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Abstract. The asymptotic behavior of a class of stochastic reaction-diffusion-advection equations in the plane is studied. We show that
as the divergence-free advection term becomes larger and larger, the solutions of such equations converge to the solution of a suitable
stochastic PDE defined on the graph associated with the Hamiltonian. Firstly, we deal with the case that the stochastic perturbation is
given by a singular spatially homogeneous Wiener process taking values in the space of Schwartz distributions. As in previous works,
we assume here that the derivative of the period of the motion on the level sets of the Hamiltonian does not vanish. Then, in the second
part, without assuming this condition on the derivative of the period, we study a weaker type of convergence for the solutions of a
suitable class of linear SPDEs.

Résumé. Le comportement asymptotique d’une classe d’équations stochastiques de réaction-diffusion-advection dans le plan est étu-
dié. Nous montrons qu’à mesure que le terme d’advection sans divergence devient de plus en plus grand, les solutions de telles
équations convergent vers la solution d’une EDP stochastique appropriée définie sur le graphe associé à l’Hamiltonien. Tout d’abord,
nous traitons le cas où la perturbation stochastique est donnée par un processus de Wiener spatialement homogène singulier prenant
des valeurs dans l’espace des distributions de Schwartz. Comme dans les travaux précédents, nous supposons ici que la dérivée de la
période du mouvement sur les level sets de l’Hamiltonien ne s’évanouit pas. Puis, dans la seconde partie, sans supposer cette condition
sur la dérivée de la période, nous étudions un type de convergence plus faible pour les solutions d’une classe appropriée de EDPS
linéaires.
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1. Introduction

In this paper we are interested in studying the limiting behavior of some particles that move together with an incompress-
ible flow in R2, with stream function H(x), under the assumption that the flow has a small viscosity and the particles are
subject to a slow chemical reaction, which consists of a deterministic and a stochastic component. The density vε(t, x) of
the particles, at time t ≥ 0 and position x ∈ R2, satisfies the equation{

∂tvε(t, x) = ε
2�vε(t, x) + 〈∇⊥H(x),∇vε(t, x)〉 + εb(vε(t, x)) + √

εσ (vε(t, x))∂tW(t, x),

vε(0, x) = ϕ(x), x ∈R2,
(1.1)

for some parameter 0 < ε 	 1. Throughout the paper, we assume that the Hamiltonian H : R2 →R is a generic function,
having four continuous derivatives, with bounded second derivative, such that H(x) → ∞, as |x| → ∞. The nonlinear-
ities b,σ : R → R are assumed to be Lipschitz continuous and W(t, x) is a spatially homogeneous Wiener process (see
below for all details).
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It is immediate to check that, under these conditions, on any finite time interval [0, T ] the solutions vε of equation
(1.1) converge to the solution v of the Liouville equation

∂tv(t, x) = 〈∇⊥H(x),∇v(t, x)
〉
, v(0, x) = ϕ(x).

However, on time intervals of order ε−1 the difference vε − v is of order 1, as ε → 0. Actually, on such a time interval,
the limiting behavior of vε is described by a non-standard SPDE defined on the graph � associated with the Hamiltonian
H , which is obtained by identifying all points on the same connected component of each level set of H (see Section 2.1
for the precise definition). Such an asymptotic behavior of vε has been studied in [3], under quite restrictive conditions on
the regularity of the noise W(t) and under the assumption that the derivative of the period of the motion on the level sets
of the Hamiltonian H does not vanish. In the present paper we want to understand what happens when these conditions
are not satisfied.

To this purpose, before proceeding with the description of the content of the paper, we would like to remark that the
study of SPDEs on graphs is still a quite new field of investigation and very few results are available in the existing
literature. In addition to the already mentioned paper [3], in [2] a class of SPDEs on graphs, obtained as limits of SPDEs
in narrow tubes, is studied. In [1] first and then, more recently, in [5], suitable classes of SPDEs on graphs have been also
considered. In [8], small stochastic perturbations of Hamiltonian systems are studied by using deterministic tools.

With the time change t �→ t/ε, for every fixed ε > 0 the function uε(t, x) := vε(t/ε, x) satisfies the equation{
∂tuε(t, x) = Lεuε(t, x) + b(uε(t, x)) + σ(uε(t, x))∂tW(t, x),

uε(0, x) = ϕ(x), x ∈R2,
(1.2)

where

Lεϕ(x) = 1

2
�ϕ(x) + 1

ε

〈∇⊥H(x),∇ϕ(x)
〉
.

The operator Lε is the generator of the Markov semigroup Sε(t), t ≥ 0, associated with the stochastic differential equation

dXε(t) = 1

ε
∇⊥H

(
Xε(t)

)
dt + dB(t),

where B(t) is a Brownian motion in R2, defined on the stochastic basis (�,F, {Ft }t≥0,P). More precisely, for every
Borel and bounded function ϕ : R2 →R and every x ∈R2

Sε(t)ϕ(x) = Exϕ
(
Xε(t)

)
, t ≥ 0. (1.3)

This means, in particular, that uε is a mild solution to equation (1.2) if

uε(t) = Sε(t)ϕ(x) +
∫ t

0
Sε(t − s)B

(
uε(s)

)
ds +

∫ t

0
Sε(t − s)	

(
uε(s)

)
dW(s), (1.4)

where B and 	 are the composition/multiplication operators associated with b and σ , respectively.
In [3], together with M. Freidlin, the first named author proved that for every p ≥ 1 and 0 < τ < T

lim
ε→0

E sup
t∈[τ,T ]

∣∣uε(t) − ū(t) ◦ �
∣∣p
Hγ

= 0, (1.5)

where ū is the solution of an averaged SPDE defined on the graph � and Hγ is a suitable weighted space of square
integrable functions on R2, with respect to a finite measure γ ∨(x) dx.

Due to (1.4), it is evident that the proof of (1.5) is based on the analysis of the limiting behavior of the semigroups
Sε(t), as ε ↓ 0, for every t ∈ [τ, T ]. To this purpose, in [7, Chapter 8], it is proved that if � is the projection of R2 onto �,
the slow process Yε(·) := �(Xε(·)), defined on the graph �, converges weakly in C([0, T ];�) to a continuous Markov
process Ȳ (·) on �, whose generator L̄ is explicitly given in terms of differential operators on each edge and suitable
gluing conditions at the vertices. Hence, starting from such result, in [3, Appendix A] it has been shown that for every
ϕ ∈ Cb(R

2) and for every x ∈ R2 and 0 < τ < T

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)ϕ(x) − (
S̄(t)ϕ∧) ◦ �(x)

∣∣ = 0, (1.6)
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where

ϕ∧(z, k) := 1

Tk(z)

∮
Ck(z)

ϕ(x)

|∇H(x)| dlz,k, (z, k) ∈ �,

dlz,k is the length element on Ck(z), the k-th connected component of C(z) := {x ∈ R2 : H(x) = z}, and

Tk(z) :=
∮

Ck(z)

1

|∇H(x)| dlz,k,

(for all details see Section 2.1). Once identified the right weighted spaces Hγ and proved limit (1.6), it can be shown that
for every ϕ ∈ Hγ

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)ϕ − (
S̄(t)ϕ∧) ◦ �

∣∣
Hγ

= lim
ε→0

sup
t∈[τ,T ]

∣∣(Sε(t)ϕ
)∧ − S̄(t)ϕ∧∣∣

H̄γ
= 0. (1.7)

Here the choice of the weight γ ∨ requires a non-trivial analysis, as it has to be admissible with respect to all semigroups
Sε(t) and its projection γ on � has to be admissible with respect to S̄(t). Moreover, the space Hγ = L2(R2, γ ∨(x) dx)

has to be properly projected into the space H̄γ = L2(�, νγ ), where νγ is the projection on � of γ ∨(x) dx (see Section 2.3
and [3] for all details).

In [3], limit (1.7) is then used in (1.4), to obtain limit (1.5). Taking the limit, as ε → 0, in the first two terms on the right-
hand side in (1.4) is an immediate consequence of (1.7) and the Lipschitz-continuity of the non-linearity b. On the other
hand, taking the limit in the last term, the stochastic integral, requires some extra effort and, most importantly, requires
the spatially homogeneous Wiener process W to be smooth. In particular, in [3] it is assumed that its spectral measure is
finite, so that W(t, ·) takes values in the functional space Hγ . Moreover, the proof of (1.5) requires the condition

dTk(z)

dz
�= 0, (z, k) ∈ �. (1.8)

This assumption is needed for the proof of (1.6). Actually, (1.6) and hence (1.5) still stand if (1.8) is true except for a
finite number of points on the graph �. But it is easy to check that important examples such as H(x) = |x|2, for which
the graph is [0,∞) and the period T (z) ≡ π , are still excluded by such an assumption.

In the first part of the present paper, we are interested in understanding if limit (1.5) is still valid, under the minimal
assumptions on the spectral measure μ that assure the well posedness of equation (1.2) in the space Hγ (see [9] and
Assumption 2). In Section 3, assuming that the spectral measure to the singular spatially homogeneous Wiener process
W(t) in R2 has a density function m in Lp(R2) for some p ∈ (1,∞) and (1.8) holds, we prove that (1.5) is still valid (see
Theorem 3.10). Actually, with little modification to our proof, we can further extend Theorem 3.10 to singular spatially
homogeneous Wiener processes with spectral measure

μ = μ1 + μ2,

where μ1 is a finite measure and μ2 has density function m ∈ Lp(R2) for some p ∈ (1,∞). This combines the results
of [3] and Section 3, and covers a large class of spatially homogeneous Wiener processes (for specific examples of the
processes, we refer to [9]).

To understand the convergence of the solutions to the SPDEs under singular spatially homogeneous Wiener process,
in Section 3 we first study the properties of the semigroups Sε(t) and their limit S̄(t). For this purpose, we introduce the
kernel Gε(t, x, y) of the semigroup Sε(t), and we prove that

sup
ε>0

Gε(t, x, y) ≤ C

t
exp

(
− (

√
H(y) + 1 − √

H(x) + 1)2

4Ct

)
, (1.9)

for any (t, x, y) ∈ (0, T ] ×R2 ×R2. Notice that due to (1.6) we have that the semigroup S̄(t)∨, defined by

S̄(t)∨ϕ(x) := (
S̄(t)ϕ∧) ◦ �(x), x ∈ R2, t ≥ 0,

admits a kernel Ḡ(t, x, y), which satisfies estimate (1.9) as well.
Now, given a spatially homogeneous Wiener process W(t) in R2 with spectral measure m ∈ Lp(R2) for some p ∈

(1,∞), we define W̄(t) to be the projection of W(t) on �. We denote by S ′
q and S̄ ′

q the reproducing kernels of the
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Wiener processes W(t) and W̄(t), respectively. Using (1.9), we prove that for every T > 0 there exists a constant CT > 0
such that

∞∑
j=1

∣∣Sε(t)(ψej )
∣∣2
Hγ

≤ CT ‖m‖Lp t−(p−1)/p|ψ |2Hγ
, t ∈ (0, T ],

and

∞∑
j=1

∣∣S̄(t)∨(ψej )
∣∣2
Hγ

≤ CT ‖m‖Lp t−(p−1)/p|ψ |2
H̄γ

, t ∈ (0, T ],

where {ej }j∈N is the orthonormal basis of S ′
q . This, in particular, allows us to prove the well-posedness of the SPDEs

(1.2) in Hγ . Next, for the convergence of the solutions uε to ū, we need a stronger type of convergence for the semigroups.
In fact, by using a suitable decomposition of the density function m of the spectral measure, we prove that for any ψ ∈ Hγ

lim
ε→0

sup
t∈[τ,T ]

∞∑
j=1

∣∣(Sε(t) − S̄(t)∨
)
(ψej )

∣∣2
Hγ

= 0. (1.10)

Thanks to (1.10), we can then handle the convergence of the stochastic integral in (1.4) and prove (1.5).
In the second part of this paper we try to understand what happens when condition (1.8) does not hold. We recall that

such condition is needed in both [3] and Section 3. This assumption is necessary for proving (1.6) and hence (1.5), i.e.
the convergence of Sε(t)ϕ to S̄(t)∨ϕ for any fixed time t > 0 and ϕ ∈ Hγ . Thanks to (1.3), it is easy to see that (1.5) is
equivalent to

lim
ε→0

sup
t∈[τ,T ]

∣∣Exu
(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)∣∣ = 0. (1.11)

Without assuming (1.8), clearly (1.11) is no longer true, as can be shown in the case H(x) = |x|2. Nevertheless, in
Section 4, (see Theorem 4.1) we prove that a weaker type of convergence holds. Namely,

lim
ε→0

sup
x∈K

∣∣∣∣∫ T

τ

[
Exu

(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)]

θ(t) dt

∣∣∣∣ = 0, (1.12)

for any compact set K ⊂R2, u ∈ Cb(R
2) and θ ∈ Cb([τ, T ]).

