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ABSTRACT

We present an efficient score statistic, called the S3T statistic, to
detect the emergence of a spatially and temporally correlated signal
from either fixed-sample or sequential data. The signal may cause a
mean shift and/or a change in the covariance structure. The score
statistic can capture both the spatial and temporal structures of the
change and hence is particularly powerful in detecting weak signals.
The score statistic is computationally efficient and statistically power-
ful. Our main theoretical contribution is accurate analytical approxi-
mations to the false alarm rate of the detection procedures, which
can be used to calibrate the threshold analytically. Numerical experi-
ments on simulated and real data, as well as a case study of water
quality monitoring using sensor networks, demonstrate the good
performance of our procedure.

ARTICLE HISTORY
Received 11 January 2019
Revised 10 November 2019,
2 February 2020

Accepted 17 April 2020

KEYWORDS
Change point detection;
false alarm control; score
statistics; spatiotemporal
data analysis

SUBJECT
CLASSIFICATIONS
Primary 62L10; Secondary
62G10; 62G32

1. INTRODUCTION

Detection of the emergence of a signal in a noisy background arises in many multisen-
sor spatiotemporal surveillance applications. When the monitored process is in control,
sensors observe noise. When the monitored process is out of control, a signal emerges
in the noise. A variety of applications possess particular spatial and temporal correlation
structures. One application is an environmental sensor network, which is used to
monitor river systems to detect a contaminant hazard (Kim et al. 2017). When the sig-
nal emerges, observations from sensors may have a time-varying mean and spatiotem-
poral correlation structures due to water flow.

Exploiting spatiotemporal structures of the change is crucial for detecting weaker sig-
nals. However, most existing methods only capture either spatial correlations (Healy
1987; Crosier 1988; Jiang et al. 2011; Lee et al. 2014, Lee, Goldsman, and Kim 2015) or
temporal correlations (Xie and Siegmund 2012). It is still unclear how to jointly capture
the spatial and temporal correlations in detection statistics. Moreover, computational
complexity is often a concern when we try to jointly model spatial and temporal correl-
ation, especially when there are a large number of sensors, which leads to high-dimen-
sional observations. In particular, one issue with the likelihood ratio statistic is that one
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has to invert the sample covariance matrix, which can be computationally expensive
and numerically unstable. An alternative to the likelihood ratio statistic is the score stat-
istic, which can sometimes lead to a simpler test statistic. When the hypothesis involves
a univariate parameter, the score test is the locally most powerful test (Rao and
Poti 1946).

In this article, we propose a new efficient score statistic for spatial-temporal change
point detection, which we call the ST statistic. The S’T statistic can capture both spa-
tial and temporal correlations of the signal. Hence, it can react quickly to a change in
the mean and/or the spatiotemporal covariance. The score statistic is computationally
efficient. By avoiding the inversion of the sample covariance matrix, the S°T statistic
has computation complexity O(p®), where p is the dimensionality of the observations,
whereas the likelihood ratio statistic has O(p>N°) complexity, which grows with the
time horizon N. Our main theoretical contributions are accurate analytic approxima-
tions for the false alarm rate in the offline case and the average run length in the online
case. Using the theoretical approximations, calibrating thresholds to control the false
alarm rate of our procedure can be done efficiently without resorting to onerous
numerical simulations. This is quite useful in practice, because the simulation-based
approach to calibrate thresholds can be quite time consuming, due to the search over
the unknown parameters when evaluating the detection statistics. For scalar observa-
tions, our statistic S°T reduces to the score detector considered in Xie and Siegmund
(2012). Our work provides a novel extension of Xie and Siegmund (2012) for multidi-
mensional observations when there are both spatial and temporal correlations.

The rest of the article is organized as follows. Section 2 formulates the problem.
Section 3 presents detection statistics for both offline and online change point detection.
Section 4 presents theoretical approximations for the false alarm rate in the offline case
and average run length in the online case. Section 5 contains numerical examples for
simulated data and real data, as well as a case study of water quality monitoring.
Finally, Section 6 concludes the article followed by Appendices.

2. PROBLEM FORMULATION

Consider a sequence of samples y, € RP, ¢ =1,2,---,N, where p is the dimension, and
N is the sample size, which is fixed in the offline setting and grows in the online setting.
We assume that under the null hypothesis, {y,} forms a series of independent and
identically distributed normal random vectors with spatial correlation caused by, for
instance, sensor measurement errors or background noises from the environment. At
an unknown time k, 1 < k < N — 1, which corresponds to the unknown change point,
a signal emerges on top of the noise. The change may alter not only the mean of {y,}
but also the spatiotemporal correlation structure, which we will explain in more details.
First, consider an offline setting, where the goal is to detect a change in retrospect
from the samples. Formally, this can be formulated as the following hypothesis test:

HO: y[:wf) 62172)"')N)

H . y{,‘:wé) g:l’z) ...)k’ (21)
. yo=%x+w, (=k+1,---,N,
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where w/'fij'./\/' (0,X) and X is the spatial covariance matrix of the noise. We assume
that before the change, the samples have no temporal correlation. This is reasonable
because we often have enough reference data before the change to estimate and then
remove the temporal correlation.

Below we describe a model for the signal {x,} after the change has occurred. The sig-
nal can be spatially and temporally correlated. We capture the temporal correlation
using multivariate time series models. Two examples are the first-order vector autore-
gressive VAR(1) model (Brockwell and Davis 1991),

x=1—-0u+0x_1+e€, (=12, (2.2)

where 0 € R, u = E[x/] and ¢, is the process noise, and the VARMA(1, 1) model, given
by

X+ oxe=(1+d—nu+ne+em, £=12,--,

where the parameters are 7 € R and ¢ € R. Models with higher orders can also be
used if necessary.

We capture the spatial correlation of the signal using standard spatial correlation
models (Gaetan and Guyon 2010). Denote Var[x;] = yA € RP*F, where A is the spatial
correlation matrix of the signal x;,, and y > 0 is the magnitude (assuming that the
model is stationary and Var[x/] does not change over £). Note that the variance of the
signal Var[x/| depends on the variance of the process noise, Var[e,]. Here we assume
that the structure of A is known but the parameter y may be unknown. This is a com-
mon practice, because once a spatial correlation model is assumed, A is usually specified
by the location of the samples and some unknown parameters. In particular, each entry
of the spatial covariance A is determined by a correlation function, C(d|p), of the dis-
tance d between two samples (sensors) and is parameterized by p. Let 1{A} denote an
indicator function, which takes a value of 1 when the event A is true and 0 otherwise.
Several commonly used correlation functions are the following:

(i)  Spherical model (Lee et al. 2014):
Cdlp)=11{d=0}+p 1{d=1} +§1{d =2}, pelo], (2.3)
(ii) Exponential model (Gaetan and Guyon 2010):
Cldlp) =1 1{d =0} +e ¥ 1{d >0}, p>0,
(iii) Matérn model (Gaetan and Guyon 2010):

e (Vavage) k. (Van ) 14d > o),

C(dlp) =1 1{d =0} + 27T (v)

p >0,

where p > 0, v is the order of the Matérn model that determines the degree of smooth-
ness of the correlation function, I'(-) is the gamma function, and K,(-) is the modified
Bessel function of the second kind (Abramowitz and Stegun 1970). Note that when v =
p+0.5p€R", the Matérn model is a product of an exponential and a polynomial of
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order p. When v=0.5, the Matérn model is equivalent to the exponential model. When
v — 00, it converges to the squared exponential covariance function.
Now we derive our detection statistic. For an assumed change location k, let

