property vold.decrypt
to trigger_post_fs_data in order for init simulator to ex-
ecute the proper boot sections that create the /data directory.
Another quirk we discovered was that some OEMs add their
own custom group and user Android IDs (AID) that deviate
from Android platform. This affects our equivalent getpwnam
function which is unable to map these names to AIDs. To fix
this, we plan on extracting out an exported table, android_id,

USENIX Association 29th USENIX Security Symposium 277

from the Bionic libc.so binary.

4.3 Android Credential Simulation

After booting init and modifying the filesystem, we use recov-
ered service definitions from the init files to properly assign
runtime credentials to inflated processes. Service definitions
contain their starting user, group, and capabilities. These are
instrumental in getting accurate DAC and CAP information
and improving the overall fidelity of our attack graphs. From
the spawned children of init, we also perform a conservative
reparenting of children processes that have no service defini-
tion, yet are able to be transitioned to by the init daemon. This
helps fix the process tree in case a child of init also forks its
own helper processes, which we noticed with the location
service (loc_launcher). Overall, the credential simulation is
a best-effort approximation given the available information
and constraints recovered from the MAC policy.

4.4 Logic-based Query Engine

We implement our logic-based query engine using SWI-
Prolog5 and provide all four query interfaces described in 3.5.
To parse the output from Prolog (a list of paths), we created
an interactive query frontend using the GNU readline library.
This gives us support for interactive tab completion of all the
possible processes and objects to use as source and target nodes.
It also allows us to save, restore, and pretty print all queries.
Within Prolog, we needed to add a cutoff parameter to prevent
path explosion. The cut-off parameter (C) drops the path if its
length is beyond the value specified. We also implement an
is_uniq predicate to filter paths which contain duplicated ele-
ments, making sure that paths within the length of the cut-off
also do not contain loops. To collect all possible paths, we use
Prolog’s Depth First Search (DFS) with iterative deepening
(f indall). In total, we wrote 5,997 lines of Python across the
extraction tool, graph creator, and query frontend. Our Prolog
engine was 343 lines.

5 Evaluation

Our evaluation is broken up into two sections: a ground truth
study and case studies of BIGMAC on Android firmware. The
ground truth study’s purpose is to evaluate BIGMAC’s accu-
racy in recovering security policy from static firmware. This
part is limited in the Android devices and vendors because we
require real rooted devices to compare against. The case stud-
ies have no such limitations as BIGMAC works on firmware.
As such, we evaluate images from Samsung, LG, and Google.
For reproducibility of our results, all of the firmware used is
described in Table 9 of the Appendix.

5 We initially used GNU Prolog but it crashed due to large edge counts.

5.1 Ground Truth Comparison
To evaluate the feasibility of recreating the Android runtime
system state from firmware, we use custom scripts loaded via
adb to collect MAC, DAC, and process information from a
rooted Google Pixel 1 and Samsung Galaxy S7 edge. For the
Pixel, we reflashed and rooted it with three different AOSP
versions: Android 7.1.2, 8.1.0, and 9.0.0.

For the file and process recovery tables, we have marked
metrics as True Positive (TP, found and accurate), False Posi-
tive (FP, recovered file not accurate or it was extra), and False
Negative (FN, not found in recovery, but it exists on a real
system).

File Permissions As shown in Table 1, we are able to fully
replicate most major directories within the running system
from static firmware, including /vendor and /system. To be
precise, we can recover all of the MAC data within the sys-
tem by parsing file_contexts and applying it to files from the
firmware. This is equivalent to a running system performing
a restorecon operation. For filesystems created during the
runtime, such as /dev and /sys, we are able to infer potential files
by parsing uevent.rc files, which would normally be loaded
by ueventd during the phone’s early boot. This file contains
glob patterns to match device or sysfs nodes in order to apply
a user, group, and file mode. We conservatively instantiate
files we see referenced in this file, which leads us to be able
to recover many character devices. Unfortunately, these files
contain more device nodes than are actually found on running
phones, as seen in the “Extra Files” (false positives) rows of
Table 1. This is a difficult balance to strike. Without recovering
/dev, many SELinux contexts have no backing files, which
means we cannot fully instantiate the associated file objects,
leading to false negatives.

Since we are limited by the content provided by firmware,
some directories, namely /data and /odm, have a high false-
negative rate. These filesystems are only created after the first
boot or are vendor-specific. For example, the missing 5,350
files on the Pixel 1 (8.1.0) in /data are mostly caches for ap-
plications. Our attack graph model is primarily focused on
system-level directories and files, and we can safely ignore
the verbose contents of these directories. Of the file DAC and
MAC data that is possible to recover, our TP positive rate
is greater than 98% for all images.

Process Tree In order to get actionable results from our at-
tack queries, we need as close to an accurate of a picture of the
running system as possible. Our process recovery involves a
significant amount of information collection and firmware file
parsing in order to make the best instantiation possible. Along
the way, we employ device and version agnostic algorithms to
do so, which is key to support a large range of firmware.

The results of our process recovery are in Figure 4. For the
S7 edge in column 1a, we instantiate 49 processes, 25 of which

278 29th USENIX Security Symposium USENIX Association

Samsung S7 Edge (7.0.0) Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)
Path Count %Files Path Count %Files Path Count %Files Path Count %Files

Good /system 5,233 93.1% /system 2,301 67.6% /system 2,512 57.4% /system 2,827 60.0%
Files (TP) /data 115 2.0% /vendor 630 18.5% /vendor 1,264 28.9% /vendor 1,269 26.9%

/dev 40 0.7% /data 115 3.4% /data 111 2.5% /data 143 3.0%
Different /dev 46 0.8% /dev 28 0.8% /dev 46 1.1% /dev 46 1.0%
DAC/MAC /mnt 7 0.1% /sbin 5 0.1% /data 6 0.1% /odm 10 0.2%
(FP) /system 5 0.1% /mnt 2 0.1% /sbin 4 0.1% /sbin 4 0.1%
Extra /dev 73 1.3% /dev 167 4.9% /dev 169 3.9% /dev 169 3.6%
Files (FP) /system 6 0.1% /cache 4 0.1% /data 10 0.2% /cache 4 0.1%

