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Abstract

Area under ROC curve (AUC) is a widely used performance measure for imbalanced classification. Oftentimes, the ubiquitous
imbalanced data such as financial records from fraud detection or genomic data from cancer diagnosis contains sensitive informa-
tion, and therefore it is of practical and theoretical importance to develop privacy-preserving AUC maximization algorithms. In
this paper, we propose differentially private empirical risk minimization (ERM) for AUC maximization, and systematically study
their privacy and utility guarantees. In particular, we establish guarantees on the generalization (utility) performance of the pro-
posed algorithms with fast rates. The technical novelty contains fast rates for the regularized ERM in AUC maximization, which
is established using the peeling techniques for Rademacher averages [1] and properties of U-Statistics [2, 3] to handle statistically
non-independent pairs of examples in the objective function, and a new error decomposition to handle strongly smooth losses (e.g.
least square loss). In addition, we revisit the private ERM with pointwise loss [4, 5] and show optimal rates can be obtained using
the uniform convergence approach.
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1. Introduction

Many learning tasks involve imbalanced classification in
which the size of one class is much larger than others. Imbal-
anced data is abundant in important application domains such
as medical diagnosis, network intrusion detection, and fraud
detection. In such cases, the quality of classification is often
measured by the area under the ROC curve (AUC) [6, 7, 8, 9].
Recently, there are considerable work [10, 11, 12, 13, 14, 15,
16, 17, 18] on AUC maximization which have been proven to be
effective for handling imbalanced data. Oftentimes, the ubiqui-
tously generated imbalanced data such as financial records from
fraud detection or genomic data from cancer diagnosis contains
very sensitive information. This has raised serious concerns
that the adversaries may be able to infer private information
from trained AUC maximization models. As such, it is of prac-
tical and theoretical importance to develop privacy-preserving
AUC maximization algorithms.

Differential privacy (DP) [19] is a de facto concept for de-
signing algorithm with privacy guarantees. It ensures that the
output of a learning algorithm is insensitive to any change of
an individual in the dataset. Many studies [20, 21, 4, 22, 23,
24, 5, 25, 26] have focused on developing efficient differen-
tially private learning algorithms while preserving their statis-
tical effectiveness. In particular, the work [4] studied differ-
ential privacy for the fundamental supervised learning frame-
work, i.e. empirical risk minimization (ERM). Assuming the
loss is convex with Lipschitz gradient and differentiable, the au-
thors investigated both output and objective perturbations with

random noise added to the output of the ERM minimizer and
the objective function, respectively. Privacy and utility guar-
antees (generalization performance) are established there. The
work [5] improved the analysis in [4] by providing an improved
Ω(
√

d) dependence (d is the data dimension) in the utility guar-
antees and extended differential privacy results to the case of
non-smooth objective functions. In [21], gradient perturbation
and exponential sampling were proposed.

However, all the above work applies to the classification and
regression problems of pointwise learning, i.e. the loss func-
tion `(w, z) depends on one single data point z = (x, y). The
loss function for AUC maximization involves a pairwise loss
`(w, z, z′) requiring more delicate techniques for developing
privacy-preserving algorithms, as pairs of examples are not sta-
tistically independent of each other (e.g. two pairs may share
one common example). In this paper, we leverage the previous
work [21, 4, 19, 27, 5, 28] to systematically develop and analyze
the differentially private ERM framework for AUC maximiza-
tion. Our main contributions can be summarized as follows.

• We systematically study the output and objective perturba-
tion mechanisms for the regularized ERM in AUC maxi-
mization, and provide comprehensive results on their privacy
guarantees. The privacy analysis for objective perturbation
involves the estimation of two Jacobians differing in a possi-
ble rank-n matrix (n is the size of training data) which signif-
icantly extends the analysis in [4, 5], where the counterparts
differ only in a matrix with rank at most two.

• We provide guarantees on the generalization (utility) per-
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formance of the proposed private AUC maximization algo-
rithms with fast rates. In particular, for objective perturba-
tion, we show that the excess population risk can achieve

bound O(max
( d

nε ,
1
√

n

))
for ε-DP and O(max

( √log( 1
δ )d

nε , 1
√

n

))
for (ε, δ)-DP. The main technical novelty is the fast rate for
the regularized ERM in AUC maximization which extends
[29] to the setting of pairwise losses. In contrast to the
pointwise learning where the losses involves i.i.d. individ-
ual examples, the main challenge to derive such fast rates
is that the objective function of AUC maximization involves
pairs of examples which are not statistically independent.
We overcome this hindrance by sufficiently exploring the
properties of U-Statistics [2, 3] to handle this statistical non-
independence. We also introduce a new error decomposition
which enables us to handle the losses with strong smooth-
ness in unbounded parameter domain (e.g. the least square
loss). In addition, we revisit the private ERM with pointwise
loss [4, 5] and show optimal rates can be obtained using the
uniform convergence approach (see detailed discussion and
comparison in Section 5).

• We conduct experimental evaluation of the proposed ap-
proaches on various datasets. The results validate the ef-
fectiveness of preserving privacy and generalization perfor-
mance of the proposed private AUC maximization algo-
rithms.

Related Work. Below we review related work on DP and AUC
maximization which is by no means extensive. Batch learning
algorithms for AUC maximization were studied in [30, 31, 17].
The work of [10, 32, 15, 18] developed online AUC maxi-
mization algorithms and established regret bounds. Stochas-
tic gradient-based algorithms were developed for AUC maxi-
mization in [12, 14, 16] for the linear case which enjoys cheap
per-iteration cost and fast convergence rates. The recent work
studied AUC maximization with deep neural networks [13] by
casting it into a non-convex concave min-max problem. Non-
linear AUC maximization was also studied in [11]. An appeal-
ing stochastic primal-dual algorithm for saddle point problems
was developed in [33] which, as a by-product, can be applied to
AUC maximization with the least square loss.

Recently, there is a large amount of work on differential pri-
vacy for pointwise learning from different perspectives. The
private ERM was first studied in [4, 34], although other vari-
ants were studied before. The output perturbation was studied
in both papers where one releases an output with additive noise.
The objective perturbation was introduced in [4] and improved
in [35, 23, 5] where the noise was directly added to the ERM
objective. The gradient perturbation was studied and analyzed
in [21] and further improved in [26, 36]. The work [37, 38]
studied regret bounds in online learning. The relation between
learnability and stability, and DP was systematically addressed
in [39]. Recently, optimal rates for private stochastic convex op-
timization were investigated in [40, 20, 22]. The work of [41]
and [42] considered the DP for rank aggregation which com-
bines multiple ranked lists into a single ranking. [43] proposed
differential pairwise privacy for secure metric learning but util-

ity (generalization) analysis is not given. The work [44] stud-
ied privacy-preserving pairwise learning algorithms with out-
put perturbation when the parameter domain is bounded and
the loss function is Lipschitz and smooth. While we studied
the DP with output and objective perturbations in unbounded
parameter domain for the most baseline ERM framework. Es-
pecially, we proposed a new error decomposition to handle the
losses without Lipschitz property. Further, our method pro-
vides the better utility bound than theirs: O(

√
d

ε
√

n ) in [44] versus

O(max(
√

d
εn ,

1
√

n )) given by our Theorem 5.
Organization of the Paper. The paper is organized as follows.
In Section 2, we introduce the formulation of AUC maximiza-
tion and the definition of differential privacy. The proposed pri-
vate algorithms and privacy guarantees are given in Section 3.
In Section 4, we establish guarantees on the generalization (util-
ity) performance of the proposed algorithms. In Section 5, we
show, for private ERM algorithms with pointwise losses, that
optimal rates can be achieved by using the uniform convergence
approach, and discuss the comparison with related work. Ex-
amples are given in Section 6. Section 7 concludes the paper.
Detailed technical proofs are postponed to Appendix. To facil-
itate the presentation, Table 1 summarizes the main notations.

Symbol Meaning

λ `2-regularization parameter

DX diameter of the input space

ε, δ privacy parameters

L Lipschitz constant

β smoothness

R(w) population risk

Rλ(w) regularized population risk

RS (w) empirical risk

RλS (w) regularized empirical risk

w∗ arg infw∈Rd R(w)

wλ arg infw∈Rd Rλ(w)

ŵ arg minw∈Rd RλS (w)

‖ · ‖ Euclidean norm unless special remark

Table 1: Summary of Main Notations.

2. Problem Formulation and Notations

Let the input space X ⊆ Rd, output space Y = {±1}, and
denote the joint sample space byZ = X×Y.Denote the training
data by S = {(xi, yi) : i = 1, . . . , n} with xi ∈ X and yi ∈ Y,
which is assumed to be i.i.d from an unknown distribution P on
X × Y. Let S ′ = {(x′i , y

′
i) : i = 1, . . . , n} be a neighboring data

to S , i.e. the datasets S and S ′ differ only in one single datum.
Throughout this paper, we assume that the input space X is a
bounded domain and denote its diameter by DX = supx,x′∈X ‖x−
x′‖. The AUC score [2, 6, 9] of a prescribed parameter w on the
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data S is given by

AUC(w) =
1

n+n−

n∑
i, j=1

I[wT xi>wT x j]I[yi=1∧y j=−1], (1)

where n+ and n− denote the numbers of instances in the positive
and negative classes, respectively, and I[·] is the indicator func-
tion which returns 1 for the true event and 0 otherwise. Maxi-
mizing the AUC score in (1) w.r.t. w is equivalent to minimizing
the quantity 1 − AUC(w) = 1

n+n−

∑n
i, j=1 I[wT (xi−x j)≤0]I[yi=1∧y j=−1].

Since the indicator function IwT xi≤wT x j is discontinuous, one of-
ten replaces it by a convex surrogate loss ` : R → [0,∞)
such that I[t≤0] ≤ `(t). Such losses can be the least square loss
`(t) = (1 − t)2 and logistic regression loss `(t) = log2(1 + e−t).

Now the regularized ERM for AUC maximization (AUC-ERM)
can be formulated as

ŵ = arg min
w∈Rd

{ 1
n+n−

n∑
i, j=1

`(wT (xi − x j))I[yi=1∧y j=−1] +
λ

2
‖w‖2

}
.

(2)

Let A : Zn → W ⊂ Rd be a randomized algorithm taking a
data set S ∈ Zn as input. Differential privacy was introduced in
[19] as a privacy measure for an algorithmA.

Definition 1. A randomized algorithm A provides (ε, δ)-
differential privacy (DP) if, for any two neighboring data sets S
and S ′ differing in one single datum and any set E ∈ Range(A),
there holds

Pr(A(S ) ∈ E) ≤ eεPr(A(S ′) ∈ E) + δ. (3)

In particular, if δ = 0, we call it ε-DP.

A basic paradigm to achieve ε-DP is to use the L2-sensitivity
ofA, which is defined as follows.

Definition 2. The `2-sensitivity of algorithm A is defined as
∆(A) = supS ,S ′ ‖A(S )−A(S ′)‖, where data sets S and S ′ differ
in one single datum.

Throughout the paper, we always assume that the loss ` :
R → [0,∞) is convex with `(0) = 1. For any R ≥ 0, define
B(R) = sup|s|≤R |`

′(s)|. We say that the loss ` is L-Lipschitz if,
for any s, t ∈ R, |`(s) − `(t)| ≤ L|s − t|, and β-strongly smooth if
its derivative is β-Lipschitz. In particular, we have the following
sensitivity result for AUC-ERM defined by (2).

Lemma 1. AUC-ERM (2) has L2-sensitivity with ∆(A) =
2DXB(

√
2/λDX)
λ

( 1
n+

+ 1
n−

)
.

The proof of Lemma 1 is standard which is provided in Ap-
pendix C.1 for completeness. The following lemma states that
adding Gaussian noise to the output of a randomized algorithm
A can guarantee (ε, δ)-DP.

Lemma 2. ([27]) Given any function A : Zn → Rd with L2

sensitivity ∆(A) and assume that σ ≥
√

2 ln(1.25/δ)∆(A)
ε

, the fol-
lowing Gaussian mechanism yields (ε, δ)-DP:

M(A, S , ε) = A(S ) + b, b ∼ N(0, σ2I).

