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Abstract

The famous “laurel/yanny” phenomenon refer-
ences an audio clip that elicits dramatically dif-
ferent responses from different listeners. For
the original clip, roughly half the popula-
tion hears the word “laurel,” while the other
half hears “yanny.” How common are such
“polyperceivable” audio clips? In this paper
we apply ML techniques to study the preva-
lence of polyperceivability in spoken language.
We devise a metric that correlates with polyper-
ceivability of audio clips, use it to efficiently
find new “laurel/yanny”-type examples, and
validate these results with human experiments.
Our results suggest that polyperceivable ex-
amples are surprisingly prevalent, existing for
>2% of English words.!

1 Introduction

How robust is human sensory perception, and to
what extent do perceptions differ between individu-
als? In May 2018, an audio clip of a man speaking
the word “laurel” received widespread attention
because a significant proportion of listeners confi-
dently reported hearing not the word “laurel,” but
rather the quite different sound “yanny” (Salam
and Victor, 2018). At first glance, this suggests
that the decision boundaries for speech perception
vary considerably among individuals. The reality
is more surprising: almost everyone has a decision
boundary between the sounds “laurel” and “yanny,
without a significant “dead zone” separating these
classes. The audio clip in question lies close to
this decision boundary, so that if the clip is slightly
perturbed (e.g. by damping certain frequencies
or slowing down the playback rate), individuals
switch from confidently perceiving “laurel” to con-
fidently perceiving “yanny,” with the exact point of
switching varying slightly from person to person.
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How common is this phenomenon? Specifically,
what fraction of spoken language is “polyperceiv-
able” in the sense of evoking a multimodal re-
sponse in a population of listeners? In this work,
we provide initial results suggesting a significant
density of spoken words that, like the original “lau-
rel/yanny” clip, lie close to unexpected decision
boundaries between seemingly unrelated pairs of
words or sounds, such that individual listeners can
switch between perceptual modes via a slight per-
turbation.

The clips we consider consist of audio signals
synthesized by the Amazon Polly speech synthe-
sis system with a slightly perturbed playback rate
(i.e. a slight slowing-down of the clip). Though
the resulting audio signals are not “natural” stim-
uli, in the sense that they are very different from
the result of asking a human to speak slower (see
Section 5), we find that they are easy to compute
and reliably yield compelling polyperceivable in-
stances. We encourage future work to investigate
the power of more sophisticated perturbations, as
well as to consider natural, ecologically-plausible
perturbations.

To find our polyperceivable instances, we (1) de-
vise a metric that correlates with polyperceivabil-
ity, (2) use this metric to efficiently sample can-
didate audio clips, and (3) evaluate these candi-
dates on human subjects via Amazon Mechan-
ical Turk. We present several compelling new
examples of the “laurel/yanny” effect, and we
encourage readers to listen to the examples in-
cluded in the supplementary materials (also avail-
able online at https://theory.stanford.edu/
~valiant/polyperceivable/index.html).
Finally, we estimate that polyperceivable clips can
be made for >2% of English words.



2 Method

To investigate polyperceivability in everyday audi-
tory input, we searched for audio clips of single
spoken words that exhibit the desired effect. Our
method consisted of two phases: (1) sample a large
number of audio clips that are likely to be polyper-
ceivable, and (2) collect human perception data
on those clips using Amazon Mechanical Turk to
identify perceptual modes and confirm polyperceiv-
ability.

2.1 Sampling clips

To sample clips that were likely candidates, we
trained a simple autoencoder for audio clips of
single words synthesized using the Amazon Polly
speech synthesis system. Treating the autoen-
coder’s low-dimensional latent space as a proxy
for perceptual space, we searched for clips that
travel through more of the space as the playback
rate is slowed from 1.0x to 0.6x. Intuitively, a
longer path through encoder space should corre-
spond to a more dramatic change in perception as
the clip is slowed down (Section 3 presents some
data supporting this).

Concretely, we computed a score .S proportional
to the length of the curve swept by the encoder E in
latent space as the clip is slowed down, normalized
by the straight—lilgeé distance traveled: that is, we
define S(c) = 4B te.r)/drlldr Then, with

r=1.0X

= TE(c,0.6x)—E(c,1.0x)[|"
probability proportional to e?-2%, we importance-
sampled 200 clips from the set of audio clips of
the top 10,000 English words, each spoken by
all 16 voices offered by Amazon Polly (spanning
American, British, Indian, Australian, and Welsh
accents, and male and female voices). The distri-
butions of S in the population and our sample is

shown in Figure 2.

