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Abstract. The asymptotic behavior of a class of stochastic reaction-diffusion-advection equations in the plane is studied. We show that
as the divergence-free advection term becomes larger and larger, the solutions of such equations converge to the solution of a suitable
stochastic PDE defined on the graph associated with the Hamiltonian. Firstly, we deal with the case that the stochastic perturbation is
given by a singular spatially homogeneous Wiener process taking values in the space of Schwartz distributions. As in previous works,
we assume here that the derivative of the period of the motion on the level sets of the Hamiltonian does not vanish. Then, in the second
part, without assuming this condition on the derivative of the period, we study a weaker type of convergence for the solutions of a
suitable class of linear SPDEs.

Résumé. Le comportement asymptotique d’une classe d’équations stochastiques de réaction-diffusion-advection dans le plan est étu-
dié. Nous montrons qu’a mesure que le terme d’advection sans divergence devient de plus en plus grand, les solutions de telles
équations convergent vers la solution d’une EDP stochastique appropriée définie sur le graphe associé a 1’Hamiltonien. Tout d’abord,
nous traitons le cas ol la perturbation stochastique est donnée par un processus de Wiener spatialement homogene singulier prenant
des valeurs dans I’espace des distributions de Schwartz. Comme dans les travaux précédents, nous supposons ici que la dérivée de la
période du mouvement sur les level sets de I’Hamiltonien ne s’évanouit pas. Puis, dans la seconde partie, sans supposer cette condition
sur la dérivée de la période, nous étudions un type de convergence plus faible pour les solutions d’une classe appropriée de EDPS
linéaires.
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1. Introduction

In this paper we are interested in studying the limiting behavior of some particles that move together with an incompress-
ible flow in R?, with stream function H (x), under the assumption that the flow has a small viscosity and the particles are
subject to a slow chemical reaction, which consists of a deterministic and a stochastic component. The density ve (¢, x) of
the particles, at time ¢ > 0 and position x € R2, satisfies the equation

O0rve(t, x) = %Ave(t, x)+ (VLH(x), Vue(t, x)) + €b(ve(t, x)) + /€o (ve(t, X)) W2, x),

) (1.1)

Ve (0, x) = @(x), x€eR?,

for some parameter 0 < € < 1. Throughout the paper, we assume that the Hamiltonian H : R* — R is a generic function,

having four continuous derivatives, with bounded second derivative, such that H(x) — oo, as |x| — oco. The nonlinear-

ities b, o : R — R are assumed to be Lipschitz continuous and W(t, x) is a spatially homogeneous Wiener process (see
below for all details).
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It is immediate to check that, under these conditions, on any finite time interval [0, T'] the solutions v, of equation
(1.1) converge to the solution v of the Liouville equation

du(t,x) =(VEH (), Vot x)), (0, x) = p(x).

However, on time intervals of order ¢ ~! the difference v — v is of order 1, as € — 0. Actually, on such a time interval,
the limiting behavior of v, is described by a non-standard SPDE defined on the graph I associated with the Hamiltonian
H, which is obtained by identifying all points on the same connected component of each level set of H (see Section 2.1
for the precise definition). Such an asymptotic behavior of v, has been studied in [3], under quite restrictive conditions on
the regularity of the noise VV(¢) and under the assumption that the derivative of the period of the motion on the level sets
of the Hamiltonian H does not vanish. In the present paper we want to understand what happens when these conditions
are not satisfied.

To this purpose, before proceeding with the description of the content of the paper, we would like to remark that the
study of SPDEs on graphs is still a quite new field of investigation and very few results are available in the existing
literature. In addition to the already mentioned paper [3], in [2] a class of SPDEs on graphs, obtained as limits of SPDEs
in narrow tubes, is studied. In [1] first and then, more recently, in [5], suitable classes of SPDEs on graphs have been also
considered. In [8], small stochastic perturbations of Hamiltonian systems are studied by using deterministic tools.

With the time change ¢ +— ¢ /¢, for every fixed € > 0 the function u. (¢, x) := v (¢ /€, x) satisfies the equation

Orue(t,x) = Leue(t, x) + b(ue(t, x)) + o (ue(t, x))0,W(2, x),

e (0,x) = p(x), xeR2 (1.2)

where
1 1,
Lep(x) =7 Ag(x) + (V H(x), Vo(x)).
The operator L. is the generator of the Markov semigroup Sc (¢), t > 0, associated with the stochastic differential equation
1
dXc(t)=-VH(Xc(t))dt +dB(),
€

where B(r) is a Brownian motion in R?, defined on the stochastic basis (€2, F, {F:}i>0, P). More precisely, for every
Borel and bounded function ¢ : R> — R and every x € R?

Se(p(x) =Exp(Xc (1)), t=0. (1.3)

This means, in particular, that u is a mild solution to equation (1.2) if

t

t
Uue(t) = Se(t)p(x) —l—/ Se(t — S)B(ue(s)) ds + / Se(t — S)E(u€ (s)) dW(s), (1.4)
0 0

where B and X are the composition/multiplication operators associated with b and o, respectively.
In [3], together with M. Freidlin, the first named author proved that forevery p >l and0 <t < T

imE sup |uc(t) —i(t) o T|}, =0, (1.5)

€0 se[r,T]

where u is the solution of an averaged SPDE defined on the graph I' and H,, is a suitable weighted space of square
integrable functions on R?, with respect to a finite measure y v (x) dx.

Due to (1.4), it is evident that the proof of (1.5) is based on the analysis of the limiting behavior of the semigroups
Se(t),as € | 0, for every 7 € [t, T]. To this purpose, in [7, Chapter 8], it is proved that if IT is the projection of R onto I",
the slow process Ye (+) :=TI(Xc()), defined on the graph I', converges weakly in C([0, T]; ') to a continuous Markov
process Y (-) on I', whose generator L is explicitly given in terms of differential operators on each edge and suitable
gluing conditions at the vertices. Hence, starting from such result, in [3, Appendix A] it has been shown that for every
¢ €Cp(R?) and forevery x e R?and 0 <t < T

lim sup [Se(H)p(x) — (St)¢") o TI(x)| =0, (1.6)

€>0se[7,T]
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where

p(x)

Nz, k) = —— R S —
=m0 VE®

dl;x, (z,k)eTl,

dl i is the length element on Cy(z), the k-th connected component of C(z) := {x € R?: H(x) =z}, and

1
T (2) :=¢ ——dl, &,
Cio) IVHX)|°

(for all details see Section 2.1). Once identified the right weighted spaces H,, and proved limit (1.6), it can be shown that
for every ¢ € H,

lim sup [Sc(g — (S(M)¢") oT1|,, =1lim sup |(Se(r)g)" =S¢z, =0. (1.7)

e~>0e[r,T] v €>04¢[r,T)

Here the choice of the weight yV requires a non-trivial analysis, as it has to be admissible with respect to all semigroups
Se(¢) and its projection y on I' has to be admissible with respect to S(t). Moreover, the space H, = L?(R?, ¥V (x)dx)
has to be properly projected into the space I-_Iy =L2(T, v, ), where v, is the projection on I" of ¥ (x) dx (see Section 2.3
and [3] for all details).

In [3], limit (1.7) is then used in (1.4), to obtain limit (1.5). Taking the limit, as € — 0, in the first two terms on the right-
hand side in (1.4) is an immediate consequence of (1.7) and the Lipschitz-continuity of the non-linearity b. On the other
hand, taking the limit in the last term, the stochastic integral, requires some extra effort and, most importantly, requires
the spatially homogeneous Wiener process WV to be smooth. In particular, in [3] it is assumed that its spectral measure is
finite, so that WW(z, -) takes values in the functional space H, . Moreover, the proof of (1.5) requires the condition

dTy(z)
dz

#0, (z,k)eTl. (1.8)

This assumption is needed for the proof of (1.6). Actually, (1.6) and hence (1.5) still stand if (1.8) is true except for a
finite number of points on the graph I". But it is easy to check that important examples such as H (x) = |x|?, for which
the graph is [0, co) and the period T (z) = 7, are still excluded by such an assumption.

In the first part of the present paper, we are interested in understanding if limit (1.5) is still valid, under the minimal
assumptions on the spectral measure w that assure the well posedness of equation (1.2) in the space H, (see [9] and
Assumption 2). In Section 3, assuming that the spectral measure to the singular spatially homogeneous Wiener process
W(t) in R? has a density function m in L” (R2) for some p € (1, 00) and (1.8) holds, we prove that (1.5) is still valid (see
Theorem 3.10). Actually, with little modification to our proof, we can further extend Theorem 3.10 to singular spatially
homogeneous Wiener processes with spectral measure

W=+,

where w1 is a finite measure and w, has density function m € L? (R?) for some p € (1, 00). This combines the results
of [3] and Section 3, and covers a large class of spatially homogeneous Wiener processes (for specific examples of the
processes, we refer to [9]).