/acct 1 0.0% /acct 1 0.0% /cache 4 0.1% /acct 1 0.0%
Total: 5,621 100% Total: 3,405 100% Total: 5,780 100% Total: 4,709 100%
DAC/MAC Correct: 98.7% DAC/MAC Correct: 98.6% DAC/MAC Correct: 98.4% DAC/MAC Correct: 98.4%

Missing /data 7,407 75.6% /data 4,425 77.3% /data 5,350 74.2% /data 5,188 73.8%
Files (FN) /dev 906 9.2% /dev 649 11.3% /dev 856 11.9% /dev 793 11.3%

/mnt 841 8.6% /config 326 5.7% /config 676 9.4% /config 768 10.9%
Total: 9,798 100% Total: 8,961 100% Total: 9,821 100% Total: 7,034 100%

Table 1: A comparison of BIGMAC’s file recovery and their corresponding MAC and DAC metadata from firmware images versus
running devices. Only the top three filesystem paths are shown. The “Good Files” (TP) category shows how many files had 100%
identical metadata to the running filesystem. “Different MAC/DAC” (FP) is a listing of the top directories where MAC/DAC
data was mismatched. “Extra Files” (FP) shows the directories where BIGMAC recovered files that did not exist at all on the real
running system. Finally, “Missing Files” (FN) are the files that were not available from the raw firmware (/data contains installed
app data, caches, and settings).

Samsung S7
Edge (7.0.0)

Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)
0

20

40

60

80

100

120

140

160

P
ro
ce

ss
C
ou

nt

25 51.0% 29 56.9%

61 70.1% 68

74.7%

20 40.8% 19 37.3%

23 26.4% 20
22.0%

8.2% 5.9%

3.4% 3.3%

Correct (TP)
Different DAC/Cap. (FP)
Extra (FP)

(a) The set of processes recovered by BIGMAC.

Samsung S7
Edge (7.0.0)

Pixel 1 (7.1.2) Pixel 1 (8.1.0) Pixel 1 (9.0.0)

45
30.8%

48
52.7%

84

65.1%

8863.8%
20 13.7% 7.7%

7.0% 5.8%

81

55.5%

36
39.6%

36
27.9%

4230.4%

Pair Found (TP)
Missing Native (FN)
Missing App (FN)

(b) The set of processes extracted from a running device.

Figure 4: A comparison of BIGMAC’s process recovery and versus running devices. In figure (a), “Correct” (TP) shows how many
recovered processes had 100% identical metadata (excluding process IDs) as compared to a running phone. “Different DAC/Cap.”
(TP/FP) is where a process was matched to a running device process, but parts of the DAC/capabilities were different. “Extra”
(FP) shows the processes BIGMAC over-approximated and were not running on the real running system during the snapshot. In
figure (b), “Pair Found” (TP) shows how many recovered and real processes were able to be matched via executable and SELinux
context. “Missing Native” (FN) are the native daemons that were not instantiated. “Missing App” (FN) are the Zygote-children
(applications) that are not currently recovered by BIGMAC.

are completely accurate to a running device, 20 are partially
accurate, and 4 are extraneous (not running on the real device).
Of the missing processes in column 1b, 55.5% are app pro-
cesses, which BIGMAC does not instantiate at this time as
our focus is on native daemons. To do so would require APK
extraction and manifest parsing in order to achieve accurate
group membership.6 For the S7 edge, 20 of the processes are

6Android conflates some middleware permissions with UNIX groups, such
as the INTERNET permission with the inet GID.

native daemons, which were not instantiated for various rea-
sons, such as already instantiated processes created children.7

For the Pixel 1 9.0.0 we fare the best with 74.7% of processes
having a recovered pair and only 9 missing native processes.
For the processes we did recover, in all cases, over 50% of the
recovered processes completely matched paired real processes.
This would not be possible without parsing Android init files

7We do not know when or if a process will fork or exec. Doing so would
require binary analysis or an emulator.

USENIX Association 29th USENIX Security Symposium 279

to extract service definitions.

5.2 Attack Graph Queries
To explore our graph instantiation, we emit the graph nodes,
their attributes, and the edges between them to SWI-Prolog for
further analysis. We develop an interactive query interface that
allows us to ask attack queries about the graph. The result of a
query is a list of all possible paths meeting the parameters of
the query. The query parameters include: source node, target
node, max path length (cutoff), target capabilities, and object
type. To make our analysis concrete, we generate attack graphs
from a Samsung S8+ 8.0 and LG G7 9.0 firmware.

Layered Path Reduction To demonstrate the path
reduction through including DAC checks, we run
query(untrusted_app,vold,4) with MAC-only fil-
tering (query_mac) and with MAC+DAC filtering. As
shown in Table 2, we are able to bring down the number of
query results by at least an order of magnitude by providing
fine-grained query interfaces with multi-layer filtering. We
chose the vold process because it is a powerful Android
platform daemon responsible for mounting and managing
disk volumes. It is also part of Android’s formal definition
of its TCB [19]. On the S8+, vold is directly reachable by
nearly 100K unique length-4 paths when just considering
the MAC policy and only 14K paths after applying DAC. On
LG’s firmware, there are considerably fewer paths even on
the MAC-only query. This is due to the number of unique
files available to be written by processes along the path
that can be read by vold. A diagram of some of the types
of paths that were filtered out by the DAC checking, but
passed MAC is shown in Figure 5. Files and directories that
would be considered writable by the MAC policy alone are
discarded when the DAC policy is applied. In this case, the
untrusted_app process is not a member of the media_rw.
Therefore it cannot affect these directories. It is possible that
at runtime the app process could gain access to this group
or the DAC permissions on the directories could change.
BIGMAC currently works off of snapshots of the security
policy state. While applying DAC information increases
the query running time, it provides realistic paths results
that would be allowed by the MAC and DAC policy on
a real system. MAC-only paths (effectively pure policy
analysis) that are shown by previous work have many more
false positives, leading to results not accurate enough to draw
security conclusions from.

