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S3T: A score statistic for spatiotemporal change
point detection

Junzhuo Chen, Seong-Hee Kim, and Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia, USA

ABSTRACT
We present an efficient score statistic, called the S3T statistic, to
detect the emergence of a spatially and temporally correlated signal
from either fixed-sample or sequential data. The signal may cause a
mean shift and/or a change in the covariance structure. The score
statistic can capture both the spatial and temporal structures of the
change and hence is particularly powerful in detecting weak signals.
The score statistic is computationally efficient and statistically power-
ful. Our main theoretical contribution is accurate analytical approxi-
mations to the false alarm rate of the detection procedures, which
can be used to calibrate the threshold analytically. Numerical experi-
ments on simulated and real data, as well as a case study of water
quality monitoring using sensor networks, demonstrate the good
performance of our procedure.
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1. INTRODUCTION

Detection of the emergence of a signal in a noisy background arises in many multisen-
sor spatiotemporal surveillance applications. When the monitored process is in control,
sensors observe noise. When the monitored process is out of control, a signal emerges
in the noise. A variety of applications possess particular spatial and temporal correlation
structures. One application is an environmental sensor network, which is used to
monitor river systems to detect a contaminant hazard (Kim et al. 2017). When the sig-
nal emerges, observations from sensors may have a time-varying mean and spatiotem-
poral correlation structures due to water flow.
Exploiting spatiotemporal structures of the change is crucial for detecting weaker sig-

nals. However, most existing methods only capture either spatial correlations (Healy
1987; Crosier 1988; Jiang et al. 2011; Lee et al. 2014, Lee, Goldsman, and Kim 2015) or
temporal correlations (Xie and Siegmund 2012). It is still unclear how to jointly capture
the spatial and temporal correlations in detection statistics. Moreover, computational
complexity is often a concern when we try to jointly model spatial and temporal correl-
ation, especially when there are a large number of sensors, which leads to high-dimen-
sional observations. In particular, one issue with the likelihood ratio statistic is that one
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has to invert the sample covariance matrix, which can be computationally expensive
and numerically unstable. An alternative to the likelihood ratio statistic is the score stat-
istic, which can sometimes lead to a simpler test statistic. When the hypothesis involves
a univariate parameter, the score test is the locally most powerful test (Rao and
Poti 1946).
In this article, we propose a new efficient score statistic for spatial–temporal change

point detection, which we call the S3T statistic. The S3T statistic can capture both spa-
tial and temporal correlations of the signal. Hence, it can react quickly to a change in
the mean and/or the spatiotemporal covariance. The score statistic is computationally
efficient. By avoiding the inversion of the sample covariance matrix, the S3T statistic
has computation complexity Oðp3Þ, where p is the dimensionality of the observations,
whereas the likelihood ratio statistic has Oðp3N3Þ complexity, which grows with the
time horizon N. Our main theoretical contributions are accurate analytic approxima-
tions for the false alarm rate in the offline case and the average run length in the online
case. Using the theoretical approximations, calibrating thresholds to control the false
alarm rate of our procedure can be done efficiently without resorting to onerous
numerical simulations. This is quite useful in practice, because the simulation-based
approach to calibrate thresholds can be quite time consuming, due to the search over
the unknown parameters when evaluating the detection statistics. For scalar observa-

tions, our statistic S3T reduces to the score detector considered in Xie and Siegmund
(2012). Our work provides a novel extension of Xie and Siegmund (2012) for multidi-
mensional observations when there are both spatial and temporal correlations.
The rest of the article is organized as follows. Section 2 formulates the problem.

Section 3 presents detection statistics for both offline and online change point detection.
Section 4 presents theoretical approximations for the false alarm rate in the offline case
and average run length in the online case. Section 5 contains numerical examples for
simulated data and real data, as well as a case study of water quality monitoring.
Finally, Section 6 concludes the article followed by Appendices.