To understand the convergence of the solutions to the SPDEs under singular spatially homogeneous Wiener process,
in Section 3 we first study the properties of the semigroups Se (r) and their limit S(¢). For this purpose, we introduce the
kernel G (t, x, y) of the semigroup S¢(¢), and we prove that

 WHO) T - VHE) +1)?
4Ct ’

Cc
sup Ge(t, x, y) < —exp (1.9

e>0 t
for any (¢, x,y) € (0,T] x R2 x RZ. Notice that due to (1.6) we have that the semigroup S()V, defined by
S Vo) = (SO¢") o M(x), xeR%1>0,

admits a kernel G(z, x, y), which satisfies estimate (1.9) as well.
Now, given a spatially homogeneous Wiener process W() in R? with spectral measure m € LP (R?) for some p €
(1, 00), we define W(¢) to be the projection of WW(¢) on I'. We denote by Yq’ and ,Vq’ the reproducing kernels of the
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Wiener processes W(t) and W(t), respectively. Using (1.9), we prove that for every T > 0 there exists a constant C7 > 0
such that

[e.¢]

2 —(p—
D IScWep|y < Crimlot™ PPyl . 1€ ©.T),
j=1

and

o0

s 2 —(p—
2SO Weply < Crimlt™ PP - 1e©.T],
Jj=1

where {e;}jen is the orthonormal basis of .. This, in particular, allows us to prove the well-posedness of the SPDEs
(1.2) in H,,. Next, for the convergence of the solutions u. to #, we need a stronger type of convergence for the semigroups.
In fact, by using a suitable decomposition of the density function m of the spectral measure, we prove that for any ¥ € H,

lim sup Z| Se(t) — S(1) )(we,)|H =0. (1.10)

€>0se[7,T]

Thanks to (1.10), we can then handle the convergence of the stochastic integral in (1.4) and prove (1.5).

In the second part of this paper we try to understand what happens when condition (1.8) does not hold. We recall that
such condition is needed in both [3] and Section 3. This assumption is necessary for proving (1.6) and hence (1.5), i.e.
the convergence of S (#)¢ to S‘(t)vgp for any fixed time ¢ > 0 and ¢ € H,,. Thanks to (1.3), it is easy to see that (1.5) is
equivalent to

lim sup [Exu(Xc()) —Eneu”(Y(0))]=0. (1.11)

€=>0/¢e[7,T]

Without assuming (1.8), clearly (1.11) is no longer true, as can be shown in the case H(x) = |x|%. Nevertheless, in
Section 4, (see Theorem 4.1) we prove that a weaker type of convergence holds. Namely,

lim sup
€e—0,cx

T
/ [Ecu(Xe(t)) —Engu” (Y (0)]0@) dt| =0, (1.12)

for any compact set K C R?, u € Cp(R?) and 6 € Cp([7, T]).
Using (1.12), we further study the convergence of the SPDEs. Since limit (1.12) is not preserved by the nonlinearities
b and o, we restrict our consideration to the linear case

due(t,x) = SAuc(t, x) + LVEH(x), Vue (t, x)) + W(t, x),
ue(0,x) =g¢(x), xeR2

In this case, we show that

hm]E’/ ue(t) — u(r) ]Q(t)dt =0,

HV
(see Theorem 4.6).

The structure of the paper is as follows. In Section 2, we introduce the necessary notations and preliminaries from
previous works. In Section 3 we prove our first main result stated in Theorem 3.10. Under the assumption that the density
of the spectral measure is in L?(R?), for some p € (1, 00), we first study the properties of the semigroups and the well
posedness of the SPDEs. Then we prove Theorem 3.10. In Section 4, we prove that if condition (1.8) is not satisfied,

then a weaker type of convergence of the semigroups S¢(#) holds. Next, we prove that this implies a weaker type of
convergence for the solutions of a class of linear SPDEs.

2. Notations and preliminaries

In this section, we introduce the notations that will be used in later sections. For the completeness of the paper, we also
briefly recall the results in previous works, which will be used in our work here.
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To study the convergence of the SPDEs, we first need to understand the convergence of the semigroups S (¢). In
Section 2.2, we briefly recall the Freidlin-Wentzell averaging results in [7]. Then in Section 2.3, we recall some properties
of the weighted spaces H, and P_Iy proved in [3], which will be used when studying the solutions to the SPDEs that fall
in the weighted spaces. Finally, the random forcing WW(¢, x) in the SPDEs are assumed to be spatially homogeneous
Wiener processes with positive-symmetric spectral measure i on R?. We recall the main definitions and properties of the
spatially homogeneous Wiener process in Section 2.4 following [9].

2.1. The Hamiltonian and the associated graph

Throughout this paper, we consider the Hamiltonian system

dx(t)=V>H(x(1), xeR? (2.1)
where
ViH () = <8H(X)’_3H(X)>’ cR2.
0x2 0x1

We shall assume that the Hamiltonian H satisfies the following conditions.

Assumption 1. The Hamiltonian H : R> — R satisfies that

1. H is four times continuously differentiable, with bounded second derivatives. It has only a finite number of critical
points x1, ..., X,, and they are all non-degenerate. Moreover,

H(x;) # H(x;), ifi#j;

2. There exists a > 0 such that for all x € R? with |x| large enough, we have
Hx)>alx?,  |[VHx)|>alx|,  AH®x) >a;

3. We have min, g2 H(x) =0.

For any z > 0, we denote by C(z) the z-level set of the Hamiltonian H

N(z2)
C(z) = {x eR?*: H(x) zz} = U Cr(2),
k=1

where Cy(2), k =1,..., N(2), are all the connected components of C(z). If we denote by k(x) the number of the con-
nected component of C(H (x)) containing x, then

x0)=x = x(1)€Crn(HK), 1=0.

If z is not a critical value, each Ci(z) is a one periodic trajectory of the Hamiltonian system (2.1), and

1
T = ——dl 2.2
x(2) 7§ck(z> NHO)| 2k (2.2)

is the period of the motion along the level set Ci(z) (here d!; j is the length element on Ci(z)). Moreover, the probability
measure

1
digk dl; k

- Tk IVH )]
is invariant for the Hamiltonian equation (2.1) on the level set C¢(2)

Now, by identifying the points on the same connected components Cy (z), we obtain a graph I'. We denote by IT : R? —
I" the identification map. The graph I" consists of edges Iy, ..., I, and vertices Oy, ..., O,,. The vertices are of two types,
external and internal vertices. External vertices correspond to local extrema of H, while internal vertices correspond to
saddle points of H. Among external vertices, we denote by Og the vertex corresponding to the point at infinity and by I
the only unbounded edge connected to Oy (see Figure 1).
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Fig. 1. The Hamiltonian, the level sets, the projection and the graph.
On graph I', a distance can be introduced as follows. If two points y; and y, on the graph are on the same edge I, i.e.
y1 = (21, k) and yp = (22, k), then d(y1, y2) = |z1 — z2|. If y; and y, are on different edges, then
d(y1, y2) =min{d(y1, O;)) +d(O;,, Oi,) + -+ +d(0;;, )},

where the minimum is taken over all possible paths from y; to y, through every possible sequences of vertices
Ois..., Oi_],, connecting y; and y,. Corresponding to each edge I, there is an open set

Gr={x e R*: TI(x) € iy}
For 0 < z7 < 73, we can define

G(z1,22) = {x eR?:z; < H(x) <2},
and

Gi(z1,22) ={x € Gr:z21 < H(x) < 22}.

Given § > 0, we set

G(£8) = U G (£8) = U{x eR?:H(0;) — 8 < H(x) < H(O;) +8}.
i=1 i=1

For each vertex O;, we denote
D' ={xeR?: I(x) = 0;}.
In addition, given any edge I; connected to the vertex O;, we denote
Di =D'NGy.
If an edge I is connected to a vertex O;, we write I ~ O;. For each § > 0 and I} ~ O;, we set
m ) m
px=|J |J piEH =] | {xeGr:d(w).0)=s}.
i=1k:I~0; i=1k:I;~0;

For further details, we refer to [7, Chapter 8] and [3].
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2.2. The Freidlin—Wentzell averaging result

With a change of time in (2.1), for every € > 0, the function x.(¢) := x(¢/¢) satisfies the equation
1oy
dxc(t) = EV H(xe(t)). 2.3)

Now, suppose B is a standard Brownian motion on R2. For every € > 0, we denote by X, (¢) the solution of the stochastic
differential equation

1
dXc(t) = ~VTH(Xc () dt +dB(). (2.4)
€
The second order differential operator associated with (2.4) is
1 1,
Leu(x) = EAu(x) + —(V-H(x), Vu(x)).
€

In what follows, we shall denote by S¢(¢) the corresponding Markov transition semigroup. We recall that, for every Borel
bounded u : RZ — R, there is

Se(u(x) =Exu(Xc (1)), forxeR%t>0.