Using (1.12), we further study the convergence of the SPDEs. Since limit (1.12) is not preserved by the nonlinearities
b and σ , we restrict our consideration to the linear case{

∂tuε(t, x) = 1
2�uε(t, x) + 1

ε
〈∇⊥H(x),∇uε(t, x)〉 + ∂tW(t, x),

uε(0, x) = ϕ(x), x ∈R2.

In this case, we show that

lim
ε→0

E

∣∣∣∣∫ T

0

[
uε(t) − ū(t)∨

]
θ(t) dt

∣∣∣∣q
Hγ

= 0,

(see Theorem 4.6).
The structure of the paper is as follows. In Section 2, we introduce the necessary notations and preliminaries from

previous works. In Section 3 we prove our first main result stated in Theorem 3.10. Under the assumption that the density
of the spectral measure is in Lp(R2), for some p ∈ (1,∞), we first study the properties of the semigroups and the well
posedness of the SPDEs. Then we prove Theorem 3.10. In Section 4, we prove that if condition (1.8) is not satisfied,
then a weaker type of convergence of the semigroups Sε(t) holds. Next, we prove that this implies a weaker type of
convergence for the solutions of a class of linear SPDEs.

2. Notations and preliminaries

In this section, we introduce the notations that will be used in later sections. For the completeness of the paper, we also
briefly recall the results in previous works, which will be used in our work here.
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To study the convergence of the SPDEs, we first need to understand the convergence of the semigroups Sε(t). In
Section 2.2, we briefly recall the Freidlin-Wentzell averaging results in [7]. Then in Section 2.3, we recall some properties
of the weighted spaces Hγ and H̄γ proved in [3], which will be used when studying the solutions to the SPDEs that fall
in the weighted spaces. Finally, the random forcing W(t, x) in the SPDEs are assumed to be spatially homogeneous
Wiener processes with positive-symmetric spectral measure μ on R2. We recall the main definitions and properties of the
spatially homogeneous Wiener process in Section 2.4 following [9].

2.1. The Hamiltonian and the associated graph

Throughout this paper, we consider the Hamiltonian system

dx(t) = ∇⊥H
(
x(t)

)
, x ∈ R2, (2.1)

where

∇⊥H(x) =
(

∂H(x)

∂x2
,−∂H(x)

∂x1

)
, x ∈R2.

We shall assume that the Hamiltonian H satisfies the following conditions.

Assumption 1. The Hamiltonian H : R2 →R satisfies that

1. H is four times continuously differentiable, with bounded second derivatives. It has only a finite number of critical
points x1, . . . , xn, and they are all non-degenerate. Moreover,

H(xi) �= H(xj ), if i �= j ;
2. There exists a > 0 such that for all x ∈R2 with |x| large enough, we have

H(x) ≥ a|x|2, ∣∣∇H(x)
∣∣ ≥ a|x|, �H(x) ≥ a;

3. We have minx∈R2 H(x) = 0.

For any z ≥ 0, we denote by C(z) the z-level set of the Hamiltonian H

C(z) := {
x ∈ R2 : H(x) = z

} =
N(z)⋃
k=1

Ck(z),

where Ck(z), k = 1, . . . ,N(z), are all the connected components of C(z). If we denote by k(x) the number of the con-
nected component of C(H(x)) containing x, then

x(0) = x =⇒ x(t) ∈ Ck(x)

(
H(x)

)
, t ≥ 0.

If z is not a critical value, each Ck(z) is a one periodic trajectory of the Hamiltonian system (2.1), and

Tk(z) :=
∮

Ck(z)

1

|∇H(x)| dlz,k (2.2)

is the period of the motion along the level set Ck(z) (here dlz,k is the length element on Ck(z)). Moreover, the probability
measure

dμz,k := 1

Tk(z)

1

|∇H(x)| dlz,k

is invariant for the Hamiltonian equation (2.1) on the level set Ck(z)

Now, by identifying the points on the same connected components Ck(z), we obtain a graph �. We denote by � : R2 →
� the identification map. The graph � consists of edges I0, . . . , In and vertices O0, . . . ,Om. The vertices are of two types,
external and internal vertices. External vertices correspond to local extrema of H , while internal vertices correspond to
saddle points of H . Among external vertices, we denote by O0 the vertex corresponding to the point at infinity and by I0
the only unbounded edge connected to O0 (see Figure 1).
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Fig. 1. The Hamiltonian, the level sets, the projection and the graph.

On graph �, a distance can be introduced as follows. If two points y1 and y2 on the graph are on the same edge Ik , i.e.
y1 = (z1, k) and y2 = (z2, k), then d(y1, y2) = |z1 − z2|. If y1 and y2 are on different edges, then

d(y1, y2) = min
{
d(y1,Oi1) + d(Oi1,Oi2) + · · · + d(Oij , y2)

}
,

where the minimum is taken over all possible paths from y1 to y2, through every possible sequences of vertices
Oi1 , . . . ,Oij , connecting y1 and y2. Corresponding to each edge Ik , there is an open set

Gk = {
x ∈ R2 : �(x) ∈ I̊k

}
.

For 0 ≤ z1 < z2, we can define

G(z1, z2) = {
x ∈ R2 : z1 < H(x) < z2

}
,

and

Gk(z1, z2) = {
x ∈ Gk : z1 < H(x) < z2

}
.

Given δ > 0, we set

G(±δ) =
m⋃

i=1

Gi(±δ) =
m⋃

i=1

{
x ∈ R2 : H(Oi) − δ < H(x) < H(Oi) + δ

}
.

For each vertex Oi , we denote

Di = {
x ∈R2 : �(x) = Oi

}
.

In addition, given any edge Ik connected to the vertex Oi , we denote

Di
k = Di ∩ Ḡk.

If an edge Ik is connected to a vertex Oi , we write Ik ∼ Oi . For each δ > 0 and Ik ∼ Oi , we set

D(±δ) =
m⋃

i=1

⋃
k:Ik∼Oi

Di
k(±δ) =

m⋃
i=1

⋃
k:Ik∼Oi

{
x ∈ Gk : d(

�(x),Oi

) = δ
}
.

For further details, we refer to [7, Chapter 8] and [3].
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2.2. The Freidlin–Wentzell averaging result

With a change of time in (2.1), for every ε > 0, the function xε(t) := x(t/ε) satisfies the equation

dxε(t) = 1

ε
∇⊥H

(
xε(t)

)
. (2.3)

Now, suppose Bt is a standard Brownian motion on R2. For every ε > 0, we denote by Xε(t) the solution of the stochastic
differential equation

dXε(t) = 1

ε
∇⊥H

(
Xε(t)

)
dt + dB(t). (2.4)

The second order differential operator associated with (2.4) is

Lεu(x) = 1

2
�u(x) + 1

ε

〈∇⊥H(x),∇u(x)
〉
.

In what follows, we shall denote by Sε(t) the corresponding Markov transition semigroup. We recall that, for every Borel
bounded u : R2 → R, there is

Sε(t)u(x) = Exu
(
Xε(t)

)
, for x ∈ R2, t ≥ 0.

Now, for every x ∈ R2, we consider the process �(Xε(t)), t ≥ 0, defined on the graph �, with Xε(0) = x. In [7,
Chapter 8], is studied the limiting behavior, as ε ↓ 0, of the process �(Xε) in the space C([0, T ];�), for any fixed T > 0
and x ∈ R2. Namely, in [7, Theorem 8.2.2] it has been proved that if the Hamiltonian H satisfies Assumption 1, the
process �(Xε), which describes the slow motion of Xε , converges, in the sense of weak convergence of distributions in
the space of continuous �-valued functions, to a diffusion process Ȳ on �.

The process Ȳ has been described in [7, Theorem 8.2.1] in terms of its generator L̄. The operator (L̄,D(L̄)) is a
non-standard operator, which is given by suitable differential operators L̄k within each edge Ik of the graph and by
certain gluing conditions at the interior vertices Oi of the graph. Moreover, it is degenerate at the vertices of the graph.
Nevertheless, in [7, Theorem 8.2.1] it is shown that it is the generator of a Markov process Ȳ on the graph �. In what
follows, we shall denote by S̄(t) the semigroup associated with Ȳ , defined by

S̄(t)f (z, k) = E(z,k)f
(
Ȳ (t)

)
,

for every bounded Borel function f : � → R.

2.3. The weighted spaces Hγ and H̄γ

For any u : R2 →R and 0 ≤ z1 < z2, we have∫
G(z1,z2)

u(x) dx =
n∑

k=0

∫
Ik,z1,z2

∮
Ck(z)

u(x)

|∇H(x)| dlz,k dz,

where

Ik,z1,z2 := {
(z, k) ∈ Ik : z ∈ [z1, z2]

}
.

In particular, it holds that∫
R2

u(x)dx =
n∑

k=0

∫
Ik

∮
Ck(z)

u(x)

|∇H(x)| dlz,k dz.

In what follows, for every u : R2 →R, we shall define

u∧(z, k) = 1

Tk(z)

∮
Ck(z)

u(x)

|∇H(x)| dlz,k =
∮

Ck(z)

u(x) dμz,k, (z, k) ∈ �.
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Moreover, for every f : � →R, we shall define

f ∨(x) = f
(
�(x)

)
, x ∈ R2.

With these notations, given a positive continuous function γ on the graph �, if we assume that

n∑
k=0

∫
Ik

γ (z, k)Tk(z) dz < ∞,

then γ ∨ ∈ L1(R2) ∩ Cb(R
2). For any such function γ , we define

Hγ =
{
u :R2 → R : |u|2Hγ

=
∫
R2

∣∣u(x)
∣∣2

γ ∨(x) dx < ∞
}
,

and

H̄γ =
{

f : � → R : |f |2
H̄γ

=
n∑

k=0

∫
Ik

∣∣f (z, k)
∣∣2

γ (z, k)Tk(z) dz < ∞
}

.

We recall the following results proved in [3].