2. PROBLEM FORMULATION

Consider a sequence of samples y‘ 2 R
p, ‘ ¼ 1, 2, � � � ,N, where p is the dimension, and

N is the sample size, which is fixed in the offline setting and grows in the online setting.
We assume that under the null hypothesis, fy‘g forms a series of independent and
identically distributed normal random vectors with spatial correlation caused by, for
instance, sensor measurement errors or background noises from the environment. At
an unknown time k, 1 � k � N � 1, which corresponds to the unknown change point,
a signal emerges on top of the noise. The change may alter not only the mean of fy‘g
but also the spatiotemporal correlation structure, which we will explain in more details.
First, consider an offline setting, where the goal is to detect a change in retrospect

from the samples. Formally, this can be formulated as the following hypothesis test:

H0 : y‘ ¼ w‘, ‘ ¼ 1, 2, � � � ,N,

H1 :
y‘ ¼ w‘, ‘ ¼ 1, 2, � � � , k,
y‘ ¼ x‘ þ w‘, ‘ ¼ kþ 1, � � � ,N,

(
(2.1)
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where w‘ �i:i:d:Nð0,RÞ and R is the spatial covariance matrix of the noise. We assume
that before the change, the samples have no temporal correlation. This is reasonable
because we often have enough reference data before the change to estimate and then
remove the temporal correlation.
Below we describe a model for the signal fx‘g after the change has occurred. The sig-

nal can be spatially and temporally correlated. We capture the temporal correlation
using multivariate time series models. Two examples are the first-order vector autore-
gressive VAR(1) model (Brockwell and Davis 1991),

x‘ ¼ ð1� hÞlþ hx‘�1 þ �‘, ‘ ¼ 1, 2, � � � , (2.2)

where h 2 R, l ¼ E½x‘� and �‘ is the process noise, and the VARMA(1, 1) model, given
by

x‘þ1 þ /x‘ ¼ ð1þ /� gÞlþ g�‘ þ �‘þ1, ‘ ¼ 1, 2, � � � ,

where the parameters are g 2 R and / 2 R: Models with higher orders can also be
used if necessary.
We capture the spatial correlation of the signal using standard spatial correlation

models (Gaetan and Guyon 2010). Denote Var½x‘� ¼ cK 2 R
p�p, where K is the spatial

correlation matrix of the signal x‘, and c � 0 is the magnitude (assuming that the
model is stationary and Var½x‘� does not change over ‘). Note that the variance of the
signal Var½x‘� depends on the variance of the process noise, Var½�‘�: Here we assume
that the structure of K is known but the parameter c may be unknown. This is a com-
mon practice, because once a spatial correlation model is assumed, K is usually specified
by the location of the samples and some unknown parameters. In particular, each entry
of the spatial covariance K is determined by a correlation function, CðdjqÞ, of the dis-
tance d between two samples (sensors) and is parameterized by q. Let 1fAg denote an
indicator function, which takes a value of 1 when the event A is true and 0 otherwise.
Several commonly used correlation functions are the following:

(i) Spherical model (Lee et al. 2014):

CðdjqÞ ¼ 1 1fd ¼ 0g þ q 1fd ¼ 1g þ q
2
1fd ¼

ffiffiffi
2

p
g, q 2 0, 1½ �, (2.3)

(ii) Exponential model (Gaetan and Guyon 2010):

CðdjqÞ ¼ 1 1fd ¼ 0g þ e�d=q 1fd > 0g, q > 0;

(iii) Mat�ern model (Gaetan and Guyon 2010):

CðdjqÞ ¼ 1 1fd ¼ 0g þ 1
2v�1CðvÞ

ffiffiffi
2

p
v1=2d=q

� �v
Kv

ffiffiffi
2

p
v1=2d=q

� �
1fd > 0g,

q > 0,

where q > 0, v is the order of the Mat�ern model that determines the degree of smooth-
ness of the correlation function, Cð�Þ is the gamma function, and Kvð�Þ is the modified
Bessel function of the second kind (Abramowitz and Stegun 1970). Note that when v ¼
pþ 0:5, p 2 R