Algorithm 1 Output Perturbation for AUC-ERM

(Output-Pert-AUC)
1: Inputs: Data S = {(xi, yi) : i = 1, . . . , n} and parameters
λ, ε, δ

2: Compute: B(
√

2/λDX) = sup{|`′(t)| : |t| ≤
√

2/λDX},
n+ =

∑n
i=1 I[yi=1] and n− =

∑n
i=1 I[yi=−1]

3: if require ε-differential privacy then
4: compute γ =

2DXB(
√

2/λDX)
ελ

( 1
n+

+ 1
n−

)
, and sample b from

ν1(b; γ, ε) ∝ e−
‖b‖
γ

5: else if require (ε, δ)-differential privacy then

6: computer σ =
2
√

2 log(1.25/δ)DXB(
√

2/λDX)
ελ

( 1
n+

+ 1
n−

)
, and

sample b from ν2(b; ε, δ, σ) = N(0, σ2I).
7: end if
8: return: wpriv = b + arg minw∈Rd RλS (w)

3. Privacy-Preserving ERM for AUC Maximization

In this section, we present privacy-preserving algorithms for
AUC maximization using output and objective perturbations,
and provide a systematical study on its privacy guarantees.
Output Perturbation. In analogy to [4, 19], differential pri-
vacy can be achieved by following:

wpriv(S ) = ŵ(S ) + b, (4)

where b is a random noise and ŵ(S ) is the ERM minimizer
of AUC-ERM (2). In particular, if b is from distribution with
density 1

α
exp(− ‖b‖

γ
), where α is a normalizing constant, then

it achieves ε-DP. If the random noise b is from the Gaussian
distribution b ∝ N(0, σ2I), it achieves (ε, δ)-DP. For simplic-
ity, denote the empirical risk by RS (w) = 1

n+n−

∑n
i, j=1 `(wT (xi −

x j))I[yi=1∧y j=−1], and its regularized empirical risk by RλS (w) =

RS (w) + λ
2 ‖w‖

2. The pseudo-code of the output perturbation for
AUC-ERM (Output-Pert-AUC) is given by Algorithm 1. It is
worthy of mentioning that Algorithm 1 applies to any convex
and differentiable loss ` as long as B(

√
2/λDX) < ∞. Its privacy

guarantees are stated in the following theorem.

Theorem 1. Assume that the loss `(·) is convex and differen-
tiable. Then, Algorithm 1 (Out-Pert-AUC) is ε-DP when b
has density ν1 and (ε, δ)-DP when b is from density ν2.

Proof. Consider the output perturbation (4). For ε-DP, let
γ =

2DXB(
√

2/λDX)
ελ

( 1
n+

+ 1
n−

)
. For any S , S ′ differing in one da-

tum, and any E ∈ Rd, Pr(wpriv(S ) ∈ E) =
∫

E
1
α

e−‖ξ−ŵ(S )‖/γdξ ≤

exp( supS ,S ′ ‖ŵ(S )−ŵ(S ′)‖
γ

)
∫

E
1
α

e−‖ξ−ŵ(S ′)‖/γdξ ≤ eεPr(wpriv(S ′) ∈ E),
where the last inequality used Lemma 1. This completes the
proof of the theorem. For (ε, δ)-DP, the proof directly follows
from Lemma 2.

Objective Perturbation. An alternative approach to achieve
differential privacy is to use the objective perturbation [4]. That
is, wpriv = arg minw R

λ
S (w) + bT w, where b is a random noise

generated from distribution with density 1
α

exp(− ‖b‖
γ

) or Gaus-
sian distribution. Algorithm 2 lists the pseudo-code for the ob-
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Algorithm 2 Objective Perturbation for AUC-ERM

(Obj-Pert-AUC)
1: Inputs: Data S = {(xi, yi) : i = 1, . . . , n} and parameters
λ, ε, δ, L, β

2: Compute: n+ =
∑n

i=1 I[yi=1] and n− =
∑n

i=1 I[yi=−1]
3: if require ε-differential privacy then
4: if n log

(
1 +

βD2
X

n+n−λ
)
< ε then

5: let ∆ = 0, γ = 2nLDX
[
n+n−(ε − n log

(
1 +

βD2
X

n+n−λ
)]−1

.

6: else if n log
(
1 +

βD2
X

n+n−λ
)
≥ ε then

7: let γ =
4nLDX
n+n−ε

and ∆ =
βD2
X

n+n−(e
ε

2n −1)
− λ

8: end if
9: sample b from ν1(b; γ, ε) ∝ e−

‖b‖
γ

10: else if require (ε, δ)-differential privacy then
11: if n log

(
1 +

βD2
X

n+n−λ
)
< ε then

12: let ∆ = 0, ε′ = ε − n log
(
1 +

βD2
X

n+n−λ
)
, and σ =

(2
√

2 log( 1
δ
) +
√

2ε′)nLDX/(n+n−ε′)

13: else if n log
(
1 +

βD2
X

n+n−λ
)
≥ ε then

14: choose ε′ = ε
2 , ∆ =

βD2
X

n+n−(e
ε

2n −1)
− λ, and σ =

(2
√

2 log( 1
δ
) +
√

2ε′)nLDX/(n+n−ε′)
15: end if
16: sample b from ν2(b; ε, δ, σ) = N(0, σ2I).
17: end if
18: return: wpriv = arg min

{
RλS (w) + ∆

2 ‖w‖
2 + bT w

}
jective perturbation for AUC-ERM. Compared to the output per-
turbation given by Algorithm 1, the loss function has much
stronger assumptions, i.e. it is twice-differentiable, Lipschitz
and strongly smooth. In particular, we can show the following
privacy guarantees for Algorithm 2 (Obj-Pert-AUC).

Theorem 2. Assume that ` is convex and twice-differentiable,
L-Lipschitz and β-strongly smooth. Then, Algorithm 2
(Obj-Pert-AUC) achieves ε-DP when b is generated by dis-
tribution ν1 and (ε, δ)-DP when b has Gaussian distribution ν2.

Proof. Without loss of generality, assume S and S ′ differ in the
first datum, i.e. (x1, y1) and (x′1, y

′
1). Now consider an output

wpriv from Algorithm 2. As the objective function is differen-
tiable and strongly convex, the map between b and ŵpriv is bi-
jective, i.e. perfect one-to-one correspondence between b and
ŵpriv. And we have

b = −
( 1
n+n−

n∑
i, j=1

`′(wT
priv(xi − x j))(xi − x j)I[yi=1∧y j=−1]

+ (λ + ∆)wpriv

)
. (5)

Let pdf(wpriv|S ) and pdf(wpriv|S ′) be the densities of wpriv
given by S and S ′ respectively. To show the differential pri-
vacy, it suffices to estimate the density ratio of pdf(wpriv |S )

pdf(wpriv |S ′)
. To

this end, we denote by pdf(b|S ) and pdf(b|S ′) the densities of
the given wpriv, when the datasets are S and S ′ respectively.

Denote by J(wpriv → b|S ) and J(wpriv → b|S ′) the Jacobians of
the mappings from wpriv to b with given S and S ′, respectively.

Therefore,

pdf(wpriv|S )
pdf(wpriv|S ′)

=
pdf(b|S )

pdf(b′|S ′)
·
| det(J(wpriv → b′|S ′))|
| det(J(wpriv → b|S ))|

. (6)

We will estimate (6) in two steps.
Step 1: Firstly, we estimate the ratio between two Jacobians
in (6). To this end, denote Xi j = (xi − x j)(xi − x j)T and
X′1i = (x′1 − xi)(x′1 − xi)T and X′j1 = (x j − x′1)(x j − x′1)T . In addi-
tion, denote Ei1 = 1

n+n−
`
′′

(wT
priv(xi − x1))Xi1I[yi=1∧y1=−1], E1 j =

1
n+n−

`
′′

(wT
priv(x1 − x j))X1 jI[y1=1∧y j=−1], and likewise, E′i1 =

1
n+n−

`
′′

(wT
priv(xi−x′1))X′i1I[yi=1∧y′1=−1], and E′1 j = 1

n+n−
`
′′

(wT
priv(x′1−

x j))X′1 jI[y′1=1∧y j=−1]. Let A = (λ + ∆)I + 1
n+n−

∑n
i, j=2 `

′′(wpriv(xi −

x j))Xi jI[yi=1∧y j=−1] be the common matrix shared by the above
two Jacobians. Notice that

J(wpriv → b|S )

= −
( 1
n+n−

n∑
i, j=1

`′′(wT
priv(xi − x j))(xi − x j)(xi − x j)T I[yi=1∧y j=−1]

+ (λ + ∆)I
)

= −(A +

n∑
i=2

Ei1 +

n∑
j=2

E1 j)

and similarly, J(wpriv → b|S ′) = −(A +
∑n

i=2 E′i1 +
∑n

j=2 E′1 j).
Therefore,

| det(J(wpriv → b|S ′))|
| det(J(wpriv → b|S ))|

=
det(A +

∑n
i=2 E′i1 +

∑n
j=2 E′1 j)

det(A +
∑n

i=2 Ei1 +
∑n

j=2 E1 j)

=
det(A +

∑n
i=2 E′i1 +

∑n
j=2 E′1 j)

det(A)
·

det(A)
det(A +

∑n
i=2 Ei1 +

∑n
j=2 E1 j)

≤
det(A +

∑n
i=2 E′i1 +

∑n
j=2 E′1 j)

det(A)
, (7)

where the last inequality follows from the positive semi-definite
(PSD) of

∑n
i=2 Ei1 +

∑n
j=2 E1 j as the loss ` is convex.

Therefore, the estimation of two Jacobians is reduced to
the estimation of the ratio det(A +

∑n
i=2 E′i1 +

∑n
j=2 E′1 j)/ det(A).

Notice, for any `
′′

(z)vvT with z ∈ R and v ∈ Rd, and any PSD
matrix B � (∆ + λ)I, that

det(B + `
′′

(z)vvT )
det(B)

= det(I + `
′′

(z)B−1/2vvT B−1/2)

= 1 + `
′′

(z)‖B−1/2v‖2 ≤ 1 +
β‖v‖2

λ + ∆
, (8)

where the last inequality follows from the β-smoothness of `
and B � (λ + ∆)I. We now rewrite

det(A +
∑n

i=2 E′i1 +
∑n

j=2 E′1 j)

det(A)

=
det(A +

∑n
i=2 E′i1 +

∑n
j=2 E′1 j)

det(A +
∑n

i=2 E′i1)
·

det(A +
∑n

i=2 E′i1)
det(A)

. (9)
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For the first term on the right hand side of the above equality,
applying (8) recursively implies that

det(A +
∑n

i=2 E′i1 +
∑n

j=2 E′1 j)

det(A +
∑n

i=2 E′i1)

=

n∏
k=2

[det(A +
∑n

i=2 E′i1 +
∑k

j=2 E′1 j)

det(A +
∑n

i=2 E′i1 +
∑k−1

j=2 E′1 j)

]
≤

(
1 +

1
(n+n−)

βD2
X

(λ + ∆)

)n−
, (10)

where we used the fact that there are at most n− non-zero terms
in

∑n
j=2 E1 j, and ‖x′1 − x′j‖ ≤ DX. Likewise, we can have

det(A +
∑n

i=2 E′i1)
det(A)

≤
(
1 +

1
(n+n−)

βD2
X

(λ + ∆)

)n+

. (11)

Putting (7), (9), (10) and (11) together implies that

| det(J(wpriv → b|S ′))|
| det(J(wpriv → b|S ))|

≤
(
1 +

1
(n+n−)

βD2
X

(λ + ∆)

)n
. (12)

Step 2: Now we estimate pdf(b|S )/pdf(b′|S ′) when b is from
distribution with density ν1 or ν2. Let us consider the case when
the noise b is generated from distribution with density ν1. In
this case, for any given wpriv, (5) implies that ‖b − b′‖ ≤ 2nLDX

n+n−
.

