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Abstract

Pairwise learning has recently received in-
creasing attention since it subsumes many
important machine learning tasks (e.g. AUC
maximization and metric learning) into a uni-
fying framework. In this paper, we give the
first-ever-known stability and generalization
analysis of stochastic gradient descent (SGD)
for pairwise learning with non-smooth loss
functions, which are widely used (e.g. Rank-
ing SVM with the hinge loss). We intro-
duce a novel decomposition in its stability
analysis to decouple the pairwisely dependent
random variables, and derive generalization
bounds which are consistent with the setting
of pointwise learning. Furthermore, we apply
our stability analysis to develop differentially
private SGD for pairwise learning, for which
our utility bounds match with the state-of-
the-art output perturbation method (Huai
et al., 2020) with smooth losses. Finally, we
illustrate the results using specific examples
of AUC maximization and similarity metric
learning. As a byproduct, we provide an
affirmative solution to an open question on
the advantage of the nuclear-norm constraint
over the Frobenius-norm constraint in simi-
larity metric learning.

1 Introduction

Let the input space X’ be a compact domain of R?, the
output space ) C R, and the domain of model param-
eters YW C RY. In the standard supervised learning,
one aims to learn the relation between the input and
output variables from a training dataset S = {z; =
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(xi,9:) € X x Y :i=1,2,...,n} which is i.i.d. from
an unknown distribution P on Z = X x ). In such
cases, the quality of a model parameter w is often
measured by a pointwise loss function ¢(w, z).

In this paper, we are concerned with another impor-
tant class of learning tasks called pairwise learning
where the quality of a model parameter w is mea-
sured by a pairwise loss ¢(w, z,z’) on pairs of exam-
ples (z,2') as opposed to the pointwise loss ¢(w,z)
in standard classification and regression. This pair-
wise learning framework instantiates many important
learning tasks such as similarity and metric learning
(Weinberger and Saul, 2009; Xing et al., [2003; |Ying
and Li, [2012), AUC maximization and bipartite rank-
ing (Agarwal and Niyogi, 2009; Clémencon et al., 2008;
Gao et al.| [2013; |Ying et al., [2016; |Zhao et al., [2011)),
gradient learning (Mukherjee and Wu, 2006; Mukher-
jee and Zhou, [2006), and minimum error entropy prin-
ciple (Hu et al.| 2013]).

Stochastic gradient descent (SGD) has become the
workhorse behind many machine learning algorithms
for large-scale data analysis. SGD and its variants
have been widely studied in the pointwise learning
case (Bach and Moulines, 2013; [Bottou and Cun|
2004} |Lacoste-Julien et al.| 2012; [Rakhlin et al.| |2012;
Shalev-Shwartz et al.| 2009; [Ying and Zhou, 2006|) as
well as the pairwise learning case (Kar et al., [2013;
Lin et al., 2017; [Wang et al., |2012; [Ying and Zhoul,
2016). In particular, Kar et al. (2013); Wang et al.
(2012) studied the online-to-batch conversion bounds
for online pairwise learning. The work of [Shen et al.
(2020) studied the stability and generalization of SGD
in pairwise learning and derived lower bounds for their
optimization error over a class of pairwise losses. This
work used the uniform stability (Agarwal et al., |2010)
which was largely motivated by [Hardt et al. (2016 in
the pointwise case. However, there are some funda-
mental limitations in the work by [Shen et al.| (2020):
it requires the pairwise loss to be both Lipschitz con-
tinuous and strongly smooth, and the parameter do-
main W is assumed to be bounded. Such assumptions
are very restrictive which are violated in many cases
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such as the least square loss for AUC maximization
(1 —w'(x—x)) o1y =—1 with w € R? (I is the
indicator function) and the hinge loss for metric learn-
ing (1 + 7(y,y")(x — x')Tw(x — x')); where w is a
positive semi-definite matrix, and 7(y,y’) = 1 if x,x’
are from the same class and —1 otherwise.

On the other important front, the concept of stability
is closely related to differential privacy (DP) (Dwork
et al.l 2006}, 2014) which is a well accepted mathemat-
ical definition for privacy protection. While private
SGD has been extensively studied (Bassily et al., 2020,
2019; |Wu et al.| 2017)) in pointwise learning, there is
litter work on differentially private SGD for pairwise
learning except the very recent work of Huai et al.
(2020). However, the study (Huai et al., [2020) again
requires the loss to be both Lipschitz continuous and
strongly smooth.