T=N-—-k

denote the number of postchange samples. Define a vector by concatenating all samples
after the assumed change point location k,

-
Y(k+1:N) = {J’Z—H’ }’z-\rr} € R”, (2.4)

where a' denotes the transpose of a vector a. Define X(k+1:N) and wg ) similarly.
Then after the change, we have

Y(k+1:N) = Xk+1:N) T Wikt 1:n)-
The covariance matrix of the concatenating observation vector consists of two terms
that are due to the signal and the noise, respectively:

Vary .n)] = yVe(0) + X,

where yV.(0) = Var[x(;1.n)), Ec = Var[w(,1.v)), and 0 is the parameter related to tem-
poral correlation, which we will specify next. The second term in the covariance matrix
is given by
X =1, QX e R, (2.5)

where I is a T by 7 identity matrix and ® denotes the Kronecker product.

By concatenating the observation vectors as in (2.4), we can jointly model spatial and
temporal correlation of the signal by one matrix V.(0). For instance, for the VAR(1)
model,

V.(0) = R, (0) ® A, (2.6)

where R;(0) € R™* and [R.(0)];; = 0", vi,je {1, ---,1} is due to the temporal cor-
relation in (2.2). Similarly, if the signal follows the VARMA(1,1) model, the matrix V
can be parameterized by 0£ (¢, 1) with the following form:

V.(0) = R(¢,n) ® A, (2.7)

where Ri(¢,n) € R™; [Re($.n)],; =1+ n* —2¢n if i=j and [Re(¢n)];; = ¢!
(¢ —n)(1 — ¢n) otherwise. For other models, similar forms of V. can be derived: the
temporal dependence of the signal is captured by R;, the spatial dependence by A, and
the spatial-temporal covariance is a Kronecker product of the two (Genton 2007).

Using the representation above, the detection problem can be reformulated as the fol-
lowing hypothesis test:

Ho:  yay ~ N(0,Z0),  Yigyrn) ~ N(0,Xo),
Hit yaw ~N(O0E0), Yy ~ N (Bsrny 7 Ve(0) + Ee),

for k=1, ---,N — 1, where 0 is a vector of zeros, p ) = E[ys;1.a)] € R and y €

(2.8)

R > 0. Note that we assume that pg. ) is unknown. Equivalently, under the null
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Table 1. Notation.

p Dimension of samples

N Sample size in offline change point detection

k Change point location

T Number of postchange samples, T = N — k

z Spatial covariance matrix of the noise, £ = Var[w,]

A Structure of the spatial covariance matrix of the signal Var[x,] = yA

Y Magnitude of the spatial covariance matrix of the signal Var[x,] = yA

X, Covariance of noise in concatenated observations X, = Var[w(kH:N)] =L, ®X

YV, ovariance of signal in concatenated observations Var[x. 1.,] = yV:(0) = yR.(0) ®
yV.(0 Covari f signal i d ob ions Var[x(1.n)] = yV(0) = yR:(0) ® A
R (0) Matrix that captures temporal dependence of the signal

hypothesis, y=0 and p,,.y) =0, and under the alternative hypothesis, y >0 or
Bier1:n) 7 0. Using this form of the hypothesis, we can derive our score statistic.
Table 1 provides a list of notation used throughout the article.

3. STATISTIC FOR OFFLINE AND ONLINE DETECTION

We now derive the ST statistic for offline change point detection. The log-likelihood
function for the hypothesis test in (2.8) is given by

1 1
Ly, p1,0) = —Elog (2m) — Elog YV (0) + X

1

3 (y(k+1:N) - ﬂ(k+1:N))T(“/Vr(9) + Zf)_l(y(k+1:N) - .“(k+1:N))-

To cope with unknown parameters, we may use the generalized likelihood ratio (GLR)
statistic based on (3.1). However, (3.1) involves the inversion of a pt by pt dimensional
matrix yV,(0) + X, which incurs a complexity of O(p>t’) for a given 7. Recall that t =
N—k, so t=1,2,---,N. Hence, the complexity of computing the GLR statistic is
O(p*>N?), which grows polynomially with N (the time horizon), and the computation of
the likelihood statistic becomes prohibitive.

(3.1)

3.1. Quadratic score statistic

Define the following notation. Let A.(0) =X 'V,(0), B.(0) =X 2V (0)E '/,
c(1,0) = tr(A,(0)), and d(z,0) = 2tr[E 'V (0)X;'V.(0)], where tr(-) denotes the trace
of a matrix. We now derive the score statistic for detection. Take the derivative of
£(y, p,7,0) in (3.1) with respect to y and p and evaluate at y=0 and g = 0. Then we
obtain

or ‘

)= gﬁ wor=0 | _ | =560 3k E VeOE Y (3.2)
_ Z_l '
8;4‘,,:0,}':0 t Y(k+1:N)

The derivation of (3.2) is given in Appendix A. It can be verified that E[g(k,0)] =0
under the null hypothesis, where 0 represents the zero vector. It can also be shown that
the covariance of the score vector ¢(t, 0) is given by
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d(t,0) 0
0 r!

1
Covle(r,0)] = | 4

As suggested by Rao (1948), when the likelihood function involves multiple parameters,
the score statistic is a quadratic function of the efficient score vector. In our case, this
becomes

S(z,0) = ¢(z,0) " Covlg(z, 0)] '¢(t,0)

2
Ve E Ve OE g —c@)] (3.3)
B d(z,0) F Y lerrnEe Yiernn):

The most expensive part in evaluating (3.3) is computing £_'. According to (2.5), we
have £_' = I, ® 7!, which means that we only need to compute X!, which has a
complexity O(p®). Hence, the computational complexity of evaluating S(t, ) is much
lower than that of the GLR statistic. Moreover, because X is assumed known and fixed,
its inversion can be precomputed. However, in (3.1), the likelihood function involves
(yV+(0) + £,)”", which has to be computed for each 7 value.

Because the expected value of S(t,6) increases as 7 increases, it needs to be normal-
ized to have mean 0 and variance 1 under the null hypothesis. This leads to the follow-
ing quadratic score statistic,

_ S(t,0) — E[S(7, 0)]
Var[$(z, 0)]

S(z,0) (3.4)

where E[S(7,0)] = pt + 1, and the variance is given by (the derivation can be found in
Appendix B)

Var[S(z, 0)] = 2pt + 10 — 24 ;((f’g))z (7 VL (0)Z VL ()2, V,(0))
48 - -1 ~1 -1
+Wtr(; VL(0)E VL (0)Z, V. (0)Z ' V.(0)).