Autoencoder details Our autoencoder operates
on one-second audio clips sampled at 22,050 Hz,
which are converted to spectrograms with a window
size of 256 and then flattened to vectors in R?%:900,
The encoder is a linear map to R%'2 with ReLU
activations, and the decoder is a linear map back to
R90:000 gpace with pointwise squaring. We used an
Adam optimizer with 1r=0.01, training on a corpus
of 16,000 clips (randomly resampled to between
0.6x and 1.0x the original speed) for 70 epochs
with a batch size of 16 (= 8 hours on an AWS
c5.4xlarge EC2 instance).

2.2 Mechanical Turk experiments

Each Mechanical Turk worker was randomly as-
signed 25 clips from our importance-sampled set
of 200. Each clip was slowed to either 0.9x, 0.75x,
or 0.6x the original rate. Workers responded with
a perceived word and a confidence score for each
clip. We collected responses from 574 workers, all
of whom self-identified as US-based native English
speakers. This yielded 14,370 responses (= 72 re-
sponses per clip).

Next, we manually reviewed these responses
and selected the most promising clips for a second
round with only 11 of the 200 clips. Note that be-
cause these selections were made by manual review
(i.e. listening to clips ourselves), there is a chance
we passed over some polyperceivable clips — this
means that our computations in Section 3 are only
a conservative lower bound. For this round, we also
included clips of the 5 words identified by Guan
and Valiant (2019), 12 potentially-polyperceivable
words we had found in earlier experiments, and
“laurel” as controls. We collected an additional
3,950 responses among these 29 clips (= 136 re-
sponses per clip) to validate that they were indeed
polyperceivable.

Finally, we took the words associated with these
29 clips and produced a new set of clips using
each of the 16 voices, for a total of 464 clips. We
collected 4,125 responses for this last set (= 3 re-
sponses for each word/voice/rate combination).

3 Results

Are the words we found polyperceivable? To
identify cases where words had multiple percep-
tual “modes,” we looked for clusters in the distri-
bution of responses for each of the 29 candidate
words. Concretely, we treated responses as “bags
of phonemes” and then applied K-means. Though
this rough heuristic discards information about the
order of phonemes within a word, it works suffi-
ciently well for clustering, especially since most of
our words have very few syllables (more sophisti-
cated models of phonetic similarity exist, but they
would not change our results).

We found that the largest cluster typically con-
tained the original word and rhymes, whereas other
clusters represented significantly different percep-
tual modes. Some examples of clusters and their
relative frequency are available in Table 1, and the
relative cluster sizes as a function of playback rate
are shown in Figure 1. As the rate is perturbed,



Perceived sound Playback rate
090x 0.75x  0.60x
laurel/lauren/moral/floral 0.86 0.64 0.19
manly/alley/marry/merry/mary 0.0 0.03 0.35
thrilling 0.63 0.47 0.33
flowing/throwing 0.34 0.50 0.58
settle 0.65 0.25 0.33
civil 0.32 0.64 0.48
claimed/claim/climbed 0.58 0.34 0.11
framed/flam(m)ed/friend/ find 0.33 0.52 0.43
leg 0.50 0.31 0.10
lake 0.46 0.34 0.14
growing/rowing 0.50 0.47 0.26
brewing/booing/boeing 0.19 0.23 0.26
third 0.40 0.10 0.10
food/foot 0.18 0.29 0.13
idly/ideally 0.38 0.30 0.03
natalie 0.25 0.27 0.09
fiend 0.22 0.34 0.32
themed 0.11 0.17 0.24
bologna/baloney/bellany 0.26 0.00 0.00
(good)morning 0.03 0.28 0.77
thumb 0.66 0.74 0.79
fem(me)/firm 0.06 0.10 0.12
frank/flank 0.72 0.96 0.43
strength 0.08 0.00 0.15
round 0.53 0.38 0.65
world 0.03 0.00 0.14

Cluster sizes @ 0.90x
1.00

0.75
0.50
0.25
0.00

potent
pearl
claimed
leg

girl

idly
bailey
seat
near
settle
thumb
foreman
fiend
fondly
laurel
thrilling
worlds
bologna
floral
paragraph
parallel
round