Now, for every x € R2, we consider the process IT(X(¢)), t > 0, defined on the graph I', with X.(0) = x. In [7,
Chapter 8], is studied the limiting behavior, as € |, 0, of the process IT(X¢) in the space C([0, T']; I'), for any fixed T > 0
and x € R2. Namely, in [7, Theorem 8.2.2] it has been proved that if the Hamiltonian H satisfies Assumption 1, the
process IT1(X.), which describes the slow motion of X, converges, in the sense of weak convergence of distributions in
the space of continuous I'-valued functions, to a diffusion process ¥ on T.

The process Y has been described in [7, Theorem 8.2.1] in terms of its generator L. The operator (L,D(L)) is a
non-standard operator, which is given by suitable differential operators L; within each edge I; of the graph and by
certain gluing conditions at the interior vertices O; of the graph. Moreover, it is degenerate at the vertices of the graph.
Nevertheless, in [7, Theorem 8.2.1] it is shown that it is the generator of a Markov process ¥ on the graph I". In what
follows, we shall denote by S(r) the semigroup associated with ¥, defined by

S f (@ k) =Eei f (Y1),
for every bounded Borel function f : " — R.

2.3. The weighted spaces H,, and Hy

Foranyu:IRz—MRandO§z1 < 77, we have

n
u(x)
u(x)dx = / ‘(ﬁ dl; 1 dz,
/G(m,zz) kz::() Ttzyzp ) Ch(2) IVH@x)|©

where

Te 2z {(Z k) el : ZG[ZI,ZZ]}

In particular, it holds that

- u(x)
dx = 0l dz.
/Rz”(x) * kgoflyécu VH@) “

In what follows, for every u : R — R, we shall define

1 u(x)
Tk (2) Jeyz) IVH (x)]

Wz, k) = dl, = f u)dpor, (k) eT.
Cr(z)
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Moreover, for every f : ' — R, we shall define
Y= (M), xeR?

With these notations, given a positive continuous function y on the graph I', if we assume that

n
Z/ y(z,k) Tk (2) dz < 00,
k=0"1x
then yV € L' (R?) N C,(R?). For any such function y, we define
_ .2 12 2 v
H,=1u:R —)R.|M|HV— |u(x)|y (x)dx < ooy,
R2

and

H, = f:F—>R:|f|2y=Z/I]f(z,k)]zy(z,k)Tk(z)dz<oo}.
k=0 1k

We recall the following results proved in [3].
Proposition 2.1. For every u € H,,, we have u” € I-_Iy and for every f € I-_Iy, we have " € H,. Moreover,

g, <l ]y =114, 2.5)
Finally, ifu € H, and f € H,, then

(Fu)g, =(Fu)y o (FY0)" = fu. (2.6)

14
Now, for every linear operator Q € L(H,) and A € L(I:Iy), we define
0" f=(0f")".  AYu:=(Au")’
for f € ﬁy and u € H,,. Moreover, It can be proved that
10"z, =@y (A 2,y = 1A 2aa,)- @7
2.4. Spatially homogeneous Wiener processes

Let (€2, F, P) be a complete probability space with filtration (F;),>0 and let . be the Schwartz space with its dual space
.’ (the space of Schwartz or tempered distributions). We say that W(r) is a Wiener process, defined on €2 and taking
values in ., if for each ¥ € ., the mapping t — (W(t), ¥) defines a Wiener process. In particular, there exists a
bilinear continuous symmetric positive-definite form Q :.¥ x . — R such that

E(W@), ¢ )W), 0) =t AsQr, @).

In addition, we say that the Wiener process W(¢) is spatially homogeneous if the law of W(¢) is invariant under all
translations 7, () (x) := f(x + h) with & € R2. This implies that the bilinear form Q must be of the form

QW ) = (A, ¥ *9)),

where A € .7 is the Fourier transform of a positive-symmetric tempered measure x on R?, and Yy (xX) =@(—x). pis
called the spectral measure of W(t).

In what follows, we shall introduce in S the norm g ([¥/]) = /Q (¥, ¥) and we shall denote by .7, the completion of
the set ./ Ker Q under the norm ¢q. The space Yq’ is dual to ., and can be represented by

Sy ={§ €:3C > 0 with [(€, )| < Cq([¥]), forally € .7}

It turns out that Yq’ is the reproducing kernel of the Wiener process W (t).
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Now, suppose L%Y) (R2,d W) is the space of all functions u € L2(R2,d ) such that u sy = u. As shown in [9, Proposition
1.2], a distribution £ belongs to Yq’ iff there exists a u € L%S)(Rz, du) such that & = . Moreover, for every u, v €
L3, (R?, dp)

(ap, @)Vq’ = (u, U)LZ(RZ,du)- (2.8)

In what follows, we shall assume the following.

Assumption 2. The spectral measure u of the spatially homogeneous Wiener process has density function m € L?(R?),
with p € (1, 00).

In particular, for any u € L%s) (Rz, d ) we have that
1/2
lumll2p/p+1) < Null 22, qu)llmlly "
Notice that 1 <2p/(p + 1) <2, then by the Hausdorff—Young inequality we have that

Py 172
@7 ll2p/p—1) < Coplliel 2 2.qp Il >
This implies that ,S”q/ c L2/(r=D(R2). Let {uj}jen be an orthonormal basis of L%S)(RZ, ). According to (2.8), the

functions e := u;m define an orthonormal complete system in ./, and the spatially homogeneous Wiener processes can
be represented as

Wt x) =Y _agm(x)B; ),
j=1

where {8;} en is a sequence of independent Brownian motions. In particular, the corresponding Wiener process on the
graph can be written as

Wit z.k) =Y _Gm) @ k)B;1). 2.9)

j=1

We shall denote the reproducing kernel of WV by j_ﬂq/ .

3. The SPDE on R? and the SPDE on the graph T

In this section, we consider the SPDE in R?

3.1)

alué(tv-x) = Léué(ta-x) +b(u€(tv-x)) + G(”E(tvx))alw(tsx)s
e (0, x) = @(x),

where we recall
1 1,- 2
Lcu(x) = EAM(X) + —(VH(x), Vu(x)), x e R-.
€
In what follows, we shall assume the following condition on the coefficients b and o.
Assumption 3. The nonlinearities b, o : R — R are Lipschitz continuous.
For every u € H, and v € S/, we shall denote by

Bu)(x) = b(u(x)), [E(u)v] (x)= a(u (x))v(x), for x € R2.
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With these notations, we say that an adapted process u. € L” (2, C([0, T']; H,)) is a mild solution to equation (3.1) if it
satisfies

t t
ue(t)zSe(t)q)—l—/ Se(t—s)B(ue(s))ds+/ Se(t — )T (ue(s)) dW(s). (3.2)
0 0

If we denote by M the multiplication operator defined by
MW)E=yE, Y eH, E€S,,
we have
=)= M(ou))v.

As in [3], where the noise in equation (3.1) was a smooth Wiener process VWV, having finite spectral measure p, we
are here interested in studying the limiting behavior of u., as € — 0, in the space L?(2; C([0, T]; H,)). The limiting
process will be the solution i of the following SPDE on the graph I'

Iatﬁ(t, 2, k) = Lii(t, z, k) + b(ii(t, z, k) + o (i (t, z, k) dW(t, z, k), 3.3)

u(0,z,k) = 9" (z,k), (z,k) €T,

where W is the Wiener process on the graph I’ corresponding to W, as defined in (2.9). We say u is a mild solution to
(3.3) if it is an adapted process in L?(€2; C([0, T']; H,)) that satisfies the integral equation

t t
L?(t):g(t)(pA—i-/ S’(t—s)B(ﬁ(s))ds—i—/ St — )2 (ia(s)) dW(s). (3.4)
0 0

3.1. The semigroups Se(t) and S(t)

Here, we investigate the properties of the semigroups Se (¢) and their limit S(z). Firstly, we review a few results obtained
in previous works, where the following condition on the Hamiltonian H is assumed.

Assumption 4. For any (z, k) € I', we assume that

dT(z)
dz

£0.

In [3, Theorem A.2] it is shown that under Assumption 4, for any u € Cp, (Rz), xeR?and0<t<T

lim sup |Se(H)u(x) —S8(1) u(x)|=0. (3.5)

€>0se[7,T]

Furthermore, in [3, Corollary B.1] it is shown that forany u € H, and0 <7 < T

lim sup [Se(t)u—S()Y u|H = lim sup |(Se(u)" —S@)u =0. (3.6)

A
0 0 |Hy
€~>0¢[7,7] €~>0¢[r,T]

Suppose G¢(t, x, y) is the kernel corresponding to S (¢), i.e.
Se(Wu(x) = [Rz Ge(t,x, yu(y)dy, xeR?.
Limit (3.5) implies that for any fixed (¢, x), kernels G¢(t, x, -) converge weakly to some G(t, x, -), which satisfies that
50 ut = [ G.xyut dy.

