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Abstract: Traffic congestion constitutes a major problem in commercial areas having negative
effects on travel times, fuel consumption and other operational costs. Additionally, the continu-
ously increasing use of GPS technologies has made drivers to make routing decisions in an effort
to minimize their own individual travel time which is known to lead to an inefficient road usage.
In this paper, we propose a novel pricing scheme to alleviate traffic congestion by controlling the
freight routing decisions through a coordination mechanism. The proposed mechanism asks the
truck drivers to declare their Origin-Destination (OD) pair and their individual Value Of Time
(VOT) and guarantees that every participant truck driver will be better-off compared to the
User Equilibrium (UE) by providing them individual incentives to truthfully declare their VOT
while leading to a budget balanced on average mechanism. The optimum route assignment and
the resulting pricing scheme can be calculated by solving a nonconvex optimization problem. To
reduce the dimensionality of the problem, we propose a second pricing scheme and we prove that
satisfies the aforementioned characteristics. Finally, the evaluation of our approach using the
Sioux Falls network shows that the proposed pricing schemes can make the network approach
the System Optimum (SO) solution.
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1. INTRODUCTION

Transportation services contributed $1,066.9 billion to the
United States (U.S.) gross domestic product (GDP) in
2016, (Bureau of Transportation Statistics, 2018). Addi-
tionally, trucking contributed to the largest amount of the
freight modes adding a value of $288.2 billion in the U.S.
GDP, (Bureau of Transportation Statistics, 2019). These
statistics demonstrate the necessity for the creation of an
efficient freight load balancing system.

The increased usage of routing apps has led drivers to
make routing decisions in a manner that minimizes their
own individual travel time. This behavior of network users
not only leads to an inefficient road usage which is known
in the literature as User Equilibrium (UE), (Wardrop,
1952), but it additionally has several negative externalities
such as the increase in traffic in cities bordering highway
from users taking local routes to avoid congestion, (Thai
et al., 2016). On the other hand, a System Optimum (SO)
solution, i.e. a situation where the network users cooperate
such that the total travel time of the network is minimized,
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cannot be applied in practice since some drivers may be
worse-off compared to the UE solution.

To address this problem, one of the most frequently pro-
posed solutions is congestion pricing, (Beckmann et al.,
1956). However, several concerns regarding equity and
fairness considerations of congestion pricing have been
addressed, (Giuliano, 1994). Under the assumption that
the Origin-Destination (OD) demand of the drivers is
deterministic, Guo and Yang (2010) studied possible solu-
tions by proposing a combined congestion pricing scheme
with uniform revenue refunding for heterogeneous users
where each user has his/her own Value of Time (VOT) and
guaranteed that this scheme is Pareto-improving, i.e. every
user will be better-off compared to the UE. Recently, Gu
et al. (2018) studied the public acceptance of congestion
pricing, while Tscharaktschiew and Evangelinos (2019);
Simoni et al. (2019) studied congestion pricing techniques
in the presence of autonomous vehicles. However, Koster
et al. (2018) showed that congestion pricing under pref-
erence heterogeneity can lead to politically unacceptable
solutions since low income travelers may have to pay a
higher tax.

In this work, we design Pareto-improving pricing schemes
to alleviate traffic congestion through a coordinated freight



routing mechanism where we take into account the exis-
tence of truck drivers with different VOT. The importance
of taking into account heterogeneity in VOT when study-
ing pricing schemes had been mentioned by van den Berg
and Verhoef (2011). Unlike several previous works that
made assumptions about the distribution that the user
heterogeneity may follow, e.g. (Wang et al., 2018; Zhu
et al., 2014), in our work, we propose that the coordinator
asks the truck drivers to pick their VOT from a set of N
possible options and subsequently designs a pricing scheme
guaranteeing that each individual user will have an incen-
tive to truthfully declare his/her VOT while concurrently
leading to a budget balanced on average mechanism. The
optimum pricing scheme can be calculated by solving a
nonconvex optimization problem. Subsequently, we pro-
pose a second pricing scheme to approximate the optimum
solution and we mathematically prove that satisfies the
aforementioned properties. Last, the application of our
method in the Sioux Falls network demonstrates that
both pricing schemes outperform the UE solution and can
approach the SO solution.