Then we may construct the quadratic detector using S(t,0), which detects a signal
when the maximum standardized score statistic over all possible parameter values of
0 € © and 7 exceeds a prespecified threshold b > 0,

max  S(t,0) > b.
€@, 1<t<N

3.2. S?T statistic for offline change point detection

Although the quadratic score statistic achieves the maximum discrimination between
the null and the alternative distribution (Rao 1948), theoretical analysis of the detection
statistic is intractable; thus, it is difficult to calibrate the threshold b to control the false
alarm rate. In this section, we propose a simpler statistic, namely, the ST statistic,
which is the score statistic with respect to y only:
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_ g_f #=0,7=0 _ y;errJrl:N)Er_l VT(Q)ZT_IJ’(Nle:N) — (v, 0)
W(w0) = B d(z,0) T (35)
Var[d' 1=0, ,x—o} ’

Note that both the spatial and temporal correlations are still captured in the statistic by
X! in (2.5) and V,(0) in (2.6), respectively. Under the null hypothesis, the detection
statistic W(t, 0) has mean 0 and unit variance. The detection procedure claims a change

when the maximum of the score statistic exceeds a prespecified threshold b > 0,

W(z,0) > b.
0co, 1i<N (v0) 2 (3.6)

3.3. ST statistic for online change point detection

We now present an online change point detection procedure based on the S*T statistic.
In the online setting, the sample size N is not fixed and samples are sequentially col-
lected. A signal may occur at an unknown time k. Our goal is to detect the emergence
of the signal as soon as possible.

Consider a sequential version of the hypothesis test in (2.1), where the number of
samples N increases. We adopt a sliding window approach for online detection and
construct the detection statistic using the most recent w samples at each time, where
is a prespecified window length (demonstrated in Appendix C). Given a current time ¢,
the detection statistic constructed using the most recent @ samples is given by

Z Vw(H)Z Y(t—w+1:t) —c(o,0)
d(w,0) '

y(t o+1:t)

Wi(w, 0) = (3.7)
The detection procedure for online change point detection is a stopping time, which
raises an alarm when the detection statistic exceeds a threshold b > 0 for the first time:

T = inf{t : rgle%x Wi, 0) > b}, (3.8)

where b is a prespecified threshold. Note that this corresponds to a type of Shewhart
chart (Shewhart 1931).

4, THEORETICAL APPROXIMATIONS
4.1. Significance level for offline ST statistic

We present a theoretical approximation for the significance level of the detection pro-
cedure defined in (3.6). The approximation is quite accurate and can be used to avoid
the time-consuming simulation when choosing an appropriate b. Denote the standard
normal density function by ¢(x) and its distribution function by ®(x), and define a
special function (Siegmund and Yakir 2007):

= 00 -

VX =50@ £ b5 :
:0(G) +¢0)
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Define the following quantities, which are useful to state our theoretical approximation
results:

B tr(AI+1<9)AT+1(6)) _
e 6) = tr(A-(0)A-(0)) 1] 7
H(r,0) — — PE[W(t,0)W(z,s)] ’ (4.3)
0% s=0
~ (exp = &oln 0)b + (& (1, 0))
g(t,0) = ( P , (4.4)
c(r, ) 1 2¢B.(0)
Q) =~ T 38 I~ e ‘ ()

Note that (&) is the cumulant generating function (a.k.a. the log-moment generating
function) of the detection statistic W(z, 0). The following theorem is our main theoret-
ical result, which provides an analytical approximation for the significance level of the
detection procedure defined in (3.6).

Theorem 4.1 (Approximation for significance level). When the threshold b — oo and
0 € ® C RY under the null hypothesis, the probability of false alarm for the procedure
defined in (3.6) is given by

Py, ( max W(r,0) > b)

0c®
1<t<N

gZJ [b(= O] ¢(x, 0)|H(z, 0)| bulx.0) 1/( bzu(;’ 6)> do + o(1),

—140€0® 60 )

where

SR M X0l 2680
- acor 520 o520 ')

and &y(t,0) is the solution to

! 26B.0)] B
d(rﬁ)tr(llpf— d(r,B)] B0 AT(H)) =b (47)

Note that the solution of (4.7) can be obtained by a simple grid search when the dimen-
sion of 0 is not too large.

The main proof technique for Theorem 4.1 is change of measure, which evaluates the
boundary hitting probability of Gaussian processes (Siegmund 1985; Yakir 2013). See
Appendix D for the derivation of (4.5) and Appendix E for the proof of Theorem 4.1,
when the dimension of parameter 0 is 1 (i.e., d=1). The proof can be generalized to
multidimensional cases.
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Table 2. Simulated and approximated significance level when the signal {x,} follows a VAR(1)
model (0 € [0.1,0.9], N=50 and p = 0.3).

p=2 p=9 p=36

b Simulation Approximation Simulated Approximation Simulated Approximation
35 0.097 0.097 0.065 0.057 0.036 0.042

4 0.063 0.068 0.036 0.030 0.013 0.019

45 0.038 0.047 0.018 0.019 0.006 0.008

5 0.033 0.032 0.011 0.012 0.003 0.003

55 0.022 0.021 0.005 0.007 0.002 0.001

6 0.015 0.014 0.003 0.004 0.0004 0.0005

6.5 0.006 0.009 0.002 0.002 0.0002 0.0002

Theorem 4.1 is useful for calibrating the threshold b analytically, avoiding the oner-
ous numerical simulations. Because the detection statistic requires evaluating the max-
imum over the set of 0, if we determine the threshold by running numerical
simulations, we will have to run a large number of Monte Carlo trials for each discre-
tized value of 0 to obtain an estimation with good accuracy. On the other hand, apply-
ing the theorem to obtain b is relatively easy, because we only need to evaluate the
integral numerically.

Although the theorem is an asymptotic result for large b, we find that this holds even
for not very large b values in numerical studies. We verify the accuracy of Theorem 4.1
by comparing the approximated significance levels with simulated ones. In the experi-
ment, we assume that the signal {x;} follows a VAR(1) model, x; = (1 — 0)u + Ox,—; +

€/, where 0 € R. Hence, V,(0) has the form in (2.6). We further assume that the spatial
correlation of the signal follows a spherical model, as defined in (2.3), with parameter
p = 0.3. Set N=50. The search space of 0 is {0.1,0.2, ---,0.9}. In addition, the covari-
ance matrix of the noise process X is assumed to be a p by p identity matrix.
Simulation results are based on 5,000 independent replications. Both simulated and
approximated false alarm rates are reported in Table 2. As one can observe, the
approximation is quite accurate.

In the proof of Theorem 4.1, we approximate the detection statistic W(z, ) as a two-
dimensional Gaussian random field. In the following, we verify by simulation that such
an approximation is reasonable. We generate data under the null hypothesis and verify
the distribution of the detection statistic W for a set of fixed values of 0 and 7. For the
signal, we use a VAR(1) model, x, = (1= 0)u+ Oxp_, + €/, as the temporal correlation
model and a spherical model for spatial correlation model. We assume that the noise
has the same spatial correlation structure as the signal. We set N=50 and p=9. Figure
1 shows the histograms and q-q plots of W for fixed values of 0 and 7 based on 1,000
repetitions, which indicate that the Gaussian random field approximation is reasonable.