Analysis of a Privilege Escalation To demonstrate how
BIGMAC can discover unintended paths that could be used
for privilege escalation, we analyze CVE-2018-9488 [30]. As
shown in Figure 6, this flaw let the Zygote process compro-
mise the crash_dump binary due to its control over the mount
namespace. From here, crash_dump has the ability to read and

Query (S8+) # Paths Time (s)
query_mac_only(ua,vold,4) 99,448 24.74
query(ua,vold,4) 14,417 443.53
Query (G7) # Paths Time (s)
query_mac_only(ua,vold,4) 7,155 3.03
query(ua,vold,4) 1,065 55.38

Table 2: The results of the layered query filtering performed for
the untrusted_app (abbreviated to ua) to vold attack surface
with a cutoff of four.

process:untrusted app

/data/media <drwxrwx--- media rw media rw>

/data/knox/sdcard <drwxrwx--- media rw media rw>

/data/knox/secure fs/enc media <drwxrwx--x system system>

process:vold

media rw data file:write

media rw data file:read

Figure 5: Three paths that were discarded due to DAC filtering
on the S8+ image.

process:zygote
<CAP SYS ADMIN>

<various files>

process:crash dump
process:vold
<uid=0>

crash dump exec:transition

*:write

vold:ptrace

Figure 6: A diagram of the escalation path taken by CVE-2018-
9488 to compromise vold.

write the memory of vold using the ptrace syscall (which was
allowed by the MAC policy). We use BIGMAC on the Google
8.1.0 image (before it was patched) to discover this escalation
path by with query(process:zygote,process:vold,4).
This query returns over 700 paths, all of which involve
files, except for one, which involves a domain transition to
crash_dump.

Was Zygote the only daemon capable of compromis-
ing vold through the crash_dump binary? It was not, as
query(_,transition:crash_dump,1,CAP_SYS_ADMIN)
finds 24 other daemons that, if compromised, could achieve
the same escalation. A notable daemon is installd, which
handles installing untrusted APKs. installd is responsible
for parsing the complicated APK file format and a exploitable
vulnerability via this path could have quickly escalated
into a full system compromise. We believe this highlights
that the lack of granularity of CAP_SYS_ADMIN leads to an
ineffective security policy. Any process with this capability
can get arbitrary code execution in any other domain it
can transition. We consider this to be a weakness in the
capability security model, and more effort needs to be made to
limit the number of processes with this. This analysis shows
that BIGMAC could help policy writers determine the impact
of a policy misconfiguration while taking into account Linux

280 29th USENIX Security Symposium USENIX Association

capabilities. This finding is not obvious when analyzing the
MAC policy in isolation: Linux capabilities are a crucial part
of the overall security model.

Process Strength As an attacker with control over a process
and looking to privilege escalate, we would like to see all the
possible avenues to write data to objects that can affect other
processes. We can easily perform this query for any process
by fixing the source node and having a wildcard for the target
node. For example: query(untrusted_app,_,1)would find
all of the objects that can be directly influenced by a process
with the untrusted_app label. This query is useful as it takes
into account the MAC+DAC policy to find actual writes. With
this information, we can identify labels that are too strong and
should be further compartmentalized. The top three strongest
processes are shown in Table 3 for our three firmwares.

For the S8+ and G7 firmwares, init and system_server
are ranked first and second. init’s IPC edges consist of prop-
erty service writes and transitions to new domains. The ex-
ception is that it has a socket open to logd and vold. The rest
of its writes are to critical system files, making it file focused.
system_server is heavily focused on IPC through binder and
is also home to hundreds of services. This makes it a large
target for attackers considering its key role in mediating ap-
plication IPC. We argue that a single SELinux label with this
much cross-domain write-strength is a risk to the whole sys-
tem’s integrity. For example, while system_server does not
run as root, many services implicitly trust IPC from it. Using
its binder connection to vold, it could request any mounting
operation. Worse, it has the capability of CAP_SYS_MODULE
allowing it to load arbitrary kernel modules. Based upon this
finding, we believe system_server must be refactored
into smaller services. As system_server is able to load ker-
nel modules, we argue that it is actually in the system’s TCB,
yet it is too monolithic to be trustworthy. For the lpm pro-
cess on the S8+ image, it is Samsung’s charging daemon. All
writable objects are focused on USB and SysFS power man-
agement. hal_usb_default on the LG G7 is a similar story. It
only talks to system_server and hwservice_manager. All
other writes are to USB files and SysFS. This analysis demon-
strates that BIGMAC can be used to assist in identifying and
triaging over-privileged processes, leading to improved and
more modular polices at the MAC, DAC, and CAP layer.

Process Attack Surface Our query_mac_dac query inter-
face implements a useful way to study the attack surface of a
given process node. We define all possible paths for IPC as an
attack surface of a given process. By ignoring the starting node
(wildcard) and specifying the target node, we are able to find
all the paths leading to the target node. In this case, we focus
on system_server to further demonstrate how monolithic it
is. By limiting the cut-off to be 1, we get all the objects (IPC
& files) that the target process can read from. Cut-off 2 finds
all possible paths to the target, including the ones found by

Firmware Process # Writable # IPC
S8+ init 2,066 296

system_server 1,398 458
lpm 634 8

G7 init 1,233 418
system_server 573 368
hal_usb_default 508 19

Table 3: A process strength query where we find all the writable
adjacent objects to each process.

Query (S8+) # Paths # IPC Uniq. IPC
query(_,system_server,1) 9,853 – –
query(_,system_server,2) 12,681 2,814 716
Query (G7) # Paths # IPC Uniq. IPC
query(_,system_server,1) 11,844 – –
query(_,system_server,2) 13,759 1,875 564

Table 4: A combination of BIGMAC queries to find all unique
IPC paths and IPC objects in system_server.

cut-off 1. This finds all the writers of those objects (if any) and
eliminates all read-only objects. As a result, the subtraction
of these two query response provides us all possible IPC for a
target, as shown in Table 4. With these paths, we can look at
the shared object between the writer and reader. This is our set
of unique IPC objects. With the list of paths, we can perform
an "IPC diff" to determine the OEM-specific IPC objects and
paths. These are likely to be less audited than upstream AOSP
IPC. With this IPC diff, we now know the OEM-specific IPC
and can further filter out AOSP IPC paths. For this analysis,
we are interested in which IPC paths are writable from an
untrusted_app (UA). Using a Linux basic text processing
and manual inspection, we identified some suspect paths.