The rest of the paper is organized as follows. In Section
2, we describe the network model used and we formulate
the optimization problems through which we can calculate
the UE and and the SO solutions. The optimum pricing
scheme and its approximate solution are presented in
Section 3 and the simulation results of our approach are
provided in Section 4. Section 5 presents the conclusions.
Finally, the mathematical proof is presented in the Ap-
pendix.

2. MATHEMATICAL MODEL

2.1 Problem Formulation

We consider a non-atomic game theoretic model where
the OD demand for the truck drivers is assumed to be
stochastic. A similar model was also used in Kordonis et al.
(2019). In this work, we extend this model in the case of
heterogeneous users, i.e. in the presence of truck drivers
with different VOT. We assume that the coordinator asks
the truck drivers to declare their VOT by providing them
with a finite number of choices/classes. Let w = 1, . . . , N
represent the classes of users with different VOT.

The transportation network is described by a graph G =
(V,L) where V is the set of nodes and L is the set of links in
the network. Let XlT be the number of trucks in the road
segment l of the network and let Xlp be the corresponding
number of passenger vehicles.

Let us denote by djw ∈ [0, D] the number of truck drivers
belonging to the class w with OD pair j. In our model,
we assume that the variables djw are random and their
probability distribution is known to all the truck drivers.
We further assume that Xlp are also random variables
but their distribution is independent of the decisions of
the trucks drivers, similar to Papadopoulos et al. (2019b).
Letting αjw,r represent the proportion of truck drivers
belonging to the class w with OD pair j who follow route
r ∈ Rj , we can define the number of trucks traversing the
road segment l as:

Table 1. Notation Used

Variable Meaning

G = (V, L) The graph representing the transportation net-
work

N The number of classes with different VOT
v The number of OD pairs

djw Demand of truck drivers belonging to class w and
traveling in OD pair j

Rj The set of possible routes in OD pair j
Xlp Number of passenger vehicles traversing

the road segment l
XlT Number of trucks traversing road segment l

αc,j
w,r The fraction of truck drivers belonging to class w

with OD pair j who follow route r ∈ Rj

during the demand realization c
Fw
j,r Expected travel time of a truck driver with VOT

belonging to the class w, travelling in the OD pair
j and following route r

E[Ttr] Expected total travel time of the truck drivers in
the network

E[Tmon
tr ] Expected total monetary cost of the truck drivers

in the network
JUE
c,j,r Travel time of a truck driver with an OD pair j

who follows route r during the demand realization
c at the UE

sw Value of Time (VOT) of the class of truck drivers
w

c The realization of the Origin-Destination (OD)
demand of the truck drivers

pc Probability of the realization c of the OD demand
of the truck drivers

E[Ts] Expected total travel time of the network
E[Tp] Expected total travel time of the passenger vehi-

cles in the network

JM,c,j
w,r The travel time of a truck driver belonging to the

class w with an OD pair j who follows route r dur-
ing the demand realization c under the suggestions
of the mechanism M

τc,jw,r Payment (made or received) of a truck driver
belonging to the class w with an OD pair j who
follows route r during the demand realization c

AUE
c,j Average travel time of a truck driver with an OD

pair j during the demand realization c at the UE

XlT (α) =

v∑
j=1

N∑
w=1

∑
r∈Rj :l∈r

djwα
j
w,r (1)

2.2 User Equilibrium

In the absence of cooperation, it is known that the drivers
of a transportation network are trying to minimize their
own individual travel time leading to a situation known as
the User Equilibrium (UE) or the first Wardrop principle,
(Wardrop, 1952).

Let F jw,r(α) be the expected travel time of a truck driver
with VOT belonging to the class w, travelling in the OD
pair j and following route r. Then, F jw,r(α) is given by:

F jw,r(α) = E

[∑
l∈r

ClT (Xlp, XlT (α))

]
(2)

where XlT (α) is given by (1) and α is a set of variables
that is defined as follows:

α = {αjw,r : w = 1, . . . , N, j = 1, . . . , v, r ∈ Rj}
Additionally, ClT (Xlp, XlT (α)) is assumed to be a known
nonlinear function representing the travel time of a truck



driver traversing the road segment l when there exist Xlp

passenger vehicles and XlT (α) trucks on it.

Note that in a UE solution, it holds that:

F jw,r(α) ≤ F jw,r′(α)

for any r′ 6= r, where r, r′ ∈ Rj . In other words, in a UE
solution, no truck driver has an incentive to unilaterally
change his/her routing decision since his/her expected
travel time will be higher.