4.2. Average Run Length for online S*T statistic

In the online setting, the false alarm rate is characterized by the average run length
(ARL), which is the expected stopping time of the procedure when there is no signal,
denoted as Ey, (7). The following theorem provides an approximation for Ey, (7).
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Figure 1. Histograms and g-q plots of W(0, t) for fixed values of 0 and 7: (a), (c) T=30, 0 = 0.3 and
(b), (d) t=40, 0 =0.2.

Theorem 4.2 (Approximation of average run length). Assume that b — oo. For the stop-
ping time defined in (3.8),

d
2

B () = on) (J{) L8l O (o, (000 2120 v( i 9)>d9)

cO® (o, 0) 2m w

(14 0(1)).
(4.8)



SEQUENTIAL ANALYSIS (&) 573

Q-Q Plot
3.754
2.35+
0.94+
o
=
g
o
°
o
=
-0.47
-1.88
-3.29 .
-3.29 -2.28 -1.28 -0.27 0.74 1.74 275 375
Sample Value
<l Range of sample «#= 1 - Normal (discrepancy = 0.04799)
Q-Q Plot
3.64+
2.26
0.87+
o
=
g
]
°
o
=
-0.52
-1.90
-3.29 T :
-3.29 -2.30 -1.31 -0.32 067 1.66 265 364
Sample Value
<l Range of sample <= 1 - Normal (discrepancy = 0.03916)

Figure 1. Continued.

The derivation of Theorem 4.2 uses a similar technique based on the change of measure
as in the derivation of Theorem 4.1. By Theorem 4.1, we can first obtain an approxima-
tion to the probability Py, (7 < m), where m >0 is fixed and sufficiently large:
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0c®
1<t<m

Py, (T < m) = Py, (max Wi(w, 0) > b)

d
2

-en (Y [l O g(wﬁﬂH(wﬁ)ﬁbz“(w’g)”( bz“(fﬁ))d@ +o(1).

~)oco  Eo(,0) 20

(4.9)

As argued in Siegmund and Venkatraman (1995) and Siegmund and Yakir (2008), the
stopping time 7 is asymptotically exponentially distributed and is uniformly integrable.
Hence, for large m, Py, (7 < m) — [1 — exp (—2m)] — 0, where / is approximately
equal to the right-hand side of (4.9) divided by m. Then by the first-order Taylor
expansion of an exponential term, we can obtain EHO(’T) ~ 1!, which leads to (4.8).

The accuracy of Theorem 4.2 is verified by comparing the simulated and the approxi-
mated Ey,(7). In the experiments, the signal {x/} is generated by a VAR(1) model,
x=(1—0)u+0x/_, +€, where 0 cR. Hence, V.(0) has the form in (2.6).
Meanwhile, we assume that the spatial correlation of the signal follows a spherical
model, as defined in (2.3), with parameter p = 0.3. The search space of parameter 0 is
{0.1,0.2, - --,0.9}. In addition, the covariance matrix of the noise process X is assumed
to be a p by p identity matrix. The results based on 5,000 replications are presented in
Figure 2. The comparison between the simulated and approximated ARLs shows that
the approximation in Theorem 4.2 is quite accurate.

5. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the proposed detection procedures.
Online change point detection is the focus here because it is the most relevant setting
for our targeted applications of water quality monitoring. The performance comparison
for offline change point detection will be similar. We adopt the commonly used per-
formance metric for sequential change detection, the expected detection delay (EDD),
after a change has occurred. There is a trade-off between the in-control ARL and the
EDD. Typically, we choose the threshold for each procedure so that its ARL meets a
prespecified large value (e.g., 5,000 or 10,000), so that there is rarely a false alarm. We
also compare with other methods on simulated and real data.

5.1. Simulation

The detection procedure defined in (3.8) is compared with two other procedures: (i) an
online detection procedure defined similarly to (3.8) using the quadratic score statistic
S(r, ) and (ii) a multivariate cumulative sum (MCUSUM) procedure (Healy 1987). In
the MCUSUM procedure, at each time step, a T? statistic (Hotelling 1947) is calculated,
which is combined with a CUSUM procedure.

In the experiment, the signal is generated from a VAR(1) model, x; = 1-0)u+
Ox¢_y + €, with p=2 and parameter 0 = 0.5. The spatial model of the signal follows
the spherical model defined in (2.3) with p = 0.3. For both procedures, based on S°T
and the quadratic score statistic, respectively, we use a window length w =50 and the
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Figure 2. Comparison of approximated and simulated ARL for (a) p=1, (b) p=2, and (c) p=9.

search space for the parameter 0, {0.1,0.2, ---,0.9}. Thresholds for all three procedures
are calibrated so that they have the same false alarm rate Ep, (7) = 100. To evaluate the
EDD, we assume that the change occurs at t=1. The mean of the signal u = E[x,] =
p 1y, p>0. We explore different values of u for the mean shift and y for the magni-
tude of covariance matrix of the signal. If u=0 and y > 0, then there is only a
change in covariance; if both u and y are positive, then there are both mean shift and
covariance change. Hence, the experiments demonstrate that the proposed detection
procedure is suitable for both cases where there is either mean and/or covari-
ance change.

Table 3 reports the simulated EDD of three procedures based on 5,000 repetitions.
The smallest EDD values for each setting are marked in bold. The comparison shows
that the two score statistic procedures, which capture both spatial and temporal correl-
ation, outperform the MCUSUM procedure (which only captures the spatial correlation
information). Such an advantage is more significant when the signal is weak; that is,
when y or p are both small. This demonstrates that incorporating temporal correlation
information indeed improves detection performance. We also find that S’T outper-
forms the quadratic score statistic in many settings. This can be explained by the fact
that the quadratic score statistic needs to search more unknown parameters (the
unknown p); thus, the statistic is noisier than S*T when there is no change.
Therefore, to achieve the same ARL, the threshold for the quadratic score statistic
tends to be higher, which may cause a larger detection delay. Given that S’T enjoys
tractable theoretical analysis and an accurate approximation for its false alarm rate, it
is a good option for practitioners.

5.2. Real data example: Solar flare detection

We apply our detection procedure to a data set, which is acquired by the Solar Data
Observatory (National Aeronautics and Space Administration 2013). The data are a
video sequence that contains an abrupt emergence of a solar flare that occurs around
time t=227. In this video, the normal state is a sequence of slowly drifting images of
the solar surface, and the changes are much brighter transient solar flares. Figure 3
shows a snapshot when a solar flare occurs at t=227.