Cluster sizes @ 0.75x
1.00

0.75
0.50
0.25
0.00

potent
claimed
leg

idly
bailey
third
seat
near
pearl
laurel
bologna
worlds
foreman
thumb
fiend
thrilling
settle
flat
round

Cluster sizes @ 0.60x
1.00

0.75
0.50
0.25
0.00

leg
third
idly
pearl
girl
thrilling
bologna
early
parallel

seat
prologue

laurel
near
settle
claimed
bailey
fondly
fiend
round
worlds
thumb

girl
fondly
lady

prologue

flat
frank

prologue
lady

third

growing
early

growing
floral
early
frank
parallel
paragraph

flat

lady
paragraph

foreman
growing
floral
frank

Table 1: Some polyperceivable words (bold) and their
alternate perceptual modes (below). Each row gives
representative elements from the mode, and the propor-
tion of workers whose response fell in that mode.

the prevalance of alternate modes among our clips
increases.

How prevalent are polyperceivable words? Of
our initial sample of 200 words, 11 ultimately
yielded compelling demonstrations. To compute
the prevalence of polyperceivable words in the pop-
ulation of the top 10k words, we have to account
for the importance sampling weights we used when
sampling in Section 2.1. After scaling each word’s
contribution by the inverse of the probability of
including that word in our nonuniform sample of
200, we conclude that polyperceivable clips exist
for at least 2% of the population: that is, of the
16 voices under consideration, at least one yields
a polyperceivable clip for >2% of the top 10k En-
glish words.

We emphasize that this is a conservative lower
bound, because it assumes that there were no other
polyperceivable words in the 200 words we sam-
pled, besides the 11 that we selected for the second
round. We did not conduct an exhaustive search
among those 200 words, instead focusing our Me-
chanical Turk resources on only the most promising
candidates.

Figure 1: Relative cluster sizes across different play-
back rates. When the rate is slightly perturbed, the
prevalence of alternate modes increases.
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Figure 2: Distribution of path lengths (the S metric) in
the population (top 10k English words, all 16 voices)
and our sample of 200.

Is S a good metric? We consider the metric S
to be successful because it allowed us to efficiently
find several new polyperceivable instances. If the
200 words were sampled uniformly instead of be-
ing importance-sampled based on S, we would
only have found 4 polyperceivable words in expec-
tation (2% of 200). Thus, importance sampling
increased our procedure’s recall by almost 3x.
For a more quantitative understanding, we ana-
lyzed the relationship between “autoencoder path
length” S and “perceptual path length” T". Our
measure 1" of “perceptual path length” for a clip
is change in average distance between source
word and response as we slow the clip down from
0.75% to 0.6x. As with clustering above, distance



Autoencoder path-length vs. perceptual distance
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Figure 3: Correlation between S and 7' across the
n = 16 voices for each of our 29 words. Nearly
all words correlate positively, though with varying
strengths (note that “laurel” correlates quite strongly).

is measured in bag-of-phonemes space. For each
word, we computed the correlation between S and
T among the 16 voices (both S and T" vary signifi-
cantly across voices). For all but 5 of our 29 words
these metrics correlated positively, though with
varying strength (Figure 3). This suggests that S
indeed correlates with polyperceivability.

4 Discussion: Why study quirks of
human perception in an ACL paper?

Perceptual instability in human sensory sys-
tems offers insight into ML systems. The ques-
tion of what fraction of natural inputs lie close to
decision boundaries for trained ML systems has
received enormous attention. The surprising punch-
line that has emerged over the past decade is that
most natural examples (including points in the train-
ing set) actually lie extremely close to unexpected
decision boundaries. For most of these points, a
tiny but carefully-crafted perturbation can lead the
ML system to change the label. Such perturba-
tions are analogous to the slight perturbation in
playback speed for the polyperceivable clips we
consider. In the ML literature, these perturbations,
referred to as “adversarial examples” seem perva-
sive across complex ML systems (Szegedy et al.,
2013; Goodfellow et al., 2014; Nguyen et al., 2015;
Moosavi-Dezfooli et al., 2016; Madry et al., 2017,
Raghunathan et al., 2018; Athalye et al., 2017).
While the initial work on adversarial examples
focused on computer vision, more recent work
shows the presence of such examples across other
settings, including reinforcement learning (Huang
etal.,2017), reading comprehension (Jia and Liang,
2017), and speech recognition (Carlini and Wag-

ner, 2018; Qin et al., 2019). Studying perceptual
illusions would provide a much-needed reference
when evaluating ML systems in these domains. For
vision tasks, for example, human vision provides
the only evidence that current ML models are far
from optimal in terms of robustness to adversar-
ial examples. However, while humans are cer-
tainly not as susceptible to adversarial examples as
ML systems, we lack quantified bounds on human
robustness. More broadly, understanding which
systems (both biological and ML) have decision
boundaries that lie surprisingly close to many natu-
ral inputs may inform our sense of what settings are
amenable to adversarially robust models, and what
settings inherently lead to vulnerable classifiers.