þ, the Mat�ern model is a product of an exponential and a polynomial of
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order p. When v¼ 0.5, the Mat�ern model is equivalent to the exponential model. When
v ! 1, it converges to the squared exponential covariance function.
Now we derive our detection statistic. For an assumed change location k, let

s ¼ N � k

denote the number of postchange samples. Define a vector by concatenating all samples
after the assumed change point location k,

yðkþ1:NÞ ¼ y>kþ1, � � � , y>N
h i>

2 R
ps, (2.4)

where a> denotes the transpose of a vector a. Define xðkþ1:NÞ and wðkþ1:NÞ similarly.
Then after the change, we have

yðkþ1:NÞ ¼ xðkþ1:NÞ þ wðkþ1:NÞ:

The covariance matrix of the concatenating observation vector consists of two terms
that are due to the signal and the noise, respectively:

Var yðkþ1:NÞ½ � ¼ cVsðhÞ þ Rs,

where cVsðhÞ ¼ Var½xðkþ1:NÞ�,Rs ¼ Var½wðkþ1:NÞ�, and h is the parameter related to tem-
poral correlation, which we will specify next. The second term in the covariance matrix
is given by

Rs ¼ Is 	 R 2 R
ps�ps, (2.5)

where Is is a s by s identity matrix and 	 denotes the Kronecker product.
By concatenating the observation vectors as in (2.4), we can jointly model spatial and

temporal correlation of the signal by one matrix VsðhÞ: For instance, for the VAR(1)
model,

VsðhÞ ¼ RsðhÞ 	 K, (2.6)

where RsðhÞ 2 R
s�s and ½RsðhÞ�i, j ¼ hji�jj, 8i, j 2 f1, � � � , sg is due to the temporal cor-

relation in (2.2). Similarly, if the signal follows the VARMA(1,1) model, the matrix V
can be parameterized by h¢ð/, gÞ with the following form:

VsðhÞ ¼ Rsð/, gÞ 	 K, (2.7)

where Rsð/, gÞ 2 R
s�s; ½Rsð/, gÞ�i, j ¼ 1þ g2 � 2/g if i¼ j and ½Rsð/, gÞ�i, j ¼ /ji�jj�1

ð/� gÞð1� /gÞ otherwise. For other models, similar forms of Vs can be derived: the
temporal dependence of the signal is captured by Rs, the spatial dependence by K, and
the spatial–temporal covariance is a Kronecker product of the two (Genton 2007).
Using the representation above, the detection problem can be reformulated as the fol-

lowing hypothesis test:

H0 : yð1:kÞ � N ð0,RkÞ, yðkþ1:NÞ � N ð0,RsÞ,
H1: yð1:kÞ � N ð0,RkÞ, yðkþ1:NÞ � N ðlðkþ1:NÞ, cVsðhÞ þ RsÞ,

(2.8)

for k ¼ 1, � � � ,N � 1, where 0 is a vector of zeros, lðkþ1:NÞ ¼ E½yðkþ1:NÞ� 2 R
ps and c 2

R > 0: Note that we assume that lðkþ1:NÞ is unknown. Equivalently, under the null
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hypothesis, c¼ 0 and lðkþ1:NÞ ¼ 0, and under the alternative hypothesis, c > 0 or

lðkþ1:NÞ 6¼ 0: Using this form of the hypothesis, we can derive our score statistic.

Table 1 provides a list of notation used throughout the article.

3. STATISTIC FOR OFFLINE AND ONLINE DETECTION

We now derive the S3T statistic for offline change point detection. The log-likelihood
function for the hypothesis test in (2.8) is given by

‘ðc, l, s, hÞ ¼ � 1
2
log ð2pÞ � 1

2
log jcVsðhÞ þ Rsj

� 1
2
ðyðkþ1:NÞ � lðkþ1:NÞÞ

>ðcVsðhÞ þ RsÞ�1ðyðkþ1:NÞ � lðkþ1:NÞÞ:
(3.1)

To cope with unknown parameters, we may use the generalized likelihood ratio (GLR)
statistic based on (3.1). However, (3.1) involves the inversion of a ps by ps dimensional
matrix cVsðhÞ þ Rs, which incurs a complexity of Oðp3s3Þ for a given s. Recall that s ¼
N � k, so s ¼ 1, 2, � � � ,N: Hence, the complexity of computing the GLR statistic is
Oðp3N3Þ, which grows polynomially with N (the time horizon), and the computation of
the likelihood statistic becomes prohibitive.