We can write that

pdf(b|S )
pdf(b′|S ′)

=
e
−‖b‖
γ

e
−‖b′‖
γ

≤ exp(
2nLDX
n+n−γ

) (13)

Putting (12) and (13) together implies that

pdf(wpriv|S )
pdf(wpriv|S ′)

≤ exp
(
n log

(
1 +

βD2
X

n+n−(λ + ∆)

)
+

2nLDX
n+n−γ

)
. (14)

If n log
(
1 +

βD2
X

n+n−λ
)

< ε then letting ∆ = 0 and γ =

2nLDX
[
n+n−(ε − n log

(
1 +

βD2
X

n+n−λ
)]−1

. From (14), there holds
pdf(wpriv |S )
pdf(wpriv |S ′)

≤ eε . Otherwise, letting γ =
4nLDX
n+n−ε

and ∆ =

βD2
X

n+n−(e
ε

2n −1)
− λ, from (14) again, we have pdf(wpriv |S )

pdf(wpriv |S ′)
≤ eε . This

completes the proof of the theorem.
Now consider the case that the noise is drawn from Gaussian

distribution. Then, assume Γ = b − b′,

pdf(b|S )
pdf(b′|S ′)

=
e
−‖b‖2

2σ2

e
−‖b′‖2

2σ2

= exp
( 1
2σ2

(
‖Γ‖2 − 2〈b,Γ〉

))
≤ exp

( 1
2σ2

(
‖Γ‖2 + 2|〈b,Γ〉|

))
. (15)

Notice that ‖Γ‖ ≤ 2nLDX
n+n−

, and let the event E = {b ∈ Rd :
|〈b,Γ〉| ≥ 2nLDXσt

n+n−
}. Notice, for one-dimensional Gaussian ran-

dom variable Z ∼ N(0, 1), that for any t ≥ 0, Pr(|Z| ≥ t) =

2
√

2π

∫ ∞

t
e
−s2

2 ds =
2
√

2π

∫ ∞

0
e−

(s+t)2
2 ds ≤

2e−
t2
2

√
2π

∫ ∞

0
e−

s2
2 ds =

e−
t2
2 . Therefore, since 〈b,Γ〉 ∼ N(0, ‖Γ‖2σ2), there holds

Pr(E) = Pr(|〈b,Γ〉| ≥ 2nLDXσt
n+n−

) ≤ e−
t2
2 . This means, choosing

t =

√
2 log 1

δ
, we have Pr(E) ≤ δ. Hence, given any ε′ > 0,

from (15) we have that pdf(b|S )
pdf(b′ |S ′) ≤ e

2(nLDX )2

(n+n− )2σ2 +
2nLDX
n+n−σ

√
2 log( 1

δ )
≤ eε

′

ifσ ≥ (2
√

2 log( 1
δ
)+
√

2ε′)nLDX/(n+n−ε′) on the event Ec with
its probability at least 1 − δ.

Combining (12) and the above estimation, we know that,

choosingσ = (2
√

2 log( 1
δ
)+
√

2ε′)nLDX/(n+n−ε′), on the event
Ec, that

pdf(wpriv|S )
pdf(wpriv|S ′)

≤ exp
(
n log

(
1 +

βD2
X

n+n−(λ + ∆)

)
+ ε′

)
. (16)

Now if n log
(
1 +

βD2
X

n+n−λ
)
< ε then letting ∆ = 0. We choose

ε′ = ε − n log
(
1 +

βD2
X

n+n−λ
)

and let σ = (2
√

2 log( 1
δ
) +

√
2ε′)nLDX/(n+n−ε′) which indicates that pdf(wpriv |S )

pdf(wpriv |S ′)
≤ eε on

the event Ec. If n log
(
1 +

βD2
X

n+n−λ
)
≥ ε, choose ε′ = ε

2 , σ =

(2
√

2 log( 1
δ
) +
√

2ε′)nLDX/(n+n−ε′) and ∆ =
βD2
X

n+n−(e
ε

2n −1)
− λ,

on the event Ec.

Therefore, for any set E ⊆ Rd

Pr(wpriv(S ) ∈ E) = Pr(wpriv(S ) ∈ E ∩ E) + Pr(wpriv(S ) ∈ E ∩ Ec)
≤ Pr(E) + Pr(wpriv(S ) ∈ E ∩ Ec)

≤ δ +

∫
E∩Ec

pdf(wpriv = α|S ))dα

≤ δ + eε
∫

E∩Ec
pdf(wpriv = α|S ′))dα

≤ δ + eεPr(wpriv(S ′) ∈ E).

This completes the proof of the theorem.

4. Generalization Performance

In this section, we systematically study the generalization
(utility) guarantees for Algorithm 1 and Algorithm 2. To this
end, let the population (true) risk for AUC maximization be de-
fined by R(w) = E

[
`(wT (x−x′))|y = 1, y′ = −1

]
which is identi-

cal to 1
Pr(y=1)Pr(y′=−1))E

[
`(wT (x − x′))I[y=1∧y′=−1]

]
. Its regularized

population risk is defined by Rλ(w) = R(w) + λ
2 ‖w‖

2, and let
wλ = arg infw∈Rd Rλ(w), and w∗ = arg infw∈Rd R(w). The gen-
eralization analysis aims to examine the excess population risk
which is the difference between the risks of the private estima-
tor wpriv and the best possible one, i.e. R(wpriv) − infw∈Rd R(w).

The generalization analysis for the proposed algorithms crit-
ically rely on the following novel fast rates for strongly convex
objectives in AUC maximization.

Lemma 3. Let B = {w ∈ Rd : supx,x′∈X |`
′(wT (x − x′))| ≤ B},

where B > 0 is a constant. For any 0 < τ < 1, with probability

5



at least 1 − δ, we have, for any w ∈ B, that

Rλ(w) − Rλ(wλ) ≤
1
τ

(RλS (w) − RλS (wλ)) + O
( B2D2

X
log( 1

δ
)n3

λτ(1 − τ)(n+n−)2

)
≤

1
τ

(RλS (w) − RλS (ŵ)) + O
( B2D2

X
log( 1

δ
)n3

λτ(1 − τ)(n+n−)2

)
.

The above lemma is inspired by [29] for the case of pointwise
learning using the peeling techniques for Rademacher averages
[1]. The novelty in the proof for Lemma 3 is to use the decou-
pling techniques of U-Statistics [2, 3] to handle the pairwise
loss in AUC maximization. The detailed proof of Lemma 3 can
be found in Appendix C.2.

4.1. Utility Analysis for Output Perturbation

In this subsection, we present the generalization analysis for
the output perturbation given by Algorithm 1 which applies to
any convex loss such as the logistic loss, least square loss and
Huber loss. In particular, we will first start with L-Lipschitz
and β-smooth losses (e.g. logistic loss and Huber loss), and
then consider the smooth losses such as the least square loss.

Firstly, we consider the case when the loss ` is Lipschitz and
strongly smooth. To this end, let Eb[·] denote the expectation
w.r.t. the noise b. Using the error decomposition often used
in the literature (e.g. [4]) to examine the quantity R(wpriv) −
infw R(w), i.e.

R(wpriv) − inf
w∈Rd
R(w)

≤
[
Rλ(wpriv) − Rλ(wλ)

]
+

[
Rλ(wλ) − Rλ(w∗)

]
+
λ

2
‖w∗‖2

≤
[
Rλ(wpriv) − Rλ(wλ)

]
+
λ

2
‖w∗‖2. (17)

where the last inequality used the fact Rλ(wλ) ≤ Rλ(w∗) from
the definition of wλ. Therefore,

Eb
[
R(wpriv)

]
− inf

w∈Rd
R(w) ≤ Eb

[
Rλ(wpriv) − Rλ(wλ)

]
+
λ

2
‖w∗‖2.

(18)
Here we assume class 1 is the minority class while class −1 is
the majority class, and let the imbalanced ratio ρ = n+

n which
means that ρ ≤ 1

2 and n+ = ρn and n− = (1 − ρ)n. We have the
following generalization bound.

Theorem 3. If the loss function ` is L-Lipschitz and β-
strongly smooth, then the output wpriv of Algorithm 1
(Output-Pert-AUC) has the following properties.

(a) For ε-differential privacy, choosing λ =

min
{ β 1

3 (LDXnd)
2
3

(‖w∗‖εn+n−)2/3 ,
LDX

√
log( 1

ξ )n
3
2

‖w∗‖n+n−

}
implies, with probability

at least 1 − ξ, that

Eb[R(wpriv)] − inf
w∈Rd
R(w)

= O
(
max

{β 1
3 (LDXd)

2
3 ‖w∗‖ 4

3

(ρ(1 − ρ)εn)2/3 ,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

(b) For (ε, δ)-differential privacy, choosing λ =

min
{ (log( 1

δ )β)
1
3 (LDXn)

2
3 d

1
3

(‖w∗‖ε(n+n−))2/3 ,
LDX

√
log( 1

ξ )n
3
2

‖w∗‖(n+n−)

}
yields, with proba-

bility at least 1 − ξ, that

Eb[R(wpriv)] − inf
w∈Rd
R(w)

= O
(
max

{ (log( 1
δ
)β)

1
3 (LDX)

2
3 d

1
3 ‖w∗‖ 4

3

(ρ(1 − ρ)εn)2/3 ,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

The proof of Theorem 3 can be found in Appendix C.3.

Remark 1. We note that, in Theorem 3, the choice of λ de-
pends on the norm of w∗. This would require prior knowledge
of ‖w∗‖, which may be not realistic in practice as the population
distribution is unknown. To mitigate this limitation, taking part
(a) in Theorem 1 as an example, and one can instead choose

λ = min
{ β 1

3 (LDXdn)
2
3

(εn+n−)2/3 ,
LDX

√
log( 1

ξ )n
3
2

n+n−

}
which does not require the

knowledge of w∗. The resulting rate is of the same order, i.e.

(1 + ‖w∗‖)2 · O
(
max

{ β 1
3 (LDXd)

2
3

(ρ(1−ρ)εn)2/3 ,
LDX

√
log( 1

ξ )

ρ(1−ρ)
√

n

})
.

Secondly, we move on to consider the utility guarantee of
Algorithm 1 when the loss ` has only strongly smoothness
property (e.g. the least square loss). As we see from the er-
ror decomposition (17), the critical part is to estimate the term
Rλ(wpriv) − Rλ(wλ) using Lemma 3 which has the requirement
that supx,x′ |`

′(wT
priv(x − x′))| is uniformly bounded. However, if

we only know the loss is strongly smooth, supx,x′ |`
′(wT

priv(x −
x′))| can be unbounded as wpriv is unbounded. As a result, the
error decomposition (17) does not apply to this case. To over-
come this hindrance, we decompose R(wpriv) − infw R(w) as
follows,

R(wpriv) − inf
w
R(w)

≤ [R(wpriv) − R(ŵ)] + [Rλ(ŵ) − Rλ(wλ)] + [Rλ(wλ) − Rλ(w∗)]

+
λ

2
‖w∗‖2

≤ [R(wpriv) − R(ŵ)] + [Rλ(ŵ) − Rλ(wλ)] +
λ

2
‖w∗‖2, (19)

where the last inequality follows from the fact that Rλ(wλ) ≤
Rλ(w∗). In contrast to (17), we can now show that
ŵ = arg infw R

λ
S (w) is uniformly bounded, and so does

supx,x′ |`
′(ŵT (x − x′))|. As a result, we can apply Lemma 3 to

estimate the term Rλ(ŵ) − Rλ(wλ) in (19).
The next lemma estimates the upper bound of the term

R(wpriv) − R(ŵ).

Lemma 4. If ` is non-negative and β-strongly smooth, the fol-
lowing are true:

(a) For ε−differential privacy, with probability at least 1 − ξ,
there holds

Eb
[
R(wpriv) − R(ŵ)

]
= O

(nD4
X
β2d‖w∗‖

(n+n−)ελ
3
2

+
n

5
2 D5
X
β

5
2 d

√
log( 1

ξ
)

(n+n−)2ελ
5
2

+
n2D4

X
β3(d + d2)

(n+n−)2ε2λ3

)
.

6



(b) For (ε, δ)−differential privacy, with probability at least 1−
ξ, there holds

Eb
[
R(wpriv) − R(ŵ)

]
= O

(nD4
X
β2‖w∗‖

√
d log( 1

δ
)

(n+n−)ελ
3
2

+
n

5
2 D5
X
β

5
2

√
d log( 1

δ
) log( 1

ξ
)

(n+n−)2ελ
5
2

+
n2D4

X
β2d log( 1

δ
)

(n+n−)2ε2λ3

)
.