The size of the images is 232 x 292 pixels. After vectoring the images, this leads to
67,744 dimensional vectors. Due to the high dimensionality, it is computationally
expensive to apply our detection procedure on the original images directly. Hence, we
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Table 3. Simulated expected detection delay.
ST Quadratic score statistic MCUSUM

P\u 0 0.1 0.5 1 2 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.01 97.27 59.08 6.37 280 149 9805 6582 645 277 151 9837 7767 943 356 179
0.05 96.28 57.96 595 272 149 9532 63.19 674 281 152 9679 7197 928 354 179
0.1 7293 53.16 6.04 278 150 8249 5678 674 286 149 8070 6516 921 354 178
0.2 6532 46.16 596 277 150 7487 4883 628 278 147 6733 5517 9.02 352 179
05 3940 3032 581 278 156 37.07 3342 607 280 150 4152 3587 836 347 178
1 2091 1942 565 275 1.51 2275 2051 564 276 155 2371 2131 745 345 177

Smallest EDD values for each setting shown in bold.

apply a spatial scanning scheme by breaking the original image into overlapping patches
of dimension 20 x 20, as demonstrated in the right panel of Figure 3. The detection
statistic is calculated for each image patch (of dimension p=400). Then, we take the
maximum of the detection statistic over all of the patches.

We assume that before the solar flare, the data form a white noise process with no
spatial and temporal correlation. The mean and variance of the noise process are esti-
mated by the first 50 samples in the sequence. For the signal, we use a VAR(1) model,
x=(1—0)u+0x,_, + € to capture the temporal correlation. The spatial model of
the signal is captured by a spherical model defined in (2.3). Online procedures are

implemented with a window length of w =10. Figures 4(a)-4(c) show the values of ST
statistic, the quadratic score statistic, and the MCUSUM statistic on a logarithmic scale,
respectively. Because in this case we do not have the ground truth, we cannot evaluate

the true EDD. However, as we can observe, both S°T and the quadratic score statistics
obtain peak detection statistics at around ¢=227, and another solar flare at around
t=173, indicating that both statistics can successfully detect the emergence of solar
flares. However, the MCUSUM statistic misses both solar flares.

5.3. Case study: Water quality monitoring

In this section, we consider a case study of real-time water quality monitoring using a
sensor network deployed along the Altamaha River in Georgia, United States. The goal
is to detect contaminant spills that pollute the river as quickly as possible.

We study the Altamaha River in Georgia, United States. The shape of the river is
shown in Figure 5(a). The nodes in the river network represent monitoring locations,
where concentration data are collected. The contaminant concentration data for such a
river network are simulated by the Storm Water Management Model (SWMM; see
Rossman 2010) developed by the United States Environmental Protection Agency.
SWMM is widely used in environmental engineering for water-related studies. SWMM
requires geologic, geometric, and fundamental hydrodynamics data to construct a river
network. Given rainfall information, as well as the location, intensity, and duration of a
contaminant spill, SWMM simulates the contaminant transport process through the
river over a period. Data generated by SWMM are highly close to real data and hence
are widely used for water-related study when real data are not available.

In river dynamic simulation systems, rain events and spill events bring randomness
to the contaminant transport. We use the same data as those in Telci and Aral (2011)
to generate rain events. The Altamaha River watershed is divided into 10
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Figure 3. Detection of solar flare at t =227: (left) snapshot of the original SDO data at t =227; (right)
overlapping image patches for dimensionality reduction.
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Figure 4. Detection statistics on logarithmic scale.

subcatchments, as shown in Figure 5(b). The rainfall measurements are obtained from
different United States Geological Survey stations close to these 10 subcatchments in
2006. Based on the statistical analysis of these measurements, five rain patterns are gen-
erated for each subcatchment. Each rain pattern describes time-dependent rainfall
events and keeps changing hydrologic conditions in each catchment during the simula-
tion. Note that the rain patterns for each subcatchment are different, and thus there are
5'° possible combinations for the entire watershed.

Due to the nature of hydrodynamics, there is a strong spatial correlation among the
concentration data collected at different locations in the river network. However, the
shape of the network and the direction of the stream impose constraints on spatial
modeling. For example, there should not be a correlation for data collected at two loca-
tions that do not share a common flow. A reasonable spatial correlation model is crit-
ical here.

We adopt the so-called tail-up spatial model for stream networks, which is proposed
based on the moving average constructions in Ver Hoef and Peterson (2010). The tail-
up models have the following desired properties: (i) they use stream distance rather
than the Euclidean distance, which is defined as the shortest distance along the stream
network between two locations; (ii) statistical independence is imposed on the samples
located on stream segments that do not share a common flow; and (ili) proper
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Figure 5. Water quality monitoring using sensor network: (a) shape and monitoring locations, (b) 10
subcatchments of the Altamaha River (Telci and Aral 2011), and (c) an example of stream network
with nine stream segments (i = 1, ...,9) and three locations s;, s,, S3.
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Figure 5. Continued.

weighting is incorporated on the entries of the covariance matrix when the line seg-
ments in the network are splitting into multiple segments to ensure that the resulting
covariance is stationary.

To explain the tail-up models, we first introduce some notation. A stream network
consists of a finite number of stream segments. We index them with i=1,2, ---.
Denote the index set of stream segment as I and the locations on the network as s;, j =
1,2, ---. Let Ds]. C I be the index set of all stream segments that are downstream of
location s; (which means that water from s; flows into these segments) including the
segment containing s;. Figure 5(c) illustrates a simple stream network with [ =
{1,2,---,9}, D, ={1}, D, ={1,3,5}, and Dy, = {1,3,4,6}. Two locations, s; and s,
are said to be “flow connected” if D, N Dy, = Dy; or Dy,. Finally, define

B. . — (Dsj ﬂDsk) N (Dsj UDSk), if s; and s; are flow-connected;
ik , otherwise.

Here B;,,, is the set of stream segments between two locations, including the segment
for the upstream location but excluding the ones for the downstream location. For
example, B ;, = {3,4,6} and B,,;, = @. To ensure the stationarity of the variances,
Ver Hoef and Peterson (2010) suggested assigning weights to each stream segment in
the network. In a stream network, one segment splits into two segments when it goes
upstream. For example, segment 1 splits into segments 2 and 3 in Figure 5(c). One way
to weight the segments is based on the flow volume of each segment. For example, we



580 @ J. CHEN ET AL.

weight segments 2 and 3 by w, and ws, where w, + w3 =1 and w,/w; equals the ratio
of the flow volume between segments 2 and 3. Using tail-up models, the covariance
between two locations, s; and s; on the stream network is given by

0, if s; and s are not flow-connected;
C(Sj,SkK) = Cly if Si = Sk
[lics, . vVWilip (d (j>Sk)/ Cz) , otherwise,

Sj> Sk
(5.1)

where d(sj,sk) is the stream distance between s; and s, {; is the variance parameter,

p(-|y) is the correlation function with a parameter (5, and w; is the weights on the seg-
ment i. The correlation function p(+|(,) can be derived from many commonly used spa-
tial models that we discussed in Section 2.

For illustration, consider the example in Figure 5(c). If an exponential model is used
for spatial correlation, the covariance matrix of s, s,, and s; can be constructed based
on (5.1) as follows:

1 \/W3W5 \/W3W4W6 CO —+ Cl Cle_d(sl)sl)/évz gle_d(sl’%)/éz
VWasWs 1 0 O | {edr2)/G G+ (el a)/G
V0 1 I

where © denotes the Hadamard (element-wise) product operation between
two matrices.