Proposition 2.1. For every u ∈ Hγ , we have u∧ ∈ H̄γ and for every f ∈ H̄γ , we have f ∨ ∈ Hγ . Moreover,∣∣u∧∣∣
H̄γ

≤ |u|Hγ ,
∣∣f ∨∣∣

Hγ
= |f |H̄γ

. (2.5)

Finally, if u ∈ Hγ and f ∈ H̄γ , then〈
f,u∧〉

H̄γ
= 〈

f ∨, u
〉
Hγ

,
(
f ∨u

)∧ = f u∧. (2.6)

Now, for every linear operator Q ∈ L(Hγ ) and A ∈ L(H̄γ ), we define

Q∧f := (
Qf ∨)∧

, A∨u := (
Au∧)∨

for f ∈ H̄γ and u ∈ Hγ . Moreover, It can be proved that∥∥Q∧∥∥
L(H̄γ )

≤ ‖Q‖L(Hγ ),
∥∥A∨∥∥

L(Hγ )
≤ ‖A‖L(H̄γ ). (2.7)

2.4. Spatially homogeneous Wiener processes

Let (�,F,P) be a complete probability space with filtration (Ft )t≥0 and let S be the Schwartz space with its dual space
S ′ (the space of Schwartz or tempered distributions). We say that W(t) is a Wiener process, defined on � and taking
values in S ′, if for each ψ ∈ S , the mapping t → 〈W(t),ψ〉 defines a Wiener process. In particular, there exists a
bilinear continuous symmetric positive-definite form Q : S × S → R such that

E
〈
W(t),ψ

〉〈
W(t), ϕ

〉 = t ∧ sQ(ψ,ϕ).

In addition, we say that the Wiener process W(t) is spatially homogeneous if the law of W(t) is invariant under all
translations τh(f )(x) := f (x + h) with h ∈ R2. This implies that the bilinear form Q must be of the form

Q(ψ,ϕ) = 〈�,ψ ∗ ϕ(s)〉,
where � ∈ S ′ is the Fourier transform of a positive-symmetric tempered measure μ on Rd , and ϕ(s)(x) = ϕ(−x). μ is
called the spectral measure of W(t).

In what follows, we shall introduce in S the norm q([ψ]) = √
Q(ψ,ψ) and we shall denote by Sq the completion of

the set S /KerQ under the norm q . The space S ′
q is dual to Sq and can be represented by

S ′
q = {

ξ ∈ S ′ : ∃C > 0 with
∣∣〈ξ,ψ〉∣∣ ≤ Cq

([ψ]), for all ψ ∈ S
}
.

It turns out that S ′
q is the reproducing kernel of the Wiener process W(t).
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Now, suppose L2
(s)(R

2, dμ) is the space of all functions u ∈ L2(R2, dμ) such that u(s) = u. As shown in [9, Proposition

1.2], a distribution ξ belongs to S ′
q iff there exists a u ∈ L2

(s)(R
2, dμ) such that ξ = ûμ. Moreover, for every u,v ∈

L2
(s)(R

2, dμ)

〈ûμ, v̂μ〉S ′
q
= 〈u,v〉L2(R2,dμ). (2.8)

In what follows, we shall assume the following.

Assumption 2. The spectral measure μ of the spatially homogeneous Wiener process has density function m ∈ Lp(R2),
with p ∈ (1,∞).

In particular, for any u ∈ L2
(s)(R

2, dμ) we have that

‖um‖2p/(p+1) ≤ ‖u‖L2(R2,dμ)‖m‖1/2
p .

Notice that 1 ≤ 2p/(p + 1) ≤ 2, then by the Hausdorff–Young inequality we have that

‖ûm‖2p/(p−1) ≤ Cp‖u‖L2(R2,dμ)‖m‖1/2
p .

This implies that S ′
q ⊂ L2p/(p−1)(R2). Let {uj }j∈N be an orthonormal basis of L2

(s)(R
2,μ). According to (2.8), the

functions ej := ûjm define an orthonormal complete system in S ′
q , and the spatially homogeneous Wiener processes can

be represented as

W(t, x) =
∞∑

j=1

ûjm(x)βj (t),

where {βj }j∈N is a sequence of independent Brownian motions. In particular, the corresponding Wiener process on the
graph can be written as

W̄(t, z, k) =
∞∑

j=1

(ûjm)∧(z, k)βj (t). (2.9)

We shall denote the reproducing kernel of W̄ by S̄ ′
q .

3. The SPDE on R2 and the SPDE on the graph �

In this section, we consider the SPDE in R2{
∂tuε(t, x) = Lεuε(t, x) + b(uε(t, x)) + σ(uε(t, x))∂tW(t, x),

uε(0, x) = ϕ(x),
(3.1)

where we recall

Lεu(x) = 1

2
�u(x) + 1

ε

〈∇̄H(x),∇u(x)
〉
, x ∈ R2.

In what follows, we shall assume the following condition on the coefficients b and σ .

Assumption 3. The nonlinearities b,σ : R→R are Lipschitz continuous.

For every u ∈ Hγ and v ∈ S ′
q , we shall denote by

B(u)(x) = b
(
u(x)

)
,

[
	(u)v

]
(x) = σ

(
u(x)

)
v(x), for x ∈R2.
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With these notations, we say that an adapted process uε ∈ Lp(�,C([0, T ];Hγ )) is a mild solution to equation (3.1) if it
satisfies

uε(t) = Sε(t)ϕ +
∫ t

0
Sε(t − s)B

(
uε(s)

)
ds +

∫ t

0
Sε(t − s)	

(
uε(s)

)
dW(s). (3.2)

If we denote by M the multiplication operator defined by

M(ψ)ξ = ψξ, ψ ∈ Hγ , ξ ∈ S ′
q,

we have

	(u)v = M
(
σ(u)

)
v.

As in [3], where the noise in equation (3.1) was a smooth Wiener process W , having finite spectral measure μ, we
are here interested in studying the limiting behavior of uε , as ε → 0, in the space Lp(�;C([0, T ];Hγ )). The limiting
process will be the solution ū of the following SPDE on the graph �{

∂t ū(t, z, k) = L̄ū(t, z, k) + b(ū(t, z, k)) + σ(ū(t, z, k))∂tW̄(t, z, k),

ū(0, z, k) = ϕ∧(z, k), (z, k) ∈ �,
(3.3)

where W̄ is the Wiener process on the graph � corresponding to W , as defined in (2.9). We say ū is a mild solution to
(3.3) if it is an adapted process in Lp(�;C([0, T ]; H̄γ )) that satisfies the integral equation

ū(t) = S̄(t)ϕ∧ +
∫ t

0
S̄(t − s)B

(
ū(s)

)
ds +

∫ t

0
S̄(t − s)	

(
ū(s)

)
dW̄(s). (3.4)

3.1. The semigroups Sε(t) and S̄(t)

Here, we investigate the properties of the semigroups Sε(t) and their limit S̄(t). Firstly, we review a few results obtained
in previous works, where the following condition on the Hamiltonian H is assumed.

Assumption 4. For any (z, k) ∈ �, we assume that

dTk(z)

dz
�= 0.

In [3, Theorem A.2] it is shown that under Assumption 4, for any u ∈ Cb(R
2), x ∈R2 and 0 < τ ≤ T

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)u(x) − S̄(t)∨u(x)
∣∣ = 0. (3.5)

Furthermore, in [3, Corollary B.1] it is shown that for any u ∈ Hγ and 0 < τ ≤ T

lim
ε→0

sup
t∈[τ,T ]

∣∣Sε(t)u − S̄(t)∨u
∣∣2
Hγ

= lim
ε→0

sup
t∈[τ,T ]

∣∣(Sε(t)u
)∧ − S̄(t)u∧∣∣2

H̄γ
= 0. (3.6)

Suppose Gε(t, x, y) is the kernel corresponding to Sε(t), i.e.

Sε(t)u(x) =
∫
R2

Gε(t, x, y)u(y) dy, x ∈ R2.

Limit (3.5) implies that for any fixed (t, x), kernels Gε(t, x, ·) converge weakly to some Ḡ(t, x, ·), which satisfies that

S̄(t)∨u(x) =
∫
R2

Ḡ(t, x, y)u(y) dy.

Next, we determine the weighted space Hγ , on which the semigroups Sε(t) and S̄∨(t) are bounded. To determine the
weight γ , we have the following result from [3, Proposition 4.1].
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Proposition 3.1. There exists a strictly positive decreasing function h ∈ C2([0,∞)) and a constant C ≥ 0, such that the
function γ : � → (0,∞) defined by γ (z, k) = h(z), for every (z, k) ∈ �, satisfies∫

R2
Gε(t, x, y)γ ∨(x) dx ≤ eCtγ ∨(y), y ∈R2, (3.7)

for every t > 0. Moreover, for the same constant C, we have that∣∣Sε(t)u
∣∣2
Hγ

≤ eCt |u|2Hγ
. (3.8)

Remark 3.2. The constant C in Proposition 3.1 is independent of ε. Therefore, by (3.5) and (3.6), for the limit semigroup
S̄(t), we also have that∫

R2
Ḡ(t, x, y)γ ∨(x) dx ≤ eCtγ ∨(y), y ∈ R2, (3.9)

and ∣∣S̄(t)∨u
∣∣2
Hγ

≤ eCt |u|2Hγ
(3.10)

for the same constant C. Throughout the rest of the paper, we will always assume γ to be a weight that satisfies (3.7)–
(3.10) as proved in Proposition 3.1.

In addition to the weak convergence of the kernels Gε(t, x, y) to Ḡ(t, x, y), we are now proving the following uniform
upper bound to the kernels Gε(t, x, y).

Theorem 3.3. Suppose the Hamiltonian H satisfies Assumption 1. Then, there exists a constant C > 0 independent of ε

such that

Gε(t, x, y) ≤ C

t
exp

(
− (

√
H(y) + 1 − √

H(x) + 1)2

4Ct

)
, (3.11)

for any (t, x, y) ∈ (0, T ] × R2 × R2. Due to the weak convergence of Gε(t, x, y) to Ḡ(t, x, y), as ε → 0, the same
point-wise upper bound as in (3.11) is valid for Ḡ(t, x, y).

Before proving Theorem 3.3, we introduce some notation and prove a preliminary lemma.
To this purpose, we define ψ(x) = α

√
H(x) + 1, where the constant α ∈ R is to be determined later. Since |∇H(x)| ≤

C|x| and H(x) + 1 ≥ C|x|2, we have that∣∣∇ψ(x)
∣∣ = α|∇H(x)|

2
√

H(x) + 1
≤ αC

for some C > 0. Now, for any ε > 0 we consider the linear problem{
∂t zε(t, x) = 1

2�zε(t, x) + 1
ε
〈∇⊥H(x),∇zε(t, x)〉,

zε(0, x) = z0(x),
(3.12)

whose solution has representation

zε(t, x) =
∫
R2

Gε(t, x, y)z0(y) dy.

Now, we introduce the transformed kernel

GT
ε (t, x, y) := e−ψ(x)Gε(t, x, y)eψ(y),

and we define

zT
ε (t, x) :=

∫
R2

GT
ε (t, x, y)z0(y) dy.