LG has 11 UA-reachable IPCs. Of those, we discovered
that a UA is allowed to connect to an LG-specific kernel
monitoring service as shown in Figure 7. The MAC nor
DAC policy forbid this. This service allows applications to
receive information, such as integrity checks, from the running
kernel. Further investigation into the service’s Binder proxy
interface shows that an additional system-app only middleware
check is performed at each proxied call. If any of the proxied
calls were missing this middleware check, the service would be
accessible from any application. Changing the MAC policy to
only allow the system_app type instead of untrusted_app
would increase the defense in-depth for this service, in case it
exposes a vulnerability in the future. We disclosed this finding
to LG, but it is unclear if they will implement the fix as they are
deprecating the service going forward.

On the Samsung S8+ image, we discover 58 UA reach-
able, OEM-unique IPCs. This demonstrates the vast amount
of vendor customizations that are made to an already large
system_server.

USENIX Association 29th USENIX Security Symposium 281

process:untrusted app

process:incidentd
<CAP SYS PTRACE>

service manager:kernel monitoring service

process:system server

send/recv
send/recv

send/recv

Figure 7: A diagram of the suspicious IPC path discovered on
the LG firmware.

Capability Search Our query_mac_dac_cap query inter-
face provides a way to find an attack path achieving a cer-
tain capability in the ending process node within the path.
Some capabilities are more dangerous than others, such as
CAP_DAC_OVERRIDE and CAP_SYS_ADMIN. Possessing one or
more of these capabilities increases the strength of an attacker
and improves their odds at finding additional escalation paths.
In our case, we look at the untrusted_app on the S8+ and LG
G7 to see how they could achieve additional capabilities in one
hop. We limit the cut-off to be 2, focusing on other processes
which can directly communicate with the app (e.g., via binder).

We run two queries on both images:
query(untrusted_app,_,2,CAP_SYS_MODULE) and
query(untrusted_app,_,2,CAP_DAC_OVERRIDE). For
the LG G7, an app can achieve DAC override via binder by
compromising netd or zygote (both are running as root with
all capabilities). For SYS_MODULE, it would have to target
system_server via binder. Letting untrusted_app speak
to root-level processes via IPC is concerning and indicates an
SELinux over-permission. For the Samsung S8+, the paths
found are the same, except for three OEM-specific paths
to the hal_iop_default, hal_perf_default, healthd
processes. All three are running as root with all capabilities.
Additionally, in the default AOSP SELinux policy, none are
allowed to talk to the untrusted_app domain via binder
requests. As such, we believe that these direct paths should
be eliminated and instead rely on a more trusted proxy for
interaction.

External Attack Surface Our query_mac_dac_cap_ext in-
terface enables studying external attack surfaces, such as USB,
Bluetooth, and modem. By wildcarding the starting node and
fixing the target node as a process, we use this query interface
to understand the reachability to a certain process from exter-
nal connections. Fixing the cut-off to be 1 and ignoring the
capability option within a query, we find all direct connections
between a process and external sources. In our case, we choose
the AT distributor process in Samsung S8+ as the target.

As shown in Table 5, the AT distributor process
has direct connections with USB, Bluetooth, and Mo-
dem. There are 25, 7, and 31 unique device and sysfs
files respectively that the process can access and

Query # Paths
query(_,at_distributor,1,_,usb) 29
query(_,at_distributor,1,_,bluetooth) 7
query(_,at_distributor,1,_,modem) 31
query(_,at_distributor,1,_,nfc) 0

Table 5: Different queries on different external attack surface
for the at_distributor process.

connect to external devices, including /dev/mtp/usb,
/dev/block/platform/soc/7464900.sdhci, /dev/mdm,
etc. The AT distributor is mainly responsible for distributing
AT commands to different native daemons and applications.
Our query demonstrates that while no AT commands likely
flow from NFC, USB, Bluetooth, and the modem are areas
for further investigation. The large number of paths from the
USB and modem demonstrate that native daemons, like the
AT distributor, may be prime targets for external exploitation
from peripherals.

6 Discussion

6.1 BigMAC for OEMs, Policy Writers, Audi-
tors, and App Developers

BIGMAC, while primarily focused on firmware, will also
work from rooted developer devices. An OEM could lever-
age this by integrating it into their build pipeline for debug-
ging policy misconfigurations on actual devices. It would
act as a last-mile check on the “actualized” security policy
for the system. For example, imagine there is a rule stating
that untrusted applications can never taint a root level pro-
cess directly without a sanitization step (such as through
a trusted process). A static BIGMAC query of the form
query(untrusted_app,_,uid=0,2) could be used to find
all short paths where an app can write to a file that can then be
read by a root process. This file can be a regular file, a socket, or
service. This list of paths could be compared against a whitelist
or cause a failure outright if no paths are to be allowed. By
having this query execute after a build, policy misconfigura-
tions could be caught before release, even if their causes were
not immediately obvious at the individual MAC/DAC/CAP
policy layers. Effectively, BIGMAC could be come a part of
Android’s compatibility test suite (CTS) which performs many
run-time checks already.

Beyond the build pipeline, BIGMAC is extensible and able
to give insight into the many policy layers. For example, con-
sider an OEM that has heard about a zero day vulnerability
(no public CVE yet) being used in the wild but only knows
some of the details, such as “it’s triggered from an app” and
“it affects system_server”. Using BIGMAC, they would be
able to query all of the attack paths from an application to
this daemon and use it to narrow down on the potential attack

282 29th USENIX Security Symposium USENIX Association

avenue: query(untrusted_app,system_server,2). They
would do this by triaging individual paths found. The alterna-
tive without BIGMAC would mean manually auditing all of
the security policies one by one without a joint perspective.

Policy writers would be able to use BIGMAC to debug
permission violations at the MAC+DAC+CAP layers. Addi-
tionally, they would be able to use it to determine the attack
surface of a process to further focus their fuzzing and hard-
ening efforts. Also, when analyzing CVEs, BIGMAC would
aid in finding more semantically similar violations given a
query pattern. Security researchers would use BIGMAC to
understand how processes interact via IPC and files to narrow
down where to look for vulnerabilities.

Auditors could use BIGMAC’s firmware extraction capa-
bilities to easily comprehend the running system’s security
policy (or if they have a physical device with root, extract it
dynamically). Previously, auditors would have to manually
extract the firmware, decompile the SELinux policy, likely use
grep or similar tools to find the relevant types for the process,
then have to keep in mind the DAC and CAP policies simulta-
neously. This burdens the auditor, especially given the large
semantic gaps between each policy, and can potentially lead
to errors given the amount of manual analysis required. With
BIGMAC, their analysis of system daemons will be greatly
sped up. Instead of having to reason about what objects these
daemons can affect, BIGMAC can print out a report for indi-
vidual daemons or the links between them automatically. The
fully-instantiated graph of BIGMAC boils down the policies
to what a running kernel would see instead of a policy writer.