3.1. Quadratic score statistic

Define the following notation. Let AsðhÞ ¼ R�1
s VsðhÞ, BsðhÞ ¼ R�1=2

s VsðhÞR�1=2
s ,

cðs, hÞ ¼ trðAsðhÞÞ, and dðs, hÞ ¼ 2tr½R�1
s VsðhÞR�1

s VsðhÞ�, where trð�Þ denotes the trace
of a matrix. We now derive the score statistic for detection. Take the derivative of
‘ðc, l, s, hÞ in (3.1) with respect to c and l and evaluate at c¼ 0 and l ¼ 0: Then we
obtain

1ðs, hÞ ¼

@‘

@c

���
l¼0, c¼0

@‘

@l

���
l¼0, c¼0

2
6664

3
7775 ¼

� 1
2
cðs, hÞ þ 1

2
y>ðkþ1:NÞR

�1
s VsðhÞR�1

s yðkþ1:NÞ

R�1
s yðkþ1:NÞ

2
64

3
75: (3.2)

The derivation of (3.2) is given in Appendix A. It can be verified that E½1ðk, hÞ� ¼ 0
under the null hypothesis, where 0 represents the zero vector. It can also be shown that
the covariance of the score vector 1ðs, hÞ is given by

Table 1. Notation.
p Dimension of samples
N Sample size in offline change point detection
k Change point location
s Number of postchange samples, s ¼ N� k

R Spatial covariance matrix of the noise, R ¼ Var½w‘�
K Structure of the spatial covariance matrix of the signal Var½x‘� ¼ cK

c Magnitude of the spatial covariance matrix of the signal Var½x‘� ¼ cK

Rs Covariance of noise in concatenated observations Rs ¼ Var½wðkþ1:NÞ� ¼ Is 	 R

cVsðhÞ Covariance of signal in concatenated observations Var½xðkþ1:NÞ� ¼ cVsðhÞ ¼ cRsðhÞ 	 K

RsðhÞ Matrix that captures temporal dependence of the signal
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Cov 1ðs, hÞ½ � ¼
1
4
dðs, hÞ 0

0 R�1
s

2
64

3
75:

As suggested by Rao (1948), when the likelihood function involves multiple parameters,
the score statistic is a quadratic function of the efficient score vector. In our case, this
becomes

Sðs, hÞ ¼ 1ðs, hÞ>Cov 1ðs, hÞ½ ��11ðs, hÞ

¼
y>ðkþ1:NÞR

�1
s VsðhÞR�1

s yðkþ1:NÞ � cðs, hÞ
h i2

dðs, hÞ þ y>ðkþ1:NÞR
�1
s yðkþ1:NÞ:

(3.3)

The most expensive part in evaluating (3.3) is computing R�1
s : According to (2.5), we

have R�1
s ¼ Is 	 R�1, which means that we only need to compute R�1, which has a

complexity Oðp3Þ: Hence, the computational complexity of evaluating Sðs, hÞ is much
lower than that of the GLR statistic. Moreover, because R is assumed known and fixed,
its inversion can be precomputed. However, in (3.1), the likelihood function involves

ðcVsðhÞ þ RsÞ�1, which has to be computed for each s value.
Because the expected value of Sðs, hÞ increases as s increases, it needs to be normal-

ized to have mean 0 and variance 1 under the null hypothesis. This leads to the follow-
ing quadratic score statistic,

~Sðs, hÞ ¼ Sðs, hÞ � E Sðs, hÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sðs, hÞ½ �

p , (3.4)

where E½Sðs, hÞ� ¼ psþ 1, and the variance is given by (the derivation can be found in
Appendix B)