Next, we determine the weighted space H,, on which the semigroups S () and SV () are bounded. To determine the
weight y, we have the following result from [3, Proposition 4.1].
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Proposition 3.1. There exists a strictly positive decreasing function h € C*([0, o)) and a constant C > 0, such that the
function y : T' — (0, 00) defined by y (z, k) = h(z), for every (z, k) € I, satisfies

[ Gettxyy mar=eSyi ye®, (3.)
R2
for every t > 0. Moreover, for the same constant C, we have that
2 Cty,. 12
\Se(t)u]Hy <e ’|u|Hy. (3.8)

Remark 3.2. The constant C in Proposition 3.1 is independent of €. Therefore, by (3.5) and (3.6), for the limit semigroup
S(t), we also have that

/ G, x, )y ) dx <eC'yV(y), yeR?, (3.9)
RZ
and

P 2

|S(t)vu|Hy < eC’|u|?Hy (3.10)

for the same constant C. Throughout the rest of the paper, we will always assume y to be a weight that satisfies (3.7)—
(3.10) as proved in Proposition 3.1.

In addition to the weak convergence of the kernels G (z, x, y) to G(t, X, y), we are now proving the following uniform
upper bound to the kernels G (¢, x, y).

Theorem 3.3. Suppose the Hamiltonian H satisfies Assumption 1. Then, there exists a constant C > 0 independent of €
such that

3.11)

(x/H(y)+1—«/H(x)+1)2>

C
GG(t’xvy)STG)(p(_ 4Ct

for any (t,x,y) € (0,T] x R2 x R2. Due to th_e weak convergence of G¢(t,x,y) to G(t,x,y), as € — 0, the same
point-wise upper bound as in (3.11) is valid for G(¢t, x, y).

Before proving Theorem 3.3, we introduce some notation and prove a preliminary lemma.
To this purpose, we define 1 (x) = a+/ H (x) + 1, where the constant « € R is to be determined later. Since |VH (x)| <
Cl|x| and H (x) 4+ 1 > C|x|?, we have that

|v1/,(x)| — M <aC
2JH(x)+1 "~

for some C > 0. Now, for any € > 0 we consider the linear problem

(3.12)

hze(t,x) =3 Aze(t,x) + H(VEH(x), Vze(t, x)),
ZE (07 X) = ZO(X),

whose solution has representation

w0 = [ Gettix a0 dy,
Now, we introduce the transformed kernel
GZ(t,x, V) i=e YOG (1, x, y)e? D,
and we define

I, x) = /Rz Gl t, x, y)z0(y) dy.

The following result holds.
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Lemma 3.4. For any p > 1, we have
d 2
EH (, )HLZP - 2C2”Ze @, )HLZP ||V(zZ(t, '))pHLZ‘ (3.13)
Proof. By the definition of z! and G
Hz @935, = 2p/ 2L x)?r! / L GT %, o) dy ) dx
Ler r2 € 2 dt €
1
= 2p/ ZET(T,X)QP_I (/ e—lﬁ(x)-i-‘/f(y)_AxGZ(t,x’ V)zo(y) dy) dx
R2 R2 2

1
+ Zp/2 ZGT(Z‘,X)z‘D_l </2 e_'/’(x)+‘/’(y)g(VlH(x), VxGeT(t,x, y))zg(y) dy) dx
R R

If we integrate by part
1
4 Hze (t, )||L2p —2p /Rz 5(V(z§ (t, )P eV V(L (t, x)eV ™)) dx
+ 2p/ ZET(t, x)zP_le_w(x)é(VlH(x), V(ZET(I, x)e"/’(x)»dx
R2

:p/ z{(t,x)zl’ww(x)yzdx—(2p—2)/ (VL @, )", vy )l ¢, x)P dx
R2 R2

2p—1

[V wo) Pax-s2p [ 2l (900, Ty ) ds
R

+2p /Rz zeT(t,x)zp_lé(VJ‘H(x), vzl (t,x))dx
=h+h+L+1L+Is.
The definition of V- H (x) and ¥ clearly implies that I, = 0. Moreover, since divVL H = 0, we have
5= fRZ(vLH(x) V(zI(t,x)*P))dx = 0.
Since |V (x)| < aC

L+1;= _/RZW(ZZ(t,x))”de +pp—1) /Rz|V1ﬁ(x)|2Z€T([,x)2P dx
-1
- p— / IVEE@0) + pvy ezl (0P dx

<p(p =D’ C L )35, ~ [V L@ ) e
Together with
I < pe?C?L @) |3,
we complete the proof. O

Proof of Theorem 3.3. If we apply Nash’s inequality and inequality (3.13) as in [4, Lemma 1.4], we can deduce that

c
lzfa )]~ < exp(Ca 1)llzoll 2. (3.14)

The dual equation to (3.12) only changes the sign of the first order coefficient V- H (x), which means (3.14) is also true
for the dual equation. By duality, there is

C
|=X @, NN, = R exp(Cat)llzoll 1
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Together with (3.14), this implies that
T c 2
lzd @ )], < Texp(Ca )lzoll 1
By the definition of zeT (t, x), we obtain that
T ¢ 2
G, (t,x,y) < Texp(Ca t),

and hence

Ge(t,x,y) < %exp(Cazt +ay/Hx) +1—ayH(y) +1)

forany o e R, 1 € (0,00) and x,y € R2. Here we can take o = —VH(V% VH@)+1

obtain

to minimize the right-hand side to

— 2
Ge(t,x,y)sgexp<_(\/H()’)+l VHX) +1) )

4Ct 0
Corollary 3.5. Given any compact subset K C R?, there exist C and R depending on K such that
£ Iy <R,
sup Ge(t,x,y) < | - WP (3.15)
xekK Texp(—ﬁ) |y| > R

forany t € (0, 00) and y € R?. Moreover, the limit G (t, x, y) satisfies the same upper bound as in (3.15).

Proof. Actually we always have G(¢, x, y) < % Then since H (x) is bounded for x € K, by Assumption 1 we have that

H(y)+H(x)+2—2JH(y)+1\/H(x)+1> C <|y|2>
=T\ Ter

C
Ge(t,x,y) < Texp<— aC

for large enough |y]|. ]

Now we consider the stochastic convolutions
/Ot Se(t —s)Z(ue(s)) dW(s) (3.16)
and
/Ot St —$)Z(ii(s)) dW(s), (3.17)

as in the definition of mild solutions, and show that they are well-defined in H,, and H,,, respectively, when the spectral
measure 1 of the spatially homogeneous Wiener process YV has density function m in LP (R?), with p € (1, 00).

To be more precise, as stated in the following lemma, we show that the semigroup S () improves the regularity of
(3.16) following the proof of [9, Proposition 4.1].

Lemma 3.6. Under Assumption 2, S¢(t)M () are Hilbert—Schmidt operators from Yq/ to Hy, for all » € H, . Moreover,
foreach T > 0 there exists a constant Ct > 0 such that

2 —(p—
”&@MwwwwﬂﬂWSQWﬂthUMW%,IGWJ}

—

Proof. Let {v;} be an orthonormal basis of L{) (R?, dx). Thanks to (2.8), if we define e; = v;m!/2, we have that {e;} jen
is an orthonormal complete system in Yq/ . Then, for any € H,,

oo oo

1= |Scve; [y, = 3 ISe)[w (m172 % ),

J=1 Jj=1
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- 2
j=1 /R LIR?

= f 1724 (Ge(t, . )9) ()| dyy ¥ () dx
R2 JR2

=/ / 20 P (Gett, v, ) ) dyy ¥ () dx
R2 JR?

<t [ (Gelx ) [ d

where p* is the Holder conjugate of p. The Hausdorff~Young inequality implies that ||(G€(t/,x\,o)w)|| Lt <
1(Ge(t, x, )¥) |l 2p/0+1) and we obtain

U /R N(Gettx 20 sy ()

=||m||m/ [/ Gt x. )W )/ dy YV () dx.
R2 R2

By Theorem 3.3, we have that

:|(P+1)/P

yY(x)dx.

| 2/ (p 1) (p+1)/p
[ <Clml|Lpt=P~ V”/z[/zGe(t,x,y)W(y)l PP dy}
R R

Since 2p/(p + 1) <2 and G¢(¢, x, y) dy is a probability measure,

20/ (p+1) (p+1/p )
el a | <[ [ Gaenplpofa|

and then, using Proposition 3.1, we conclude

Iscnmuuf(f’*”/"/ [/ Ge(r,x,y>}w<y)|2dy}yv<x)dx

R2 R2

=C||m||uf“’*”/"/ / Ge(t.x,y)y" ) dx |y ()| dy
R2 JRR2

—(p— 2
< Cllm|| ot~ P~ 0/PeCT /2|w<y>| yY () dy
R
= Ce T Iml Lot~ P~ VP 1yl O
Now we consider the limit semigroup S(¢) and show that an analogous result holds.