The proof of Lemma 4 is provided in Appendix C.4.
Combining the above lemma and our new error decomposi-

tion, we have the following generalization bounds for the output
wpriv of Algorithm 1 with strongly smooth losses.

Theorem 4. If the loss function ` is β-strongly smooth, then
the output wpriv of Algorithm 1 (Output-Pert-AUC) has the
following properties.

(a) For ε-DP, setting λ =
D

8
5
X
β

4
5 (nd)

2
5

(n+n−)
2
5 ε

2
5 ‖w∗‖

2
5

implies, with proba-

bility at least 1 − 2ξ, that

Eb[R(wpriv)]− inf
w
R(w) = O

(
max

{D
8
5
X
β

4
5 d

2
5 ‖w∗‖ 8

5

(ρ(1 − ρ)εn)
2
5

,

D
4
5
X
β

2
5 log( 1

ξ
)‖w∗‖ 4

5

(ρ(1 − ρ))
6
5 n

1
5 d

4
5

,
DX

√
β log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

(b) For (ε, δ)-DP, choosing λ =
D

4
3
X
β

2
3 (log( 1

ξ ))
1
3 n

(n+n−)
2
3 ‖w∗‖

2
3

yields, with

probability at least 1 − 2ξ, that

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{ D2

X
β log( 1

δ
)
√

d‖w∗‖2

(ρ(1 − ρ))
1
3 ε2
√

n(log( 1
ξ
))

1
3

,
D

4
3
X
β

2
3 (log( 1

ξ
))

1
3 ‖w∗‖ 4

3

(ρ(1 − ρ))
2
3 n

1
3

})
.

Proof. First, we show that ŵ ∈ B with B = (βDX
√

2/λ +

2
√
β), where B is defined in Lemma 3. Using the proper-

ties of strongly smoothness, we have |`′(s) − `′(0)| ≤ β|s| and
|`′(0)| ≤ 2

√
β`(0), thus |`′(s)| ≤ 2

√
β + β|s| as `(0) = 1. No-

tice that ‖ŵ‖ ≤
√

2/λ and DX = supx,x′∈X ‖x − x′‖, there holds
|`′(ŵT (x − x′))| ≤ (βDX

√
2/λ + 2

√
β) for any x, x′ ∈ X. Hence,

ŵ ∈ B. Now, let τ = 1
2 , and then the error decomposition (19)

and Lemma 3 imply, with probability at least 1 − ξ, that

R(wpriv) − inf
w
R(w)

≤ [R(wpriv) − R(ŵ)] + O
( (βDX

√
2/λ + 2

√
β)2D2

X
log( 1

ξ
)n3

λ(n+n−)2

)
+
λ

2
‖w∗‖2.

Applying part (a) in Lemma 4 below, and setting λ =

D
8
5
X
β

4
5 (nd)

2
5

(n+n−)
2
5 ε

2
5 ‖w∗‖

2
5

, then, for ε-DP we have, with probability at least

1 − 2ξ, that

Eb[R(wpriv)]− inf
w
R(w) = O

(
max

{D
8
5
X
β

4
5 d

2
5 ‖w∗‖ 8

5

(ρ(1 − ρ)εn)
2
5

,

D
4
5
X
β

2
5 log( 1

ξ
)‖w∗‖ 4

5

(ρ(1 − ρ))
6
5 n

1
5 d

4
5

,
DX

√
β log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

Applying part (b) in Lemma 4 below, and λ =
D

4
3
X
β

2
3 (log( 1

ξ ))
1
3 n

(n+n−)
2
3 ‖w∗‖

2
3

,

then, for (ε, δ)-DP we have, with probability at least 1−2ξ, that

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{ D2

X
β log( 1

δ
)
√

d‖w∗‖2

(ρ(1 − ρ))
1
3 ε2
√

n(log( 1
ξ
))

1
3

,
D

4
3
X
β

2
3 (log( 1

ξ
))

1
3 ‖w∗‖ 4

3

(ρ(1 − ρ))
2
3 n

1
3

})
.

This completes the proof of the theorem.

4.2. Utility Analysis for Objective Perturbation
Now, we turn our attention to the generalization analysis for

Algorithm 2.

Theorem 5. Assume that ` is convex and twice-differentiable,
L-Lipschitz and β-strongly smoothness. We have the fol-
lowing properties for the output wpriv of Algorithm 2
(Obj-Pert-AUC).

(a) For ε-DP, suppose that β ≤
L
√

nε2 log( 1
ξ )+d

2DX‖w∗‖ , then choosing

λ =
LDXn

√
d2+n log( 1

ξ )ε2

n+n−ε‖w∗‖ implies, with probability at least 1 −
ξ, that

Eb[R(wpriv)] − inf
w∈Rd
R(w)

= O
(
max

{LDXd‖w∗‖
ρ(1 − ρ)εn

,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

(b) For (ε, δ)-DP, assume that β ≤
L
(√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2
)1/2

2DX‖w∗‖ ,

then selecting λ =
LDXn

(√
log( 1

δ )+
√
ε)2d+n log( 1

ξ )ε2
)1/2

εn+n−‖w∗‖ implies,
with probability at least 1 − ξ, that

Eb[R(wpriv)] − inf
w∈Rd
R(w)

= O
(
max

{LDX(
√

log( 1
δ
) +
√
ε)
√

d‖w∗‖

ρ(1 − ρ)εn
,

LDX
√

log( 1
ξ
)‖w∗‖

ρ(1 − ρ)
√

n
})
.

The detailed proof of Theorem 5 can be found in Appendix
C.5.

Remark 2. Firstly, from Theorems 3 and 5, one can observe
that the bounds for the excess population risk for the objec-
tive perturbation are consistently better than the output pertur-
bation. Secondly, similar to the discussion right after Theo-
rem 3 on the choice λ, we can see from the proof of Theo-
rem 5 in Appendix C.5 that one can choose λ independent of
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Algorithm 3 Objective Perturbation for ERM (Obj-Pert)
1: Inputs: Data S = {(xi, yi) : i = 1, . . . , n} and parameters
λ, ε, δ, L, β

2: if log
(
1 +

βR2
2

nλ
)
< ε then

3: ∆ = 0 and ε′ = ε − log
(
1 +

βR2
2

nλ
)

and σ = (2
√

2 log( 1
δ
) +

√
2ε′)LR2/ε

′

4: else if log
(
1 +

βR2
2

nλ
)
≥ ε then

5: choose ε′ = ε
2 , ∆ =

βR2
2

n(eε/2−1) − λ, and σ = (2
√

2 log( 1
δ
) +

√
2ε′)LR2/ε

′

6: end if
7: sample b from ν(b; ε, δ, σ) = N(0, σ2I).
8: return: wpriv = arg min

{
J(w, S ) + ∆

2 ‖w‖
2 + bT w

n
}

the ‖w∗‖ and in the corresponding generalization bounds, the
term ‖w∗‖ is replaced by (1 + ‖w∗‖)2. For instance, in the

case of (ε, δ)-DP, choosing λ =
LDXn

(√
log( 1

δ )+
√
ε)2d+n log( 1

ξ )ε2
)1/2

εn+n−
,

then, if β ≤
L
(√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2
)1/2

2DX
, with probabil-

ity 1 − ξ, Eb[R(wpriv)] − infw∈Rd R(w) = (1 + ‖w∗‖)2 ·

O
(
max

{ LDX(
√

log( 1
δ )+
√
ε)
√

d
ρ(1−ρ)εn ,

LDX
√

log( 1
ξ )

ρ(1−ρ)
√

n

})
.

5. Discussion on Differentially Private ERM with Pointwise
Learning

In this section, we firstly revisit the utility bounds (excess
population risk) for the objective perturbation in [4, 28, 5] for
the standard regularized ERM with pointwise losses. In particu-
lar, we show that the optimal rates can be obtained for (ε, δ)-DP
using the uniform convergence analysis, which was recently es-
tablished using stabililty analysis in [20]. We will also discuss
the relation with the recent results in [20, 21, 22].

5.1. Revisiting the Differentially Private ERM with Pointwise
Loss

In this section, we firstly reprove the utility bounds (excess
population risk) in [4, 5, 28] for the standard regularized ERM
with pointwise losses. In particular, we show that the bound
for (ε, δ)-DP is indeed optimal using this uniform convergence
analysis which was recently established using stabililty analysis
in [20]. We should mention that the algorithms are just restate-
ments of those in [4, 5] in our setting, and the proofs are mainly
adapted from those papers. We revisited these algorithms and
proofs just for completeness.

To illustrate the results clearly, let the population risk and its
empirical risk is given by L(w) = E[`(ywT x)] and L(w, S ) =
1
n
∑n

i=1 `(yiwT xi), respectively. Let J(w, S ) = L(w, S ) + λ
2 ‖w‖

2,
and J(w) = L(w)+ λ

2 ‖w‖
2. In addition, let ŵ = arg infw J(w, S ),

wλ = arg infw J(w) and w∗ = arg infwL(w), and R2 =

supx∈X ‖x‖. For simplicity, we only restrict our attention within
the case of the regularizer ‖w‖2, and the loss ` is L-Lipschitz,
twice differentiable and β-smoothness; but all the results be-
low may hold true for any (possibly non-differentiable) strongly

convex regularizer for w and/or not twice-differentiable losses
following the successive approximation argument in [5].
Privacy Guarantees. One can immediately get the following
results on privacy guarantees. The proof is essentially from [4,
5] which is given in Appendix C.6 for completeness.

Theorem 6. [5] Suppose that the loss function ` is L-Lipschitz,
twice differentiable and β-smooth, then Algorithm 3 is (ε, δ)-DP.

Generalization Performance. We will revisit the objective
perturbation in [5] to derive excess population risks. For sim-
plicity, in this section we assume that the pointwise loss ` is
twice differentiable, L-Lipschitz and β-smooth. The error de-
composition (17) in this setting can be restated as

L(wpriv) − inf
w
L(w) ≤ [J(wpriv) − J(wλ)] +

λ

2
‖w∗‖2.

Applying the results of [29], we have, with probability 1 − ξ
over the choice of the data S ,

J(wpriv)− J(wλ) ≤ 2[J(wpriv, S )− J(ŵ, S )] +O(
L2R2

2 log(1/ξ)
λn

).
(20)

Consequently,

L(wpriv) − inf
w
L(w) ≤2[J(wpriv, S ) − J(ŵ, S )]

+ O(
L2R2

2 log(1/ξ)
λn

) +
λ

2
‖w∗‖2. (21)

Now using the above inequality and different estimations for
J(wpriv, S ) − J(ŵ, S ) for objective perturbation, we can show
the following theorems.

Theorem 7. [5] Assume that ` is convex and twice-
differentiable with |`′(t)| ≤ L and β-smoothness. We have
the following properties for the output wpriv of Algorithm 3

(Obj-Pert). Assume that β ≤
4L
(√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2
)1/2

R2‖w∗‖ , then

selecting λ =
8LR2

√
(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn‖w∗‖ implies, with proba-
bility at least 1 − ξ, that

Eb[L(wpriv)] − inf
w∈Rd
L(w)

= O
(

max
{LR2(

√
log( 1

δ
) +
√
ε)
√

d‖w∗‖

εn
,

LR2

√
log( 1

ξ
)‖w∗‖

√
n

})
.

The proof can be found in Appendix C.7.

Remark 3. The choice of λ in Theorem 7 depends on ‖w∗‖. In-

stead, one can choose λ =
8LR2

√
(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn . Then, if

β ≤ λεn
2R2

2
=

4L
√

(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

R2
, we have, with probability

at least 1 − ξ, that

Eb[L(wpriv)] − inf
w
L(w)

= (1 + ‖w∗‖)2 · O
(

max
{LR2(

√
log( 1

δ
) +
√
ε)
√

d

εn
,

LR2

√
log( 1

ξ
)

√
n

})
.
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5.2. Discussion

Recently there are appealing and important work on consid-
ering stochastic optimization algorithms for differential privacy
[20, 22] using the approach of algorithmic stability [45, 46].
To be more precise, let W = supw∈W ‖w‖ and the outputs wpriv
of the private algorithms are assumed fromW. Then, in these
studies, the authors considered L(wpriv)− infw∈W L(w), i.e. the
discrepancy between the risk of the private estimator wpriv and
the best possible in the constrained setW, to which we refer as
the excess population risk inW. In contrast, we consider here
the excess population risks L(wpriv)− infw∈Rd L(w), i.e. the dif-
ference between the risk of the private estimator wpriv and the
best possible. The difference between these two excess errors is
the term Approx(W) = infw∈W L(w)− infw∈Rd L(w) which we
call it approximation error as it is deterministic and measures
the difference between the least risk inW and the least one in
Rd. Let w∗ = arg infw∈Rd L(w) be the best possible parameter.
By L-Lipschitzness of the loss `, Approx(W) = infw∈W L(w)−
infw∈Rd L(w) = infw∈W L(w) −L(w∗) ≤ LR2 infw∈W ‖w −w∗‖.
Therefore,

L(wpriv)− inf
w∈Rd
L(w) ≤

[
L(wpriv)− inf

w∈W
L(w)

]
+LR2 inf

w∈W
‖w−w∗‖.