The following result holds.
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Lemma 3.4. For any p ≥ 1, we have

d

dt

∥∥zT
ε (t, ·)∥∥2p

L2p ≤ p2α2C2
∥∥zT

ε (t, ·)∥∥2p

L2p − ∥∥∇(
zT
ε (t, ·))p∥∥2

L2 . (3.13)

Proof. By the definition of zT
ε and GT

ε

d

dt

∥∥zT
ε (t, ·)∥∥2p

L2p = 2p

∫
R2

zT
ε (t, x)2p−1

(∫
R2

d

dt
GT

ε (t, x, y)z0(y) dy

)
dx

= 2p

∫
R2

zT
ε (t, x)2p−1

(∫
R2

e−ψ(x)+ψ(y) 1

2
�xG

T
ε (t, x, y)z0(y) dy

)
dx

+ 2p

∫
R2

zT
ε (t, x)2p−1

(∫
R2

e−ψ(x)+ψ(y) 1

ε

〈∇⊥H(x),∇xG
T
ε (t, x, y)

〉
z0(y) dy

)
dx.

If we integrate by part

d

dt

∥∥zT
ε (t, ·)∥∥2p

L2p = −2p

∫
R2

1

2

〈∇(
zT
ε (t, x)2p−1e−ψ(x)

)
,∇(

zT
ε (t, x)eψ(x)

)〉
dx

+ 2p

∫
R2

zT
ε (t, x)2p−1e−ψ(x) 1

ε

〈∇⊥H(x),∇(
zT
ε (t, x)eψ(x)

)〉
dx

= p

∫
R2

zT
ε (t, x)2p

∣∣∇ψ(x)
∣∣2

dx − (2p − 2)

∫
R2

〈∇(
zT
ε (t, x)

)p
,∇ψ(x)

〉
zT
ε (t, x)p dx

− 2p − 1

p

∫
R2

∣∣∇(
zT
ε (t, x)

)p∣∣2
dx + 2p

∫
R2

zT
ε (t, x)2p 1

ε

〈∇⊥H(x),∇ψ(x)
〉
dx

+ 2p

∫
R2

zT
ε (t, x)2p−1 1

ε

〈∇⊥H(x),∇zT
ε (t, x)

〉
dx

=: I1 + I2 + I3 + I4 + I5.

The definition of ∇⊥H(x) and ψ clearly implies that I4 = 0. Moreover, since div∇⊥H = 0, we have

I5 = 1

ε

∫
R2

〈∇⊥H(x),∇(
zT
ε (t, x)2p

)〉
dx = 0.

Since |∇ψ(x)| ≤ αC

I2 + I3 = −
∫
R2

∣∣∇(
zT
ε (t, x)

)p∣∣2
dx + p(p − 1)

∫
R2

∣∣∇ψ(x)
∣∣2

zT
ε (t, x)2p dx

− p − 1

p

∫
R2

∣∣∇(
zT
ε (t, x)

)p + p∇ψ(x)zT
ε (t, x)p

∣∣2
dx

≤ p(p − 1)α2C2
∥∥zT

ε (t, ·)∥∥2p

L2p − ∥∥∇(
zT
ε (t, ·))p∥∥2

L2 .

Together with

I1 ≤ pα2C2
∥∥zT

ε (t, ·)∥∥2p

L2p ,

we complete the proof. �

Proof of Theorem 3.3. If we apply Nash’s inequality and inequality (3.13) as in [4, Lemma 1.4], we can deduce that∥∥zT
ε (t, ·)∥∥

L∞ ≤ C

t1/2
exp

(
Cα2t

)‖z0‖L2 . (3.14)

The dual equation to (3.12) only changes the sign of the first order coefficient ∇⊥H(x), which means (3.14) is also true
for the dual equation. By duality, there is∥∥zT

ε (t, ·)∥∥
L2 ≤ C

t1/2
exp

(
Cα2t

)‖z0‖L1 .
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Together with (3.14), this implies that∥∥zT
ε (t, ·)∥∥

L∞ ≤ C

t
exp

(
Cα2t

)‖z0‖L1 .

By the definition of zT
ε (t, x), we obtain that

GT
ε (t, x, y) ≤ C

t
exp

(
Cα2t

)
,

and hence

Gε(t, x, y) ≤ C

t
exp

(
Cα2t + α

√
H(x) + 1 − α

√
H(y) + 1

)
for any α ∈ R, t ∈ (0,∞) and x, y ∈ R2. Here we can take α =

√
H(y)+1−√

H(x)+1
2Ct

to minimize the right-hand side to
obtain

Gε(t, x, y) ≤ C

t
exp

(
− (

√
H(y) + 1 − √

H(x) + 1)2

4Ct

)
. �

Corollary 3.5. Given any compact subset K ⊂R2, there exist C and R depending on K such that

sup
x∈K

Gε(t, x, y) ≤
{

C
t

|y| ≤ R,

C
t

exp(−|y|2
Ct

) |y| > R
(3.15)

for any t ∈ (0,∞) and y ∈R2. Moreover, the limit Ḡ(t, x, y) satisfies the same upper bound as in (3.15).

Proof. Actually we always have Gε(t, x, y) ≤ C
t

. Then since H(x) is bounded for x ∈ K , by Assumption 1 we have that

Gε(t, x, y) ≤ C

t
exp

(
−H(y) + H(x) + 2 − 2

√
H(y) + 1

√
H(x) + 1

4Ct

)
≤ C

t
exp

(
−|y|2

Ct

)
for large enough |y|. �

Now we consider the stochastic convolutions∫ t

0
Sε(t − s)	

(
uε(s)

)
dW(s) (3.16)

and ∫ t

0
S̄(t − s)	

(
ū(s)

)
dW̄(s), (3.17)

as in the definition of mild solutions, and show that they are well-defined in Hγ and H̄γ , respectively, when the spectral
measure μ of the spatially homogeneous Wiener process W has density function m in Lp(R2), with p ∈ (1,∞).

To be more precise, as stated in the following lemma, we show that the semigroup Sε(t) improves the regularity of
(3.16) following the proof of [9, Proposition 4.1].

Lemma 3.6. Under Assumption 2, Sε(t)M(ψ) are Hilbert–Schmidt operators from S ′
q to Hγ , for all ψ ∈ Hγ . Moreover,

for each T > 0 there exists a constant CT > 0 such that∥∥Sε(t)M(ψ)
∥∥2

L(HS)(S ′
q ,Hγ )

≤ CT ‖m‖Lp t−(p−1)/p|ψ |2Hγ
, t ∈ [0, T ].

Proof. Let {vj } be an orthonormal basis of L2
(s)(R

2, dx). Thanks to (2.8), if we define ej = v̂jm1/2, we have that {ej }j∈N
is an orthonormal complete system in S ′

q . Then, for any ψ ∈ Hγ

I :=
∞∑

j=1

∣∣Sε(t)ψej

∣∣2
Hγ

=
∞∑

j=1

∣∣Sε(t)
[
ψ

(
m̂1/2 ∗ v̂j

)]∣∣2
Hγ
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=
∞∑

j=1

∫
R2

[∫
R2

Gε(t, x, y)ψ(y)
(
m̂1/2 ∗ v̂j

)
(y) dy

]2

γ ∨(x) dx

≤
∫
R2

∫
R2

∣∣m̂1/2 ∗ (
Gε(t, x, ·)ψ)

(y)
∣∣2

dyγ ∨(x) dx

=
∫
R2

∫
R2

∣∣m1/2(y)
∣∣2∣∣ ̂(

Gε(t, x, ·)ψ)
(y)

∣∣2
dyγ ∨(x) dx

≤ ‖m‖Lp

∫
R2

∥∥ ̂(
Gε(t, x, ·)ψ)∥∥2

L2p∗ γ ∨(x) dx,

where p∗ is the Hölder conjugate of p. The Hausdorff–Young inequality implies that ‖ ̂(Gε(t, x, ·)ψ)‖L2p∗ ≤
‖(Gε(t, x, ·)ψ)‖L2p/(p+1) and we obtain

I ≤ ‖m‖Lp

∫
R2

∥∥(
Gε(t, x, ·)ψ)∥∥2

L2p/(p+1)γ
∨(x) dx

= ‖m‖Lp

∫
R2

[∫
R2

∣∣Gε(t, x, y)ψ(y)
∣∣2p/(p+1)

dy

](p+1)/p

γ ∨(x) dx.

By Theorem 3.3, we have that

I ≤ C‖m‖Lp t−(p−1)/p

∫
R2

[∫
R2

Gε(t, x, y)
∣∣ψ(y)

∣∣2p/(p+1)
dy

](p+1)/p

γ ∨(x) dx.

Since 2p/(p + 1) ≤ 2 and Gε(t, x, y) dy is a probability measure,[∫
R2

Gε(t, x, y)
∣∣ψ(y)

∣∣2p/(p+1)
dy

](p+1)/p

≤
[∫

R2
Gε(t, x, y)

∣∣ψ(y)
∣∣2

dy

]
,

and then, using Proposition 3.1, we conclude

I ≤ C‖m‖Lp t−(p−1)/p

∫
R2

[∫
R2

Gε(t, x, y)
∣∣ψ(y)

∣∣2
dy

]
γ ∨(x) dx

= C‖m‖Lp t−(p−1)/p

∫
R2

∫
R2

Gε(t, x, y)γ ∨(x) dx
∣∣ψ(y)

∣∣2
dy

≤ C‖m‖Lp t−(p−1)/peCT

∫
R2

∣∣ψ(y)
∣∣2

γ ∨(y) dy

= CeCT ‖m‖Lp t−(p−1)/p|ψ |2Hγ
. �

Now we consider the limit semigroup S̄(t) and show that an analogous result holds.

Lemma 3.7. Under Assumption 2, S̄(t)M(ψ) are Hilbert–Schmidt operators from S̄ ′
q to H̄γ . For each T > 0 there exists

a constant CT > 0 such that for all ψ ∈ H̄γ∥∥S̄(t)M(ψ)
∥∥2

L(HS)(S̄ ′
q ,H̄γ )

≤ CT ‖m‖Lp t−(p−1)/p|ψ |2
H̄γ

, t ∈ [0, T ].

Proof. We have

I :=
∞∑

j=1

∣∣S̄(t)ψe∧
j

∣∣2
H̄γ

=
∞∑

j=1

∣∣S̄(t)
[
ψ

(
m̂1/2 ∗ v̂j

)∧]∣∣2
H̄γ

.

Then by Proposition 2.1 and the definition of S̄(t)∨ and Ḡ(t, x, y),

I =
∞∑

j=1

∣∣S̄(t)∨
[
ψ∨(

m̂1/2 ∗ v̂j

)]∣∣2
Hγ
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=
∞∑

j=1

∫
R2

[∫
R2

Ḡ(t, x, y)ψ∨(y)
(
m̂1/2 ∗ v̂j

)
(y) dy

]2

γ ∨(x) dx

≤
∫
R2

∫
R2

∣∣m̂1/2 ∗ (
Ḡ(t, x, ·)ψ∨)

(y) dy
∣∣2

γ ∨(x) dx

=
∫
R2

∫
R2

∣∣m1/2(y)
∣∣2∣∣ ̂(

Ḡ(t, x, ·)ψ∨)
(y)

∣∣2
dyγ ∨(x) dx

≤ ‖m‖Lp

∫
R2

∥∥ ̂(
Ḡ(t, x, ·)ψ∨)∥∥2

L2p∗ γ ∨(x) dx.

