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Abstract

The famous “laurel/yanny” phenomenon refer-

ences an audio clip that elicits dramatically dif-

ferent responses from different listeners. For

the original clip, roughly half the popula-

tion hears the word “laurel,” while the other

half hears “yanny.” How common are such

“polyperceivable” audio clips? In this paper

we apply ML techniques to study the preva-

lence of polyperceivability in spoken language.

We devise a metric that correlates with polyper-

ceivability of audio clips, use it to efficiently

find new “laurel/yanny”-type examples, and

validate these results with human experiments.

Our results suggest that polyperceivable ex-

amples are surprisingly prevalent, existing for

>2% of English words.1

1 Introduction

How robust is human sensory perception, and to

what extent do perceptions differ between individu-

als? In May 2018, an audio clip of a man speaking

the word “laurel” received widespread attention

because a significant proportion of listeners confi-

dently reported hearing not the word “laurel,” but

rather the quite different sound “yanny” (Salam

and Victor, 2018). At first glance, this suggests

that the decision boundaries for speech perception

vary considerably among individuals. The reality

is more surprising: almost everyone has a decision

boundary between the sounds “laurel” and “yanny,”

without a significant “dead zone” separating these

classes. The audio clip in question lies close to

this decision boundary, so that if the clip is slightly

perturbed (e.g. by damping certain frequencies

or slowing down the playback rate), individuals

switch from confidently perceiving “laurel” to con-

fidently perceiving “yanny,” with the exact point of

switching varying slightly from person to person.

1This research was conducted under Stanford IRB Protocol
46430.

How common is this phenomenon? Specifically,

what fraction of spoken language is “polyperceiv-

able” in the sense of evoking a multimodal re-

sponse in a population of listeners? In this work,

we provide initial results suggesting a significant

density of spoken words that, like the original “lau-

rel/yanny” clip, lie close to unexpected decision

boundaries between seemingly unrelated pairs of

words or sounds, such that individual listeners can

switch between perceptual modes via a slight per-

turbation.

The clips we consider consist of audio signals

synthesized by the Amazon Polly speech synthe-

sis system with a slightly perturbed playback rate

(i.e. a slight slowing-down of the clip). Though

the resulting audio signals are not “natural” stim-

uli, in the sense that they are very different from

the result of asking a human to speak slower (see

Section 5), we find that they are easy to compute

and reliably yield compelling polyperceivable in-

stances. We encourage future work to investigate

the power of more sophisticated perturbations, as

well as to consider natural, ecologically-plausible

perturbations.

To find our polyperceivable instances, we (1) de-

vise a metric that correlates with polyperceivabil-

ity, (2) use this metric to efficiently sample can-

didate audio clips, and (3) evaluate these candi-

dates on human subjects via Amazon Mechan-

ical Turk. We present several compelling new

examples of the “laurel/yanny” effect, and we

encourage readers to listen to the examples in-

cluded in the supplementary materials (also avail-

able online at https://theory.stanford.edu/

˜valiant/polyperceivable/index.html).

Finally, we estimate that polyperceivable clips can

be made for >2% of English words.



2 Method

To investigate polyperceivability in everyday audi-

tory input, we searched for audio clips of single

spoken words that exhibit the desired effect. Our

method consisted of two phases: (1) sample a large

number of audio clips that are likely to be polyper-

ceivable, and (2) collect human perception data

on those clips using Amazon Mechanical Turk to

identify perceptual modes and confirm polyperceiv-

ability.

2.1 Sampling clips

To sample clips that were likely candidates, we

trained a simple autoencoder for audio clips of

single words synthesized using the Amazon Polly

speech synthesis system. Treating the autoen-

coder’s low-dimensional latent space as a proxy

for perceptual space, we searched for clips that

travel through more of the space as the playback

rate is slowed from 1.0× to 0.6×. Intuitively, a

longer path through encoder space should corre-

spond to a more dramatic change in perception as

the clip is slowed down (Section 3 presents some

data supporting this).

Concretely, we computed a score S proportional

to the length of the curve swept by the encoder E in

latent space as the clip is slowed down, normalized

by the straight-line distance traveled: that is, we

define S(c) =
∫
0.6×

r=1.0×
||dE(c,r)/dr||dr

||E(c,0.6×)−E(c,1.0×)|| . Then, with

probability proportional to e0.2·S , we importance-

sampled 200 clips from the set of audio clips of

the top 10,000 English words, each spoken by

all 16 voices offered by Amazon Polly (spanning

American, British, Indian, Australian, and Welsh

accents, and male and female voices). The distri-

butions of S in the population and our sample is

shown in Figure 2.

Autoencoder details Our autoencoder operates

on one-second audio clips sampled at 22,050 Hz,

which are converted to spectrograms with a window

size of 256 and then flattened to vectors in R
90,000.