(22)
In particular, the very recent work [20] proved the fol-
lowing bounds for both stochastic gradient descent and the
exact ERM with pointwise loss using the stability anal-
ysis and proved Eb[L(wpriv)] − infw∈W L(w) = WL ·

O
(
max

{
1
√

n ,

√
d log( 1

δ )
nε

})
. Translating their bounds to our set-

ting, we have that Eb[L(wpriv)] − infw∈Rd L(w) = WL ·

O
(
max

{
1
√

n ,

√
d log( 1

δ )
nε

})
+ LR2 infw∈W ‖w−w∗‖.To ensure the ap-

proximation error is zero (i.e. Approx(W) = 0), one needs
to assume the constraint set W is large enough such that
w∗ ∈ arg infw∈Rd L(w) belongs to W. However, this would
require the prior knowledge to guess the norm of ‖w∗‖ which
may be not realistic due to the unknown population distri-
bution. In contrast, our revisited bound in Theorem 7 is of

O
(
max

{ LR2(
√

log( 1
δ )+
√
ε)
√

d
εn ,

LR2

√
log( 1

ξ )
√

n

})
which does not involve

the approximation error. In addition, our bound does not need
prior knowledge of w∗ as discussed above.

6. Experiments

In this section, we present experimental results to ver-
ify the effectiveness of our algorithms, i.e. Algorithm 1
(Out-Pert-AUC) and Algorithm 2 (Obj-Pert-AUC). We ap-
ply both output perturbation and objective perturbation to AUC
maximization (2) with ` being either the least square loss or the
logistic loss.

6.1. Experimental Setting and Datasets

In particular, for the least square loss, we can analytically
calculate the optimal ŵls without building the positive-negative
pairs. The details about its analytical solution can be found
in Section B. For the logistic regression, we apply mini-batch

SGD where at each iteration we build an unbiased gradient esti-
mate based on a randomly selected 100 positive-negative exam-
ple pairs. We consider step sizes of the form ηt = 0.001/(λt+1).
To accelerate the training speed, the SGD algorithm is initial-
ized with ŵls based on the least square loss. The experiments
are performed on four benchmark datasets for imbalanced clas-
sification including IJCNN, Satimage, Webspam u and HTTP.
The first three datasets are downloaded from the LIBSVM web-
page [47]. The HTTP dataset belongs to the KDD Cup’99
dataset, which consists of a wide variety of hand-injected at-
tacks (anomalies) in a closed network [48]. We modify datasets
with multiple class labels into datasets with binary class labels
by setting the first half of class labels as positive labels, and set-
ting the remaining class labels as negative labels. The statistics
(sample size, feature size and imbalance ratio) of these datasets
are summarized in Table 2.

datasets # inst # feat n+/n−
IJCNN 49990 22 0.1059

Satimage 4435 36 1.26

Webspam u 350000 254 1.5397

HTTP 567498 3 0.0039

Table 2: Description of the datasets.

We aim to clarify how the prediction behavior would change
w.r.t. the privacy parameter ε. To this aim, we vary ε over
the set {0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}. Following
the same procedure in [4], the regularization parameter λ for
Algorithm 1 and Algorithm 2 is tuned by 10-fold cross val-
idation over the set Λ = {10−4, 10−3, . . . , 1} at the privacy level
ε = 0.1. We should point out that this procedure may not be
ideal and one can find more discussions on tuning the regular-
ization parameter in Section 6.3 below. Due to the randomness
of the privacy algorithms, we repeat 60 runs of the randomized
training procedure for each parameter setting, and report the
average of the AUC scores on the test set as the experimental
results.

6.2. Generalization and Privacy

In Figure 1, we compare the behavior of Algorithm 1
(Output-Pert-AUC) and Algorithm 2 (Obj-Pert-AUC) for ε-
DP with the logistic loss. In Figure 2, we compare the be-
havior of Output-Pert-AUC and Obj-Pert-AUC for (ε, δ)-DP
(δ = 1/n2) with the logistic loss. We include the non-private
algorithms in all the figures as a baseline. We can see clearly
the trade-off between the testing error and the privacy param-
eter. The AUC scores on testing data increase as we relax the
privacy requirements when ε becomes larger.

In particular, for the dataset Webspam u and HTTP, both
Output-Pert-AUC and Obj-Pert-AUC achieve a high AUC
score for a low privacy parameter ε = 0.1. It is also
clear that objective perturbation outperforms output perturba-
tion in our experiments, which is in line with the observa-
tion in the pointwise learning case [4]. The underlying rea-
son could be that the parameters γ and σ for perturbation

9



(a) IJCNN. (b) Satimage.

(c) Webspam u. (d) HTTP.

Figure 1: AUC scores versus privacy parameter for ε-DP with the logistic loss. No-Pert means non-private algorithm, Output-Pert means Output-Pert-AUC for
ε-DP and Obj-Pert means Obj-Pert-AUC for ε-DP.

in Algorithm 1 (Output-Pert-AUC) grow reciprocally w.r.t.
the regularization parameter λ. As a comparison, the param-
eters γ and σ have a milder logarithmic dependency on λ
in Algorithm 2 (Obj-Pert-AUC). This means a heavier per-
turbation for Output-Pert-AUC than Obj-Pert-AUC if λ is
small. Our theoretical analysis (see Theorem 3 and Theorem 5)
also indicates that Obj-Pert-AUC enjoys a stronger theoretical
guarantee than Output-Pert-AUC, which is consistent with the
results of pointwise learning.

In Figure 3, we show the behavior of Output-Pert-AUC for
ε-DP and (ε, δ)-DP (δ = 1/n2) when learning with the least
square loss. We do not include results for Obj-Pert-AUC since
the least square loss is not Lipschitz continuous, which is re-
quired for Obj-Pert-AUC. It is observed that the performance
of Output-Pert-AUC with the least square loss is not as good
as that with the logistic loss. For the dataset IJCNN, we achieve
the AUC score 0.9 for ε < 0.2 when using the logistic loss,
while, for the least square loss, we require ε = 0.5 to achieve
a similar AUC score. The underlying reason is that B(R) ≤ 1
for the logistic loss, while B(R) > 2 for the least square loss.
That is, we impose a heavier perturbation for the least square
loss when using the same privacy parameter.

6.3. Parameter Tuning
Tuning the regularization parameter λ is a critical issue in

machine learning tasks. A widely used approach is to use cross
validation: using data held out as the validation set, training

classifiers using the remaining data for different values of λ,
and selecting the best λ corresponding to the prediction per-
formance on the validation set. The tuning of λ for privacy-
preserving algorithms becomes more challenging as the stan-
dard cross-validation procedure mentioned above may violate
differential privacy since the correct validation set is usually not
available.

In many studies [49, 50, 24], the experiments were conducted
with a fixed λ. There are a few works on designing parameter-
tuning algorithms. For instance, the work [4] presents a dif-
ferentially private parameter-tuning algorithm and provides its
performance guarantee. Specifically, the algorithm first divides
the training set into several disjoint sets and trains each λ using
the private algorithm on a different set, then scores the perfor-
mance of predictors on a validation set and chooses the output
by exponential mechanism [51]. Another approach is end-to-
end differentially private training and validation algorithm [52]
which obeys a certain stability condition. The algorithm trains
classifiers on the same training set with privacy budget for each
parameter, and then uses a differentially private procedure to
select the best parameter. Their experiments show that the per-
formance of the stability algorithm is better than the parameter
tuning algorithm in [4] and random choice of parameter. How-
ever, all the above methods focus on the pointwise learning.
It will be a very interesting future direction to apply these ap-
proaches to the task of AUC maximization.

10



(a) IJCNN. (b) Satimage.

(c) Webspam u. (d) HTTP.

Figure 2: AUC scores versus privacy parameter for (ε, δ)-DP with the logistic loss and δ = 1/n2. No-Pert means non-private algorithm, Output-Pert-Delta means
Output-Pert-AUC for (ε, δ)-DP and Obj-Pert-Delta means Obj-Pert-AUC for (ε, δ)-DP.

7. Conclusion

In this paper, we proposed differentially private ERM algo-
rithms for the important problem of AUC maximization in im-
balanced classification. In particular, we systematically stud-
ied the privacy guarantees for output perturbation and objec-
tive perturbation with respect to both ε-DP and (ε, δ)-DP. Fur-
thermore, we established utility guarantees on their general-
ization performance with fast rates. The main technical dif-
ficulty for deriving generalization bounds of the proposed al-
gorithms is that the objective function for AUC maximization
involves statistically dependent pairs of examples. To this end,
we introduced a new error decomposition and developed fast
rates through a novel combination of peeling techniques for
Rademacher averages [53, 29] and the properties of U-Statistics
[2, 3].

Future work can be the design of private stochastic optimiza-
tion algorithms based on gradient perturbation for AUC maxi-
mization with optimal rates, which may require further explo-
ration the appealing ideas in [20, 22] and the algorithmic stabil-
ity in the setting of AUC maximization.
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Appendix

A. Some Technical Lemmas

Here we list some technical lemmas which are used in our
proofs later.

Definition 3. We say the function f :
∏n

k=1 Ωk → R has
bounded differences {ck}

n
k=1 if, for all 1 ≤ k ≤ n,

max
z1,...,zk ,z′k ,...,zn

| f (z1, ..., zk−1, zk, zk+1, ..., zn)

− f (z1, ..., zk−1, z′k, zk+1, ..., zn)| ≤ ck.

Lemma 5. (McDiarmid’s inequality [54]) Suppose f :∏n
k=1 Ωk → R has bounded differences {ck}

n
k=1, then for all

t > 0, there holds

Pz( f (z) − Ez f (z) ≥ t) ≤ exp
(
−

2t2∑n
k=1 c2

k

)
.

Lemma 6. ([2, Lemma A.1]) Let qτ : Z × Z → R be real
valued function indexed by τ ∈ T where T is some index set. If
z1, ..., zn are i.i.d. then we have that

E
[

sup
τ∈T

1
n(n − 1)

∑
i, j

qτ(zi, z j)
]
≤ E

[
sup
τ∈T

1
b n

2 c

b n
2 c∑

i, j

qτ(zi, zi+b n
2 c

)
]
.

Lemma 7. ([53]) Let {g j(θ)} and {h j(θ)} be the sets of functions
on Θ. If for each j, θ, θ′ that |g j(θ) − g j(θ′)| ≤ |h j(θ) − h j(θ′)|,
then

E
[

sup
θ∈Θ

m∑
j=1

ν jg j(θ)
]
≤ E

[
sup
θ∈Θ

m∑
j=1

ν jh j(θ)
]
,

where {ν j} are independent Rademacher random variables.