It has been shown that there are possibly many non-
equivalent UE solutions, see e.g. Kordonis et al. (2019).
In order to compute a specific UE, let us first introduce
some quantities. We define the expected total travel time
of the truck drivers in the network to be:

E[Ttr(α)] = E

[∑
l∈r

XlT (α)ClT (Xlp, XlT (α))

]
(3)

while their expected total monetary cost is:

E[Tmontr (α)] =
∑
c

v∑
j=1

N∑
w=1

∑
r∈Rj

pcd
c
j,wα

UE
j,w,rswJ

UE
c,j,r (4)

where c is the realization of the Origin-Destination de-
mand of the truck drivers under the assumption that its
distribution has finite support, pc is the probability of this
realization, dcj,w is the demand of truck drivers with VOT
belonging to class w for the OD pair j under the realization
c, sw is the VOT of the class of truck drivers w and JUEc,j,r
is the travel time of a truck driver with an OD pair j who
follows route r during the demand realization c at the UE.

Using the aforementioned definitions, we can calculate the
UE of the network by solving the following constrained
optimization problem:

minimize
α,δ

λE[Ttr(α)] + (1− λ)E[Tmontr (α)]

subject to 0 ≤ αjw,r ⊥ Fwj,r(α)− δjw ≥ 0, ∀j, w, r∑
r∈Rj

αjw,r = 1, ∀j, w
(5)

where δjw is a set of free variables that are used in order
to solve the equilibrium optimization problem (5) with
complementarity constraints, Facchinei and Pang (2007)
and λ is a weighting factor such that λ ∈ [0, 1]. The
notation ⊥ denotes the complementarity constraint and
means that either αjw,r = 0 or Fwj,r(α) − δjw = 0. Note
that the UE solution may not be unique. Therefore, in the
equilbrium optimization problem (5), we are looking for
the UE solution which minimizes a weighted combination
of the expected total travel time of the truck drivers and
their expected total monetary cost given by (3) and (4),
respectively.

2.3 System Optimum

The situation where the drivers cooperate in a manner
which contributes to the minimization of the total travel
time of the network is known as the System Optimum
(SO) or the second Wardrop principle, (Wardrop, 1952).
Given the network characteristics and definitions described
in sections 2.1 and 2.2, we can calculate the SO solution of
the network by solving the following optimization problem:

minimize
α(·)

λE[Ts(α)] + (1− λ)E[Tmontr (α)]

subject to
∑
r∈Rj

αc,jw,r = 1, ∀c, j, w

αc,jw,r ≥ 0, ∀c, j, w, r

(6)

where E[Ts(α)] is the expected total travel time of the
network and is given by:

E[Ts(α)] = E[Tp(α)] + E[Ttr(α)] (7)

where E[Tp(α)] is the expected total travel time of the
passenger vehicles in the network and E[Tmontr (α)] is given
by:

E[Tmontr (α)] =
∑
c

v∑
j=1

N∑
w=1

∑
r∈Rj

pcd
c
j,wα

c,j
w,rswJc,j,r (8)

Note that in the optimization problem (6), the set of the
decision variables α depends on the demand realization
c compared to the equilibrium optimization problem (5)
where each truck driver acts in an independent manner
and makes his/her routing decision by only knowing the
probability distribution of the OD demand for the rest of
truck drivers.

It is well known in the literature, (Koutsoupias and Pa-
padimitriou, 1999), that there is an inefficiency between
the UE and the SO solutions. On the other hand, enforcing
the SO solution is not possible since some drivers may get
harmed while some other others may get benefit compared
to the UE solution. Therefore, in the next section, we
present a Pareto-improving pricing scheme, i.e. a pricing
scheme that makes every truck driver better-off compared
to the UE solution that concurrently allows the transporta-
tion network to approach the SO solution.

3. VALUE OF TIME BASED PRICING

One of the main reasons for the inefficiency in the road
network is the lack of cooperation of the network users.
Therefore, in this section we propose the use of a coordi-
nation mechanism whose purpose is to collect information
from the truck drivers related to their Origin-Destination
(OD) pair and their Value of Time (VOT) and then
assign them a route such that a social welfare cost is
minimized. In our work, our objective is the minimization
of a weighted combination of the expected total travel time
of the network (passenger vehicles + trucks) and the ex-
pected total monetary cost of the truck drivers. To address
the problem of the SO solution where some drivers may get
harmed while some others may get benefit compared to the
UE solution, the coordinator uses some additional pricing
schemes that need to satisfy some specific characteristics.