Now, with the same arguments used in the proof of Lemma 3.6, using (3.9) and the bound Ḡ(t, x, y) ≤ Ct−1, we have
that

I ≤ CeCT ‖m‖Lp t−(p−1)/p
∣∣ψ∨∣∣2

Hγ
= CeCT ‖m‖Lp t−(p−1)/p|ψ |2

H̄γ
,

where the last equality follows from Proposition 2.1. �

Using classical arguments, in Section 3.2 we will show that Lemma 3.6 and Lemma 3.7 imply that SPDEs (3.1) and
(3.3) admit a unique mild solution.

Next, to prove the convergence of mild solutions uε of equations (3.1) to the mild solution ū of equation (3.3), we
show that the three terms in the definition of mild solutions (3.2) converge to that of (3.4). Among these three terms, the
most difficult one is the convergence of the stochastic integrals (3.16) to (3.17), for which we will need the following
approximation result.

Lemma 3.8. Given any ψ ∈ Hγ , for any fixed 0 < τ < T

lim
ε→0

sup
t∈[τ,T ]

∞∑
j=1

∣∣(Sε(t) − S̄(t)∨
)
(ψej )

∣∣2
Hγ

= 0. (3.18)

Proof. We show that for any given δ > 0, there exists εδ > 0 such that for any 0 < ε ≤ εδ ,

∞∑
j=1

∣∣(Sε(t) − S̄(t)∨
)
(ψej )

∣∣2
Hγ

≤ δ, t ∈ [τ, T ]. (3.19)

The spectral measure m belongs to Lp(R2), for p ∈ [1,∞), which means that m1/2 ∈ L2p(R2). Given any η > 0, we
write m = m1 + m2, where

m1 = m1{m<η}, m2 = m1{m≥η}.

Then m1/2 = m
1/2
1 + m

1/2
2 and

I =
∞∑

j=1

∣∣(Sε(t) − S̄(t)∨
)(

ψv̂jm1/2
)∣∣2

Hγ

=
∞∑

j=1

∣∣(Sε(t) − S̄(t)∨
)(

ψ
̂
vjm

1/2
1

) + (
Sε(t) − S̄(t)∨

)(
ψ

̂
vjm

1/2
2

)∣∣2
Hγ

≤ 2
∞∑

j=1

∣∣(Sε(t) − S̄(t)∨
)(

ψ
̂
vjm

1/2
1

)∣∣2
Hγ

+ 2
∞∑

j=1

∣∣(Sε(t) − S̄(t)∨
)(

ψ
̂
vjm

1/2
2

)∣∣2
Hγ

=: I1(ε, t, η) + I2(ε, t, η).
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For the first term, due to (3.15), we have

I1(ε, t, η) ≤
∞∑

j=1

∫
R2

[∫
R2

(
Gε(t, x, y) − Ḡ(t, x, y)

)
ψ(y)

(
m̂

1/2
1 ∗ v̂j

)
(y) dy

]2

γ ∨(x) dx

≤
∫
R2

∫
R2

∣∣m1/2
1 (y)

∣∣2∣∣ ̂((
Gε(t, x, ·) − Ḡ(t, x, ·))ψ)

(y)
∣∣2

dyγ ∨(x) dx

≤ η

∫
R2

∫
R2

∣∣(Gε(t, x, y) − Ḡ(t, x, y)
)
ψ(y)

∣∣2
dyγ ∨(x) dx

≤ Cηt−1
∫
R2

∫
R2

Gε(t, x, y)
∣∣ψ(y)

∣∣2 + Ḡ(t, x, y)
∣∣ψ(y)

∣∣2
dyγ ∨(x) dx

= Cηt−1
∫
R2

∫
R2

[
Gε(t, x, y)γ ∨(x) + Ḡ(t, x, y)γ ∨(x)

]
dx

∣∣ψ(y)
∣∣2

dy.

Then, thanks to (3.7) and (3.9), we get

I1(ε, t, η) ≤ Cηt−12eCt

∫
R2

∣∣ψ(y)
∣∣2

γ ∨(y) dy = Cηt−12eCt |ψ |2Hγ
.

This means that we can fix ηδ = η(δ, τ, T ,ψ) > 0 such that

sup
ε>0

sup
t∈[τ,T ]

I1(ε, t, ηδ) ≤ δ

2
. (3.20)

Now, concerning the second term I2(ε, t, η), we have

∞∑
j=1

∣∣ψ ̂
vjm

1/2
2

∣∣2
Hγ

=
∞∑

j=1

∫
R2

∣∣ψ(x)
̂
vjm

1/2
2 (x)

∣∣2
γ ∨(x) dx

= (2π)−2
∫
R2

∞∑
j=1

∣∣∣∣∫
R2

exp(iξ · x)ψ(x)vj (ξ)m
1/2
2 (ξ) dξ

∣∣∣∣2

γ ∨(x) dx

≤ (2π)−2
∫
R2

∫
R2

∣∣exp(iξ · x)ψ(x)
∣∣2

m2(ξ) dξγ ∨(x) dx

= (2π)−2‖m2‖L1 |ψ |2Hγ
.

Then, since ‖m2‖L1 ≤ ‖m‖Lp/ηp−1, if we take η = ηδ we get

∞∑
j=1

∣∣ψ ̂
vjm

1/2
2

∣∣2
Hγ

≤ (2π)−2η
−(p−1)
δ ‖m‖Lp |ψ |2Hγ

.

Due to (3.8) and (3.10), this implies that we can choose Nδ large enough such that

sup
ε>0

sup
t∈[τ,T ]

∞∑
j=Nδ+1

∣∣(Sε(t) − S̄(t)∨
)(

ψ
̂
vjm

1/2
2

)∣∣2
Hγ

≤ δ

4
. (3.21)

Moreover, by (3.6), we can choose 0 < εδ small enough such that

sup
t∈[τ,T ]

Nδ∑
j=1

∣∣(Sε(t) − S̄(t)∨
)(

ψ
̂
vjm

1/2
1

)∣∣2
Hγ

≤ δ

4
(3.22)

for any ε ≤ εδ . These two inequalities (3.21) and (3.22), together with (3.20), imply (3.19). �
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3.2. Existence and uniqueness

Here we state the existence and uniqueness of mild solutions to SPDEs (3.1) and (3.3) using Lemma 3.6 and Lemma 3.7.
We state it in the following theorem.

Theorem 3.9. Suppose the Hamiltonian H satisfies Assumption 1, coefficients b and σ satisfy Assumption 3. We as-
sume that the spectral measure of the spatially homogeneous Wiener process W(t) satisfies Assumption 2, i.e. there
is a density function m(x) = dμ/dx ∈ Lp(R2) for some p ∈ (1,∞). Given q ≥ 1, Hq := Lq(�;C([0, T ];Hγ )) and
H̄q := Lq(�;C([0, T ]; H̄γ )) are Banach spaces with norms

‖u‖Hq
=

(
E sup

t∈[0,T ]
∣∣u(t)

∣∣q
Hγ

)1/q

, ‖ū‖H̄q
=

(
E sup

t∈[0,T ]
∣∣ū(t)

∣∣q
H̄γ

)1/q

,

respectively. Then for any ε > 0 and q > 2p, there is a unique mild solution uε to (3.1) satisfying that

sup
ε∈(0,1)

‖uε‖q

Hq
≤ CT,q

(
1 + |ϕ|qHγ

)
. (3.23)

Moreover, there is also a unique mild solution ū to (3.3) satisfying

‖ū‖q

H̄q
≤ CT

(
1 + ∣∣ϕ∧∣∣q

H̄γ

)
. (3.24)

Remark. As discussed in [3], the existence and uniqueness of the mild solutions stated in Theorem 3.2 is also true if
the spectral measure μ is finite. Together, Theorem 3.2 is actually true when the spectral measure can be written as
μ = μ1 + μ2, where μ1 is a finite measure and μ2 has density function m ∈ Lp(R2) for some p ∈ (1,∞).

The proof of Theorem 3.2 follows the arguments in [9], which is essentially to show that all terms in the definition of
the mild solutions (3.2) and (3.4) are contraction mappings on Banach spaces Hq and H̄q , respectively. The condition
that q > 2p is required for the construction of contraction mappings. By Hölder’s inequality, actually the mild solutions
are in Hq and H̄q for any q ≥ 1. Here we omit the detailed proof of Theorem 3.9, since it is standard.

3.3. Convergence of the mild solutions

In this section, we study the convergence of uε to ū. The main result of this section is stated in the following theorem.

Theorem 3.10. Suppose the Hamiltonian H satisfies Assumption 1 and 4, coefficients b and σ satisfy Assumption 3 and
the spectral measure of the spatially homogeneous Wiener process W(t) satisfies Assumption 2. Let uε be the unique mild
solution to (3.1) and ū be the unique mild solution to (3.3), with the same initial conditions ϕ and ϕ∧, respectively. Then,
for any fixed q ≥ 1 and 0 < τ < T , we have that

lim
ε→0

E sup
t∈[τ,T ]

∣∣uε(t) − ū(t)∨
∣∣q
Hγ

= lim
ε→0

E sup
t∈[τ,T ]

∣∣uε(t)
∧ − ū(t)

∣∣q
H̄γ

= 0. (3.25)

Proof. Without loss of generality, it is enough to prove (3.25) for large enough q > 2p. For any fixed 0 < τ < T and
q > 2p, we denote by

�ε,q(τ, t) := E sup
s∈[τ,t]

∣∣uε(s) − ū(s)∨
∣∣q
Hγ

, t ∈ [τ, T ], ε > 0.

Then there is

uε(s) − ū(s)∨ = [
Sε(s)ϕ − S̄(s)∨ϕ

] +
[∫ s

0
Sε(s − r)B

(
uε(r)

)
dr −

(∫ s

0
S̄(s − r)B

(
ū(r)

)
dr

)∨]
+

[∫ s

0
Sε(s − r)	

(
uε(r)

)
dW(r) −

(∫ s

0
S̄(s − r)	

(
ū(r)

)
dW̄(r)

)∨]
= [

Sε(s)ϕ − S̄(s)∨ϕ
] +

[∫ s

0
Sε(s − r)B

(
uε(r)

)
dr −

∫ s

0
S̄(s − r)∨B

(
ū(r)∨

)
dr

]
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+
[∫ s

0
Sε(s − r)	

(
uε(r)

)
dW(r) −

∫ s

0
S̄(s − r)∨	

(
ū(r)∨

)
dW(r)

]
=: Iε,1(s) + Iε,2(s) + Iε,3(s).

Therefore, due to Lemma 3.11 and Lemma 3.12 below, we have

�ε,q(τ, t) ≤
3∑

i=1

E sup
s∈[τ,t]

∣∣Iε,i(s)
∣∣q
Hγ

≤ Cq,T

∫ t

τ

�ε,q(τ, s) ds + Cq,T τ +E sup
s∈[τ,T ]

∣∣Iε,1(s)
∣∣q
Hγ

+ Hε,1(τ, T ) + Hε,2(T ),

and, thanks to the Grönwall lemma, this implies

�ε,q(τ, t) ≤ Cq,T

[
τ +E sup

s∈[τ,T ]
∣∣Iε,1(s)

∣∣q
Hγ

+ Hε,1(τ, T ) + Hε,2(T )
]
.

Firstly, it is enough to prove (3.25) for small enough τ . Hence, for any δ > 0 fixed, we can choose τδ small enough so
that Cq,T τ < δ/2 for every τ ≤ τδ . Next, we notice that by (3.6), we have

lim
ε→0

E sup
s∈[τ,t]

∣∣Iε,1(s)
∣∣q
Hγ

= lim
ε→0

E sup
s∈[τ,T ]

∣∣Iε,1(s)
∧∣∣q

H̄γ
= 0.