Var Sðs, hÞ½ � ¼ 2psþ 10� 24
cðs, hÞ
dðs, hÞ2

trðR�1
s VsðhÞR�1

s VsðhÞR�1
s VsðhÞÞ

þ 48

dðs, hÞ2
trðR�1

s VsðhÞR�1
s VsðhÞR�1

s VsðhÞR�1
s VsðhÞÞ:

Then we may construct the quadratic detector using ~Sðs, hÞ, which detects a signal
when the maximum standardized score statistic over all possible parameter values of
h 2 H and s exceeds a prespecified threshold b> 0,

max
h2H, 1�s�N

~Sðs, hÞ � b:

3.2. S3T statistic for offline change point detection

Although the quadratic score statistic achieves the maximum discrimination between
the null and the alternative distribution (Rao 1948), theoretical analysis of the detection
statistic is intractable; thus, it is difficult to calibrate the threshold b to control the false
alarm rate. In this section, we propose a simpler statistic, namely, the S3T statistic,
which is the score statistic with respect to c only:
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Wðs, hÞ ¼
@‘
@c jl¼0, c¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var @‘
@c jl¼0, c¼0

h ir ¼
y>ðN�sþ1:NÞR

�1
s VsðhÞR�1

s yðN�sþ1:NÞ � cðs, hÞffiffiffiffiffiffiffiffiffiffiffiffiffi
dðs, hÞ

p : (3.5)

Note that both the spatial and temporal correlations are still captured in the statistic by
R�1
s in (2.5) and VsðhÞ in (2.6), respectively. Under the null hypothesis, the detection

statistic Wðs, hÞ has mean 0 and unit variance. The detection procedure claims a change
when the maximum of the score statistic exceeds a prespecified threshold b> 0,

max
h2H, 1�s�N

Wðs, hÞ � b: (3.6)

3.3. S3T statistic for online change point detection

We now present an online change point detection procedure based on the S3T statistic.
In the online setting, the sample size N is not fixed and samples are sequentially col-
lected. A signal may occur at an unknown time k. Our goal is to detect the emergence
of the signal as soon as possible.
Consider a sequential version of the hypothesis test in (2.1), where the number of

samples N increases. We adopt a sliding window approach for online detection and
construct the detection statistic using the most recent x samples at each time, where x
is a prespecified window length (demonstrated in Appendix C). Given a current time t,
the detection statistic constructed using the most recent x samples is given by

Wtðx, hÞ ¼
y>ðt�xþ1:tÞR

�1
x VxðhÞR�1

x yðt�xþ1:tÞ � cðx, hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðx, hÞ

p : (3.7)

The detection procedure for online change point detection is a stopping time, which
raises an alarm when the detection statistic exceeds a threshold b> 0 for the first time:

T ¼ inf t : max
h2H

Wtðx, hÞ � b
n o

, (3.8)

where b is a prespecified threshold. Note that this corresponds to a type of Shewhart
chart (Shewhart 1931).

4. THEORETICAL APPROXIMATIONS

4.1. Significance level for offline S3T statistic

We present a theoretical approximation for the significance level of the detection pro-
cedure defined in (3.6). The approximation is quite accurate and can be used to avoid
the time-consuming simulation when choosing an appropriate b. Denote the standard
normal density function by /ðxÞ and its distribution function by UðxÞ, and define a
special function (Siegmund and Yakir 2007):

�ðxÞ ¼
2
x U x

2

� �
� 1

2

h i
x
2U

x
2

� �
þ / x

2

� � : (4.1)
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Define the following quantities, which are useful to state our theoretical approximation
results:

l s, hð Þ ¼ s
tr Asþ1 hð ÞAsþ1 hð Þ
� �
tr As hð ÞAs hð Þ
� � � 1

" #
, (4.2)

H s, hð Þ ¼ �
@2E W s, hð ÞW s, sð Þ
� 	

@2s

����
s¼h

, (4.3)

g s, hð Þ ¼ exp� n0 s, hð Þbþ w n0 s, hð Þð Þ
rn0

ffiffiffiffiffi
2p

p ,

 
(4.4)

w nð Þ ¼ �n
c s, hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
d s, hð Þ

p � 1
2
log

����Ips � 2nBs hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
d s, hð Þ

p ����: (4.5)

Note that w nð Þ is the cumulant generating function (a.k.a. the log-moment generating
function) of the detection statistic W s, hð Þ: The following theorem is our main theoret-
ical result, which provides an analytical approximation for the significance level of the
detection procedure defined in (3.6).