Although BIGMAC is mainly designed for auditors and
OEMs, app developers could use BIGMAC to determine why
they are getting permission denied errors, assess their appli-
cation’s data and its potential for accidental exposure to other
apps via DAC (e.g., when writing files to the SDCard), to aid
in porting libraries that rely on file system assumptions (such
as permissions) which do not hold on Android.

6.2 Limitations

With only static information available, BIGMAC is limited
by the security policy evident in the metadata and configu-
ration files. In reality, a large portion of Android’s security
model, especially when it comes to IPC communication, re-
lies on a significant amount of access control checks at API
boundaries. These checks are a crucial part of middleware
permissions and BIGMAC does not not recover a database
of these. Previous work has extensively covered middleware
permissions [1, 2, 6, 10, 12, 14, 15, 20, 27, 28, 36] and as such
we instead focus on developing a fine-grained model of Linux-
based security policy. Loss of precision arises from the lack
of insight into process behavior. As such, we infer potential
IPC objects that exist at runtime, but it is possible that these
endpoints are unused or managed by access control differently.
Processes are able to create, remove, and change the security

state of files at runtime, in addition to creating new instances
of themselves at will. These dynamic changes are difficult to
capture statically and we avoid making over-permissive as-
sumptions. For example, we may know that a process spawns
from init with certain credentials, but it is unclear if it will drop
these privileges dynamically. This was the primary source
of process DAC/CAP mismatches found during the ground
truth evaluation. Processes will start as root temporarily, then
setuid to a lower privileged Android ID. A potential solution
to this issue is to perform binary static analysis using a tool with
a powerful Intermediate Language (IL) such as Binary Ninja. 8

Using this IL, we could determine all the cross-references to
privilege change functions like setuid and attempt to recover
the arguments to them. This modification is still not free from
the errors inherent with pure static analysis: the dead code
problem.

BIGMAC operates on snapshots of a system’s access control
state. It is possible that a process could modify the DAC state of
files under its ownership at runtime. Because BIGMAC relies
on static analysis, there is a chance that runtime DAC changes
could be missed. However, because of our ability to arbitrarily
model DAC permissions, we can provide a conservative worst-
case scenario in the case that the owning subjects for processes
protected by DAC modify their permissions. Our focus in this
paper is on existing permissions found through the static image
and while our tool supports these capabilities, we defer further
worst-case analysis of runtime behavior to future work.

The greedy approach taken by BIGMAC to creating files
from uevent configuration files in Section 4.2 can lead to extra
files that do not appear on our ground-truth equivalent. The
alternative is missing a significant portion of the in-use file
contexts. When supporting this feature, we increased the re-
covery of unique file contexts from 51% to 88% on the Pixel
8.1.0. Given the importance of these device nodes for overall
system security, this is a particularly notable gain.

Another aspect of Android’s system security model involves
the use of allowxperm rules to perform IOCTL filtering. Our
model does not consider the kernel as part of the attack surface,
but with nearly 40% of the current Android exploits targeting
the kernel [32], future work should also take these escalation
paths into consideration. On the kernel side, new versions
of Android use eBPF SECCOMP to create sandbox profiles
for untrusted applications. In our model, we only consider
Supporting SECCOMP and allowxpermwould require minor
additional engineering work.

7 Related Work

SELinux Policy Analysis Creating SELinux policies is non-
trivial; as such, improving policy analysis has been a topic of
significant research. One of the earliest tools in this space was
Gokyo [25], which originally considered SELinux policies and

8https://binary.ninja

USENIX Association 29th USENIX Security Symposium 283

https://binary.ninja

subsequently expanded to allow computing of multiple access
control spaces [26]. Our work differs in that we consider DAC
and Linux capabilities in addition to MAC policies. Hicks et al.
released PALMS [23], a Prolog tool for specifying MLS policy
in SELinux. We similarly use Prolog for reasoning over policy;
while MLS is interesting and a topic of future support for
BigMAC, in Android it is primarily enabled in Mobile Device
Management (MDM) contexts, which we do not model.

Chen et al. examined the overall protection quality of dif-
ferent SELinux-enabled operating systems by creating Vul-
SAN [5]. VulSAN used logic programming to create attack-
graphs to help compare the difficulty of attack scenarios be-
tween operating systems. SCIATool integrates different meth-
ods of policy analysis together in a framework for querying
policies [43] SEGrapher and V3SPA approach the problem of
policy analysis visually and tackle many of the issues inherent
in drawing and laying out large graphs with many edges [21,29].
Policy visualization gives insight into the relationships within
and between policies. V3SPA also provides a visual diffing
tool for two policies. Our work does not yet create interac-
tive graphs, but we employ attribute clustering to avoid edge-
explosion from attribute expansion. Eatman et al. surveyed
existing policy analysis frameworks and determined that a
front-end, formally specified, policy language should be cre-
ated for specifying SELinux rules [11]. Existing tools have
mostly employed variants of Prolog or other custom implemen-
tations to perform analysis. Effectively, researchers are already
abstracting away from SELinux to perform useful analysis.

Mobile Security Policy Analysis The complexities of cre-
ating and maintaining SELinux policies has carried over to
Android since its introduction of SEAndroid in 2013 [37].
Reshetova et al. performed one of the initial analyses of real
SEAndroid policies from actual devices [34]. To achieve this,
they developed a tool called SEAndroid Analytics Library
(SEAL) to help collect SELinux contexts from running devices
for further analysis. Using SEAL requires access to a rooted
or developer device, which limits the ability to scale up the
analysis to many vendors or devices. Chen et al. analyzed over
ten SEAndroid policies for different classes of misconfigura-
tion [4]. They discovered that the combination of DAC and
MAC policies could interact in unintended ways, leading to
compositional over-privilege, amongst other errors. This work
also required running devices running debug builds in order to
extract security policies and maxed out at Android 6.0, which
was widely available at that time. To help policy writers cre-
ate new allow rules, EASEAndroid [41] developed a machine
learning model to help classify Access Vector Cache (AVC) de-
nials from collected SEAndroid logs as important or spurious.
Another approach has been to analyze the source code of SE-
Android policies for common misconfigurations through the
tools SELint and SPOKE [33, 40]. Our approach does not as-
sume access to SEAndroid policy source code, as most policies
are distributed in a compiled form and considered proprietary.