In this paper, we study the stability, generalization,
and differential privacy of SGD for pairwise learning
with non-smooth losses. Our contributions can be
summarized as follows.

e We establish the first-ever-known stability bounds
of SGD for pairwise learning with non-smooth loss
functions. Our results hold true for both bounded
and unbounded parameter domains. The proof tech-
niques are mainly motivated by the recent work
(Bassily et al.| 2020; Lei and Ying, [2020) where sta-
bility of SGD was established in the pointwise case.
The main challenge here is that pairs of examples
involved in pairwise learning are not statistically in-
dependent. To overcome this hurdle, we develop a
novel approach for decoupling such pairwisely de-
pendent random variables in the analysis. We also
derive the first generalization bound in high proba-
bility for SGD in pairwise learning using the stabil-
ity approach.

e We study the differential privacy guarantee and util-
ity bounds of private SGD for pairwise learning by
output perturbation method. Our idea is to use our
stability results to derive its sensitivity with high
probability w.r.t. the randomness of algorithm, and
hence guarantee its differential privacy with smaller
added noise. The resulting utility bound matches
with the output perturbation method in [Huai et al.
(2020) for private SGD in pairwise learning with
smooth losses.

e We provide concrete examples of pairwise learning
including AUC maximization and similarity metric
learning to illustrate our stability and differential
privacy results. In particular, we give an affirma-
tive solution to the open question raised in |Cao
et al.| (2016) that whether similarity metric learning
with nuclear-norm constraint can yield milder de-

pendence on the dimensionality than the Frobenius-
norm constraint.

Other Related Work. Generalization analysis for
the ERM formulation in pairwise learning was studied
using U-Statistics (e.g. De la Pena and Giné| (2012))
for ranking |Clémencon et al. (2008); [Rejchel| (2012)
and metric learning (Cao et al.;2016; Verma and Bran-
son, [2015). There are a considerable amount of work
on studying SGD and online learning algorithms in
pairwise learning. In particular, generalization bounds
for online pairwise learning algorithms were estab-
lished in Kar et al.| (2013); Wang et al.| (2012) using
online-to-batch conversion techniques (Cesa-Bianchi
et al.,|2004)) which involves the Rademacher complex-
ity or the covering number. The convergence (opti-
mization error) of SGD type algorithms for pairwise
learning was obtained in [Lin et al.| (2017); [Ying and
Zhou (2016)) where the algorithms there directly min-
imize the population risk. In this setting, there is no
need to consider generalization (estimation error) i.e.
the difference between the empirical risk and the true
population risk.

Algorithmic stability and generalization bounds were
established in |Agarwal and Niyogi (2009)) for ranking
problems, and in|Jin et al.|(2009) for regularized metric
learning with a strongly convex objective function, and
both studies considered the ERM formulation with a
strongly convex objective function. Recently, the uni-
form stability and its trade-off with optimization errors
were studied in [Shen et al.| (2020]) for SGD in pairwise
learning, which is inspired by the recent work in point-
wise learning (Charles and Papailiopoulos| [2018; [Hardt
et al.| [2016; |Kuzborskij and Lampert, |2018|). However,
the loss there is assumed to be Lipschitz and strongly
smooth and the domain W needs to be bounded.

The concept of stability was recently used to study the
generalization (utility) of differentially private SGD al-
gorithms, particularly in pointwise learning. Specifi-
cally, the work of |Wu et al. (2017) studied the output
perturbation using sensitivity analysis which is very
close to the concept of uniform stability. In |Bass-
ily et al. (2019), using stability approach, the optimal
excess generalization bound O( max{1/v/n, Vd/(ne)})
was established for (e, §)-DP algorithms which, how-
ever, requires the loss function to be Lipschitz and
strongly smooth, and the domain W be bounded. For
the non-smooth loss, it proposed to smooth the loss
by its Moreau envelope function which is not an ideal
solution as the Moreau envelope function is not easy to
compute for a general loss. In [Feldman et al. (2020)),
multi-phrased SGD were proposed with the optimal
population risk in which, for the non-smooth case,
their algorithm is significantly more involved than the
noisy SGD algorithm. In regard to the differential pri-
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vate SGD in the pairwise case, the only work that we
are aware of is |Huai et al.| (2020) which studied both
gradient perturbation and output perturbation with
Gaussian noise. They derive the rate @(ﬁ/(%s))
for gradient perturbation and (5(\/&/ (v/ne)) for out-
put perturbation. Note that the loss function there
needs to be both Lipschitz continuous and strongly
smooth.