B. Analytic solution for the least square loss

In this section, we show that the problem (2) based on the
least square loss has a closed-form solution. Furthermore, we
do not need to build n+n− pairs in solving this problem. For
`(t) = (1 − t)2, the model ŵ in (2) becomes

ŵ = arg min
w∈Rd

1
n+n−

∑
i∈I, j∈J

(
1 − wT (xi − x j)

)2
+
λ

2
‖w‖2,

where I = {i ∈ {1, . . . , n} : yi = 1} and J = { j ∈ {1, . . . , n} : y j =

−1}. According to the optimality condition, we know

2
n+n−

∑
i∈I, j∈J

(
1 − ŵT (xi − x j)

)
(x j − xi) + λŵ = 0

and therefore
1

n+n−

∑
i∈I, j∈J

(
xixT

i +x jxT
j −xixT

j −x jxT
i

)
ŵ+

λ

2
ŵ =

1
n+n−

∑
i∈I, j∈J

(xi−x j)

(B.1)
It is clear that∑

i∈I, j∈J

xixT
i = n−

∑
i∈I

xixT
i ,

∑
i∈I, j∈J

x jxT
j = n+

∑
i∈J

x jxT
j

∑
i∈I, j∈J

(xixT
j + x jxT

i ) =
(∑

i∈I

xi
)(∑

j∈J

x j
)T

+
(∑

j∈J

x j
)(∑

i∈I

xi
)T

∑
i∈I, j∈J

(xi − x j) = n−
∑
i∈I

xi − n+

∑
j∈J

x j.

We can plug the above identities back into (B.1) and get that( 1
n+

∑
i∈I

xixT
i +

1
n−

∑
j∈J

x jxT
j − x̄+x̄T

− − x̄−x̄T
+ +

λI
2

)
ŵ = x̄+ − x̄−,

where x̄+ = 1
n+

∑
i∈I xi and x̄− = 1

n−

∑
j∈J x j. Therefore,

ŵ =
( 1
n+

∑
i∈I

xixT
i +

1
n−

∑
j∈J

x jxT
j − x̄+x̄T

−− x̄−x̄T
+ +

λI
2

)−1(
x̄+− x̄−

)
.
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C. Proofs

C.1. Proof of Lemma 1

Proof. Let RλS (w) = RS (w) + λ
2 ‖w‖

2, and g(w) = RλS ′ (w) −
RλS (w). Further, ŵ(S ) = arg minw R

λ
S (w), and ŵ(S ′) =

arg minw R
λ
S (w) + g(w). From the definition of ŵ(S ) and ŵ(S ′),

there holds

∇RλS (ŵ(S )) = ∇RλS (ŵ(S ′)) + ∇g(ŵ(S ′)) = 0. (C.1)

Since RλS (w) is λ-strongly convex, we have

λ‖ŵ(S )−ŵ(S ′)‖2 ≤ (∇RλS (ŵ(S ))−∇RλS (ŵ(S ′)))T (ŵ(S )−ŵ(S ′)).

Combining this with (C.1) and Cauchy-Schwartz inequality,

λ‖ŵ(S ) − ŵ(S ′)‖2 ≤ ‖∇RλS (ŵ(S )) − ∇RλS (ŵ(S ′))‖ · ‖ŵ(S ) − ŵ(S ′)‖
≤ ‖∇g(ŵ(S ′))‖ · ‖ŵ(S ) − ŵ(S ′)‖.

Therefore,

‖ŵ(S ) − ŵ(S ′)‖ ≤
1
λ
‖∇g(ŵ(S ′))‖. (C.2)

Assume that S and S ′ differ in the first datum, i.e. (x1, y1) and
(x′1, y

′
1), then

∇g(ŵ(S ′)) = ∇RλS ′ (ŵ(S ′)) − ∇RλS (ŵ(S ′))

=
1

n+n−

n∑
j=2

∇`(ŵ(S ′)T (x′1 − x j))I[y′1=1∧y j=−1]

+
1

n+n−

n∑
i=2

∇`(ŵ(S ′)T (xi − x′1))I[yi=1∧y′1=−1]

−
1

n+n−

n∑
j=2

∇`(ŵ(S ′)T (x j − x1))I[y1=1∧y j=−1]

−
1

n+n−

n∑
i=2

∇`(ŵ(S ′)T (x1 − xi))I[yi=1∧y1=−1]. (C.3)

For any λ > 0, by the definition of ŵ(S ′), we have RS ′ (ŵ(S ′))+
λ
2 ‖ŵ(S ′)‖2 ≤ RS (0) + λ

2 ‖0‖
2 = 1 as `(0) = 1. Therefore,

‖ŵ(S ′)‖ ≤
√

2/λ. Consequently, for any x, x′ ∈ X,

‖∇`(ŵ(S ′)T (x − x′))‖ = ‖`′(ŵ(S ′)T (x − x′))(x − x′)‖

≤ DXB
( √

2/λDX
)
. (C.4)

This combined with (C.3) implies that

‖∇g(ŵ(S ′))‖ ≤ 2DXB(
√

2/λDX)
( 1
n+

+
1
n−

)
.

Putting this back into (C.2) indicates ‖ŵ(S ) − ŵ(S ′)‖ ≤
2DXB(

√
2/λDX)
λ

( 1
n+

+ 1
n−

)
which completes the proof of the

lemma.

C.2. Proof of Lemma 3

Proof. For any i ≥ 1, let

F (4ic) = {w ∈ B : 4i−1c ≤ c + Rλ(w) − Rλ(wλ) ≤ 4ic}.

Here, c > 0 is a constant to be determined later. Define, for any
i ≥ 0,

Ri = sup
w∈F (4ic)

[
R(w) − R(wλ) − RS (w) + RS (wλ)

]
.

For w ∈ B, consider

Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)
c + Rλ(w) − Rλ(wλ)

≤ sup
w∈B

[Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)
c + Rλ(w) − Rλ(wλ)

]
≤ sup

i
sup

w∈F (4ic)

[Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)
c + Rλ(w) − Rλ(wλ)

]
≤

∞∑
i=1

sup
w∈F (4ic)

[Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)
c + Rλ(w) − Rλ(wλ)

]
≤ c−1

∞∑
i=1

4−(i−1) sup
w∈F (4ic)

[Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)]

= c−1
∞∑

i=1

4−(i−1)Ri. (C.5)

From the strongly convexity of Rλ(·) and the definition of wλ,
we have λ

2 ‖w − wλ‖
2 ≤ Rλ(w) − Rλ(wλ), hence

‖w − wλ‖ ≤

√
2(Rλ(w) − Rλ(wλ))

λ
≤ 2i

√
2c
λ
, ∀ w ∈ F (4ic).

(C.6)

Note that Ri is a function of {z1, ..., zn}, where zk corresponding
to data (xk, yk). For any z j being replaced by z′j, we have

|Ri(z1, ..., z j, ..., zn) − Ri(z1, ..., z′j, ..., zn)|

≤
2n

n+n−
BDX‖w − wλ‖ ≤

n
n+n−

2i+1BDX

√
2c
λ
,

where in the last inequality we use (C.6). Applying McDi-
armid’s inequality(see Lemma 5 in Appendix A), with proba-
bility at least 1 − 2−iδ,

Ri − E[Ri] ≤
n
√

n
n+n−

2i+1BDX

√
c log( 2i

δ
)

λ
.

It remains to estimate E[Ri] = E
[

supw∈F (4ic)[E(w) − ES(w)]
]
,

where E(w) = R(w) − R(wλ) and ES(w) = RS (w) − RS (wλ).
From Lemma A.1 in [2](see Lemma 6 in Appendix A), and let
qw(zi, z j) =

n(n−1)
n+n−

[
E(w)−φ(zi, z j)

]
, where φw(zi, z j) = `(wT (xi−
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x j))I[yi=1∧y j=−1] − `(wT
λ (xi − x j))I[yi=1∧y j=−1]. For n ≥ 2, we have

ES sup
w∈F (4ic)

[
E(w) − ES(w)

]
≤ ES sup

w∈F (4ic)

[ 1
n(n − 1)

∑
i, j

qw(zi, z j)
]

≤ ES sup
w∈F (4ic)

[ 1
b n

2 c

b n
2 c∑

i=1

qw(zi, zi+b n
2 c

)
]

=
n(n − 1)

n+n−
ES sup

w∈F (4ic)

[
E(w) − ĒS(w)

]
,

(C.7)

where ĒS(w) = 1
b n

2 c

∑b n
2 c

i=1 φ(zi, zi+b n
2 c

). For data set S =

{z1, ..., zn}, let S ′ = {z′1, ..., z
′
n} be the i.i.d. copy of S , then

ES sup
w∈F (4ic)

[
E(w) − ĒS(w)

]
= ES sup

w∈F (4ic)

[
ES ′ [ĒS′ (w)] − ĒS(w)

]
≤ ES ,S ′ sup

w∈F (4ic)

[
ĒS′ (w) − ĒS(w)

]
,

(C.8)

By standard symmetrization techniques (see e.g.[53]), for i.i.d.
Rademacher variables {νi ∈ {±1} : i ∈ Nb n

2 c
}, we have

ES ,S ′ sup
w∈F (4ic)

[
ĒS′ (w) − ĒS(w)

]
= ES ,S ′

1
b n

2 c
sup

w∈F (4ic)

[ b n
2 c∑

i=1

[φ(z′i , z
′
i+b n

2 c
) − φ(zi, zi+b n

2 c
)
]

= ES ,S ′
1
b n

2 c
sup

w∈F (4ic)

[ b n
2 c∑

i=1

νi[φ(z′i , z
′
i+b n

2 c
) − φ(zi, zi+b n

2 c
)]
]

≤ 2ES ,ν
1
b n

2 c
sup

w∈F (4ic)

[ b n
2 c∑

i=1

νiφ(zi, zi+b n
2 c

)
]
, (C.9)

Applying the contraction property of Rademacher averages (see
Lemma 7 in Appendix A) with θ = w, gi(θ) = φ(zi, zi+b n

2 c
), and

hi(θ) = BDX‖w − wλ‖,

ES ,ν
1
b n

2 c
sup

w∈F (4ic)

[ b n
2 c∑

i=1

νiφ(zi, zi+b n
2 c

)
]

≤ ES ,ν
1
b n

2 c
sup

w∈F (4ic)

[ b n
2 c∑

i=1

νiBDX‖w − wλ‖
]

=
1
b n

2 c
BDX2i

√
2c
λ
Eν

[ b n
2 c∑

i=1

νi

]
≤ BDX2i

√
2c
λb n

2 c
, (C.10)

where in the last inequality we have used

Eν

[ b n
2 c∑

i=1

νi

]
≤

(
Eν

[
(
b n

2 c∑
i=1

νi)2
])1/2

≤

√
b
n
2
c.

Combine (C.7), (C.8), (C.9) and (C.10), we have

Ri ≤
n
√

n
n+n−

2i+1BDX

√
c log( 2i

δ
)

λ
+

n(n − 1)
n+n−

BDX2i+1

√
2c
λb n

2 c

≤
n
√

n
n+n−

2i+1BDX

√
c
λ

(
2
√

2 +

√
log(

2i

δ
)
)
. (C.11)

with probability at least 1 − 2−iδ.
Combine (C.5) and (C.11), there holds

sup
w∈B

[Rλ(w) − Rλ(wλ) − RλS (w) + RλS (wλ)
c + Rλ(w) − Rλ(wλ)

]
≤ 8

n
√

n
n+n−

BDX

√
1
cλ

∞∑
i=1

2−i[2√2 +

√
log(

2i

δ
)
]

≤ 8
n
√

n
n+n−

BDX

√
1
cλ

[
2
√

2 +

√
log(

1
δ

) +

∞∑
i=1

2−i
√

i
]

≤ 8
n
√

n
n+n−

BDX

√
1
cλ

[
2
√

2 + 2 +

√
log(

1
δ

)
]
, (C.12)

where in the last inequality used
∑∞

i=1 2−i
√

i ≤ 2. Let M =

8 n
√

n
n+n−

BDX
√

1
λ

[
2
√

2 + 2 +

√
log( 1

δ
)
]
, and for any 0 < τ < 1,

select c = M2

(1−τ)2 , we have with probability at least 1 − δ,

sup
w∈B

[Rλ(w) − Rλ(wλ) + M2

(1−τ)2

RλS (w) − RλS (wλ) + M2

(1−τ)2

]
≤

1
τ
. (C.13)

that is, for all w ∈ B,

Rλ(w)−Rλ(wλ) ≤
1
τ

(RλS (w)−RλS (wλ)) +O
( B2D2

X
log( 1

δ
)n3

λτ(1 − τ)(n+n−)2

)
.

This completes the proof of the lemma.