A historical analysis of the SEAndroid policy evolution focus-
ing on policy complexity [24] is also proposed based on Git
commit history. There has also been previous work on Android
privilege escalations and how to mitigate them using a MAC
approach [3], but this was before SEAndroid was implemented
and enforced on the platform. Similarly, prior to the devel-
opment of SEAndroid, Muthukumaran et al. demonstrated a
technique for enforcing CW-Lite, a lighter-weight approach
to Clark-Wilson integrity [35], on OpenMoko mobile devices
running with an SELinux-enhanced kernel [31].

Most mobile policy analysis has been focused on Android,
but SandScout [9] and iOracle [8] focus on analyzing Apple
iOS Sandbox profiles. SandScout decompiles these profiles
from iOS firmware into a Prolog representation and create
queries to discover new vulnerabilities used by previously
released jailbreaks. iOracle expands upon this work by analyz-
ing the whole iOS security model, including capabilities and
UNIX permissions. Their work requires dynamic analysis for
data collection, while BIGMAC relies solely on static analysis
with domain knowledge. Additionally, BIGMAC incorporates
Linux capabilities, DAC, and MAC together in a single graph
for the whole-system, which previous iOS policy work does
not replicate.

8 Conclusion

We present BIGMAC, a new security policy analysis frame-
work for Android. BIGMAC can rebuild the running system
state from firmware images without the need for physical de-
vices. We build an attack-graph in BIGMAC and a logic-based
query engine combining MAC, DAC, capabilities, and external
attack surface analysis. We can thus find attack paths between
processes and from external sources to audit Android security
policies.

Acknowledgments
This work was partially supported by the National Science
Foundation CNS-1815883 and by the Semiconductor Research
Corporation (SRC).

References
[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the

Android Permission Specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12, pages
217–228. ACM, 2012.

[2] M. Backes, S. Bugiel, and S. Gerling. Scippa: System-centric IPC
Provenance on Android. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC ’14, pages 36–45, New York,
NY, USA, 2014. ACM.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shas-
try. Towards Taming Privilege-Escalation Attacks on Android. In NDSS,
volume 17, page 19, 2012.

[4] H. Chen, N. Li, W. Enck, Y. Aafer, and X. Zhang. Analysis of SEAndroid
Policies: Combining MAC and DAC in Android. In Proceedings of the

284 29th USENIX Security Symposium USENIX Association

33rd Annual Computer Security Applications Conference, ACSAC 2017,
pages 553–565, New York, NY, USA, 2017. ACM.

[5] H. Chen, N. Li, and Z. Mao. Analyzing and Comparing the Protection
Quality of Security Enhanced Operating Systems. In NDSS, pages
11–16, 2009.

[6] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-
application Communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 239–252, New York, NY, USA, 2011. ACM.

[7] Chris PeBenito. SETools: SELinux Policy Analysis Tools v4, Mar. 2018.
https://github.com/SELinuxProject/setools.

[8] L. Deshotels, R. Deaconescu, C. Carabas, I. Manda, W. Enck, M. Chiroiu,
N. Li, and A.-R. Sadeghi. iOracle: Automated Evaluation of Access
Control Policies in iOS. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ASIACCS ’18, pages 117–
131, New York, NY, USA, 2018. ACM.

[9] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck, and A.-R.
Sadeghi. SandScout: Automatic Detection of Flaws in iOS Sandbox
Profiles. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 704–716,
New York, NY, USA, 2016. ACM.

[10] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:
Lightweight provenance for smart phone operating systems. In USENIX
Security Symposium, volume 31, page 3, 2011.

[11] A. Eaman, B. Sistany, and A. Felty. Review of Existing Analysis Tools
for SELinux Security Policies: Challenges and a Proposed Solution. In
E. Aïmeur, U. Ruhi, and M. Weiss, editors, E-Technologies: Embracing
the Internet of Things,Lecture Notes in Business Information Processing,
pages 116–135. Springer International Publishing, 2017.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones. ACM
Trans. Comput. Syst., 32(2):5:1–5:29, June 2014.

[13] W. Enck, M. Ongtang, and P. McDaniel. Understanding android security.
IEEE Secur. Privacy, 7(1):50–57, 2009.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Per-
missions Demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[15] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
Re-Delegation: Attacks and Defenses. In USENIX Security Symposium,
page 88, 2011.

[16] Gartner. Market Share Alert: Preliminary, Mobile Phones, Worldwide,
2Q18. https://www.gartner.com/doc/3881811/market-share-
alert-preliminary-mobile, July 2018.

[17] Google. Android Init Language, Feb. 2018. https:
//android.googlesource.com/platform/system/core/+/
master/init/README.md.

[18] Google. SELinux for Android 8.0, Feb. 2018. https://source.
android.com/security/selinux/images/SELinux_Treble.pdf.

[19] Google. Security Updates and Resources,Aug. 2019. https://source.
android.com/security/overview/updates-resources.

[20] S. A. Gorski,B. Andow,A. Nadkarni,S. Manandhar,W. Enck,E. Bodden,
and A. Bartel. ACMiner: Extraction and Analysis of Authorization
Checks in Android’s Middleware. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, CODASPY
’19, pages 25–36, New York, NY, USA, 2019. ACM. Richardson, Texas,
USA.

[21] R. Gove. V3SPA: A visual analysis, exploration, and diffing tool for
SELinux and SEAndroid security policies. In 2016 IEEE Symposium
on Visualization for Cyber Security (VizSec), pages 1–8, Oct. 2016.

[22] S. E. Hallyn and A. G. Morgan. Linux capabilities: making them work.
2008.

[23] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical
specification and analysis for SELinux MLS policy. ACM Trans. Inf.
Syst. Secur., 13(3):26:1–26:31, July 2010.

[24] B. Im, A. Chen, and D. S. Wallach. An historical analysis of the seandroid
policy evolution. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 629–640. ACM, 2018.

[25] T. Jaeger, R. Sailer, and X. Zhang. Analyzing Integrity Protection in the
SELinux Example Policy. In USENIX Security Symposium, 2003.