Thus, thanks to (3.27) and (3.31), we can find εδ > 0 such that

CT,q

[
E sup

s∈[τ,T ]
∣∣Iε,1(s)

∣∣q
Hγ

+ Hε,1(τ, T ) + Hε,2(T )
]

< δ/2,

for every ε ≤ εδ and 0 ≤ τ < T . This clearly implies our theorem. �

Lemma 3.11. For every q ≥ 1 and for every 0 < τ < T there exists Cq,T > 0 such that for every 0 < τ ≤ t ≤ T

E sup
s∈[0,t]

∣∣Iε,2(s)
∣∣q
Hγ

≤ Cq,T

(∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds + τ

)
+ Hε,1(τ, T ), (3.26)

where Hε,1(τ, T ) satisfies that

lim
ε→0

Hε,1(τ, T ) = 0. (3.27)

Proof. We have

Iε,2(t) =
∫ t

0
Sε(t − s)

[
B

(
uε(s)

) − B
(
ū(s)∨

)]
ds +

∫ t

0

[
Sε(t − s) − S̄(t − s)∨

]
B

(
ū(s)∨

)
ds

=: Jε,1(t) + Jε,2(t).

Then, since |B(u)|Hγ ≤ c(1 + |u|Hγ ), for any t, τ > 0 we have that

∣∣Jε,1(t)
∣∣q
Hγ

≤ Cq

∣∣∣∣∫ τ

0
Sε(t − s)

[
B

(
uε(s)

) − B
(
ū(s)∨

)]
ds

∣∣∣∣q
Hγ

+ Cq

∣∣∣∣∫ t

τ

Sε(t − s)
[
B

(
uε(s)

) − B
(
ū(s)∨

)]
ds

∣∣∣∣q
Hγ

≤ Cq,T

∫ τ

0

(
1 + ∣∣uε(s)

∣∣q
Hγ

+ ∣∣ū(s)∨
∣∣q
Hγ

)
ds + Cq,T

∫ t

τ

∣∣uε(s) − ū(s)∨
∣∣q
Hγ

ds

≤ Cq,T τ sup
s∈[0,T ]

(
1 + ∣∣uε(s)

∣∣q
Hγ

+ ∣∣ū(s)∨
∣∣q
Hγ

) + Cq,T

∫ t

τ

sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds. (3.28)

As shown in (3.23) and (3.24), we have

sup
ε>0

E sup
s∈[0,T ]

(
1 + ∣∣uε(s)

∣∣q
Hγ

+ ∣∣ū(s)∨
∣∣q
Hγ

) ≤ C
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Thus, after taking supremum over time and expectation in (3.28), we obtain

E sup
s∈[0,t]

∣∣Jε,1(s)
∣∣q
Hγ

≤ Cq,T τ + Cq,T

∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds. (3.29)

For the second term Jε,2(t), using again the linear growth of B in Hγ , we have

∣∣Jε,2(t)
∣∣q
Hγ

≤ Cq

∣∣∣∣∫ t

t−τ

[
Sε(t − s) − S̄(t − s)∨

]
B

(
ū(s)∨

)
ds

∣∣∣∣q
Hγ

+ Cq

∣∣∣∣∫ t−τ

0

[
Sε(t − s) − S̄(t − s)∨

]
B

(
ū(s)∨

)
ds

∣∣∣∣q
Hγ

≤ Cq,T τ sup
s∈[0,T ]

(
1 + ∣∣ū(s)∨

∣∣q
Hγ

) + Cq,T

∫ T

0
sup

r∈[τ,T ]
∣∣[Sε(r) − S̄(r)∨

]
B

(
ū(s)∨

)∣∣q
Hγ

ds.

This implies

E sup
s∈[0,t]

∣∣Jε,2(s)
∣∣q
Hγ

≤ Cq,T τ + Cq,T

∫ T

0
E sup

r∈[τ,T ]
∣∣[Sε(r) − S̄(r)∨

]
B

(
ū(s)∨

)∣∣q
Hγ

ds.

Together with (3.29), we proved (3.26) with

Hε,1(τ, T ) := Cq,T

∫ T

0
E sup

r∈[τ,T ]
∣∣[Sε(r) − S̄(r)∨

]
B

(
ū(s)∨

)∣∣q
Hγ

ds.

By (3.6) and (3.8), using the dominated convergence theorem we have that

lim
ε→0

∫ T

0
E sup

r∈[τ,T ]
∣∣[Sε(r) − S̄(r)∨

]
B

(
ū(s)∨

)∣∣q
Hγ

ds = 0

for any 0 < τ < T and this implies (3.27). �

Lemma 3.12. For every q > 2p and for every 0 < τ < T , we have that

E sup
s∈[0,t]

∣∣Iε,3(s)
∣∣q
Hγ

≤ Cq,T

∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds + Hε,2(T ), (3.30)

where Hε,2(T ) satisfies that

lim
ε→0

Hε,2(T ) = 0. (3.31)

Proof. We have

Iε,3(t) =
∫ t

0
Sε(t − s)

[
	

(
uε(s)

) − 	
(
ū(s)∨

)]
dW(s) +

∫ t

0

[
Sε(t − s) − S̄(t − s)∨

]
	

(
ū(s)∨

)
dW(s)

=: Jε,1(t) + Jε,2(t).

By the factorization formula, for every α ∈ (0,1) we have

Jε,1(t) = sinπα

π

∫ t

0
(t − s)α−1Sε(t − s)Yα(s) ds,

where

Yα(s) =
∫ s

0
(s − r)−αSε(s − r)

[
	

(
uε(r)

) − 	
(
ū(r)∨

)]
dW(r).

Now, since m ∈ Lp(R2), for some p ∈ (1,∞), we can find α ∈ (0,1) and q > 1 such that 2p < 1/α < q . Then, using
Proposition 3.1 and Hölder’s inequality, we have

E sup
s∈[0,t]

∣∣Jε,1(s)
∣∣q
Hγ

≤ Cq,T

∫ t

0
E

∣∣Yα(s)
∣∣q
Hγ

ds.
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By Lemma 3.6, due to the Lipschitz continuity of σ , we have that

E
∣∣Yα(s)

∣∣q
Hγ

≤ Cq,T ,αCqE

(∫ s

0
(s − r)−2α(s − r)−(p−1)/p

∣∣uε(r) − ū(r)∨
∣∣2
Hγ

dr

)q/2

.

Then, from Young’s inequality and estimates (3.23) and (3.24), we obtain∫ t

0
E

∣∣Yα(s)
∣∣q
Hγ

ds ≤ Cq,T

(∫ t

0
s−2α−(p−1)/p ds

)q/2

E

∫ t

0

∣∣uε(s) − ū(s)∨
∣∣q
Hγ

ds

≤ Cq,T E

∫ t

0

∣∣uε(s) − ū(s)∨
∣∣q
Hγ

ds

≤ Cq,T τ
(
E sup

s∈[0,T ]
∣∣uε(s)

∣∣q
Hγ

+E sup
s∈[0,T ]

∣∣ū(s)∨
∣∣q
Hγ

)
+ Cq,T

(∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds

)

≤ Cq,T

(
τ +

∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds

)
.

This implies

E sup
s∈[0,t]

∣∣Jε,1(s)
∣∣q
Hγ

≤ Cq,T

(
τ +

∫ t

τ

E sup
r∈[τ,s]

∣∣uε(r) − ū(r)∨
∣∣q
Hγ

ds

)
.

Again, using the factorization formula

Jε,2(t) = sinπα

π

∫ t

0
(t − s)α−1Sε(t − s)Yα,1(s) ds + sinπα

π

∫ t

0
(t − s)α−1[Sε(t − s) − S̄(t − s)∨

]
Yα,2(s) ds,

where

Yα,1(s) =
∫ s

0
(s − r)−α

[
Sε(s − r) − S̄(s − r)∨

]
G

(
ū(r)∨

)
dW(r),

and

Yα,2(s) =
∫ s

0
(s − r)−αS̄(s − r)∨G

(
ū(r)∨

)
dW(r).

Then

E sup
s∈[0,t]

∣∣Jε,2(s)
∣∣q
Hγ

≤ CT

∫ t

0
E

∣∣Yα,1(s)
∣∣q
Hγ

ds + CT E sup
s∈[0,t]

∫ s

0

∣∣[Sε(s − r) − S̄(s − r)∨
]
Yα,2(r)

∣∣q
Hγ

dr

=: Kε,1(t) + Kε,2(t).

Here

E
∣∣Yα,1(s)

∣∣q
Hγ

≤ CqE

(∫ s

0
(s − r)−2α

∞∑
j=1

∣∣[Sε(s − r) − S̄(s − r)∨
]
G

(
ū(r)∨

)
ej

∣∣2
Hγ

dr

)q/2

.

By Lemma 3.8 and (3.8), using the dominated convergence theorem, we have that

lim
ε→0

E
∣∣Yα,1(s)

∣∣q
Hγ

= 0.

This implies that

lim
ε→0

sup
t∈[0,T ]

Kε,1(t) = 0.
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For Kε,2, by (3.8) and the dominated convergence theorem, we again have

lim
ε→0

sup
t∈[0,T ]

Kε,2(t) = 0.

Therefore, if we define

Hε,2(T ) := sup
t∈[0,T ]

Kε,1(t) + sup
t∈[0,T ]

Kε,2(t),

our proof is complete. �

4. A weaker type convergence if dT/dz = 0

In [3], it has been shown that if Assumption 4 is verified, that is

dTk(z)

dz
�= 0, (z, k) ∈ �,

then for any u ∈ Hγ and 0 < τ < T

lim
ε→0

sup
t∈[τ,T ]

∣∣Exu
(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)∣∣ = 0. (4.1)

In [3], Assumption 4 is actually used to say that, as shown in [6, Lemma 4.3], if α ∈ (4/7,2/3) then for every u ∈
C2

b(R2) and for every compact set K ∈R2

lim
ε→0

sup
x∈K

∣∣Exu
(
Xε

(
εα

)) − (
u∧)∨

(x)
∣∣ = 0. (4.2)

When Assumption 4 is not satisfied, we don’t have a way to prove (4.2), which is a key ingredient in the proof of (4.1). In
this section, we will show that when Assumption 4 is not verified and hence we cannot prove (4.2), then limit (4.1) can
be replaced by the following weaker type of convergence.

Theorem 4.1. Under Assumptions 1, 2 and 3, for any 0 ≤ τ < T and any compact set K ⊂R2, we have

lim
ε→0

sup
x∈K

∣∣∣∣∫ T

τ

[
Exu

(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)]

θ(t) dt

∣∣∣∣ = 0 (4.3)

for any u ∈ Cb(R
2) and θ ∈ Cb([τ, T ]).

To prove Theorem 4.1, we need the following notations. For �(x) = (z, k) in the interior of edge Ik , we set T (x) =
Tk(z). Given a compact set K ⊂R2 and δ > 0, we denote

TM,δ(K) := sup
x∈K\G(±δ)

T (x), Tm,δ(K) := inf
x∈K\G(±δ)

T (x).

Here we remove a small neighborhood of all the vertices, G(±δ), when taking the supremum and infimum. Therefore we
always have that TM,δ(K) < ∞ and Tm,δ(K) > 0 (see [7, Chapter 8]).