Lemma 3.7. Under Assumption 2, S(HOM () are Hilbert—Schmidt operators from jq’ to I:Iy. Foreach T > 0 there exists
a constant Ct > 0 such that for all € ﬁy

- 2 — —
[SOMWOIL 1.1, = Crlimleet POy rel0. T,

Proof. We have
o 2 o 17 2
1:=) [Sovely =) 150w (m'?53) ]| -
j=1 j=1

Then by Proposition 2.1 and the definition of S(r)" and G(z, x, y),

o]

1= YISO v (n 12 5)]15,

j=1
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=Z/Rz[f Gt x, ¥ () (m 1/2*v1)(y)dy} Y () dx
j=1

5/ |m 172 5 (G (2, x, YY) () dy [’y () dx

R2 JR2

:/ / |m1/2(Y)|2\(G(t,/x,\')tlfv)(y)!zdyyv(x)dx
R2 JR2

<nler [ G50 [y ).

Now, with the same arguments used in the proof of Lemma 3.6, using (3.9) and the bound G(z, x, y) < Ct~!, we have
that

1= Ce T mll ot PV |y [}, = CeTmllLot= =Dy |

Y Y
where the last equality follows from Proposition 2.1. |
Using classical arguments, in Section 3.2 we will show that Lemma 3.6 and Lemma 3.7 imply that SPDEs (3.1) and

(3.3) admit a unique mild solution.

Next, to prove the convergence of mild solutions u, of equations (3.1) to the mild solution i« of equation (3.3), we
show that the three terms in the definition of mild solutions (3.2) converge to that of (3.4). Among these three terms, the
most difficult one is the convergence of the stochastic integrals (3.16) to (3.17), for which we will need the following

approximation result.

Lemma 3.8. Given any € H,, for any fixed 0 <t < T

lim sup Z| (Se(t) — S() )(we,)|H (3.18)

€—>0¢¢[g, TI;

Proof. We show that for any given § > 0, there exists €5 > 0 such that for any 0 < € <e¢;,
- 2
DS =S¥ )Wepl, <8, relrn.Tl. (3.19)
j=1

The spectral measure m belongs to LP(RZ), for p € [1, 0o), which means that ml/2 e 2P (Rz). Given any 1 > 0, we
write m = m + mp, where

my=mlpm<py, M2 =M1z

Then m!/2 :mi/2 +mé/2 and

~
I
-

|(Se(t) — S(I)V)(WUW2)|2V

—

[(8e) = 30) (Wojmy?) 4 (Se) = SO") (Wrum3 ),

o

~
I
—

<2 1/2

L

(50 =50 e P, +23[(5:0 - S o,

1 j=l

J

=:Ii(e,t,n) + I(e, 1, 7).
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For the first term, due to (3.15), we have
00 — 2
= 12 ~ v
nenns=) | U (Gelt,x, ) = Gt, x, )P () (] *v,-)<y)dy} y¥ () dx
o R2 LJR?

< [, [ ImPOPI(Getx ) = Gtx D) dyy
- 2 v
§nf / |(Ge(t,x,y) = G(t,x, )Y ()| dyy" (x)dx
R2 JR2
_ 2 = 2
<Cnt lfszRzGe(r,x,y>|w(y>| + G, x, DY (| dyy" (x)dx
_ = 2
—cn ! [ [ [6etx 0+ Gy o] dxl e ay.
Then, thanks to (3.7) and (3.9), we get
_ 2 _
Ii(e,1,m) < Cnt lzec’/Rzlw(wl yY ) dy=Cnt~'2¢ 1yl
This means that we can fix ns = n(, t, T, ¥) > 0 such that
I}
sup sup Il(E,fJ?S)SE.

e>0relr,T]

Now, concerning the second term 1> (e, ¢, 1), we have

> | vm) ”“ Zf [ ryoym Y0Py Y (o) dx
j=

2
=Qn)? | explit - Y @) E)my > €)dE| yV (x)dx

5(2’”_2/ f lexp(i& - x)¥ (0)|*ma (&) dEy Y (x) dx
RZ RZ
= ) P mall 1 W13, -

Then, since [|m2|[;1 < lmllzr/nP~"L, if we take n = ns we get
1/2 _r —(p—
Zhﬁv] iR, = @y 2y O ol

Due to (3.8) and (3.10), this implies that we can choose Ns large enough such that

o0
_ 5
sup su S.(t) — S)Y) (Vv m”2 <
e>I(;te[rpT]] %JHK ¢ )(w )|HV 4

Moreover, by (3.6), we can choose 0 < €5 small enough such that

_— 8
ap 3/(5.0- 50" P, <2

relr.7) i 4

for any € < €. These two inequalities (3.21) and (3.22), together with (3.20), imply (3.19).

1651

(3.20)

(3.21)

(3.22)
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3.2. Existence and uniqueness

Here we state the existence and uniqueness of mild solutions to SPDEs (3.1) and (3.3) using Lemma 3.6 and Lemma 3.7.
We state it in the following theorem.

Theorem 3.9. Suppose the Hamiltonian H satisfies Assumption 1, coefficients b and o satisfy Assumption 3. We as-
sume that the spectral measure of the spatially homogeneous Wiener process YW(t) satisfies Assumption 2, i.e. there
is a density function m(x) = du/dx € LP(R?) for some p € (1,00). Given g > 1, I = L9(Q2; C([0,T]; Hy)) and
t%;?] = L9(R2; C([0,T]; I:Iy)) are Banach spaces with norms

Il = (B sup [ul%, )" iz = (& sup Jao]% )"
ull = sup |u ) , ur:( sup |u —) ,
! 1€[0,T1 Hy 7 1€l0,7] Hy

respectively. Then for any € > 0 and q > 2 p, there is a unique mild solution u. to (3.1) satisfying that

sup fluel, <Crq(1+10l% ). (3.23)
€€(0,1) a 4

Moreover, there is also a unique mild solution u to (3.3) satisfying
~nd q
||u||jg]§CT(l+}(pA}gy). (3.24)

Remark. As discussed in [3], the existence and uniqueness of the mild solutions stated in Theorem 3.2 is also true if
the spectral measure p is finite. Together, Theorem 3.2 is actually true when the spectral measure can be written as
W= w1 + no, where p1 is a finite measure and p, has density function m € L? (R?) for some p € (1, 00).

The proof of Theorem 3.2 follows the arguments in [9], which is essentially to show that all terms in the definition of
the mild solutions (3.2) and (3.4) are contraction mappings on Banach spaces /%, and %_”q, respectively. The condition
that ¢ > 2p is required for the construction of contraction mappings. By Holder’s inequality, actually the mild solutions
are in .7 and %%I for any ¢ > 1. Here we omit the detailed proof of Theorem 3.9, since it is standard.

3.3. Convergence of the mild solutions
In this section, we study the convergence of u, to i. The main result of this section is stated in the following theorem.

Theorem 3.10. Suppose the Hamiltonian H satisfies Assumption 1 and 4, coefficients b and o satisfy Assumption 3 and
the spectral measure of the spatially homogeneous Wiener process YW (t) satisfies Assumption 2. Let u. be the unique mild
solution to (3.1) and u be the unique mild solution to (3.3), with the same initial conditions ¢ and @™, respectively. Then,
for any fixedq > 1 and 0 < v < T, we have that

imE sup |ue(r) —i(r)"

=lmE sup |uc()" —a()|; =0. (3.25)
€=>0  te[r,T] e—0 14

|
H.
Y te[r,T

Proof. Without loss of generality, it is enough to prove (3.25) for large enough ¢ > 2p. For any fixed 0 < 7 < T and

q > 2p, we denote by

Aeg(t,t):=E sup |uc(s) —ii(s)"|?

selt,t]

, telr,T],e>0.
Y

Then there is

\

ue(s) —ii(s)” = [Se(s)p — S(5)" o] + [/ Se(s —r)B(uc(r))dr — (/ S(s — r)B(ﬁ(r))dr) }
0 0

K K Vv
+ [/ Se(s —=r)Z(ue(r)) dW(r) — (/ S(s — r)E(ﬂ(r))dW(r)) ]
0 0

= [Sc(s)p — 5(s)V 0] + U Se(s — ) B(uc(r) dr — f S(s — r)VB(ﬁ(r)V)dr}
0 0
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+ [/A Se(s — ) (ue(r)) dW(r) —/
0 0

=le, (s) + 16,2(5) + 15,3(S)~

N

Sts —r)V=(ar)Y) dW(r)}

Therefore, due to Lemma 3.11 and Lemma 3.12 below, we have

Aey(T, t)<ZE SUP ‘IGI(S)‘H

i=1 selr,t]

t
SCq,T/ Acg(t,8)ds +Cqrt+E sup |161(S)|H + He 1 (7, T) + He 2(T),
T selr,T]

and, thanks to the Gronwall lemma, this implies

Beg(@.0) = Cr[t+E sup 1) + Her(7.7)+ Hea(D) |
selT

Firstly, it is enough to prove (3.25) for small enough 7. Hence, for any § > O fixed, we can choose 75 small enough so
that Cy, 7t < §/2 for every T < 5. Next, we notice that by (3.6), we have

lim E sup |I€1(s)|q —llmE sup |I€1(s) |q =

€0 se[r,1] selr,T]