[26] T. Jaeger, R. Sailer, and X. Zhang. Policy management using access
control spaces. ACM Trans. Info. Sys. Sec., 6(3):327–364, Aug. 2003.

[27] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima,
S. Kiyomoto, and Y. Miyake. Run-Time Enforcement of Information-
Flow Properties on Android. In J. Crampton, S. Jajodia, and K. Mayes,
editors, Computer Security – ESORICS 2013, Lecture Notes in Computer
Science, pages 775–792. Springer Berlin Heidelberg, 2013.

[28] T. Markmann, D. Gessner, and D. Westhoff. QuantDroid: Quantitative
approach towards mitigating privilege escalation on Android. In 2013
IEEE International Conference on Communications (ICC), pages 2144–
2149, June 2013.

[29] S. Marouf and M. Shehab. SEGrapher: Visualization-based SELinux
policy analysis. In 2011 4th Symposium on Configuration Analytics and
Automation (SAFECONFIG), pages 1–8, Oct. 2011.

[30] MITRE. CVE-2018-9488. https://nvd.nist.gov/vuln/detail/
CVE-2018-9488, 2018.

[31] D. Muthukumaran, J. Schiffman, M. Hassan, A. Sawani, V. Rao, and
T. Jaeger. Protecting the integrity of trusted applications in mobile phone
systems. Security and Communication Networks, 4(6):633–650, 2011.

[32] Nick Kralevich. Honey, I Shrunk the Attack Surface - Adventures in
Android Security Hardening. Black Hat, July 2017.

[33] E. Reshetova, F. Bonazzi, and N. Asokan. SELint: an SEAndroid pol-
icy analysis tool. arXiv:1608.02339 [cs], pages 47–58, 2017. arXiv:
1608.02339.

[34] E. Reshetova, F. Bonazzi, T. Nyman, R. Borgaonkar, and N. Asokan.
Characterizing SEAndroid Policies in the Wild. arXiv:1510.05497 [cs],
Oct. 2015. arXiv: 1510.05497.

[35] U. Shankar, T. Jaeger, and R. Sailer. Automted Information-Flow In-
tegrity Verification for Security-Critical Applications. In ISOC Network
and Distributed Systems Security Symposium (NDSS), 2006.

[36] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The Misuse of Android
Unix Domain Sockets and Security Implications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 80–91, New York, NY, USA, 2016. ACM.

[37] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing
Flexible MAC to Android. In NDSS, pages 20–38, 2013.

[38] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as a linux
security module. NAI Labs Report, 1(43):139, 2001.

[39] D. Tian, G. Hernandez, J. Choi, V. Frost, C. Ruales, K. Butler, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, and M. Grace. ATtention
Spanned: Comprehensive Vulnerability Analysis of AT Commands
Within the Android Ecosystem. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 351–366, Washington, D.C., 2018.
USENIX Association.

[40] R. Wang, A. M. Azab, W. Enck, N. Li, P. Ning, X. Chen, W. Shen, and
Y. Cheng. SPOKE: Scalable Knowledge Collection and Attack Surface
Analysis of Access Control Policy for Security Enhanced Android. In
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 612–624, New York,
NY, USA, 2017. ACM.

USENIX Association 29th USENIX Security Symposium 285

https://github.com/SELinuxProject/setools
https://www.gartner.com/doc/3881811/market-share-alert-preliminary-mobile
https://www.gartner.com/doc/3881811/market-share-alert-preliminary-mobile
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/overview/updates-resources
https://source.android.com/security/overview/updates-resources
https://nvd.nist.gov/vuln/detail/CVE-2018-9488
https://nvd.nist.gov/vuln/detail/CVE-2018-9488

[41] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and
A. M. Azab. Easeandroid: Automatic policy analysis and refinement
for security enhanced android via large-scale semi-supervised learning.
In 24th USENIX Security Symposium (USENIX Security 15), pages
351–366, Washington, D.C., 2015. USENIX Association.

[42] E. Yunis, R. Yokota, and A. Ahmadia. Scalable force directed graph lay-
out algorithms using fast multipole methods. In 2012 11th International
Symposium on Parallel and Distributed Computing, pages 180–187.
IEEE, 2012.

[43] G. Zhai, T. Guo, and J. Huang. SCIATool: A Tool for Analyzing SELinux
Policies Based on Access Control Spaces, Information Flows and CPNs.
In M. Yung, L. Zhu, and Y. Yang, editors, Trusted Systems, Lecture Notes
in Computer Science, pages 294–309. Springer International Publishing,
2015.

A Appendix

A.1 Implementation Details
Graph Building Once we have a complete policy database
saved, we may reload it and begin processing it how we like.
In our case, we instantiate attack-graphs, therefore we employ
NetworkX for constructing and traversing graphs. We load the
saved SEPolicy image, covert it to nodes and labeled edges and
also save this for future processing. We also employ Graphviz
for visualizing our subject, process, and attack-graphs using
the sfdp [42] program, which has no trouble laying out large
graphs.

For our dataflow graph, we needed to handle a few quirks in
our object model. One of these was splitting of character device
files into separate read and write objects. Without doing this,
processes P1 and P2 that can write and read from O1, P1←→
O1←→P2, have an transitive dataflow to each other. This is
not correct, therefore we split the object into a read-only and
write-only versions: P1 −→O1W ←− P2, P1←−O1R −→ P2.
These new nodes are leaf nodes, preventing this unintended
flow.

A.2 Tables
USB Attack Surface With our instantiated graph, we tag
certain file objects, specifically device nodes relating to USB
input and output. We then query our graph searching for all
paths from these USB sources to a single or multiple pro-
cesses. This allows us to get insight into the processes that can
be directly affected by USB data. In our case, we chose the
/dev/ttyUSB0 device file which connects with external USB
devices. By fixing the cut-off to be 1, we are able to find all
processes that are able to directly read from this device file.

As shown in Table 6, a USB connection can di-
rectly reach 25 unique processes, such as DMM-daemon,

adbd, remotedisplay, etc. Among these 25 processes, 22
have the CAP_DAC_OVERRIDE capability, and 22 have the
CAP_SYS_ADMIN capability. The data demonstrates that USB
as an external attack surface interacts with many privileged
processes. While some of the daemons have clear reasons to
talk with USB, e.g., adbd, others might not be obvious, e.g.,
sensors. To reduce the USB attack surface, the first question
we need to ask is if it is reasonable to expose a native process
to USB connections. We also need to constrain the capabilities
within the processes exposed to external USB connections.