Now, suppose (z,0) ∈ � is such that

z ≥ max
i=1,...,m

H(xi) + 1, (4.4)

where x1, . . . , xm are the critical points of the Hamiltonian H . We define the stopping time

ρε,z := inf
{
t ≥ 0 : H (

Xε(t)
) ≥ z

}
,

which is finite almost surely by Theorem 3.3. It is proved in [7, Lemma 8.3.2] that for any compact set K ∈ R2, there
exists a ε0 > 0 such that the family of distributions corresponding to the processes {�(Xε(·)) : ε ∈ (0, ε0),Xε(0) ∈ K} is
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tight in C([0, T ];�) for every T > 0. This implies that for any given η > 0 and T > 0, there exists (zη,0) ∈ � satisfying
(4.4) such that

sup
x∈K,0<ε≤ε0

Px

{
sup
t≤T

H
(
Xε(t)

) ≥ zη

}
≤ η,

which is equivalent to

sup
x∈K,0<ε≤ε0

Px{ρε,zη ≤ T } ≤ η, (4.5)

i.e., the probability of processes Xε(t) hitting the level curve C(zη) before time T are uniformly less than η for any initial
data x ∈ K and 1 < ε < ε0. Given η > 0 and zη as in (4.5), for any 0 < δ′ < δ, define

σ ε,η,δ,δ′
n := inf

{
t ≥ τ ε,η,δ,δ′

n : Xε(t) ∈ G(±δ)c
}
, (4.6)

and

τ ε,η,δ,δ′
n := inf

{
t ≥ σ

ε,η,δ,δ′
n−1 : Xε(t) ∈ D

(±δ′) ∪ C(zη)
}
. (4.7)

We set τ
ε,η,δ,δ′
0 = 0. After the process Xε(t) reaches C(zη), all τ

ε,η,δ,δ′
n and σ

ε,η,δ,δ′
n are taken equal ρε,zη .

4.1. A weaker type of convergence for the semigroup

In order to prove Theorem 4.1, it is sufficient to prove

lim
ε→0

sup
x∈K

∣∣∣∣∫ T

0

[
Exu

(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)]

θ(t) dt

∣∣∣∣ = 0. (4.8)

Actually, if this is the case we can use
∫ T

τ
= ∫ T

0 − ∫ τ

0 to obtain (4.3).
Thanks to [3, Lemma A.3], for any 0 < τ < T and x ∈ R2, we have

lim
ε→0

sup
t∈[τ,T ]

∣∣Ex

(
u∧)∨(

Xε(t)
) − Ē�(x)u

∧(
Ȳ (t)

)∣∣ = 0.

In fact, given a compact subset K ⊂R2, we further have that

lim
ε→0

sup
x∈K,t∈[τ,T ]

∣∣Ex

(
u∧)∨(

Xε(t)
) − Ē�(x)u

∧(
Ȳ (t)

)∣∣ = 0. (4.9)

Notice that we have the decomposition below∫ T

0

[
Exu

(
Xε(t)

) − Ē�(x)u
∧(

Ȳ (t)
)]

θ(t) dt =
∫ T

0

[
Exu

(
Xε(t)

) − Ex

(
u∧)∨(

Xε(t)
)]

θ(t) dt

+
∫ τ

0

[
Ex

(
u∧)∨(

Xε(t)
) − Ē�(x)u

∧(
Ȳ (t)

)]
θ(t) dt

+
∫ T

τ

[
Ex

(
u∧)∨(

Xε(t)
) − Ē�(x)u

∧(
Ȳ (t)

)]
θ(t) dt

=: I1 + I2 + I3.

Since u, (u∧)∨ and ϕ are bounded, we can choose τ small enough to control I2. Then using (4.9) we can control I3.
Hence, in order to obtain (4.3), it is enough to prove the following result.

Lemma 4.2. Suppose K is a compact subset of R2. Then, for every T > 0 and θ ∈ C([0, T ]) it holds that

lim
ε→0

sup
x∈K

∣∣∣∣∫ T

0

[
Exu

(
Xε(t)

) − Ex

(
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣ = 0. (4.10)
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Proof. Actually we can assume that u ∈ C1
b(R2) (and θ ∈ C1([0, T ])), because for any u ∈ Cb(R

2) (and θ ∈ C([0, T ]))
we can find an approximation sequence {un} ⊂ C1

b(R2) (and {θn} ⊂ C1([0, T ])) such that un → u in L∞(R2) (and θn → θ

in L∞([0, T ]).
Since u ∈ C1

b(R2) and θ ∈ C1([0, T ]), we can define

M1 := ∥∥u − (
u∧)∨∥∥

L∞ , M2 := max
{‖θ‖L∞,

∥∥θ ′∥∥
L∞

}
, M3 := ‖∇u‖L∞ .

By (4.5), for every η > 0 we can choose zη large enough such that supx∈K Px(ρε,zη ≤ T ) ≤ η. Hence,

Ex

∫ T

0

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt = Ex

∫ T ∧ρε,zη

0

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

+ Ex

∫ T

T ∧ρε,zη

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt.

For the second term on the right hand side,

sup
x∈K

∣∣∣∣Ex

∫ T

T ∧ρε,zη

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣ ≤ T M1M2Px(ρε,zη ≤ T ) ≤ T M1M2η.

Now we fixed zη and the stoping time ρε,zη . For the stopping times τ
ε,η,δ,δ/2
i and σ

ε,η,δ,δ/2
i defined in (4.6) and (4.7) with

δ′ = δ
2 , we set τi = τ

ε,η,δ,δ/2
i ∧ T ∧ ρε,zη and σi = σ

ε,η,δ,δ/2
i ∧ T ∧ ρε,zη . Then, recalling that τ0 = 0, we have

Ex

∫ T ∧ρε,zη

0

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt =
∞∑
i=0

Ex

∫ σi

τi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

+
∞∑
i=0

Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt.

For the first term on the right hand side, we have∣∣∣∣∣
∞∑
i=0

Ex

∫ σi

τi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣∣
≤ M1M2

∞∑
i=0

Ex[σi − τi]

≤ M1M2

∞∑
i=0

Px

(
τ

ε,η,δ,δ/2
i < T

)[
sup

y∈D(±δ/2)

Eyσ
ε,η,δ,δ/2
0

]

≤ M1M2

[
sup

y∈D(±δ/2)

Eyσ
ε,η,δ,δ/2
0

]
eT

∞∑
i=0

Exe
−τ

ε,η,δ,δ/2
i .

Recall that from [7, (8.3.14)] and [3, A.19] we have

sup
x∈K

∞∑
i=0

Exe
−τ

ε,η,δ,δ/2
i ≤ C

δ
,

and from [7, (8.5.17)] and [3, A.21] we have

sup
y∈D(±δ/2)

Eyσ
ε,η,δ,δ/2
0 ≤ Cδ2| log δ|.

Since there exists δ0 > 0 such that Cδ| log δ| < η for all 0 < δ < δ0, from the inequality above we get

sup
x∈K

∣∣∣∣∣
∞∑
i=0

Ex

∫ σi

τi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣∣ ≤ CM1M2e
T δ| log δ| < M1M2e

T η. (4.11)
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Using Lemma 4.3 below we have

sup
x∈K

∣∣∣∣∣
∞∑
i=0

Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣∣
≤

∞∑
i=0

Px

(
σ

ε,η,δ,δ/2
i ≤ T

)
sup
x∈K

∣∣∣∣Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣
≤ C

∞∑
i=0

Px

(
σ

ε,η,δ,δ/2
i ≤ T

)√
ε

≤ C

(
1 +

∞∑
i=0

Px

(
τ

ε,η,δ,δ/2
i ≤ T

))√
ε

≤ CeT

(
C

δ
+ 1

)√
ε.

This implies that we can find ε0 > 0 small enough such that for all 0 < ε ≤ ε0

sup
x∈K

∣∣∣∣∣
∞∑
i=0

Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣∣ ≤ η.

This, together with (4.11) gives (4.10). �

Lemma 4.3. For every given δ > 0 and each i ∈ N, we have

sup
x∈K

∣∣∣∣Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣ ≤ C
√

ε.

where the constant C depends on Mj with j = 1,2,3, T , TM,δ/2 := TM,δ/2(G(0, zη)), and Tm,δ/2 := Tm,δ/2(G(0, zη))

and

M4,δ := sup
x∈G(0,zη)\G(±δ/2)

∣∣∇((
u∧)∨)

(x)
∣∣ < ∞.

Proof. We introduce the following sequence of stoping times σi = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sν = τi+1, by setting

sk+1 = [
sk + εT

(
Xε(sk)

)] ∧ τi+1, k = 1, . . . , ν − 1.

Notice that we must have ν ≤ N := [ε−1T/Tm,δ/2] + 1, since |τi+1 − σi | ≤ T . Then we have

∣∣∣∣Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣ ≤
N−1∑
k=0

∣∣∣∣Ex

∫ sk+1

sk

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣.
For each k, we have that∣∣∣∣Ex

∫ sk+1

sk

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣
≤

∣∣∣∣Ex

∫ sk+εT (Xε(sk))

sk

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt · 1{sk+εT (Xε(sk))<τi+1}
∣∣∣∣

+
∣∣∣∣Ex

∫ τi+1

sk

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt · 1{sk+εT (Xε(sk))≥τi+1,sk<τi+1}
∣∣∣∣

=: I1 + I2.
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By the definition of σi and τi+1, Xε(sk) ∈ G(0, zη)\G(±δ/2). For I2, we have

|τi+1 − sk| ≤ εT
(
Xε(sk)

) ≤ εTM,δ/2
(
G(0, zη)

)
,

which implies that

I2 ≤ Px

{
sk + εT

(
Xε(sk)

) ≥ τi+1, sk < τi+1
}
M1M2TM,δ/2ε.

For I1, we use the decomposition

u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
) = [

u
(
Xε(t)

) − u
(
xε(t)

) + (
u∧)∨(

xε(t)
) − (

u∧)∨(
Xε(t)

)]
+ [

u
(
xε(t)

) − (
u∧)∨(

xε(t)
)]

=: U1(t) + U2(t),

where xε(t) is the deterministic fast motion defined by (2.3), with initial condition xε(sk) = Xε(sk). Then

I1 ≤
∣∣∣∣Ex

∫ sk+εT (Xε(sk))

sk

U1(t)θ(t) dt · 1{sk+εT (Xε(sk))<τi+1}
∣∣∣∣

+
∣∣∣∣Ex

∫ sk+εT (Xε(sk))

sk

U2(t)θ(t) dt · 1{sk+εT (Xε(sk))<τi+1}
∣∣∣∣

=: I11 + I12,

Since u = (u∧)∨ on the level set CH(x) and xε(t) moves on the same connected components of CH(x), for all
t ∈ [0, εT (x)],∫ εT (x)

0

[
u
(
xε(t)

) − (
u∧)∨(

xε(t)
)]

dt = 0.

Therefore, we have that

I12 ≤
∣∣∣∣Ex

∫ sk+εT (Xε(sk))

sk

U2(t)
(
θ(t) − θ(sk)

)
dt · 1{sk+εT (Xε(sk))<τi+1}

∣∣∣∣ ≤ M1M2T
2
M,δ/2ε

2.

Since processes Xε(t) and xε(t) always stay in the region G(0, zη)\G(±δ/2), we have

I11 ≤
∣∣∣∣Ex

∫ sk+εT (Xε(sk))

sk

(M3 + M4,δ)
∣∣Xε(t) − xε(t)

∣∣M2 dt · 1{sk+εT (Xε(sk))<τi+1}
∣∣∣∣.