Thus, thanks to (3.27) and (3.31), we can find €5 > O such that

Cr.qE sup [l @), + Hoa(x. T)+ Hoa(T)] < /2,

YE‘[

for every € <e€s and 0 <t < T. This clearly implies our theorem. (Il

Lemma 3.11. For every q > 1 and for every 0 <t < T there exists Cy4 1 > 0 such that for every0 <t <t <T

E sup |I€2(s)|H <ch</ E sup |uc(r) —a(r)”|% ds+r>+He1(r T), (3.26)

s€[0,t] relr,s]

where H, 1(t, T) satisfies that

lim He 1 (¢, T) =0. (3.27)
e—0
Proof. We have

t t
I (1) =/ Se(t — s)[B(u€ (s)) — B(ﬁ(s)v)] ds +/ [SE (t—s)— S — s)V]B(ﬁ(s)V) ds
0 0
= Je,1(8) + Je2(0).
Then, since |B(u)|Hy <c(l+ lulm,), for any ¢, T > 0 we have that
q

+Cy
Hy

q
[Jea ]} =C

A Se(t —s)[B(ue(s)) — B(u(s)")] ds / Se(t —5)[B(ue(s)) — B(u(s)")]ds

Hy

T t
SCq,T/(; (14 ue)[f, + |ﬁ(s)v‘2y)ds+cqj/r Jue(s) — is)"[%, ds

t
<Cyrt sup (1+[uc()|}, + |as)”|% )+cq,Tf sup |ue(r) —i(r)” |‘7 ds. (3.28)
s€[0,T] 4 4

T relr,s]

As shown in (3.23) and (3.24), we have

E 1+ 9 +la)v|l ) <c
D Sl (1 ey + 1707
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Thus, after taking supremum over time and expectation in (3.28), we obtain
E sup |Je, 1(s)|H <Cyrt+Cy T/ E sup |ue(r) —i(r)" |q ds. (3.29)
s€[0,t] T relr,s]

For the second term J¢ 2(t), using again the linear growth of B in H,,, we have

q
+Cy
Hy

t—T q
[Se(t —s) — St —)"]B((s)") ds

Hy

t
[Se(t —s)— S(t —)"]B(a(s)")ds

-t

|[Jea O]}, =Cq

T -
<Cyrt sup (1+]a)"|%, )+cq,T/ sup [[Se(r) — SV ]B(i(s)") |, ds.
5€[0,T] 4 0 refr,T] 4

This implies
T -
E sup |/, 2(s)|H <CyrT+Cy, T/ E sup |[Se(r) —S(r)V]B(i(s)")|%, ds.
s€[0.1] 0 reltT] v
Together with (3.29), we proved (3.26) with
T -
Hei(1,T):= cq,T/ E sup |[Se(r)—S(r)Y]B(ii(s)")|, ds.
0  relr,T] 4
By (3.6) and (3.8), using the dominated convergence theorem we have that
T -
lim [ E sup [[Se(r)—S@)Y]B(a(s)")|% ds=0
e=~0Jo  re[r,1] v

for any 0 < t < T and this implies (3.27). ]

Lemma 3.12. For every g > 2p and for every 0 <t < T, we have that

E sup }Ieg(s)|H <chf E sup |u€(r)—u(r) |‘1 ds + He»(T), (3.30)

s€[0,] relr,s]
where Hc 2(T) satisfies that
lirr(l) He»(T)=0. (3.31)
€e—

Proof. We have

t

t
15,3@):/0 Se(t—s)[E(ue(s))—E(ﬁ(s)v)]dW(s)—l—/(; [Se(t —s) — St — )V ]2 (ii(s)") dW(s)

=1 Je1(1) + Je2(2).
By the factorization formula, for every « € (0, 1) we have

sinro

t
Je1(t) = /waf*&a—nm@wa
0
where

Yo (s) =[0 (s =) *Se(s — N[ (ue () — Z(a(r)") ] dWir).

Now, since m € LP(RZ), for some p € (1, 00), we can find @ € (0, 1) and ¢ > 1 such that 2p < 1/a < g. Then, using
Proposition 3.1 and Holder’s inequality, we have

'
E sup |J61(5)|H <CqT/ E|Ya(s)|?_1 ds.
s€[0,1] 4
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By Lemma 3.6, due to the Lipschitz continuity of o, we have that

s q/2
E|Ya ()|}, < Cq,r,ach(fo (s =) s =)~ P P fuc(ry —a(r) [}, dr>

Then, from Young’s inequality and estimates (3.23) and (3.24), we obtain

t t q/2 t
f E|Ya ()|, dsgcq,T<f s—2°‘—<1’—“/l’ds) E/ |ue(s) —i(s)V |9, ds
0 4 0 0 14
t
< cq,TJE/O |ue(s) — zZ(s)VV[Iiy ds

t
5Cq,Tr<E sup [uc(s)|?, +E sup |a(s)”|%, )+cq,T<f E sup |uc(r) —i(r)"|%, ds)
s€[0,T] Y s€[0,T] 4 T 4

relz,s]

t
5cq,T(r+/ E sup |uc(r) —a()” |3, ds).
T

relr,s]
This implies
1
E sup |Je,l(s)|7_l §Cq,r(7:+/ E sup |u€(r)—ﬁ(r)v}‘il ds>.
s€[0,1] v T refr,s] 4
Again, using the factorization formula

sin

. t
sin :a / (t =) [Se(t —5) = §(t — )" Va2 (s) ds,
0

o ! a1
Jep(t) = /0 (t—8)"" St —85)Yy1(s)ds +

g

where

Yo1(s) = /0 (s —r) *[Se(s —=r) = S(s = )V]G(a@)") dW(r),

and
)
Yuo(s) = / (s —r)"“S(s —r)VG(ar)”)dW(r).
0
Then
t s _
E sup |Jea()|}, < CT/ E|Yy1(9)|% ds+ CrE sup f [Se(s —r) = S(s =)V |Ya2(r)|], dr
s€[0,¢] 4 0 4 s€[0,¢11J0 14
=K 1(1) + Keo(1).

Here

¢ 00 q/2
E|Ya,1(s)|‘;1ygc‘11€<fo (s—r)2“Z|[Se(s—r)—S'(s—r)v]G(ﬁ(r)v)ejﬁ{ydr) :

j=1
By Lemma 3.8 and (3.8), using the dominated convergence theorem, we have that
. q
E%E|Ym1(s)|Hy =0.
This implies that

lim sup K 1(¢)=0.
€=>0¢[0,7]
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For K¢ 2, by (3.8) and the dominated convergence theorem, we again have

lim sup Kc2(t)=0.
€~>0¢¢[0,7]

Therefore, if we define

Heo(T) ;= sup Ke,](t)+ sup KE,Z(t),
t€l0,T] t€l0,T]

our proof is complete. (]

4. A weaker type convergence if dT/dz =0

In [3], it has been shown that if Assumption 4 is verified, that is

dTi(2)
dz

#0, (zk) €T,
thenforanyu € H, and0 <t <T

lim sup |Ecu(Xc(t)) —Enu”(Y(®)|=0. @.1)
]

€>0¢e[r,T

In [3], Assumption 4 is actually used to say that, as shown in [6, Lemma 4.3], if « € (4/7,2/3) then for every u €
Cg (R?) and for every compact set K € R?

lim sup [Ecu(Xc(e%)) — ()" (x)| = 0. 4.2)

€e—>0ycx

When Assumption 4 is not satisfied, we don’t have a way to prove (4.2), which is a key ingredient in the proof of (4.1). In
this section, we will show that when Assumption 4 is not verified and hence we cannot prove (4.2), then limit (4.1) can
be replaced by the following weaker type of convergence.

Theorem 4.1. Under Assumptions 1,2 and 3, for any 0 <t < T and any compact set K C R?, we have

T
/ [Ecu(Xe®) —Engu™(Y(0)]o@) dt| =0 (4.3)

lim sup
€e—0,cx

for any u € Cp(R?) and 6 € Cp([7, T)).

To prove Theorem 4.1, we need the following notations. For I1(x) = (z, k) in the interior of edge I, we set T (x) =
Tk (z). Given a compact set K C R? and § > 0, we denote

Tvs(K):= sup T(x), Tns(K):= in
xeK\G(£8) x€K\G(£8)

T(x).