C.3. Proof of Theorem 3
Proof. Obviously, if ` is L-Lipschitz continuous, B ≤ L for
all w in Lemma 3. Hence, the error decomposition (18) and
Lemma 3 with τ = 1

2 imply, with probability at least 1 − ξ, that

Eb[R(wpriv)] − inf
w
R(w)

≤ 2Eb
[
RλS (wpriv) − RλS (ŵ)

]
+
λ

2
‖w∗‖2 + O

(L2D2
X

log( 1
ξ
)n3

λ(n+n−)2

)
.

(C.14)

From the strongly smoothness of ` and the definition of ŵ, there
holds

RλS (wpriv) − RλS (ŵ) ≤ 〈∇RλS (ŵ),wpriv − ŵ〉 +
β + λ

2
‖wpriv − ŵ‖2

=
β + λ

2
‖wpriv − ŵ‖2.

Therefore,

Eb[RλS (wpriv) − RλS (ŵ)] ≤
β + λ

2
Eb[‖b‖2]. (C.15)

For ε-DP, Since ν1(b) = 1
α

exp(− ‖b‖
γ

), then ‖b‖ is a random
vector drawn from Gamma distribution Γ(d, γ). Thus Eb[‖b‖] =

dγ, Var(‖b‖) = dγ2, and Eb[‖b‖2] = (d + d2)γ2. Notice that ` is
L-Lipschitz, then γ =

2DXL
ελ

( 1
n+

+ 1
n−

). Hence,

Eb[‖b‖2] ≤
4D2
X

L2(d + d2)

ε2λ2

( 1
n+

+
1
n−

)2
, (C.16)
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Therefore,

Eb[RλS (wpriv) − RλS (ŵ)] ≤
2(β + λ)(d + d2)D2

X
L2n2

ε2λ2(n+n−)2 . (C.17)

Combine (C.14) and (C.17), we have

Eb[R(wpriv)] − inf
w
R(w)

≤ 2Eb
[
RλS (wpriv) − RλS (wλ)

]
+
λ

2
‖w∗‖2 + O

(L2D2
X

log( 1
ξ
)n3

λ(n+n−)2

)
≤
λ

2
‖w∗‖2 +

4(β + λ)(d + d2)D2
X

L2n2

ε2λ2(n+n−)2 + O
(L2D2

X
log( 1

ξ
)n3

λ(n+n−)2

)
=
λ

2
‖w∗‖2 + O

(
max

{ βL2D2
X

n2d2

ε2λ2(n+n−)2 ,
L2D2

X
log( 1

ξ
)n3

λ(n+n−)2

})
. (C.18)

If λ ≤ βd2

ε2n log( 1
ξ )

, we have

Eb[R(wpriv)] − inf
w
R(w) ≤

λ

2
‖w∗‖2 + O

( βL2D2
X

n2d2

ε2λ2(n+n−)2

)
,

else,

Eb[R(wpriv)] − inf
w
R(w) ≤

λ

2
‖w∗‖2 + O

(L2D2
X

log( 1
ξ
)n3

λ(n+n−)2

)
.

Now, setting λ = min
{
β

1
3 (LDXnd)

2
3

(‖w∗‖εn+n−)
2
3
,

LDX
√

log( 1
ξ )n

3
2

‖w∗‖n+n−

}
, and recalling

that imbalanced ratio ρ = n+

n ,

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{β 1

3 (LDXd)
2
3 ‖w∗‖ 4

3

(ρ(1 − ρ)εn)
2
3

,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

For (ε, δ)-DP, notice that b ∼ N(0, σ2I), we have E[‖b‖2] =

dσ2. From (C.15), we have

Eb[RλS (wpriv) − RλS (ŵ)] ≤
4(β + λ)L2D2

X
n2d log( 1.25

δ
)

ε2λ2(n+n−)2 . (C.19)

Plugging (C.19) in (C.14),

Eb[R(wpriv)] − inf
w
R(w)

≤ 2Eb
[
RλS (wpriv) − RλS (wλ)

]
+
λ

2
‖w∗‖2 + O

(L2D2
X

log( 1
ξ
)n3

λ(n+n−)2

)
≤
λ

2
‖w∗‖2 +

4(β + λ)L2D2
X

n2d log( 1.25
δ

)

ε2λ2(n+n−)2 + O
(L2D2

X
log( 1

ξ
)n3

λ(n+n−)2

)
=
λ

2
‖w∗‖2 + O

(
max

{β(LDX)2n2d log( 1
δ
)

ε2λ2(n+n−)2 ,
(LDX)2 log( 1

ξ
)n3

λ(n+n−)2

})
.

If λ ≤ βd log( 1
δ )

ε2n log( 1
ξ )

, we have

Eb[R(wpriv)] − inf
w
R(w) ≤

λ

2
‖w∗‖2 + O

(β(LDX)2n2d log( 1
δ
)

ε2λ2(n+n−)2

)
,

else

Eb[R(wpriv)] − inf
w
R(w) ≤

λ

2
‖w∗‖2 + O

( (LDX)2 log( 1
ξ
)n3

λ(n+n−)2

)
.

Setting λ = min
{ (log( 1

δ )β)
1
3 (LDXn)

2
3 d

1
3

(‖w∗‖ε(n+n−))
2
3

,
LDX
√

log( 1
δ )n

3
2

‖w∗‖(n+n−)

}
, there holds

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{ (log( 1

δ
)β)

1
3 (LDX)

2
3 d

1
3 ‖w∗‖ 4

3

(ρ(1 − ρ)εn)
2
3

,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

This yields the desired results.

C.4. Proof of Lemma 4

Proof. (a) By the strong smoothness of `,

R(wpriv) − R(ŵ) ≤ 〈∇R(ŵ), ŵpriv − ŵ〉 +
β

2
‖wpriv − ŵ‖2.

Therefore,

Eb
[
R(wpriv) − R(ŵ)

]
≤ Eb[‖b‖]‖∇R(ŵ)‖ +

β

2
Eb[‖b‖2].

(C.20)

Below we will estimate the terms on the right hand side of
(C.20) one by one.

Firstly, we estimate terms Eb[‖b‖] and Eb[‖b‖2]. Specifi-
cally, since ν1(b) ∝ 1

α
exp(− ‖b‖

γ
), then ‖b‖ is a random vec-

tor drawn from the distribution Γ(d, γ). Thus Eb[‖b‖] = dγ,
Var(‖b‖) = dγ2, and Eb[‖b‖2] = (d + d2)γ2. Using the prop-
erties of strongly smoothness, we have |`′(s) − `′(0)| ≤ β|s|
and |`′(0)| ≤ 2

√
β`(0), thus |`′(s)| ≤ 2

√
β + β|s| as `(0) = 1.

Thus B(
√

2/λDX) ≤ (βDX
√

2/λ + 2
√
β). Recall that γ =

2DXB(
√

2/λDX)
ελ

(
1

n+
+ 1

n−

)
, there holds

Eb[‖b‖] ≤
2DXd(βDX

√
2/λ + 2

√
β)

ελ

( 1
n+

+
1
n−

)
, (C.21)

and

Eb[‖b‖2] ≤
4D2
X

(βDX
√

2/λ + 2
√
β)2

ε2λ2

( 1
n+

+
1
n−

)2
(d + d2).

(C.22)
Secondly, we estimate the term ‖∇R(ŵ)‖. To this end, by the

strong smoothness of `, there holds |`′(s)| ≤ 2
√
β`(s),

‖∇`(wT (x − x′)|y = 1, y′ = −1)‖

≤ DX|`′(wT (x − x′)|y = 1, y′ = −1)|

≤ 2
√
βDX

(
`(wT (x − x′)|y = 1, y′ = −1)

) 1
2 .

Therefore,

‖∇R(ŵ)‖ ≤ E‖∇`(ŵT (x − x′)|y = 1, y′ = −1)‖

≤ 2
√
βDX

(
R(ŵ)

) 1
2 . (C.23)
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Hence it suffices to estimate R(ŵ). Indeed, using the fact that

`((w∗)T (x−x′)) ≤ `(0)+`′(0)DX‖w∗‖+
βD2
X

2 ‖w
∗‖2, and `(0) = 1,

|`′(0)| ≤ 2
√
β, and the definition of R(w∗), we have that

R(w∗) ≤ 1 + 2
√
βDX‖w∗‖ +

βD2
X

2
‖w∗‖2.

Consequently,

R(ŵ) = [Rλ(ŵ) − Rλ(wλ)] + [Rλ(wλ) − Rλ(w∗)] + Rλ(w∗) −
λ

2
‖ŵ‖2

≤ [Rλ(ŵ) − Rλ(wλ)] + 1 + 2
√
βDX‖w∗‖ +

(βD2
X

+ λ)
2

‖w∗‖2.
(C.24)

Applying Lemma 3 with B(
√

2/λDX) = (βDX
√

2/λ + 2
√
β)

implies, with probability at least 1 − ξ, that

Rλ(ŵ) − Rλ(wλ) ≤ O
(β2D4

X
log( 1

ξ
)n3

λ2(n+n−)2

)
.

Putting this back into (C.24), and then combining it with (C.23),
we have that

‖∇R(ŵ)‖ ≤ 2
√
βDX

( (βD2
X

+ λ)
2

‖w∗‖2 + 2
√
βDX‖w∗‖ + 1

) 1
2

+ O
(n

3
2 β

3
2 D3
X

√
log( 1

ξ
)

n+n−λ

)
. (C.25)

Now putting (C.21), (C.22) and (C.25) back into (C.20) yields
that

Eb
[
R(wpriv) − R(ŵ)

]
≤ O

(nD4
X
β2d‖w∗‖

(n+n−)ελ
3
2

+
n

5
2 D5
X
β

5
2 d

√
log( 1

ξ
)

(n+n−)2ελ
5
2

+
n2D4

X
β3(d + d2)

(n+n−)2ε2λ3

)
.

This completes the proof of part (a).
(b). The proof for part (b) is very similar to that for part (a)

given above. The only difference is the estimation of the noise
for Eb[‖b‖ and Eb[‖b‖2] which given by Eb[‖b‖] ≤ σ

√
d and

Eb[‖b‖2] = σ2d. Recall σ =
2
√

2 log(1.25/δ)DXB(
√

2/λDX)
ελ

( 1
n+

+ 1
n−

)
and B(

√
2/λDX) ≤ (βDX

√
2/λ + 2

√
β). Consequently,

Eb[‖b‖] ≤
2
√

2 log(1.25/δ)DX
√

d(βDX
√

2/λ + 2
√
β)

ελ

( 1
n+

+
1
n−

)
,

(C.26)
and

Eb[‖b‖2] ≤
8 log(1.25/δ)D2

X
d(βDX

√
2/λ + 2

√
β)2

ε2λ2

( 1
n+

+
1
n−

)2
.

(C.27)
Putting (C.25), (C.26) and (C.27) back into (C.20), we have that

E
[
R(wpriv) − R(ŵ)

]
= O

(nD4
X
β2‖w∗‖

√
d log( 1

δ
)

(n+n−)ελ
3
2

+
n

5
2 D5
X
β

5
2

√
d log( 1

δ
) log( 1

ξ
)

(n+n−)2ελ
5
2

+
n2D4

X
β2d log( 1

δ
)

(n+n−)2ε2λ3

)
.

This completes the proof of the lemma.

C.5. Proof of Theorem 5
Proof. In this theorem, we consider the case ∆ = 0. Since `
is L-Lipschitz, the error decomposition (18) and Lemma 3 with
τ = 1

2 imply, with probability at least 1 − ξ, that

Eb[R(wpriv)] − inf
w
R(w) ≤2Eb

[
RλS (wpriv) − RλS (ŵ)

]
+
λ

2
‖w∗‖2

+ O(
L2D2

X
log( 1

ξ
)n3

λ(n+n−)2 ). (C.28)

From the definition of wpriv = arg infw{R
λ
S (w) + bT w} and

Cauchy–Schwarz inequality, there holds

RλS (wpriv) − RλS (ŵ) ≤ bT (ŵ − wpriv) ≤ ‖b‖‖wpriv − ŵ‖. (C.29)

To estimate ‖wpriv − ŵ‖, noticing that RλS (w) is λ-strongly con-
vex, we have that

(∇RλS (wpriv) − ∇RλS (ŵ))T (wpriv − ŵ) ≥ λ‖wpriv − ŵ‖2,

This, by the Cauchy–Schwarz inequality, implies that

‖wpriv − ŵ‖ ≤
1
λ
‖∇RλS (wpriv) − ∇RλS (ŵ)‖.