2 Main Results

Before stating our main results, we first introduce nec-
essary materials and notations. Given a pairwise loss
function £ : W x Z x Z — R, we aim to minimize the
following population risk

R(w) =E, »[l(w,z,2)],

where z and z’ are drawn independently from the pop-
ulation distribution P on Z. The population distribu-
tion is often unknown and we only have access to a set
of i.i.d. training data S = {z1,22,...,2,} € Z". The
task then reduces to minimizing the empirical risk

v{,réilr/lvRS(w) ::m Z Uw,z;,2z;). (1)

i,j=1,i#]

Randomized optimization algorithm A : Z" — W
provides an efficient approach to find an approximate
solution to problem , which takes S as input and
produces an output A(S) € W. The randomized algo-
rithm A here can be either SGD for pairwise learning
or its noisy variant for differential privacy. The per-
formance of A is quantified by the excess population

risk: €45k (A(S)) = R(A(S)) — infwew R(w). We can

decompose €5k (A(S)) as follows:
erisk (A(9)) =[R(A(S)) = Rs (A(S))]+[Rs (W) — R(w.)]
+[Rs(A(S)) = Rs(w.)], (2)

where w, € arg miny ey R(w). The first term on the
right hand side of is called the estimation error.
Since w, is fixed, the term Rg(w,) — R(w,) can be
trivially handled by the standard Hoeffding inequal-
ity. As a comparison, the estimation of the term
R(A(S)) — Rs(A(S)), also called the generalization
error, is much more challenging since A(S) depends
on S. We will develop novel stability analysis to han-
dle this term. The last term Rg(A(S))— Rg(w.) is
called the optimization error and we can bound it by
applying optimization theory.

We now introduce some necessary assumptions and
definitions. Let || - ||2 denote the Euclidean norm on
R? and (-,-) denote the corresponding inner product.
Given a function f: W — R, let 9f(w) be a subgra-
dient of f at w. A function f is said to be convex if

Algorithm 1 SGD for Pairwise Learning

Input: Dataset S = {z1,--- ,2,}, step size n, num-
ber of iterations T, initial point w; = 0 and initial
sample 41 € [n] from uniform distribution
fort=1toT do

Select 4,41 € [n] by uniform distribution

Wi =T (wy = 23, 0wy, 24, 24,))
end for
Output: wp = % Zthl Wy

for any w, w’ € W, there holds
fW') = f(w) + (0f(w), w' —w).

A function f is said to be G-Lipschitz continuous if,
for any w,w’ € W, there holds

[f(w) = f(W')] < Gllw — W',

Throughout this paper, we assume that the (possibly
non-smooth) loss function ¢(w,z,2z’) is nonnegative,
convex and G-Lipschitz continuous w.r.t w.

2.1 Stability and Excess Risk Analysis

In this subsection, we consider the stability and gen-
eralization of the SGD algorithms for pairwise learn-
ing. The SGD algorithm is described in Algorithm
which has been widely discussed in [Lin et al.| (2017);
Wang et al.| (2012)); [Ying and Zhou| (2016]). Note that
Iy (-) is the projection onto the parameter space W
and [n] = {1,...,n}. In this subsection, the notation
A denotes Algorithm

In particular, we will use the uniform argument stabil-
ity (UAS) (Liu et all 2017) where its original con-
cept was stated in expectation w.r.t. the internal
randomness of A. We will use its probabilistic ver-
sion here. Specifically, let S = {z1,---,2,} and
S" ={z}, - ,z,} be two neighborhood datasets that
differ only in one single example. For any v € (0,1),
A is called €44,,-UAS with probability 1 — ~ if for any
neighborhood datasets S and S,

PA[IIA(S) = A(S")[ly > €stan] < 7-

We emphasize the probability here is taken over the
internal randomness of A, i.e. the uniform distribution
of generating i;’s.

The following theorem states a high-probability UAS
result for Algorithm [I] with non-smooth losses. Here,
w1 and wi, denote the (¢ + 1)-th iterate of Algo-
rithmbased on samples S and S’, respectively. And,
the notation O(-) indicates that the bound is up to a
logarithmic term.
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Theorem 1. Suppose that we run Algorithm [1 un-
der random selection with replacement for t iterations
based on S and S’. Then, with probability 1 — ~ w.r.t.
the internal randomness of A, we have, for any S and

S’ that
Wit = w3 < 4en?G2 [t + n?(et)

x (1) + ““(%)2] 3)

In particular, if T > n, then the output of Algorithm[1
18 €stap-UAS with high probability where

e = O T+ T0CT))

The proof of Theorem [1|is given in Section This
bound matches the result in the pointwise learning
with non-smooth losses (Bassily et al.| 2020; Lei and
Ying| 2020) up to a logarithmic term of 7. The proof
is motivated by |Lei and Ying (2020) in the pointwise
case but more involved in pairwise learning. Indeed,
the key challenge, in comparison with pointwise learn-
ing, is that the sub-gradient estimator at the ¢-th step
depends not only on the current example z;,,, but also
on previous examples {z; :k=1,---,t}.