First, we are interested about Pareto-improving pricing
schemes, i.e pricing schemes that guarantee that every
truck driver will be better-off compared to the UE solution.
Additionally, in contrast with the vast majority of litera-
ture, e.g. (Liu and Nie, 2017; Tian et al., 2013), which
makes assumptions about the distribution of user hetero-
geneity, we design a mechanism where its coordinator asks
the truck drivers to pick their desired VOT through a set of
N possible options. Therefore, it is important to guarantee
that the mechanism will not be exploitable and that every
truck driver will truthfully declare his/her VOT. Note that



this property is not straightforward to guarantee since it is
possible that many truck drivers will be willing to declare
that their VOT is higher than their true one such that
they can be assigned to the fastest possible route. Last,
we need to guarantee that the overall mechanism will be
budget balanced on average.

Before formulating the optimization problem through
which we can calculate the optimum way of assigning the
truck drivers into the network α∗ as well as the optimum
monetary scheme τ∗, let us mathematically describe the
properties that this pricing scheme needs to satisfy:

(1) The pricing scheme is Pareto-improving, i.e every
truck driver will be better-off compared to the UE
solution if:∑
c

∑
r∈Rj

pcα
c,j
w,r(J

M,c,j
w,r +

1

sw
τ c,jw,r) ≤

∑
c

pcA
UE
c,j , ∀j, w

(9)
where JM,c,j

w,r is the travel time of a truck driver
belonging to the class w with an OD pair j who
follows route r during the demand realization c under
the suggestions of the mechanism M , τ c,jw,r is the
payment made or received by each truck driver who is
travelling in the OD pair j, following route r during
the demand realization c and AUEc,j is the average
travel time of a truck driver with an OD pair j during
the demand realization c at the UE. As mentioned
earlier, sw expresses the VOT of the class of truck
drivers w. Letting sw have units $

hr and τ c,jw,r be
measured in $, then equation (9) guarantess that
every truck driver will be better-off compared to the
UE in time units.

(2) Each truck driver will be willing to truthfully declare
his/her VOT if:∑

c

∑
r∈Rj

pcα
c,j
i,r (JM,c,j

i,r +
1

si
τ c,ji,r ) ≤

≤
∑
c

∑
r∈Rj

pcα
c,j
k,r(J

M,c,j
k,r +

1

si
τ c,jk,r), ∀j, i, k

(10)

According to the aforementioned definitions, equation
(10) states that each truck driver with a VOT belong-
ing to a fixed class i has a lower expected cost (time
+ payment) in time units if he/she truthfully declares
the class i rather than declaring any other fixed class
k 6= i.

(3) The mechanism is budget balanced on average if:∑
c

v∑
j=1

N∑
w=1

∑
r∈Rj

pcd
w
c,jα

c,j
w,rτ

c,j
w,r = 0 (11)

i.e. if the expected total payments made and received
by the coordinator of the mechanism are equal to
zero.

3.1 Optimum Pricing Scheme

Using equations (9)-(11), we can calculate the optimum
way of assigning the truck drivers into the network α∗

as well as the optimum pricing scheme τ∗ by solving the
following nonconvex optimization problem:

minimize
α(·),τ(·)

λE[Ts(α)] + (1− λ)E[Tmontr (α)]

subject to Gj,w ≤
∑
c

pcA
UE
c,j , ∀j, w

Gj,ii ≤ Gj,ik, ∀j, i, k∑
c

v∑
j=1

N∑
w=1

∑
r∈Rj

pcd
w
c,jα

c,j
w,rτ

c,j
w,r = 0

∑
r∈Rj

αc,jw,r = 1, ∀c, j, w

αc,jw,r ≥ 0, ∀c, j, w, r

(12)

where Gj,w, Gj,ii and Gj,ik are given by the following
equations:

Gj,w =
∑
c

∑
r∈Rj

pcα
c,j
w,r(J

M,c,j
w,r +

1

sw
τ c,jw,r) (13)

Gj,ii =
∑
c

∑
r∈Rj

pcα
c,j
i,r (JM,c,j

i,r +
1

si
τ c,ji,r ) (14)