In our case study, we use the tail-up model with an exponential correlation function
to model the data collected at different locations on the Altamaha River network. Both
the signal and the noise share the same spatial correlation structure. The spatial covari-
ance matrix for p=100 nodes on the river network is constructed based on the stream
distance and flow volume information. We use SWMM to generate data when there is
no change and obtain the maximum likelihood estimates for the parameters in the
model, 2 1 = 0.027 and 52 = 0.68. The covariance matrix is illustrated in Figure 6. For
temporal correlation, we use a VAR(1) model x;, = (1- 0);1 + Ox¢_1 + € to capture the
temporal correlation of a contaminant spill as suggested in Clement and Thas (2007)
and Clement et al. (2006).

We apply the online change point detection procedure based on S’T to detect con-
taminant spills in the Altamaha River network. We also compare it with two other
methods: (i) online detection based on the quadratic score statistic and (ii) the
Hotelling’s T* chart. Among the 100 nodes on the river network, 10 of them (nodes 1,
15, 19, 33, 36, 50, 58, 67, 84, 95, marked by red stars in Figure 6(c)) are used as possible
contaminant spill locations, and the remaining 90 nodes are used for collecting meas-
urements every 15min. In each replication, we run SWMM to simulate the river net-
work during a 10-day period. A single instantaneous spill is generated, with a spill
location randomly selected from the 10 possible locations. The spill starting time is uni-
formly distributed between the first 15 to 20h. The intensity of the contaminant spills
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node

Figure 6. (a) Visualization of the spatial covariance matrix using the tail-up model for 100 sensor net-
works over the river system; the spatial covariance matrix has a block structure, with blocks in the
matrix corresponding to the branches of the river with matching colors in (b); (c) node indexes of the
Altamaha River network and potential spill locations marked by red stars.

follows a uniform distribution, and we consider three different levels: U(10, 100) (low),
U(100, 250) (medium), and U(250, 500) (high) in units of grams per liter.

The thresholds for the three detection procedures are adjusted so that the in-control
ARLs are set to be 10 days (960 samples). For the two procedures based on S’T and the
quadratic score statistic, the length of the sliding window is chosen to be 12.5h (50
samples). Table 4 reports the average and standard error of detection delays obtained
from 100 simulated spills. For spills with high intensity, all three methods achieve simi-
lar performance regarding detection delay, because strong signals are easier to detect.
However, when the signal is relatively weak (low and medium spill intensity), the pro-
posed detection statistic S’ T significantly outperforms the other two methods.
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Table 4. Simulated expected detection delay in hours (numbers in parentheses are standard errors).

Spill intensity ST Quadratic score statistic I

Low 38.285 (3.655) 45.822 (4.675) 52.959 (5.035)
Medium 26.301 (1.679) 28.522 (1.873) 30.753 (2.192)
High 25.519 (1.697) 25.489 (1.667) 25.563 (1.860)

Smallest EDD values for each spill intensity shown in bold.

6. CONCLUSIONS

In this article, we propose a novel efficient score statistic S°T to detect the emergence
of a spatial-temporal signal from a noisy background in both the offline and online set-
tings. The statistic captures the spatial and temporal correlation simultaneously and
enjoys a relatively low computational cost. An accurate approximation for its false alarm
rate is presented. Numerical results based on simulated data, real solar flare data, and a
real case study of water quality monitoring show that the proposed ST statistic has a
clear advantage over existing methods.

APPENDIX A: DERIVATION OF . —9¢
p|,=0,7=0.

The following propositions are used in the derivation of % | §=0, 70"

Proposition A.1. Let M(t) be a nonsingular square matrix whose elements are functions of a
scalar parameter o. Then

om(t)"! _ OM(t
( ) _ —M(t) 1 ( )
O O
Proposition A.2. Let M(t) be a nonsingular square matrix whose elements are functions of a
scalar parameter o. Then

M)

oMm(1)|
O
By Proposition A.1, we can calculate
log [yV:(0) + |
9y
= tr(Z;lV,(())).

o 6M(t))'

— (o ey 2

e (v +2)7v.0)

=0

For convenience, here we use y and p to denote y,.yy and p, .- By Proposition A.2, we have

1

Ay — ) (V) + X)) (v — p)

Iy #=0,7=0
=y (V.0 +Z.) VO (V) + )y,
— IV Y.

(V0 +X,)
=@ —n %(}'—ﬂ)

u=0,7=0

Hence, we have

o
o

1 1
=——tr(Z7'V(0) + -y 2 V(0)E Ny,
PP 2

as appeared in equation (3.2).
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APPENDIX B: DERIVATION OF Var[S(z, 0)]

Here we calculate the variance of the statistic S(t, 0) defined in (3.3). For convenience, we use y
to denote Y(kr1n)> use Vto denote the matrix }:;lVf(H)E;I, use X to denote X;, and use ¢ and
d to denote c(t, 0) and d(t,0), respectively. Then we can write

S(z,0) = m

Ty 1y,
Tty Ty

We have that E[S] = pt + 1, and
Var[S(z, 0)] = E[$?] — E[s]*.

In the following, we calculate E[S?].

E[$? =B [(% +yT21yﬂ

(B.1)
TV _ )2 Tyvey )4
_ E[(yTE—ly)z} 4+ 2E b'vy—o y'Ely| +E b'vy—o .
d a2
The first term can be calculated as
E [(yT):fly)z} = p*c* +2p1. (B.2)
We then expand the second term,
Tve )2
E (v V):j ) yE | = éE[(yTVy)ZyTZ—Iy}
2C L Ty Tyl ¢ Tyt
—gELV Vyy = 7y] +EE[’V .
We calculate the three expectations separately:
E[y"zly] = pr.
E[yT Vny):fly] = (pt+2)c.
E{(yTVy)zyTE‘ly} = (pr+4)(2d + 7).
Combining we get
Ty 2
E (yv):ic)yTE_ly] =2pt + 4. (B.3)

Next we calculate the last term in (B.1),

E

T 4
'y —o N | S T S
dz} :372p1724ﬁtr(2 lyzlvz 1V)+Etr(EIIVE lyz-lvely). (B4

Note that the tedious calculation steps for (B.4) are omitted here.
Combining (B.2), (B.3), and (B.4), we can obtain

48
Var(S(, 0)] = 2pt + 10 — 24%tr(E’IVE’1VZ’1V) + o te(E T VETVETVE ),
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APPENDIX C: DIAGRAM TO ILLUSTRATE OFFLINE AND ONLINE S3T STATISTIC
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Figure C.1. (a) Diagram showing the construction of offline change point detection statistic and (b)
sliding window of length w for online detection.