To our best knowledge, [Shen et al. (2020) is the only
available work which considered the stability of SGD
in pairwise learning. However, their work required the
loss to be Lipschitz continuous and strongly smooth to
ensure the non-expansiveness of the gradient update,
which is very critical for the proof of the main results
there. The non-smoothness assumption in our paper
makes the corresponding gradient update no longer
non-expansive, and therefore the arguments in |Shen
et al. (2020) no longer apply. We bypass this obstacle
by a refined control of the expansiveness between adja-
cent steps. To address this dependence issue, the work
of |Shen et al. (2020) counts the number m of different
examples z; # z; encountered by SGD until iteration
t, which obeys a binomial distribution. In contrast,
high-probability analysis here for non-smooth loss is
more challenging and involved because directly apply-
ing concentration inequality to similar binomial distri-
bution yields an undesired estimation. We overcome
this hurdle by decomposing the sub-gradients into sum
of t pairs of dependent random variables first, and then
upper bound this sum by two sums of independent ran-
dom variables. From this new decomposition, we can
apply the Chernoff-type tail bounds to these two sums
of independent random variables to get the desired es-
timation. One can see Section [B.1] for more details.

Based on Theorem 1| and the error decomposition ,
we derive the excess risk bounds for bounded (The-
orem [2) and unbounded domains (Theorem [3).

bound the optimization error, we need the following
variant of Rademacher average (Bartlett and Mendel-
son, [2002)

n

D IE TS SETCR)

Ri(LoW) = P
i—1 wWE

Here o, are Rademacher random variables taking val-
ues in {£1} with equal probability 1/2, and the ex-
pectation is taken over z;, z;, and oy.

Theorem 2. Suppose W is bounded with diameter D.
Denote M = sup, , £(0,2z,2"). Assume we run Algo-
rithm |Z for T > n iterations under random selection
with replacement rule. Then for any v € (0,1), with
probability at least 1 — v w.r.t. the sample S and the
internal randomness of A, we have

€rzsk WT ZRt KOW +%+ 22 o 111(63:/'}/)
Femfin(n)] (VT + V3T lﬂ(ei’) In(6/7) )

where ¢; = 100v/6e/2G max{1, G} In(6e/vy) and cy =
(64 19¢)(M + GD).

In particular, if Ri(£ o W) = O(1//t) and we choose
T = n? and n = O(n=>/?) then with high probability
we have

€risk(Wr) = @(lnj/(ﬁn))'

Theorem [2] is proved in Appendix [A.2. Using stan-
dard technique (Bartlett and Mendelson, |2002), the
Rademacher complexity estimation of Ri(£ o W) =
O(1/+/t) holds true in many cases when X and W
are bounded (e.g. see Section [4] for concrete examples
of AUC maximization and similarity metric learning).
It is worthy of mentioning that the choice of T = n?
is consistent with pointwise learning with non-smooth
loss (Bassily et al.,|2020; [Lei and Ying, [2020).

We can also derive excess generalization bounds for
Algorithm |1| even when W is unbounded. Specifically,
let D = |w.|, and Wp = {w € W||w]|, < D}
The main idea is to show that the iterate w; from
Algorithm [ has an adaptive bound, i.e. wy € W, =
{wew |||w||2 < (G* + M)nt}.

Theorem 3. Denote M = sup, , £(0,2,2") and D =
[W.lly. Suppose we run Algorithm |1 for T > n itera-
tions. For any vy € (0, 1), with probability at least 1 —~
w.r.t. the sample S and the internal randomness of A,
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we have

T
QZ D?* G
€risk(WT Sf 2 Ri(LoWy) +Rt(€OWD))+f+nT

(6T /) + 5 /nT In 66/’y /In 6T/’y

(n)] (\F+4T111(6T)\/W)

+cin[Iln ,
where ¢; = 100v/6e%/2G max{1, G} In(6e/y), c5 = (7T+
12v/2e)M +4G D +16eG, ¢4 = 3GV G? 4+ 2M and c5 =
12¢/2eGVG? +2M.

In particular, if Ri(€ o W;) = O(mvt) and Ry(£ o
Wp) = O(1/v/t) and we choose T = n*/? and n =
O(n=1), then with high probability we have

€risk(Wr) = @(h:l(/z))

Theorem [3] is proved in Appendix [AZ3. In particular,
one can show that the Rademacher complexity can
be estimated using standard technique (Bartlett and
Mendelson, 2002) such that R;(¢ o Wp) = O(D//t)
when X is a bounded domain. Therefore by the defi-
nition of W, one can similarly show that R;(¢oW,) =
O(nt/vt) = O(ny/t). One can see more discussion
on such estimation in Section Therefore, Theo-
rem |3 mainly differs from Theorem [2in the additional
O(y/nT/n) term where T > n. This is due to the
unboundedness of W. Our excess risk bound is consis-
tent with the results in [Lin et al. (2016) in the point-
wise setting (up to a logarithmic term), where the au-
thors studied SGD for non-smooth loss functions in
the pointwise setting using uniform convergence. How-
ever, the bound there is given in expectation while we
have provided a high-probability bound.