It is not difficult to check that

sup
x∈G(0,zη)\G(±δ/2)

Ex

∣∣Xε

(
εs ∧ τ

ε,η,δ,δ/2
1

) − xε

(
εs ∧ τ

ε,δ,δ/2
1

)∣∣ ≤ C(εs)
1
2

for any s ∈ [0, T (x)]. Then, by the Strong Markov property of the diffusion Xε(t) we have that

I11 ≤ Px

(
sk + εT

(
Xε(sk)

)
< τi+1

)
sup

x∈G(0,zη)\G(±δ/2)

Ex

∫ εT (x)

0
(M3 + M4,δ)M2

∣∣Xε(t) − xε(t)
∣∣dt

≤ (M3 + M4,δ)M2CT
3
2

M,δ/2ε
3
2 .

Notice that

N−1∑
k=0

P
{
sk + εT

(
Xε(sk)

) ≥ τi+1, sk < τi+1
} = 1.
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Now we have∣∣∣∣Ex

∫ τi+1

σi

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣
≤

N−1∑
k=0

∣∣∣∣Ex

∫ sk+1

sk

[
u
(
Xε(t)

) − (
u∧)∨(

Xε(t)
)]

θ(t) dt

∣∣∣∣
≤

N−1∑
k=0

P
{
sk + εT

(
Xε(sk)

) ≥ τi+1, sk < τi+1
}
M1M2TM,δ/2ε

+ N
[
M1M2T

2
M,δ/2ε

2 + (M3 + M4,δ)M2CT
3
2

M,δ/2ε
3
2
]

≤ M1M2TM,δ/2ε + T M1M2TM,δ/2ε + T (M3 + M4,δ)M2CT
1
2

M,δ/2ε
1
2 .

Finally, as all of the estimates for I11, I12 and I2 are uniform for initial data x ∈ K , our proof is complete. �

4.2. The corresponding weaker convergence of the SPDEs

Now we consider the convergence of the SPDEs based on the convergence of the semigroups obtained in Section 4.1
without Assumption 4. Notice that in equation (3.1), the nonlinear functions b and σ are assumed to be Lipschitz and
hence preserve the strong convergence in Hγ . In this section, the semigroups converge in a weak sense, and the nonlinear
functions no longer preserve it. This indicates that we can not obtain the same convergence result we obtained earlier.
Here, we consider the special case when b = 0 and the noise is additive, i.e.{

∂tuε(t, x) = 1
2�uε(t, x) + 1

ε
〈∇⊥H(x),∇uε(t, x)〉 + ∂tW(t, x),

uε(0, x) = ϕ(x), x ∈R2,
(4.12)

and {
∂t ū(t, z, k) = L̄ū(t, z, k) + ∂tW̄(t, z, k),

ū(0, z, k) = ϕ∧(z, k), (z, k) ∈ �.
(4.13)

Similar to (3.2), mild solutions to (4.12) and (4.13) are defined to be

uε(t) = Sε(t)ϕ +
∫ t

0
Sε(t − s) dW(s),

and

ū(t) = S̄(t)ϕ∧ +
∫ t

0
S̄(t − s) dW̄(s).

In what follows, we define operators

Rθ
ε (τ, T ) =

∫ T

τ

Sε(t)θ(t) dt,

and

R̄θ (τ, T ) =
∫ T

τ

S̄(t)∨θ(t) dt.

Then (4.3) is equivalent to

lim
ε→0

sup
x∈K

∣∣Rθ
ε (τ, T )u(x) − R̄θ (τ, T )u(x)

∣∣ = 0.

Recall that u is assumed to be in Cb(R
2) in Theorem 4.1. In the following proposition, we will extend it for u ∈ Hγ .
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Proposition 4.4. Under Assumptions 1 and 2, we have

lim
ε→0

∣∣[Rθ
ε (τ, T ) − R̄θ (τ, T )

]
u
∣∣
Hγ

= 0

for any u ∈ Hγ (R2), 0 ≤ τ < T and θ ∈ Cb([τ, T ]).

Proof. Since [Rθ
ε (τ, T ) − R̄θ (τ, T )]u converges point-wise for every u ∈ Cb(R

2), due to the dominated convergence
theorem, we have

lim
ε→0

∣∣[Rθ
ε (τ, T ) − R̄θ (τ, T )

]
u
∣∣
Hγ

= 0.

The function γ introduced in Proposition 3.1 satisfies that infx∈K γ ∨(x) > 0 for every compact set K ⊂ R2. Then, using
a localization argument, it is possible to prove that for any u ∈ Hγ there exists a sequence {un}n≥1 ⊂ Cb(R

2) such that
un → u in Hγ . Thanks to (3.8) and (3.9), we have∣∣[Rθ

ε (τ, T ) − R̄θ (τ, T )
]
(u − un)

∣∣
Hγ

≤ CT |u − un|Hγ .

This implies that∣∣[Rθ
ε (τ, T ) − R̄θ (τ, T )

]
u
∣∣
Hγ

≤ ∣∣[Rθ
ε (τ, T ) − R̄θ (τ, T )

]
un

∣∣
Hγ

+ CT |u − un|Hγ ,

and the proof is done. �

Next we will show that the mild solutions uε to the SPDEs (4.12) converges to the mild solution ū to (4.13), for which
we need the following lemma.

Lemma 4.5. Under Assumptions 1 and 2, for any fixed T > 0 and θ ∈ C([0, T ]) we have

lim
ε→0

∞∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)
ej θ(s) ds

∣∣∣∣2

Hγ

= 0. (4.14)

Proof. We will prove that for any δ > 0, there exists εδ > 0 such that for any 0 < ε < εδ

∞∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)
ej θ(s) ds

∣∣∣∣2

Hγ

≤ δ.

The spectral measure m ∈ Lp(R2) for p ∈ (1,∞), which means that m1/2 ∈ L2p(R2). Given η > 0, we write m =
m1 + m2,

m1 := m1{m<η2}, m2 := m1{m≥η2}.

Then m1/2 = m
1/2
1 + m

1/2
2 and

∞∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)
ej θ(s) ds

∣∣∣∣2

Hγ

≤ 2
∞∑

j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)( ̂
vjm

1/2
1

)
θ(s) ds

∣∣∣∣2

Hγ

+ 2
∞∑

j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)( ̂
vjm

1/2
2

)
θ(s) ds

∣∣∣∣2

Hγ

=: Iη
1,ε + I

η
2,ε .

For the first term, since ‖m1‖L2p ≤ η‖m‖1/2
Lp , due to Lemma 3.6 we have

I
η
1,ε ≤ 2

∞∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)( ̂
vjm

1/2
1

)
θ(s)

∣∣∣∣2

Hγ

ds



Incompressible viscous fluids in R2 and SPDEs on graphs 1663

≤ CT

∫ t

0
‖m1‖L2p s−(2p−1)/2p ds‖θ‖2

L∞

≤ CT η‖m‖1/2
Lp

∫ T

0
s−(2p−1)/2p ds‖θ‖2

L∞ .

Hence we can choose ηδ > 0 small enough such that

sup
ε>0

I
ηδ

1,ε <
δ

3
. (4.15)

For the second term, for every N ∈N we have

I
η
2,ε = 2

∞∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)( ̂
vjm

1/2
2

)
θ(s) ds

∣∣∣∣2

Hγ

≤ C

N∑
j=1

∣∣∣∣∫ t

0

(
Sε(s) − S̄(s)∨

)( ̂
vjm

1/2
2

)
θ(s) ds

∣∣∣∣2

Hγ

+ CT

∞∑
j=N+1

∫ t

0

∣∣(Sε(s) − S̄(s)∨
)( ̂

vjm
1/2
2

)∣∣2
Hγ

∣∣θ(s)
∣∣2

ds

=: JN,η
1,ε + J

N,η
2,ε .

Since

‖m2‖L1 ≤ η−(2p−2)‖m‖p
Lp ,

by proceeding as in the proof of Lemma 3.8, once fixed δ > 0 there exists Nδ ∈N such that

sup
ε>0

J
Nδ,ηδ

2,ε <
δ

3
. (4.16)

Then, once fixed Nδ , due to Proposition 4.4 we have that there exists εδ > 0 such that

J
Nδ,ηδ

1,ε <
δ

3
, for ε < εδ.

This inequality, together with (4.16) and (4.15), implies (4.14). �

Theorem 4.6. Suppose the Hamiltonian H satisfies Assumption 1. The spectral measure to the spatially homogeneous
Wiener process W(t) satisfies Assumption 2. Let uε ∈ Hq be the unique mild solutions to (4.12) and ū ∈ H̄q be the
unique mild solution to (4.13) with the same initial condition ϕ and ϕ∧, respectively. Then for any fixed T > 0, q ≥ 1 and
θ ∈ C([0, T ]), we have that

lim
ε→0

E

∣∣∣∣∫ T

0

[
uε(t) − ū(t)∨

]
θ(t) dt

∣∣∣∣q
Hγ

= lim
ε→0

E

∣∣∣∣∫ T

0

[
uε(t)

∧ − ū(t)
]
θ(t) dt

∣∣∣∣q
H̄γ

= 0. (4.17)

Proof. We have∫ T

0

[
uε(t) − ū(t)∨

]
θ(t) dt =

∫ T

0

[
Sε(t)ϕ − S̄(t)∨ϕ

]
θ(t) dt +

∫ T

0

∫ t

0

[
Sε(t − s) − S̄(t − s)∨

]
dW(s)θ(t) dt

=: Iε,1 + Iε,2.

By Proposition 4.4

lim
ε→0

|Iε,1|Hγ = lim
ε→0

∣∣[Rθ
ε (0, T ) − R̄θ (0, T )

]
u
∣∣
Hγ

= 0. (4.18)

For the second term, using Lemma 3.6 and Lemma 3.7

E

∣∣∣∣∫ t

0

[
Sε(t − s) − S̄(t − s)∨

]
dW(s)

∣∣∣∣
Hγ

≤ E

(∫ t

0

∣∣Sε(t − s)
∣∣2
L(HS)(S ′

q ,Hγ )
+ ∣∣S̄(t − s)∨

∣∣2
L(HS)(S ′

q ,Hγ )
ds

)1/2
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≤ CT ‖m‖1/2
p

(∫ t

0
(t − s)−(p−1)/p ds

)1/2

= CT ‖m‖1/2
p t1/2p,

which is finite. Hence we can use the Burkholder–Davis–Gundy inequality to obtain

E|Iε,2|qHγ
= E

∣∣∣∣∫ T

0

∫ T

s

[
Sε(t − s) − S̄(t − s)∨

]
θ(t) dt dW(s)

∣∣∣∣q
Hγ

= E

∣∣∣∣∫ T

0

∫ T −s

0

[
Sε(t) − S̄(t)∨

]
θ(t + s) dt dW(s)

∣∣∣∣q
Hγ

≤ CT,q

(∫ T

0

∞∑
j=1

∣∣∣∣∫ T −s

0

[
Sε(t)ej − S̄(t)∨ej

]
θ(t + s) dt

∣∣∣∣2

Hγ

ds

)q/2

.

By Lemma 4.5 and the dominated convergence theorem, we have that

lim
ε→0

E|Iε,2|qHγ
= 0.

This, together with (4.18), implies (4.17). �
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