APPENDIX D: DERIVATION OF THE CUMULANT GENERATING FUNCTION
OF W

Here we present the derivation of the cumulant generating function of W(t, 0) under the null
hypothesis; that is, equation (4.5).
Let z = E?y(kH:N). Under the null hypothesis, z ~ N(O, I,;). For convenience, here we use B

to denote the pt by pr matrix Z;%VT(H)Z;% and use ¢ and d to denote c(z,0) and d(z,0),
respectively. Then, we have

z'Bz — ¢
Vd

Under the null hypothesis, the cumulant generating function of W(z,0) can be calculated as

¥(&) = logE[exp (EW(r,0))] = logE{exp (é (ZB\;EC>>}
— —¢° 4 logE|ex 4Bz
e sl (5F)

B c é&z'Bz\ 1 1
= _éﬁ+ logLexp < Vi ) (2n)%exp <—Ez z)dz

W(t,0) =

B c 1 1 . 2¢B
= et og e T (-3 (- 55)z)
c 2¢B ~
= —C—= 1 It_— >
i\/a—’— Og P \/a

which is equivalent to equation (4.5). Note that the last equation uses the fact that
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1
2

2B
IPT - ﬁ

b (i 2B _
L(Zn)'%ep( 2° (IPT \/H)Z)dz

APPENDIX E: PROOF OF THEOREM 4.1

After discretizing the parameter space, W(z,0) can be treated as a two-dimensional Gaussian
random field, which can be completely characterized by its covariance function. The following
lemma computes the covariance function of W(z, 0).

Lemma E.1. Under the null hypothesis, the covariance function of W(z,0) is

tr(An(Ol)An(GZ)) ,
[tr(An(0)) A0 (01))tr(A0 (02) A0 (0,))]/°

Cov[W(n,0,), W(m,0,)] = (E.1)

where n < m.

The following lemma shows that the first-order approximation of the covariance function in
(E.1) does not have any cross-product term. Thus, the two-dimensional random field is further
decomposed as a sum of two independent one-dimensional random processes.

Lemma E.2. Assuming that 6 and i € Z are small relative to 0 and 7, respectively, the first-order
approximation of the covariance function in (E.1) is given as

(7, 0)

Cov[W(z,0), W(t +i,0 + 8)] ~ 1 — y2(1,0)0* — i+ 0(6%) + o(i), (E.2)
where
oo tr(40)4.(0))
w0 = A 0)a.0) (E3)

u(z,0) is defined in (4.2), and A.(0) = 9A.(0)/d0.
The following two lemmas are needed in the proof. Both lemmas are proved in Xie and
Siegmund (2012).

Lemma E.3. Assume & — 0o, b — 0o, N — oo, with % ~ 1 and % ~ ¢, where ¢ > 0 is some con-
stant. The discretized process b[W(‘L’-i— i,@—}-ﬁj) — f}, where i is an integer and j > 0, condi-

tioned on W(z,0) = ¢, can be written as a sum of two independent processes:

{b[W(r—H,H—l—\/Aﬁj) —g”w(f,e)zg} —S 4V,

where S; = 22:1 ay, with

g~ N(— (7, 0) v, (7, 0) b2>,

27 T

and

b b?
Vf = \/EV(T> 0) WAJV - ’VZ(T’ 0) NAZ '2’

with V.~ N(0,1). u(z,0) and y(z,0) are defined in (4.2) and (E.3), respectively.
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Lemma E.4. Assume that xi, x,, --- are independent and identically distributed N(—p,,a3) ran-
dom variables (y, > 0). Define the random walk Sy =0, S; = 22:1 xp, i=1,2,---, and the
smooth varying random process V; = BAjV — %ZAZjZ, for some constants A >0, f>0. As A — 0,
for some constant o, we have

1[>® - 202 2

—J e P (max$; < —x\P(max$; + max V; < —x dxu>ﬂ % v oo R
Ay i>1 i<0 j>1 V2n \ o1 o1
where v(x) is defined in (4.1).

In the following, we go through the main steps that lead to the approximation of the false
alarm rate in Theorem 4.1 for the case of d=1.

Step 1: We first discretize the parameter 0 € [0;,0,] by a rectangular mesh grid of size %,

where A > 0 is a small number. Note that the discretization mentioned here is used for asymp-
totic analysis only. The probability of false alarm can be approximated as

P<(I3aé§3 W(z ]\/_) ) (E.4)

D:{(z’,j):lgigN, 91<]\/_<02},

where D is the index set

which covers the entire parameter space. Let J(iy,jo) denote everything to the “future” of the cur-
rent index (i, jo) in the parameter space; that is,

](io,jo) = {(l,_]) eD _] Zj(),OI' i> i() and ] :_]0}

Using a similar approach as in Siegmund (1988), the event

S

can be decomposed into a series of “last hitting events” for which (iy, jo) is the “last” location
where W(i, j %) hits the threshold b. Then, the probability in (E.4) can be written as the sum

of probabilities of W(i, ]%) last hits b at (i, jo) over all possible (ig, jo):

A
P w = Pl Wiy, jo—=| > b,
({f}aﬁ) (IJV ) ) <10%>:en ( (ZO ]OvN> (»J>m€f (i0>Jo) (1]\/ ) >
(io>jo)€D 0

x P max i
<<z,;)e/ (io» jo) ( N VN
(E.5)

Step 2: In the following, we obtain an approximation on the probability

]P’(W(io,jo\/iﬁ> —b+ b) ‘zx.

To simplify the notation, we denote W(io, Jjo %) as W here. The key idea is to approximate W

as a Gaussian random field. The Gaussian approximation performs well when the probability of



SEQUENTIAL ANALYSIS (&) 587

interest is close to the mean of the true distribution but suffers from deviation if the probability
is in the tail of the true distribution. Hence, we apply the change of measure technique to shift
the mean of the random field W to the threshold b.

Denote the cumulant generating function of W as /(&) = logE[exp ((W)]. To construct the
new probability measure, we first choose a & > 0 such that /() = b. The new probability
measure dF¢, is constructed using exponential embedding, as follows:

deo = exp (50W - l//(éo))dF>

where dF is the original distribution of W. Let E¢, and P, denote the expectation and probability
under the new measure dFg , respectively. It can be verified that under the new measure

| 9eV(©)

E;,[W] =E[Wexp (&W —y(&))] = e V(o =y/'(&) =b,

&=4

namely, the mean of W is close to the threshold b under the new probability measure.
The threshold crossing probability can be rewritten as

P(w=+3) =5 [ mmm v { W =3
- exp{lﬁ(fo) 7¢0<b+g)]1}»50<w:b+’—£>.

Now we can apply the Gaussian approximation to obtain ]P’gO(W =b —l—’;‘) and use (E.6) to get
the original probability. By treating W as a normal random variable with mean b and variance

o%o, we have . R .
X —x
P: | W=b+~-] =——ex ~ .

Note that in (E.5), the integrands with smaller x values contribute more to the integration,
because the integrand decays exponentially fast with x. Now, when b — oo, 7 — 0 for small x,

(E.6)

and hence exp (#—’;) — 1. The above argument is similar to those used for Laplace’s method.
o

The cumulant generating function of W can be calculated as

tr(ZT*lVT(())) —llog I
(s v V0] 2 T

26812y, (0)x1/?