2.2 Differentially Private Pairwise Learning

We show the implication of stability analysis in analyz-
ing differentially private SGD in pairwise learning. We
start by introducing the notion of differential privacy.

Definition 1 (Differential Privacy (Dwork et al.
2006)). A (randomized) algorithm A is called (e, d)-
differentially private (DP) if, for all neighboring
datasets 5,5 differing by only one example and for
all events O in the output space of A, the following
holds

P[A(S) € O] < e P[A(S) € O] +6.

There are other forms of differential privacy such as
Gaussian differential privacy (Bu et al.l 2020; [Dong
et al., 2019). In this paper we restrict our attention

Algorithm 2 Private SGD for Pairwise Learning with
Output Perturbation

Input: Private dataset S = {z1,---,2z,}, privacy
parameter €, d, stepsize 7, number of iterations T,
initial point w; = 0 and initial sample i; € [n] from
uniform distribution
fort=1to T do

Select 4441 € [n] from uniform distribution

wi =11y (Wt— %Zzzl oUWy, 24, sz))
end for
wr = % Zthl Wi
Sample u ~ N(0,0%I,) with o2 being given by
Output: wyi, = Iy (V_VT + u)

to the standard DP mentioned above. In particular,
we consider Gaussian mechanism (Dwork et al.l 2006),
i.e. given any query function ¢ : S — R?, let A(S) =
q(S) +u where u ~ N(0, 0%1,) with I being the iden-
tical matrix. For all neighborhood datasets S, S’ that
differ by one example, the f3-sensitivity A of the query
function q is defined as A(q) = supg g [[q(S) —q(S")||2-

We develop a private version of SGD for pairwise learn-
ing. In this subsection, the notation A denotes Algo-
rithm @l The idea is to add Gaussian noise to the
output of the non-private Algorithm [1] In return, Al-
gorithm [2] is guaranteed to be (¢,0)-DP by properly
choosing ¢ as shown below.

Theorem 4. Given the total number of iterations T,
for any privacy budget € > 0 and 6 > 0, Algorithm [2
satisfies (e, 0)-differential privacy with

2G? In(2.
0_2:8677G n( 5/5)(T+

! 372 1n? (eT) In? (2/5)) L (5)

€ n?2

The proof of Theorem {4] is given in Section The
goal here is to guarantee privacy with the added noise
being as small as possible. The key observation is the
UAS of the non-private output wp can be used to
quantify the high-probability sensitivity of the query
function ¢(S) = wr. Specifically, subsampling forms
an event of probability measure 1 — ¢/2 under which
a small sensitivity O(nv/'T + T In(T)/n) holds true.
Hence, under this event, we only need to add noise
with o = O((nV/T + nTIn(T)) In(2/5)/(ne)) to guar-
antee a slightly restrictive (¢, d/2)-DP. Therefore the
algorithm is (¢; §)-DP over the whole event space. Wu
et al. (2017) studied differential private SGD by output
perturbation method in the pointwise learning setting
and they also utilized the idea of bounding sensitivity
by UAS. However, they considered the stability and
sensitivity regardless of the randomness of the algo-
rithm, which is not suitable for high probability anal-
ysis of utility bound later. In contrast, our technique
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can also be applied to derive privacy guarantee and
high probability utility in pointwise learning. |Huai
et al.| (2020) also studied the sensitivity of SGD for
Pairwise learning. However, they focused on the on-
line setting where the data arrives in a streaming man-
ner, and hence the different example between S and S’
will only appear once in the algorithm. While in our
stochastic setting the different example can be used
more than once by subsampling, it is more challenging
to measure the sensitivity. Moreover, their analysis
depends on the strong smoothness of the loss function
while we allow the loss function to be non-smooth.

In order to derive the utility bound of Algorithm 2] we
need a new error decomposition scheme as follow

€risk (Wpriv) = R(Wpriv> - R(W*)
= R(Wpiiv) = R(Wr)+R(Wr)—R(w.),  (6)

where R(wr)— R(w,) measures the excess risk in-
curred by the non-private output wr (Algorithm
and R(Wpriv) — R(Wr) measures the effect of pertur-
bation by adding random noises. The utility bound is
given as follow.