Type Reduction With our fully instantiated graph, we are
able to distinguish between active and inactive subject domains
and file contexts. System-wide security policies are required
to describe every possible type transition and access vector by
nature. In reality, many of these edges will never be taken on
a real system due to its specific configuration. BIGMAC, by
design is able to narrow in on the most important domains by
finding mappings between them and the underlying filesystem
(backing files). If an example of a file is not found, we can prune
this type completely. For processes, if a backing executable
is not found then, this process is abstract and is not able to be
executed on a real system. This effectively prunes the set of
types to be considered along with their corresponding access
vector rules. In Table 7, we see the effect that BIGMAC has in
type reduction from a raw SEPolicy and show that we are able
to reduce the set of subject types considered by at a minimum
12% and at a maximum 52%. The reduction varies by OEM
and Android version. Some OEMs share a single SEPolicy for
all devices and label only the necessary types during the image
building, while others will have device-specific policies that
are more tailored and compact. For file contexts, not all paths
that can be assigned a context will exist all at once or at all,
leading to a significant reduction in file types to instantiate.
Pure policy analysis does not consider the true instantia-
tion of a system, which may lead to discovering problems
that do not affect real systems due to dead-types.

Query # Paths
query(/dev/ttyUSB0,_,1) 25
query(/dev/ttyUSB0,_,1,CAP_DAC_OVERRIDE) 22
query(/dev/ttyUSB0,_,1,CAP_SYS_ADMIN) 22

Table 6: Different queries on the starting node /dev/ttyUSB0,
which can be reached via external USB connections. The cutoff
1 specifies the direction connection between processes and the
device file. The number of paths also represents the unique
number of processes.

286 29th USENIX Security Symposium USENIX Association

SEPolicy Instantiation
Model Version Types Attributes Allow Domains File Types Domain Reduction% File Context Reduction%
Google 7.1.2 733 29 7,186 114 278 / 477 11.4% 41.7%
Pixel 8.0.0 1,093 601 17,520 173 404 / 683 17.3% 40.8%

9.0.0 1,337 125 18,929 210 401 / 656 15.9% 38.9%
Samsung 7.0.0 2,222 75 16,907 349 497 / 1,646 51.6% 69.8%
S8+ 8.0.0 2,409 764 30,482 348 643 / 1,858 48.3% 65.4%

Table 7: A table showing how BIGMAC instantiates from a raw firmware image with an abstract SEPolicy to a concrete set of
services and files. Our approach eliminates unused domains by ensuring that all domains have an associated executable. If none is
found, we consider it abstract and discard it. This reduces the number of types, domains, and allow rules that need to be considered,
yielding a more targetted analysis. The same is true for filesystem contexts. Through parsing Android init.rc files, we are able to
recover the set of possible services and not consider transient (oneshot) services. This is far more focused than pure policy analysis
as the entire policy may not be used on a specific device model or running system.

Read Access
Vectors

*:read, *:ioctl, *:unix_read, *:search, *:recv, *:receive, *:recv_msg, *:recvfrom,
*:rawip_recv , *:tcp_recv, *:dccp_recv, *:udp_recv, *:nlmsg_read, *:nlmsg_readpriv,
binder:call, service_manager:{list,find}

Write Access
Vectors

*:write, *:append, *:ioctl, *:add_name, *:unix_write, *:enqueue, *:send, *:send_msg,
*:sendto, *:rawip_send, *:tcp_send, *:dccp_send, *:udp_send, *:nlmsg_write, binder:call,
service_manager:{add,find}, process:transition, process:ptrace,

Table 8: A mapping of class:vector tuples into a read or write-data flow edge type.

Vendor Model Version Build ID URL
Google Pixel 1 7.1.2 NJH47 https://dl.google.com/dl/android/aosp/

sailfish-ota-njh47f-b1b5d050.zip
Google Pixel 1 8.1.0 OPM1.171019.011 https://dl.google.com/dl/android/

aosp/sailfish-ota-opm1.171019.011-
5dca05ea.zip

Google Pixel 1 9.0.0 PPR2.181005.003 https://dl.google.com/dl/android/
aosp/sailfish-ota-ppr2.181005.003-
db23e6d5.zip

Samsung S7 Edge (SM-G935F) 7.0.0 NRD90M https://androidfilehost.com/?fid=
529152257862696441

Samsung S8+ (SM-G955U) 8.0.0 R16NW https://www.sammobile.com/samsung/
galaxy-s8-plus/firmware/SM-G955U/TMB/
download/G955USQS3CRE2/219483/

LG G7 ThinQ (G710EM) 9.0.0 PKQ1.181105.001 https://lg-firmwares.com/downloads-
file/19702/G710EM20b_00_OPEN_EU_OP_
0508.kdz

Table 9: Firmware used in our evaluation metadata and download links.

USENIX Association 29th USENIX Security Symposium 287

https://dl.google.com/dl/android/aosp/sailfish-ota-njh47f-b1b5d050.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-njh47f-b1b5d050.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-opm1.171019.011-5dca05ea.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://dl.google.com/dl/android/aosp/sailfish-ota-ppr2.181005.003-db23e6d5.zip
https://androidfilehost.com/?fid=529152257862696441
https://androidfilehost.com/?fid=529152257862696441
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://www.sammobile.com/samsung/galaxy-s8-plus/firmware/SM-G955U/TMB/download/G955USQS3CRE2/219483/
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz
https://lg-firmwares.com/downloads-file/19702/G710EM20b_00_OPEN_EU_OP_0508.kdz

	Introduction
	Background
	Android Security Model

	Design
	Security Policy Extraction
	Dataflow Graph
	Process Inflation
	Attack Graph Instantiation
	Logic-based Query Engine

	Implementation
	Firmware Extraction
	System Boot Emulation
	Android Credential Simulation
	Logic-based Query Engine

	Evaluation
	Ground Truth Comparison
	Attack Graph Queries

	Discussion
	BigMAC for OEMs, Policy Writers, Auditors, and App Developers
	Limitations

	Related Work
	Conclusion
	Appendix
	Implementation Details
	Tables