From the definition of wpriv and ŵ, we know ∇RλS (ŵ) =

∇RλS (wpriv) + b = 0 which indicates that

∇RλS (ŵ) − ∇RλS (wpriv) = b.

Consequently,

‖wpriv − ŵ‖ ≤ ‖b‖/λ. (C.30)

Combining (C.29) and (C.30) implies that

RλS (wpriv) − RλS (ŵ) ≤
‖b‖2

λ
.

Now, plugging the estimation of RλS (wpriv) − RλS (ŵ) into (C.28)
yields that

Eb[R(wpriv)] − inf
w
R(w) ≤

2Eb[‖b‖2]
λ

+ O
(L2D2

X
log( 1

ξ
)n3

λ(n+n−)2

)
+
λ

2
‖w∗‖2. (C.31)

Here we only consider the case ∆ = 0 which, as shown in Al-

gorithm 2, will require the condition ε − n log
(
1 +

βD2
X

n+n−λ
)
> 0. In

particular, we consider the following stronger condition

ε′ := ε − n log
(
1 +

βD2
X

n+n−λ
)
≥
ε

2
> 0. (C.32)

The above condition is identical to n log
(
1 +

βD2
X

n+n−λ
)
≤ ε

2 . Using
the elementary inequality that log(1 + x) ≤ x for any x > 0, the

condition (C.32) holds true if nβD2
X

n+n−λ
≤ ε

2 or equivalently

β ≤
n+n−λε
2nD2

X

. (C.33)
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In the sequel, we will prove the generalization bounds for ε-DP
and (ε, δ)-DP respectively, using the (C.31) under the condition
(C.33) which ensures that ∆ = 0.

Firstly, for ε-DP, note that the condition (C.33) ensures
that the choice of γ stated in Algorithm 2, i.e. γ =

2nLDX

n+n−(ε−n log
(
1+

βD2
X

n+n−λ

) , satisfies that

γ =
2nLDX

n+n−(ε − n log
(
1 +

βD2
X

n+n−λ
) ≤ 4nLDX

n+n−ε
.

In addition, notice that ‖b‖ is drawn from Γ(d, γ), and then we
have Eb[‖b‖2] = (d + d2)γ2. Putting these estimations into
(C.31) implies that

Eb[R(wpriv)] − inf
w
R(w)

≤
32n2L2D2

X
(d + d2)

(εn+n−)2λ
+ O

(L2D2
X

log( 1
ξ
)n3

λ(n+n−)2

)
+
λ

2
‖w∗‖2.

Now, setting λ =
LDXn

√
d2+n log( 1

ξ )ε2

n+n−ε‖w∗‖ and recalling that imbal-
anced ratio ρ = n+

n , we have

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{LDX

√
d2 + n log( 1

ξ
)ε2‖w∗‖

ρ(1 − ρ)εn
,

LDX
√

log( 1
ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

Notice that

LDX
√

d2 + n log( 1
ξ
)ε2‖w∗‖

ρ(1 − ρ)εn

≤ 2 max
{LDXd‖w∗‖
ρ(1 − ρ)εn

,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n

}
.

Consequently,

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{LDXd‖w∗‖
ρ(1 − ρ)εn

,
LDX

√
log( 1

ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

Notice the above estimation is true under the condition (C.33).

This, by recalling the choice of λ =
LDXn

√
d2+n log( 1

ξ )ε2

n+n−ε‖w∗‖ , means
that

β ≤
n+n−λε
2nD2

X

=
L
√

d2 + n log( 1
ξ
)ε2

2DX‖w∗‖
.

This completes the proof of part (a).
We now move on to the proof of the case of (ε, δ)-DP.

In this case, b ∼ N(0, σ2I), where σ = (2
√

2 log( 1
δ
) +

√
2ε′)nLDX/(n+n−ε′). Recalling that (C.33) ensures that (C.32)

which means that ε′ ≥ ε
2 . Therefore,

Eb[‖b‖2] = σ2d ≤
4(2

√
2 log( 1

δ
) +
√
ε)2n2L2D2

X
d

(n+n−ε)2 . (C.34)

Putting this back into (C.31) implies that

Eb[R(wpriv)] − inf
w
R(w) ≤

8(2
√

2 log( 1
δ
) +
√
ε)2n2L2D2

X
d

(n+n−ε)2λ

+ O
(L2D2

X
log( 1

ξ
)n3

λ(n+n−)2

)
+
λ

2
‖w∗‖2.

Setting λ =
LDXn

√
(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn+n−‖w∗‖ and note that ρ = n+

n ,
we have

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{LDX

√
(
√

log( 1
δ
) +
√
ε)2d + n log( 1

ξ
)ε2‖w∗‖

ρ(1 − ρ)εn
,

LDX
√

log( 1
ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

Note that

LDX

√
(
√

log( 1
δ
) +
√
ε)2d + n log( 1

ξ
)ε2‖w∗‖

ρ(1 − ρ)εn

≤ 2 max
{LDX(

√
log( 1

δ
) +
√
ε)
√

d‖w∗‖

ρ(1 − ρ)εn
,

LDX
√

log( 1
ξ
)‖w∗‖

ρ(1 − ρ)
√

n

}
,

Consequently,

Eb[R(wpriv)] − inf
w
R(w)

= O
(

max
{LDX(

√
log( 1

δ
) +
√
ε)
√

d‖w∗‖

ρ(1 − ρ)εn
,

LDX
√

log( 1
ξ
)‖w∗‖

ρ(1 − ρ)
√

n

})
.

Notice the above estimation is true under the condi-
tion (C.33). This, by recalling the choice of λ =

LDXn
√

(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn+n−‖w∗‖ , means that

β ≤
n+n−λε
2nD2

X

=

L

√
(
√

log( 1
δ
) +
√
ε)2d + n log( 1

ξ
)ε2

2DX‖w∗‖
.

This completes the proof of part (b).

C.6. Proof of Theorem 6
Proof. Assume S and S ′ differs in the first datum, i.e. (x1, y1)
and (x′1, y

′
1). To show the differential privacy, it suffices to es-

timate the density ratio of pdf(wpriv |S )
pdf(wpriv |S ′)

. This ratio can be written
as

pdf(wpriv|S )
pdf(wpriv|S ′)

=
pdf(b|S )

pdf(b′|S ′)
·
| det(J(wpriv → b′|S ′))|
| det(J(wpriv → b|S ))|

. (C.35)

We will estimate (C.35) in two steps. First, we bound the ratio
of Jacobian determinants. Notice that

J(wpriv → b|S ) = −
( n∑

i=1

`′′(wprivxi)xixT
i + n(λ + ∆)I

)
18



Let A =
∑n

i=2 `
′′(wprivxi)xixT

i + n(λ + ∆)I, E = `′′(wT
privx1)x1xT

1 ,
E′ = `′′(wT

privx′1)x′1x′1
T . Then J(wpriv → b|S ) = −(A + E), and

J(wpriv → b′|S ′) = −(A + E′). Then,

| det(J(wpriv → b′|S ′))|
| det(J(wpriv → b|S ))|

=
det(A + E′)
det(A + E)

=
det(A + E′)

det(A)
·

det(A)
det(A + E)

≤
det(A + E′)

det(A)
≤ 1 +

βR2
2

n(λ + ∆)
, (C.36)

where the first inequality follows from the PSD of E, and the
last inequality used (8).

Second, we bound the ratio of the densities of noise. Let
Γ = b − b′, from the definition of wpriv, there holds b =

−
(∑n

i=1 yi`
′(wT xi)xi + n(λ + ∆)wpriv

)
, which implies that ‖Γ‖ =

‖b − b′‖ ≤ 2LR2. Therefore,

pdf(b|S )
pdf(b′|S ′)

=
e
−‖b‖2

2σ2

e
−‖b′‖2

2σ2

= exp
( 1
2σ2

(
‖Γ‖2 − 2〈b,Γ〉

))
≤ exp

( 1
2σ2

(
(2LR2)2 + 2|〈b,Γ〉|

))
. (C.37)

Let the event E = {b ∈ Rd : |〈b,Γ〉| ≥ 2LR2σt}. Since 〈b,Γ〉 ∼
N(0, ‖Γ‖2σ2), there holds Pr(E) = Pr(|〈b,Γ〉| ≥ 2LR2σt) ≤
e−

t2
2 . Plugging this inequality into (C.37) and choosing t =√

2 log 1
δ
, then there holds pdf(b|S )

pdf(b′ |S ′) ≤ e
2(LR2)2

σ2 +
2LR2
σ

√
2 log( 1

δ ). For

any ε′ > 0, if σ ≥
(2
√

2 log( 1
δ )+
√

2ε′)LR2

ε′
, we have pdf(b|S )

pdf(b′ |S ′) ≤ eε
′

on
the event Ec.

Combining (C.35) (C.36) and the above estimation, and

choosing σ ≥
(2
√

2 log( 1
δ )+
√

2ε′)LR2

ε′
, there holds

pdf(wpriv|S )
pdf(wpriv|S ′)

≤ exp
(

log
(
1 +

βR2
2

n(λ + ∆)

)
+ ε′

)
. (C.38)

on the event Ec. We now consider two cases. If log
(
1 +

βR2
2

nλ

)
<

ε, letting ∆ = 0. And we choose ε′ = ε − log
(
1 +

βR2
2

nλ

)
. If

log
(
1 +

βR2
2

nλ

)
≥ ε, letting ε′ = ε

2 , and ∆ =
βR2

2
n(eε/2−1) −λ. Therefore,

for any set E ⊆ Rd

Pr(wpriv(S ) ∈ E) = Pr(wpriv(S ) ∈ E ∩ E) + Pr(wpriv(S ) ∈ E ∩ Ec)
≤ Pr(E) + Pr(wpriv(S ) ∈ E ∩ Ec)

≤ δ +

∫
E∩Ec

pdf(wpriv = α|S ))dα

≤ δ + eε
∫

E∩Ec
pdf(wpriv = α|S ′))dα

≤ δ + eεPr(wpriv(S ′) ∈ E).

This completes the proof of the theorem.

C.7. Proof of Theorem 7
Proof. From the proof of Lemma 19 in [4], we can see that

J(wpriv, S ) − J(ŵ, S ) ≤
1
n

bT (ŵ − wpriv) ≤
‖b‖2

n2λ
. (C.39)

Now, putting (C.39) into (21), and taking expectation over b,
we have

Eb[L(wpriv)] − inf
w
L(w) ≤

2Eb[‖b‖2]
n2λ

+ O
(L2R2

2 log(1/ξ)
λn

)
+
λ

2
‖w∗‖2. (C.40)

In this theorem, we only consider the case ∆ = 0 which, as
shown in Algorithm 3, will require the condition ε − log

(
1 +

βR2
2

nλ
)
> 0. Here, we consider the stronger condition, ε′ := ε −

log
(
1 +

βR2
2

nλ
)
≥ ε

2 > 0. Notice that log(1 + x) ≤ x for any x > 0,
the above condition holds true if β ≤ λεn

2R2
2
.

Now, we present the generalization bounds for (ε, δ)-DP.
Note that the condition of β ensures that ∆ = 0, and thus

noise b is drawn from ν(b; ε, δ, σ) with σ = (2
√

2 log( 1
δ
) +

√
2ε′)LR2/ε

′. Therefore, Eb[‖b‖2] = σ2d ≤ 4(2
√

2 log( 1
δ
) +

√
ε)2L2R2

2d/ε2. Putting this back into (C.40) and setting λ =

8LR2

√
(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn‖w∗‖ , we have

Eb[L(wpriv)] − inf
w
L(w)

= O
(

max
{LR2(

√
log( 1

δ
) +
√
ε)
√

d‖w∗‖

εn
,

LR2

√
log( 1

ξ
)‖w∗‖

√
n

})
.

Notice the above estimation is true under the condition
β ≤ nλε

2R2
2
. This, by recalling the choice of λ =

8LR2

√
(
√

log( 1
δ )+
√
ε)2d+n log( 1

ξ )ε2

εn‖w∗‖ , means that

β ≤
λεn
2R2

2

=

4L

√
(
√

log( 1
δ
) +
√
ε)2d + n log( 1

ξ
)ε2

R2‖w∗‖
.
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