Theorem 5. Suppose W is bounded with diame-
ter D. Consider Algorithm [2 for T iterations un-
der random selection with replacement rule. For any
privacy budget ¢ > 0, 6 > 0, and for any v €
(max{44, exp(—d/8)}, 1), with probability at least 1—7,
we have

4
Erisk(wp'riv) < T ZRt(E o W) + 777 +

+co @ +2GoVdIn'/*(4/7).

+ cnfn(n

(n)] (\/T—&— V3T In(eT) 111(2/5))7

where ¢ = 100\/663/2Gmax{1,G} In(6e/v) and co =
(6 + 19¢)(M + GD).

In particular, letting o satisfy () and choosing T = n?
and n = O(n=3/?), then with hzgh probability we have

Erisk(Wpriv) = @(\/@e)

Theorem [f] is proved in Appendix [A.4. The difference
compared to Theoremls the additional O(v/d) term
caused by R(Wpyiv)—R(Wr) in (6). The utility bound
@(\/E/(\/ﬁe)) matches that of the output perturba-
tion for pairwise learning studied in [Huai et al.| (2020)
which, however, requires the loss to be both strongly
smooth and Lipschitz continuous. Our analysis only
needs the loss to be Lipschitz continuous.

3 Main Proofs for Theorems [1] and 4

In this section, we provide technical proofs for The-
orems [I] and @l Proofs of other Theorems can be
found in the Appendix. Throughout this section, we
let ﬁt+1 (w) denote the accumulated loss until z;,, is

revealed. i.e. Lyyi(wy) = %22:1 LWy, 24, Zi),)-

3.1 Proof of Theorem [

To prove Theorem |1} we need the following Chernoff’s
bound for a summation of independent Bernoulli ran-
dom variables (Wainwright, 2019).

Lemma 1 (Chernoff bound for Bernoulli vector).
Let X1,...,X; be independent random wvariables tak-
ing values in {0,1}. Let X = Z;=1 X; and p =
E[X]. Then for any ¥ > 0, with probability at least
1—exp(—p5?/(2+7)) we have X < (1 +7)p.

Proof of Theorem[I. Without loss of generality, as-
sume that S and S’ differs in n-th position. De-
note 8y 1,k = OU(Wy, 24, 2,,) — Bé(wt,z,tﬂ,z%) and
5£+1’k:8£(wt,zit+l,zik) ol(wy, z, zZi, z; ). The fol-
lowing recursive inequality holds

||Wt+1 Wt+1||2_ ||Wt_778Lt+1 (wt)—wt—i-o?BLtH w; H2

= Hwt / nZ(;tJrl kH

1
;ZHWt—WQ—WZH,kH; (7)
k=1

IN

Now we estimate the term on the right hand side of
by considering two cases. For the case i;y1 # n

and iy # n, we have z;,,, =z, and z;, = z . Then
Wi = wi = ]|
=[[we = Wil + 0?6l = 20we = Wi 0 )
< =il a7

where the last inequality holds because £ is G- Lipschitz
and convex. If iy = n or iy = n, then z;, , # z“+1
or z;, # Z i+ 1t follows from the Young’s inequality
that for any p > 0

[ we —wi —n6; 41kl
<(1+p)lwe —will3 + (1+ 1/p)n°|16;
<(1+p)lwe — will3 + 4(1+ 1/p)n°G>.

Combining the above two inequalities together and let
t
Yy = %Zkzl 0,1 =nvip=n), We have

Wi =wi i[5 S(L+pYa)[we—wi[3+4(1+Ye/p)n* G2
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Applying the above inequality recursively we have

@) G 1
Iwern = will} < 0[] (+p¥0) (4+4Y5/p)n3 6>
g
(b) t t
<> H 14p) " (4+4Y; /p)n; G
=1 =+

c) t ¢
< (14p) X G2 (4t + 4> Yi/p), (8)

=1

—~

where (a) is due to the recursive relation, (b) is due
tol+axr < (14 a)® for a >0 and x > 0 and (c)
inequality is due to H?:a < xXi=1t for g > 1. We
note that Y7,---,Y; are dependent variables, but the
sum of Y;’s has the following decomposition:

t 1 l t
Z 7 Z I =nvi=n] < Z 7

=1 k=
t
1
ll+1:n +Z 7

l

[t

M» HM@F
FQN

[i=n]
=1 =1 k=1
t l t+1
< Ty H10(0) Y Ty SIn(et) Y Ty
=1 k=1 k=1

Applying Lemma [1] with X}, = Ij;, -, and X =
ZZ=1 X}, with probability at least 1 — ~y, we have

t+1

Zﬂ[zk—n] < —+1n(1/ )+ (t+1)n(l/v)

n

For the simplicity of notation, let ¢, = In(et)((t +
1)/n + In(1/y) + /(t + 1) In(1/7)/n). Plugging the
above inequality back into , we derive the following
inequality with probability 1 — ~