Perceptual instability in ML systems offers in-
sight into human sensory systems. Recent re-
search on adversarial robustness of ML models has
provided a trove of new tools and perspectives for
probing classifiers and exploring the geometry of
decision boundaries. These tools cannot directly be
applied to study the decision boundaries of biologi-
cal classifiers (e.g. we cannot reasonably do “gradi-
ent descent” on human subjects). However, using
standard data-driven deep learning techniques to
model human perceptual systems can allow us to
apply these techniques by proxy.

An example can be found in the study of “trans-
ferability.” Adversarial examples crafted to fool a
specific model often also fool other models, even
those trained on disjoint training sets (Papernot
et al., 2016a; Tramer et al., 2017; Liu et al., 2016).
This prompts the question of whether adversar-
ial examples crafted for an ML model might also
transfer to humans. Recent surprising work by El-
sayed et al. (2018) explores this question for vision.
Humans were shown adversarial examples trained
for an image classifier for ~ 70ms, and asked to
choose between the correct label and the classifier’s
(incorrect) predicted label. Humans selected the
incorrect label more frequently when shown ad-
versarial examples than when shown unperturbed
images. Similarly, Hong et al. (2014) trained a low-
dimensional representation of “perceptual space,”’
and used the decision boundaries of the model to
find images that confused human subjects.

5 Related work

An enormous body of work from cognitive sciences
communities explores the quirks of human/animal
sensory systems (Fahle et al., 2002). These works



often have the explicit goal of exploring isolated
“illusions” that provide insights into our perceptual
systems (Davis and Johnsrude, 2007; Fritz et al.,
2005). However, there are few efforts to quantify
the extent to which “typical” instances are polyper-
ceivable or lie close to decision boundaries.

Miller (1981) studies the effect of speaking rate
on how listeners perceive phonemes. The percep-
tual shifts studied therein are between phonetically
adjacent perceptions (e.g. “pip” vs. “peep”’) rather
than dramatically different perceptions (e.g. “lau-
rel” vs. “yanny”). The “perturbation” of increasing
human speaking rate is much more complex than
simply linearly scaling the playback rate of an au-
dio clip. Speaking-rate induced shifts also seem to
hold more universally across voices, as opposed to
the polyperceivable instances we examine.

6 Future work

Priming effects It is possible to use additional
stimuli to alter perceptions of the “laurel/yanny’
audio clip. For example, Bosker (2018) demon-
strates the ability to control a listener’s percep-
tion by “priming” them with a carefully crafted
recording before the polyperceivable clip is played.
Similarly, Guan and Valiant (2019) investigated
the “McGurk effect” (McGurk and MacDonald,
1976), where what one “sees” affects what one
“hears.” The work estimated the fraction of spo-
ken words that, when accompanied by a carefully
designed video of a human speaker, would be per-
ceived as significantly different words by listen-
ers. Such phenomena raise questions about how
our autoencoder-based method can be extended to
search for “priming-sensitive” polyperceivability.

’

Security implications Just as adversarial exam-
ples for DNNs have security implications (Papernot
et al., 2016b; Carlini and Wagner, 2017; Liu et al.,
2016), so too might adversarial examples for sen-
sory systems. For example, if a video clip of a
politician happens to be polyperceivable, an adver-
sary could lightly edit it with potentially significant
ramifications. A thorough treatment of such secu-
rity implications is left to future work.

7 Conclusion

In this paper, we leveraged ML techniques to study
polyperceivability in humans. By modeling per-
ceptual space as the latent space of an autoencoder,
we were able to discover dozens of new polyper-

ceivable instances, which were validated with Me-
chanical Turk experiments. Our results indicate
that polyperceivability is surprisingly prevalent in
spoken language. More broadly, we suggest that
the study of perceptual illusions can offer insight
into machine learning systems, and vice-versa.
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