W) = ¢ 2t (2 V(02 V. (0))]

1/2

Hence, &, can be obtained by solving the following equation numerically:

L, {W—MBI(H)—AT(G) b

Vd(z, O)t d(t.0)

Eventually, we have

A
P(W(io,jo ﬁ) =b +J—;) ~ g(io,jo) exp (—%x), (E.7)

where £() follows the definition in (4.4).
Step 3: Next we tackle with the conditional probability

(e () (b o
max [ —— ioyio—— ) = )

(i>))€J (i0> jo) J\/ﬁ Ojox/ﬁ b

The first-order expansion of the covariance function given by Lemma E.2 does not have any

cross-product term, which implies that if we approximate W(z,0) as a Gaussian random field, it
can be decomposed as a sum of two independent one-dimensional random processes.
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By Lemma E.3, the conditional probability can be written in terms of the decomposed random
processes using the techniques in Siegmund (1988) and H.-J. Kim and Siegmund (1989) as follows:

max i i sJo—— | = -
(i57)€J(i0sjo) ] \/ 0 JO vV N b
]p h [W ( g A > W ( ' ‘ A ) } <
= max L]—) — 10> ]0 —F— S —X
(1) i) TUN OIUN

~ IP(maxSi < fx)IP’(maxS,» +max V; < fx).
i>1 i<0 j>1

A
W(io, jo W) —b +g) (E8)

Step 4: Combining the approximations in (E.7) and (E.8), the approximated false alarm rate becomes

(o (75) =)

CEA ) a A w(s)

(i0sjo)ED
X ]P’(max S < —x)]P(max Si 4+ max V; < —x) dx.
i>1 i<0 j=1

Lemma E.4 enables us to find an expression for the integration in (E.9).

Finally, by Lemma E.4 with o = ;0 B =v2y(x, “<T’ b* and o? <TT’9> b, we

)\/bﬁa =
have the approximated significance level

Z b.“(loyjof) bzll(io,jo%) AN A (E.10)
2\/‘ ’°’J°m N—ip N—i, )\"PUN) N

(fo>jo) €

As A — 0, the Riemann sum (E.10) converges to the approximation in Theorem 4.1.

APPENDIX F: PROOF OF LEMMA E.1: COVARIANCE FUNCTION OF W

Proof. Let C.(0) = X'V (0)x-

T

!, and rewrite C,,(0,) as

Ci1(0,) cu(ez)}

Cnl02) = [cm(ez) C.(0)

Denote y(y_ 1.1) as Y7, and let

We have

E[Y, C,(01)Y, Y, Cou(0:)Y,] — E[Y,) Cu(01)Y,]E[Y,) Ci(02)Y,0]

Cov[W(n,0,), W(m,0,)] = 1/2
° 2(tr{4u (01) 4, (0,) }r{ A, (0) A, (0) 1)

(F.1)
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The first term in the numerator is

E[Y, C,(01)Y,Y,;Cn(02) Y]

= E[(¥] Ca(0),) (Y] C1a(0:)Ya + ¥ Cul(02) Y, + Y] Car (02) Vs + Y Cix(02)Y,) |

= E[Y,[C,(601)Y,,Y,] C,(02)Y,] + E[Y, C,(601)Y,|E[Y] C11(61)Ya]

= 2tr{A,(0:)A,(0,)} + tr{A,(01) }tr{A4,(02)} + E[Y, C.(01)Y,]E[Y, C11(01)Ya].
Note that we have utilized the fact that under null hypothesis, Y5 and Y, are independent
and E[YA] = 0.

The second term in the numerator is

E[Y,)C,(0,)Y,|E[Y,} Cn(0,) Y]

= E[Y;Cn(gl)yn]E[YXCH(GZ)YA + Y, Cu(02)Y, + Y, Co1(02)Ya + YATC12(92)Yn]

=E[Y, C,(0,)Y4]E[Y, Cu(0,)Y,] +E[Y, Cu(61)Y,|E[Y] Ci1(61)Ya]

= tr{A,(0,) }tr{A4,(02)} + E[Y, C,(01)Y,]E[Y. C11(01)Ya].

(F.2)

(E.3)

By combining (F.1), (F.2), (F.3), we obtain the covariance function in Lemma E.1.

APPENDIX G: PROOF OF LEMMA E.2: FIRST-ORDER EXPANSION OF THE
COVARIANCE FUNCTION OF W

Proof. We approximate the covariance function by expanding each term in (E.1) at 0 and keep-
ing only the first-order terms.
The numerator in (E.1) is approximated as

tr(4:(0+ 0)A.(0)) ~ tr(A.(0)4.(0)) + 5tr(A.(0)A.(0))
= tr(A.(0)A.(0)) (1 + dy(x, 0)).

Partition the matrix A, ;(0 + J) as follows:

(G.1)

A (0+68) Ap(0+9)

A i(0+90) =
+i(0+9) An(0+68) A (0+0)

Then rewrite the second term in the denominator in (E.1) as

tr(Arsi(0 + 6)Ai(0 +9))
=tr(A;; (04 6)A11(0+5)) + tr(A (0 4+ 5) A0 (0 +9))
+tr(Az1(0 + 8)A (04 6)) + tr(A (0 + 8)A. (0 + 8)).

After expanding each term at 0, the denominator in (E.1) can be approximated as

(4,04 0)tr(A.14(0 + 0)41,(0 + 9))| P (A 0AOWVTT20aVTTE (G2

where
g— tr(All(e)All(e)) + tr(Alz(G)An(@)) + tr(A21(0)A12(0)) + tr<AT(6)A‘[(0)) (G.3)
tr(411(0)A11(0)) + tr(A12(0)451(0)) + tr(421(0)A1(0)) + tr(A.(0)A.(0)) '
and
21 (4, 04,(0) — (a4 (0))] G

t
T Ltr(4.(0)4.(0))
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Because i and 6 are small compared to 7 and 6, the terms tr(A..(0)A.(0)) and tr(A.(0)A.(0)) are
relatively larger than the subdiagonal elements in (G.3) and, hence, a can be further approximated
as

N tr(A..(0)A.(0))
tr(A.(0)A.(0))

Meanwhile, we approximate the term %{tr(AH,-(())ATH(())) ftr(Af(O)AT(()))} in (G.4) using
% [tr(AHl(O)AHI(O)) - tr(A,(())Ar(O))}, and then we have

(G.5)

b~ é.,u(‘c, 0). (G.6)

The argument for the above approximation is as follows. First, note that
A (0) = ET_J:,»VTH(H) =4, %) (Rf+i(9) ® A)
=R.yi(0) © (Z7'A).
Then we have
tr(Ar+i(0)Ar+i(0)) = tr((RH»i(O) ® (2711\)) (RH:‘(()) ® ():711\)»
= tr(((Rees(O)R...(60)) © (E7AZA))
= tr(Reyi (0)Roy(0) ) tr(ETAZTA)

2

= tr(ZTTAZTA) 35, 5 [Rei(0)]
= tr(T'AZ'A) (i 22k [RTH(Q)LZk + 2 ke [Rf+1(9)L‘2k)
~ tr(ETAZ'A) (i DDA [RT+1(0)}fk).

The last approximation is due to the fact that the (j, k)th element of R..1(0) such that lj — k| >
T is small.

Combining (G.1), (G.2), (G.5), (G.6) and the Taylor expansion \/11? ~1—1x+o(x), we
obtain the approximation in (E.2).
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