Here we remove a small neighborhood of all the vertices, G (£§), when taking the supremum and infimum. Therefore we
always have that Tjs s(K) < oo and T, s(K) > 0 (see [7, Chapter 8]).
Now, suppose (z,0) € I is such that

z> max H(x;)+1, 4.4

i=1,...m
where x1, ..., X, are the critical points of the Hamiltonian H. We define the stopping time
pe,c :=inf{t > 0: H(Xc(1)) >z},

which is finite almost surely by Theorem 3.3. It is proved in [7, Lemma 8.3.2] that for any compact set K € R?, there
exists a €9 > 0 such that the family of distributions corresponding to the processes {I1(Xc(-)) : € € (0, €p), Xc(0) € K} is
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tight in C([0, T']; ') for every T > 0. This implies that for any given n > 0 and T > 0, there exists (z,, 0) € I satisfying
(4.4) such that

sup  Pofsup H(Xc0) 2 2} <,

xeK,0<e<gp t<T
which is equivalent to

sup  Prfpe:, =T} <n, 4.5

xeK,0<e<gp

i.e., the probability of processes X () hitting the level curve C(z,) before time T are uniformly less than n for any initial
datax € K and 1 < € < €q. Given n > 0 and z, as in (4.5), for any 0 < 8’ < §, define

ot = inflr = ¢010 X (1) € G(£5)°), (4.6)
and

ro5 =inf{r > o< X (1) € D(+8') U C(zy)). A7)
We set rg’””;’y = 0. After the process X () reaches C(z;), all r,f’”’a"s/ and 6;,17,6,5’ are taken equal pe ;.

4.1. A weaker type of convergence for the semigroup

In order to prove Theorem 4.1, it is sufficient to prove

T
lim sup /0 [Exu(Xe(®) —Eneu” (Y (©))]0 @) dt| =0. (4.8)

€e—>0ycx

Actually, if this is the case we can use [ = [ — [ to obtain (4.3).
Thanks to [3, Lemma A.3], forany 0 <t < T and x € R2, we have

lim supT]|Ex (")’ (Xe®) —Eneu” (Y 0))| = 0.

e—>0,€[.[

In fact, given a compact subset K C R2, we further have that

lim  sup |Ec(u”)”(Xe(®) — Enu’ (Y (1))| =0. 4.9)

€>0yeK te[r,T]
Notice that we have the decomposition below

T

r — > Vv
/0 [Eu(Xe (1)) — B (F0))]0() di = fo [Ecu(Xe (1)) — Ex (u")" (X)) |0y dt
+f0 [EX(MA)V(XE(I)) —Enwu(Y(0)]o@) dt

T — -
4 / [Ex (1")" (Xe () — Enioyu (7(6)]0 () di
=L+ h+ L.

Since u, (u™)V and ¢ are bounded, we can choose T small enough to control I;. Then using (4.9) we can control I3.
Hence, in order to obtain (4.3), it is enough to prove the following result.

Lemma 4.2. Suppose K is a compact subset of R®. Then, for every T > 0 and 6 € C([0, T]) it holds that

lim sup
e—>0y ek

T
E,u(X. (1)) — E, (u)" (X (0))]0(t) dt| =0. (4.10)
0
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Proof. Actually we can assume that u € Cé (R?) (and 0 € C'([0, T1)), because for any u € C»(R?) (and 6 € C([0, T1))
we can find an approximation sequence {u,} C Cg (R?%) (and {6, } € C([0, T)) such that u, — u in L (R?) (and 6, — 6
in L°°([0, T]).

Since u € C}(R?) and 8 € C'([0, T]), we can define

My = - ()"

| oo M3 = ||Vl .

By (4.5), for every n > 0 we can choose z; large enough such that sup, g Px(pe,z, <T) < n. Hence,

B [ Tulxe) — @) (xeolorar =5, [ u(xew) - () (o) o a

+E, /T ' [u(Xe®) — (") (Xe(®)]0 ) dt.

APe,zy

For the second term on the right hand side,

E. /TT [u(Xe(®) — ") (Xe)]o () dt

APe,zy)

sup
xekK

<TM\MPy(pez, =T) <TMiMpn.

Now we fixed z; and the stoping time pe ., . For the stopping times tis,n,a,s/z and oie’"’5’5/2

€,1,8,8/2 €,1,8,8/2
i

defined in (4.6) and (4.7) with

8 =3 we set =T AT A pe.z,- Then, recalling that 79 = 0, we have

=73,

E, /O T L (xew) - (“A)V(Xe(t))]e(t)dtziEx / _U" Le(Xe0) — (@) (Xe0) o ds

AT A pe, and o; =0,

i=0
© Titl

+ZEX/ T u(xe@) — (@)Y (Xe@)]o @) d.
i=0 ai

For the first term on the right hand side, we have

/, (X)) = () (Xe)]o (@) dr

o0
<MiMy ) Eloi — 7]
i=0

o
§M1M22Px(rf’”’5’8/2<T)[ sup EVUG"“/Z]
P yeD(£8/2)

o

61,882

=MiMy| sup Eyop Pl Y B
yeD(£8/2) —

Recall that from [7, (8.3.14)] and [3, A.19] we have

ad g Em8:8/2 C
sup ZExe i < —
xekK i—0 )

and from [7, (8.5.17)] and [3, A.21] we have

€,8.8/2

sup  Eyo, < C8%|logd|.

yeD(£58/2)

Since there exists g > 0 such that C§|log§| < n for all 0 < § < §p, from the inequality above we get

ZE/ u(Xe(®) — ()’ (Xe®)]0 () dt| < CMiMae” 8]log§| < MiMae 1. (4.11)
i=0 T

sup
xekK
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Using Lemma 4.3 below we have

[e¢]

Titl
sup ZEX/ [u(Xe®) — ()" (Xe0))]0 @) dr
xekK —0 o;
- RYERT fitl v
Z 1092 < T) sup |Ey / [u(Xe(®) — ") (Xe)]o () dt
= xekK o;
o0
<CY P (of " < 1) Ve
i=0
<1+ZP 61’]85/2 ))«/E
< CeT<% - 1>JE.
This implies that we can find €y > 0 small enough such that for all 0 < € < ¢y
i Ti+1 v
sup| > E, / (X)) — (") (Xe())]0 ) di| <.
xekK i=0 o
This, together with (4.11) gives (4.10). O
Lemma 4.3. For every given § > 0 and each i € N, we have
Ti+1
sup / [u(Xe) — (") (Xe ()]0 () dt| < C/e.
Xe O

where the constant C depends on M with j =1,2,3, T, Ty 52 := Tn,5/2(G(0, 23)), and Ty, 52 := T 5/2(G(0, z5))
and

1‘44’5 = sup |V((MA)V)(X)| < Q.
xeG(0,z7)\G(£8/2)

Proof. We introduce the following sequence of stoping times o; =59 <s1 <2 <--- <s§, = T;41, by setting
Sk4+1 = [sk + eT(XG(sk))] ATy, k=1,...,v—1.

Notice that we must have v < N :=[¢ T/ Tn,s/2] + 1, since |7;41 — 0;| < T. Then we have

Xk

Titl R
E, / T e(xe) — @) (Xew) o0 di | <

/+ (X)) — ()" (Xe®) o) dt|.

k

For each k, we have that

E, / ! [M(Xe(l)) - (MA)V(XE(Z‘))]H([) dt

Sk

=<

sk+eT (Xe(sk)) v
E. / [ (Xe () — ()" (Xe()]00) dt - Lsyrer xu sy <rron)
S

k

+

Ti+1
Ex/ [u(Xc) — (MA)V(Xe(l))]e(l)dt . 1{sk+eT(X€(sk))zr,-+|,sk<ri+1}‘
S,

k

=11+ I.
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By the definition of o; and 7;11, Xc(sx) € G(0, z,)\G(£8/2). For I, we have
1Tis1 — skl < €T (Xe(sk)) < €Tu.5/2(G (0, 2),
which implies that
I <Py{si+ €T (Xc(sk)) = Tig1s sk < Tig1 JM1 M2 Ty 526
For I1, we use the decomposition
u(Xe®) = (") (X)) = [u(Xe®) = u(xe®) + (") " (xe(®) = (") (Xe(®))]

+ [u(xe () = (") (xe(0)]
=:U1(t) + Ua(2),

where x.(¢) is the deterministic fast motion defined by (2.3), with initial condition x, (sx) = X¢(sx). Then

L <

seteT (Xe(sk))
Exf Ui (t)@(t) dt - l{sk+eT(XE(sk))<r,-+1}
Sk

sk+eT (Xe(sk))
Ex/ Us(00(6) dt - g7 (X. 50 <ti11]
Sk

=:I11 + Iz,

+

Since u = (u™)Y on the level set Cp(y) and xc(f) moves on the same connected components of Cg(y), for all
t€[0,eT(x)],

€T (x) v
A [(xe ) — ()" (xe(0)) ] di = 0.
Therefore, we have that

Iz < §M1M2TA2,,’3/262.

sk+eT (Xe(s1))
Ex/ Un(0)(0(t) — O(s1)) dt - Ve (Xe(si)) <i1)
S

k

Since processes X (¢) and x¢ () always stay in the region G (0, z,)\G(£8/2), we have

I <

spteT (Xe(sk))
E, / (M3 + My )| Xe(t) — xe ()| Madt - Ligpser (X (51))<7i11)
Sk

It is not difficult to check that

sup E|Xc(es A Tf,n,a,s/z) — xe(es A tf’5’5/2)| < C(es)%
x€G(0,2,)\G (38/2)

for any s € [0, T (x)]. Then, by the Strong Markov property of the diffusion X¢(¢) we have that

eT(x)
I fo(Sk-i-ET(Xe(Sk)) <Ti+1) sup Ex/ (M3+M4,8)M2|Xe(f)—Xe(l)|dt
x€G(0,zy)\G(£8/2) 0

3 3
< (M3 + M4,5)M2CT151’5/267.