Gj,ik =
∑
c

∑
r∈Rj

pcα
c,j
k,r(J

M,c,j
k,r +

1

si
τ c,jk,r) (15)

The first constraint of (12) together with equation (13)
guarantee that the optimum pricing scheme τ∗ is Pareto-
improving, i.e. every truck driver will be better-off com-
pared to the UE while the second constraint of (12)
together with (14) and (15) guarantee that every truck
driver will have an incentive to truthfully declare his/her
VOT or otherwise his/her expected average cost (time +
payment) is going to be higher. The third constraint of
(12) guarantees that the mechanism is going to be budget
balanced on average while the last two constraints are
feasibility constraints of the optimization problem (12).
Additionally, setting τ = 0, it is straightforward to show
that the UE solution always satisfies the constraints of (12)
guaranteeing that a solution to the nonconvex optimiza-
tion problem (12) always exists.

To reduce the dimensionality and accelerate the compu-
tational time needed to solve the optimization problem
(12), in the next subsection, we approximate the solution
of (12) by defining a pricing scheme τ̂ for which we derive
sufficient conditions that need to be satisfied such that a
solution with the desired characteristics described by the
equations (9)-(11) exists.

3.2 Approximate Solution

To approximate the optimum solution obtained by solving
the optimization problem (12), we need to find a pricing
scheme τ̂ that is Pareto-improving, guarantees that each
truck driver will be willing to truthfully declare his/her
VOT and additionally leads to an overall budget balanced
mechanism.

Let us define the following pricing scheme:

τ̂ c,jw,r = sw(AUEc,j − J̄M,c,j
w,r )

+
sw∑N
l=1 sl

E[Tmon,Mtr ]− E
[
Tmon,UEtr

]∑v
j=1 d

w
c,j

(16)

In the theorem that follows, we derive necessary and
sufficient conditions that need to be satisfied such that



the pricing scheme given by (16) satisfies the desired
characteristics described by (9)-(11).

Before stating the theorem, let us first introduce the
following inequalities:

E[Tmon,Mtr ] ≤ E
[
Tmon,UEtr

]
(17)

(
1− sk

si

)∑
c

pcA
UE
c,j

+
1∑N

w=1 sw

∑
c

pc
E[Tmon,Mtr ]− E

[
Tmon,UEtr

]∑v
j=1 d

i
c,j

≤

≤
(

1− sk
si

)∑
c

∑
r∈Rj

pcᾱ
c,j
k,rJ̄

M,c,j
k,r

+
sk
si

1∑N
w=1 sw

∑
c

pc
E[Tmon,Mtr ]− E

[
Tmon,UEtr

]∑v
j=1 d

k
c,j

, ∀j, i, k

(18)

where E[Tmon,Mtr ] is the expected total monetary cost of
the truck drivers under the mechanism suggestions and

E[Tmon,UEtr ] is the corresponding cost at the UE.

Theorem 1. The pricing scheme (16) is Pareto-improving,
guarantees that each truck driver will have an incentive
to truthfully declare his/her VOT and leads to a budget
balanced on average mechanism if and only if (17) and
(18) hold.

Proof. The proof is similar to the proof of Theorem 1 of
Papadopoulos et al. (2019c) and thus it is omitted.

Theorem 1 states that (17) and (18) are necessary and
sufficient conditions to guarantee that the pricing scheme
(16) satisfies the desired characteristics as described by
(9)-(11). Now, letting Zj,i,k and Yj,i,k be the left and
right parts of the inequality (18), respectively, we can
approximate the optimum solution of (12) by solving the
following optimization problem:

minimize
α(·)

λE[Ts(α)] + (1− λ)E[Tmontr (α)]

subject to E[Tmontr (α)] ≤ E
[
Tmon,UEtr

]
Zj,i,k ≤ Yj,i,k, ∀j, i, k∑
r∈Rj

αc,jw,r = 1, ∀c, j, w

αc,jw,r ≥ 0, ∀c, j, w, r

(19)

It is straightforward to show that a solution to the opti-
mization problem (19) always exists since the UE solution
satisfies all of its constraints.