Wit = Wi |3 < 4n°GP(1+ p)t (t + ¢4 /p).-
By selecting p = 1/c4 ¢ in the above equality, we have
(1 + p)ert < e. Therefore we have proved in The-
orem Now, since the bound on left hand side of
is monotonically increasing, with probability 1 — -, we
have

W —wr 3

1 T
2> wr - whl3
t=1

372 In?(eT) lnz(l/’)’))

(9)

where we have used the fact that 7" > n. Therefore
the €stap-UAS bound holds by calling the convexity of
f5-norm. O

< 467]2G2(T+
n

Zl+1:” _HI[ZIFH])
1

3.2 Proof of Theorem [4]

In order to establish the privacy guarantee of Algo-
rithm we need the following lemmas. The first
lemma characterizes the necessary scale of o of Gaus-
sian mechanism (Dwork et al.,|[2014]).

Lemma 2 (Gaussian mechanism). For a Gaussian
mechanism A(S) = q(S) + u with u ~ N(0,0%1,),
if q has lo-sensitivity A(q) and assume that o >

V21In(1.25/6)A(q) /¢, then A yields (e, §)-DP.

The next lemma indicates that differential privacy is
immune to post-processing (Dwork et al.,|2014)).

Lemma 3 (Post-processing). Let A : Z™ — W be a
(randomized) algorithm that is (¢,0)-DP. Let f : W —
W be an arbitrary randomized mapping. Then fo A:
Z" — W is (e,6)-DP

Proof of Theorem[]. Consider the mechanism A} =
wr + u and for any S,5’, consider the f>-sensitivity
Ap = ||Wp — Wh|la. Let I = {i1,--- ,ir} be the se-
quence of sampling after T iterations in Algorithm
Choosing v = 6/2 in Equation (9], then the event

N 372 an(eTZ) 1n2(2/5)>}

= {I|A2T < den*G? (T

satisfies P[] € E] > 1 —§/2. When I € E, Lemma [2]
implies A’ satisfies (e, d/2)-DP when
V22570 Ar
D —
Furthermore, by Lemma 3] the final output wpiv =
I (A%) also satisfies (€, /2)-DP. Therefore, for any
€ > 0 and any event O in the output space of Wpyiy,
P[Wpiv(S) € O] = P[wpiiv(S) € ON T € E]
+P[wpiv(S) €ONI ¢ E]
=P[wpiv(S) € O|I € E]P|[I € E|
+ P[wpin(S) € O ¢ E]P[I ¢ E]

l\D\On

< (eeP[wpriv( "Y€ O|l € E] + )]P’ [I € E] +
< ePlwpniv(S) € ONI € E] (2;

< BEP[WPriV(S/) € O] +9

5,0
2

where the first inequality is because when I € E, Wpyiy
satisfies (e,0/2)-DP and the fact P[I ¢ E] < §/2, the
second inequality is by the definition of conditional
probability. The proof is complete. O

4 Applications

In this section, we illustrate our main results in the
above sections by considering two concrete examples
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of pairwise learning, namely AUC maximization and
similarity metric learning. According to Theorems
and [} the key here is to estimate the Rademacher
complexity defined by .

AUC Maximization. AUC maximization aims to
learn a ranking function hy defined by hy(x,x') =
w ' (x —x'). One expects hy will rank positive exam-
ples higher than negative examples, i.e. w'(x—x') > 0
for y = 1 and y' = —1. Using the hinge loss
U(w,2,2") = (1 = hw(x,X")) {I[y—10y=—1), AUC maxi-
mization can be formulated as

v{;rg)r/lv Ez 2 [(1 —wl(x— X/))+H[y:1/\y/:—1]]« (10)
Denote k = sup,||x||,. The Rademacher complexity
defined by for AUC maximization is given in the

following lemma.

Lemma 4. Given the parameter space W = {w €
R|||lw|, < D}, the Rademacher complezity of H =
{hw|w € W} can be upper bounded by R.(H) <
2Dk /.

Note in the case of , it is easy to check R;(foH) <
4GDr/+/t by Ledoux-Talagrand inequality (Ledoux
and Talagrand) |2013)). Combining this lemma with
Theorems [2|and [5] one can derive the following excess
risk and utility bound for Algorithms |1f and [2| in the
context of non-smooth AUC maximization.