Notice that

N-1
Z P{si + €T (Xe(s%)) = Ti1, 5k < Tig1 } = L.

=~
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Now we have

o /‘H— [M(Xe(t)) — (MA)\/(XE(t))]Q(t)dt

-1

=z

=

Sk+1
Ex/ [u(Xe() — ") (Xe)]0(0) dt

k

i

IA
T

P{si + €T (Xe(5%)) = T 1.k < Tig1 JMIMa Ty 5)2€

~
Il
=}

+ N[MIM2T}, € + (M5 + M4,5)M2CT,35/26%]
SM\M>Ty s2€ +TMiMaTy 506 + T (M3 + M4,5)M2CTA%,,5/26%-
Finally, as all of the estimates for /11, /12 and 5 are uniform for initial data x € K, our proof is complete. ([l
4.2. The corresponding weaker convergence of the SPDEs

Now we consider the convergence of the SPDEs based on the convergence of the semigroups obtained in Section 4.1
without Assumption 4. Notice that in equation (3.1), the nonlinear functions b and o are assumed to be Lipschitz and
hence preserve the strong convergence in H,, . In this section, the semigroups converge in a weak sense, and the nonlinear
functions no longer preserve it. This indicates that we can not obtain the same convergence result we obtained earlier.
Here, we consider the special case when b = 0 and the noise is additive, i.e.

due(t, x) = FAuc(t,x) + LVEH(x), Vue(t, x)) + 3 W(t, x), @.12)

MG(O’X)Z(p(x)v X Est )
and

Quii(t, z,k) = Li(t, z, k) + 9 W(t, z, k), “@13)

10, z,k) =9 Nz, k), (z,k)eTl. '

Similar to (3.2), mild solutions to (4.12) and (4.13) are defined to be
t
ue(t) = Se(t)p +/ Se(t —5)dW(s),
0
and
- t - _
i) =St)p" + / St —s)dW(s).
0
In what follows, we define operators
T
R(z,T)= / Se(n)6(1)dt,
T
and
- T -
Rl(z,T)= / SHVo(r)dt.
T

Then (4.3) is equivalent to

lim sup|R? (z, T)u(x) — R (z, Thu(x)| = 0.
e%OxEK

Recall that u is assumed to be in C,(R2) in Theorem 4.1. In the following proposition, we will extend it for u € H,,.
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Proposition 4.4. Under Assumptions 1 and 2, we have

. 0 234
611_r3(1)|[R€ (r,T) — R%(x, T)]u}Hy =0
forany u € H,(R*),0<t <T and 0 € Cp([, T)).

Proof. Since [Rf (zr,T) — R%(z, T)]u converges point-wise for every u € C,(R?), due to the dominated convergence
theorem, we have

gLnno|[R2(r, T)— R(z, T)]u!HV =0.

The function y introduced in Proposition 3.1 satisfies that inf,cg ¥ ¥ (x) > 0 for every compact set K C R2. Then, using
a localization argument, it is possible to prove that for any u € H, there exists a sequence {u,},>1 C Cp (R?) such that
u, — u in H,. Thanks to (3.8) and (3.9), we have

I[RC(z, T) — R%(x, T)](u — un)|Hy <Crlu—unln,.
This implies that
I[RE(x. T) — R%(x, T)]u|Hy <|[R¢(z,T) - RO(x, T)]un’Hy +Crlu —unln,,
and the proof is done. 0

Next we will show that the mild solutions u, to the SPDEs (4.12) converges to the mild solution u to (4.13), for which
we need the following lemma.

Lemma 4.5. Under Assumptions 1 and 2, for any fixed T > 0 and 6 € C([0, T]) we have

2
—0. (4.14)
H)/

x t
611310;‘/0 (Se(s) — S(5)¥)e;0(s)ds

Proof. We will prove that for any § > 0, there exists €5 > 0 such that for any 0 < € < €

o]

t
Z/O (Se(s) — S(5)¥)e;6(s) ds

j=1

2
<.
Hy

The spectral measure m € LP(R?) for p € (1, 00), which means that m'/? € L?P(R?). Given n > 0, we write m =
my +ma,

m :=m1{m<nz}, my :=m1{m2nz}.
Then m1/2 =mi/2 —I—mé/2 and

| [ S 2 | z pn g

Z/ (Se(s) — S(5)¥)e;6(s) ds 522/ (Se(s) = 5(5)¥) (vjm,*)0(s) ds

=1 0 H, j=1 0 Hy
| [ R n ?

+2Z/0 (Se(s) — 5(5)¥) (vjmy/*)0(s) ds

j=1 Hy

] 1
=1l +1..

For the first term, since ||m1||;2» < n|lm ||1L/p2, due to Lemma 3.6 we have
oo 2
n
Il,e <2 Z
j=1

ds
HV

t —
/0 (S6 (s) — S'(s)v)(vjmi/z)@(s)
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! 2p—1)/2 2
<Cr [ im0 dsjol
0

T
1/2 —@p—
< Crnlmil; / 57U ds |0 7.
0
Hence we can choose 15 > 0 small enough such that

ns 0
supl|", < =. 4.15)
e>0 3
For the second term, for every N € N we have

e¢]

Be=2)

j=1

N
=C).
j=1

_.gNnm N.,n
_.Jl’€ —i—nge .

2

/ (5:9) = 550" (oymy )0 ds
0

Hy

2 [e°] t —
ver Y [ 1510 =56 wmd ), o) as

Hy j=N+1

t —
/ (Se(s) = §(5)V) (v;my*)0(s) ds
0

Since
lmall < 0= P72 m]|7,
by proceeding as in the proof of Lemma 3.8, once fixed § > O there exists N5 € N such that
1)
sup J 0 < (4.16)
e>0 3

Then, once fixed Ns, due to Proposition 4.4 we have that there exists €5 > 0 such that

8
JlNi‘n‘s < 3 for € < €.
This inequality, together with (4.16) and (4.15), implies (4.14). O

Theorem 4.6. Suppose the Hamiltonian H satisfies Assumption 1. The spectral measure to the spatially homogeneous
Wiener process WW(t) satisfies Assumption 2. Let uc € Hy be the unique mild solutions to (4.12) and u € 7-_[,1 be the
unique mild solution to (4.13) with the same initial condition ¢ and @™, respectively. Then for any fixed T > 0, q > 1 and
0 € C([0,T)), we have that

q
=0. 4.17)

T
m JEV [ue(t) —a()V]0 @) dt
0

li
e—>0

q T
= lim E‘/ [ue )" —a)]6 ) dt
H, e—0 0 A,

Proof. We have

T T T t
/ [ue(@) —u()"]0@)dt = / [Sc()p — S®) Vgl dt + / / [Se(t —s) = S(t — )" ]dW(5)0(t) dt
0 0 o Jo

=:lc1+ L.
By Proposition 4.4

. . 0 _0
elg%ue,lmy =€1£1})|[RE 0,T)— R%(0, T)]u|Hy =0. (4.18)
For the second term, using Lemma 3.6 and Lemma 3.7

t t 1/2
5 2 P 2
E‘/O [Se(t —s5) — 8t —5)V]dW(s) 51E</0 |S€(t—s)|L(HS)(yq/’Hy)—|—|S(t—s)V|L(HS)(yq,’Hy)ds>

v
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t
sCT||m||}/2(/O (t—s)‘“’—”/"ds)

1/2.1/2
= Crllm| )/ “t'/?P,

1/2

which is finite. Hence we can use the Burkholder—Davis—Gundy inequality to obtain

T T q
E|I»|% =]EV / [Se(t —s) = S(t —)"]0 ) dr dW(s)
4 0 K

Hy

T T—s
= ]E‘/ / [Se() = S®)V]0 @ +5)dt dW(s)
0 0

q
HV
2 q/2

ds

T—s
/ [Se()ej — S(t)Ve;lot +s)dt
0 H,

T ©©
<cr( [} 2
j=1

By Lemma 4.5 and the dominated convergence theorem, we have that

. q _
lim E| I o[ =0.

This, together with (4.18), implies (4.17). U
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