Note that the optimization problem (19) has to be solved
only with respect to the decision variables α, i.e we only
need to find a way to route the truck drivers into the
network such that the constraints of (19) are satisfied.
Letting α̂∗ be the optimum solution obtained by solving
the optimization problem (19), then using the result of
Theorem 1, we can guarantee that the pair (α̂∗, τ̂), where
τ̂ is given by (16), satisfies the conditions described by
(9)-(11). In other words, the pair (α̂∗, τ̂) makes everyone
better-off compared to the UE solution, guarantees that
each truck driver will have an incentive to truthfully

declare his/her VOT and additionally leads to a budget
balanced on average mechanism.

4. EXPERIMENTS

To validate the theoretical results and demonstrate the
performance of the optimum pricing scheme and its ap-
proximate solution compared to the UE and the SO solu-
tions, we carried out simulation experiments in the bench-
mark Sioux Falls transportation network, (LeBlanc et al.,
1975). The Sioux Falls network consists of 24 nodes and
76 links.

In our experiments, we assumed that the cost of each link
in the network corresponds to travel time and is given by
a Bureau of Public Roads (BPR) function, (Sheffi, 1985),
of the following form:

ClT (Xlp, XlT ) = ya + yb

(
Xlp + 3XlT

yc

)4

(20)

where ya, yb and yc are constants and their values were
chosen to be similar to the ones adopted in Kordonis et al.
(2019) 1 . The number of passenger vehicles at each road
segment of the network was considered to be constant
and equal to the values used in Kordonis et al. (2019) 2 .
As far as it concerns the truck drivers, we assumed
that they have 6 available Origin-Destination (OD) pairs,
namely (1, 7), (1, 11), (10, 11), (10, 20), (15, 5) and (24, 10)
and that they follow the 10 least congested routes, similar
to Papadopoulos et al. (2019a). We further assumed that
the coordinator of the mechanism asks the truck drivers
to pick their VOT between two different options, i.e s1 =
200$/hr and s2 = 50$/hr. The OD demand of the truck
drivers was assumed to take one of the following two
equiprobable values:

d1 =

[
3 4.5 6 3 14 3.6
1 2.8 5.4 7 9 2

]
, d2 =

[
5 1.8 3.9 15 6.4 2.4
6 5.5 1.8 6.5 11 6

]
where each column of d1 and d2 corresponds to the demand
of truck drivers for each OD pair and each row denotes a
different class of users. Last, the weighting factor λ in the
objective functions of the optimization problems (5), (6),
(12) and (19) was chosen to be λ = 0.9. The simulation
results are presented in Table 2.

Table 2. Simulation Results

Metric UE SO OPS APS

E[Ttr] 53574.4 49082.5 49049.8 49866.6
E[Tmon

tr ] 117941.4 104445.5 104647.5 105999.3
E[Ts] 167160.7 157924.8 157934.9 159526.0

where OPS stands for the Optimum Pricing Scheme while
APS stands for its approximate solution or else, Approxi-
mate Pricing Scheme.

As can be clearly seen from the simulation results in
Table 2, OPS achieves 8.45% reduction in the expected
total travel time of the truck drivers E[Ttr] compared
to the UE solution and it is even slightly better from
the SO solution. On the other hand, APS also achieves
a significant reduction in E[Ttr] providing a solution
which approaches the SO. Regarding the expected total

1 These values can be found in this link.
2 These values can be found in this link.

https://www.dropbox.com/s/qjx3agh516a61p6/Parameters_of_the_BPR_function.txt?dl=0
https://www.dropbox.com/s/gs5ruwurjm1yebc/Passenger_Vehicles.txt?dl=0


monetary cost of the truck drivers E[Tmontr ], it can be
observed that both OPS and APS outperform the UE and
approach the SO solution. Last, it is clear that both pricing
schemes significantly reduce the expected total travel time
of the network, providing a solution that is close to the SO.

5. CONCLUSION

In this work, we proposed two Pareto-improving pricing
schemes that can make a transportation network approach
the SO solution by controlling the routing decisions of the
truck drivers through a coordination mechanism. In con-
trast with the vast majority of literature studying pricing
schemes under user heterogeneity, we propose that the
coordinator asks the truck drivers to declare their VOT
and then we design Pareto-improving pricing schemes that
mathematically guarantee that every user will have an
incentive to truthfully declare his/her VOT while concur-
rently leading to a budget balanced on average mechanism.
Additionally, the simulation results using the Sioux Falls
network showed that the designed pricing schemes can
significantly improve both the expected total travel time
of the truck drivers and their associated monetary cost, as
well as the expected total travel time of the network.
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