Corollary 1. Consider the problem of AUC maxi-
mization . If one runs Algorithm |Z with T = n?
and n = O(n=>/2), then, with high probability we have

~ K
risk(W :O( *)
Erisk(Wr) -
Corollary 2. For the problem of AUC mazimiza-
tion , if one runs Algorithm @ with T = n?,
n = O(n=3/?) and o given by (@), then, with high
probability we have

Vkd
\/ﬁe)

Similarity Metric Learning. We now turn to an-
other notable example of pairwise learning called sim-
ilarity metric learning. It aims to learn a (squared)
Mahalanobis distance metric which is defined by
hw(x,x') = (x — x')Tw(x — x') parametrized by a
positive semi-definite matrix w € R%*¢. The intu-
ition behind similarity metric learning is that the dis-
tance between samples from the same class should be
small and the distance between examples from dis-
tinct classes should be large. Using the hinge loss
Uw,z,2") = (1 4+ 7(y,¥)hw(x,x))4, it can be for-
mulated as

min o [(14+7(5,9)(x = x) Tw(x = x):], (1)

erisk(Wprin) = O

where 7(y,y’) =1 if y = ¢’ and —1 otherwise.

Lemma 5. Consider the parameter space defined
via the nuclear norm W = {w € R¥4, [wlg, < D},
where |w||s, denotes the nuclear norm of a matriz w.
The complezity of H = {hw : W € W} is bounded by

D||E[X|3XXT]|2_Viogd
Vi ) )

where || - ||s.. denotes the largest singular value.

Ri(H) = 0(

The proof of Lemma [fis postponed to Appendix [A.5!

As direct corollaries of Lemma |5} we can derive gen-
eralization bounds for metric learning from Theorems
and For brevity, denote y = ||IE[||X||§XXT]||SOO.
We derive the following results of SGD for pairwise
learning in the context of non-smooth metric learning.

Corollary 3. Consider the similarity metric learning
problem . If one runs Algorithmlzfor T =n? and
n= (’)(n‘S 2), then, with high probability we have

Erisk(Wr) = ~( Xlng(d))

Corollary 4. Consider the similarity metric learning
problem . If one runs Algorithmlz with T = n?,
n = O(n=>/?) and o given by , then, with high
probability we have

xd log(d)>
/ne '
Remark 1. We now show the advantage of our re-

sult as compared to the existing results. Based on the
argument in |Lei and Ying| (2016)), it can be shown

Dapy x|

i .

The difference between and is that we re-
1

place sup, ||x||? by the term ||]E[HX||§XXT]H§ . No-

tice HE[||X||2XXT} HS > 5tr(E[XXTXXT]) _

E’V‘isk(wp’ri’u) = @(

Ry(H) = 0( (13)

LE[r(XXTXXT)| = 1E[IX]3].
E[||X|3] Z d?, then the upper bound of satisfies
the relation > \/dlog d/+/t and in the extreme case this
lower bound can be achieved within a constant factor.
As a comparison, the upper bound in satisfies the
relation 2 dy/(logd)/t. That is, our argument out-
performs the existing results by enjoying a milder de-
pendency on the dimensionality for using nuclear-norm
constraints, which is appealing in the high-dimensional
setting. If we use Frobenius-norm constraint in defin-
ing W = {w € R™? ||w||, < Dy}, then one can show
that Ry (H) = O(D2supy [x[[?/Vt) (Lei and Ying,

If we assume
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2016]). This matches the bound within a loga-
rithmic factor except that D there is replaced by Ds.
Since |w| g < ||w||s,, the argument in [Lei and Ying
(2016) leads to a misleading argument that Frobenius-
norm constraint is always preferable to the nuclear-
norm constraint. It was posed as an open question
on whether one can derive a generalization bound
for similarity metric learning showing the advantage
of nuclear-norm constraint over Frobenius-norm con-
straint (Cao et al.| [2016). We provide an affirmative
solution to this open question in Lemma

5 Conclusions

In this paper, we provide the first-ever-known stabil-
ity analysis of SGD for pairwise learning with non-
smooth losses and obtain optimal excess risk bounds
(5(1/\/5) We extend our analysis to unbounded
parameter space and achieve a rate of @(n_l/ 3).
We apply our stability results to study differentially
private SGD algorithms in pairwise learning. Our
output perturbation method achieves utility bound
@(\/E/ (v/ne)), which matches the previous results
in [Huai et al.| (2020)) for smooth losses. Finally, we
provide two examples to illustrate our stability and
differential privacy results. In particular, the analysis
for the example of metric learning shows the advan-
tage of nuclear norm constraint over Frobenius norm
constraint which solved an open question raised in|Cao
et al. (2016).

Here we only considered SGD with replacement. It
would be interesting to extend our analysis to SGD
without replacement which is drawing increasing in-
terests. The utility bound is suboptimal as compared
with pointwise learning with non-smooth losses, which
is (7)( max{1//n, Vd/(ne)}). It remains an open ques-
tion to us if the same bound can be achieved in pair-
wise learning.
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