The encoder is a linear map to R
512 with ReLU

activations, and the decoder is a linear map back to

R
90,000 space with pointwise squaring. We used an

Adam optimizer with lr=0.01, training on a corpus

of 16,000 clips (randomly resampled to between

0.6x and 1.0x the original speed) for 70 epochs

with a batch size of 16 (≈ 8 hours on an AWS

c5.4xlarge EC2 instance).

2.2 Mechanical Turk experiments

Each Mechanical Turk worker was randomly as-

signed 25 clips from our importance-sampled set

of 200. Each clip was slowed to either 0.9x, 0.75x,

or 0.6x the original rate. Workers responded with

a perceived word and a confidence score for each

clip. We collected responses from 574 workers, all

of whom self-identified as US-based native English

speakers. This yielded 14,370 responses (≈ 72 re-

sponses per clip).

Next, we manually reviewed these responses

and selected the most promising clips for a second

round with only 11 of the 200 clips. Note that be-

cause these selections were made by manual review

(i.e. listening to clips ourselves), there is a chance

we passed over some polyperceivable clips — this

means that our computations in Section 3 are only

a conservative lower bound. For this round, we also

included clips of the 5 words identified by Guan

and Valiant (2019), 12 potentially-polyperceivable

words we had found in earlier experiments, and

“laurel” as controls. We collected an additional

3,950 responses among these 29 clips (≈ 136 re-

sponses per clip) to validate that they were indeed

polyperceivable.

Finally, we took the words associated with these

29 clips and produced a new set of clips using

each of the 16 voices, for a total of 464 clips. We

collected 4,125 responses for this last set (≈ 3 re-

sponses for each word/voice/rate combination).

3 Results

Are the words we found polyperceivable? To

identify cases where words had multiple percep-

tual “modes,” we looked for clusters in the distri-

bution of responses for each of the 29 candidate

words. Concretely, we treated responses as “bags

of phonemes” and then applied K-means. Though

this rough heuristic discards information about the

order of phonemes within a word, it works suffi-

ciently well for clustering, especially since most of

our words have very few syllables (more sophisti-

cated models of phonetic similarity exist, but they

would not change our results).

We found that the largest cluster typically con-

tained the original word and rhymes, whereas other

clusters represented significantly different percep-

tual modes. Some examples of clusters and their

relative frequency are available in Table 1, and the

relative cluster sizes as a function of playback rate

are shown in Figure 1. As the rate is perturbed,







often have the explicit goal of exploring isolated

“illusions” that provide insights into our perceptual

systems (Davis and Johnsrude, 2007; Fritz et al.,

2005). However, there are few efforts to quantify

the extent to which “typical” instances are polyper-

ceivable or lie close to decision boundaries.

Miller (1981) studies the effect of speaking rate

on how listeners perceive phonemes. The percep-

tual shifts studied therein are between phonetically

adjacent perceptions (e.g. “pip” vs. “peep”) rather

than dramatically different perceptions (e.g. “lau-

rel” vs. “yanny”). The “perturbation” of increasing

human speaking rate is much more complex than

simply linearly scaling the playback rate of an au-

dio clip. Speaking-rate induced shifts also seem to

hold more universally across voices, as opposed to

the polyperceivable instances we examine.

6 Future work

Priming effects It is possible to use additional

stimuli to alter perceptions of the “laurel/yanny”

audio clip. For example, Bosker (2018) demon-

strates the ability to control a listener’s percep-

tion by “priming” them with a carefully crafted

recording before the polyperceivable clip is played.

Similarly, Guan and Valiant (2019) investigated

the “McGurk effect” (McGurk and MacDonald,

1976), where what one “sees” affects what one

“hears.” The work estimated the fraction of spo-

ken words that, when accompanied by a carefully

designed video of a human speaker, would be per-

ceived as significantly different words by listen-

ers. Such phenomena raise questions about how

our autoencoder-based method can be extended to

search for “priming-sensitive” polyperceivability.

Security implications Just as adversarial exam-

ples for DNNs have security implications (Papernot

et al., 2016b; Carlini and Wagner, 2017; Liu et al.,

2016), so too might adversarial examples for sen-

sory systems. For example, if a video clip of a

politician happens to be polyperceivable, an adver-

sary could lightly edit it with potentially significant

ramifications. A thorough treatment of such secu-

rity implications is left to future work.

7 Conclusion

In this paper, we leveraged ML techniques to study

polyperceivability in humans. By modeling per-

ceptual space as the latent space of an autoencoder,

we were able to discover dozens of new polyper-

ceivable instances, which were validated with Me-

chanical Turk experiments. Our results indicate

that polyperceivability is surprisingly prevalent in

spoken language. More broadly, we suggest that

the study of perceptual illusions can offer insight

into machine learning systems, and vice-versa.
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