Theorem 4.1 (Approximation for significance level). When the threshold b ! 1 and

h 2 H 
 R
d, under the null hypothesis, the probability of false alarm for the procedure

defined in (3.6) is given by

PH0 max

1�s�N
h2H

W s, hð Þ � b
 !

¼ 1

2pð Þ
d
2

XN
s¼1

ð
h2H

bn0 s, hð Þ
� 	d

2

n0 s, hð Þ g s, hð ÞjH s, hð Þj
1
2
b2l s, hð Þ

2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l s, hð Þ

s

r !
dhþ o 1ð Þ,

(4.6)

where

r2n0 ¼ d s, hð Þ�1tr Ips �
2n0Bs hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

d s, hð Þ
p

" #�1

Bs hð Þ Ips �
2n0Bs hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

d s, hð Þ
p

" #�1

Bs hð Þ

0
@

1
A,

and n0 s, hð Þ is the solution to

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d s, hð Þ

p tr Ips �
2n0Bs hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

d s, hð Þ
p

" #�1

Bs hð Þ � As hð Þ

0
@

1
A ¼ b: (4.7)

Note that the solution of (4.7) can be obtained by a simple grid search when the dimen-
sion of h is not too large.
The main proof technique for Theorem 4.1 is change of measure, which evaluates the

boundary hitting probability of Gaussian processes (Siegmund 1985; Yakir 2013). See
Appendix D for the derivation of (4.5) and Appendix E for the proof of Theorem 4.1,
when the dimension of parameter h is 1 (i.e., d¼ 1). The proof can be generalized to
multidimensional cases.
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Theorem 4.1 is useful for calibrating the threshold b analytically, avoiding the oner-
ous numerical simulations. Because the detection statistic requires evaluating the max-
imum over the set of h, if we determine the threshold by running numerical
simulations, we will have to run a large number of Monte Carlo trials for each discre-
tized value of h to obtain an estimation with good accuracy. On the other hand, apply-
ing the theorem to obtain b is relatively easy, because we only need to evaluate the
integral numerically.
Although the theorem is an asymptotic result for large b, we find that this holds even

for not very large b values in numerical studies. We verify the accuracy of Theorem 4.1
by comparing the approximated significance levels with simulated ones. In the experi-
ment, we assume that the signal x‘f g follows a VAR(1) model, x‘ ¼ 1� hð Þlþ hx‘�1 þ
�‘, where h 2 R: Hence, Vs hð Þ has the form in (2.6). We further assume that the spatial
correlation of the signal follows a spherical model, as defined in (2.3), with parameter
q ¼ 0:3: Set N¼ 50. The search space of h is 0:1, 0:2, � � � , 0:9f g: In addition, the covari-
ance matrix of the noise process R is assumed to be a p by p identity matrix.
Simulation results are based on 5,000 independent replications. Both simulated and
approximated false alarm rates are reported in Table 2. As one can observe, the
approximation is quite accurate.
In the proof of Theorem 4.1, we approximate the detection statistic W s, hð Þ as a two-

dimensional Gaussian random field. In the following, we verify by simulation that such
an approximation is reasonable. We generate data under the null hypothesis and verify
the distribution of the detection statistic W for a set of fixed values of h and s. For the
signal, we use a VAR(1) model, x‘ ¼ 1� hð Þlþ hx‘�1 þ �‘, as the temporal correlation
model and a spherical model for spatial correlation model. We assume that the noise
has the same spatial correlation structure as the signal. We set N¼ 50 and p¼ 9. Figure
1 shows the histograms and q-q plots of W for fixed values of h and s based on 1,000
repetitions, which indicate that the Gaussian random field approximation is reasonable.

4.2. Average Run Length for online S3T statistic

In the online setting, the false alarm rate is characterized by the average run length
(ARL), which is the expected stopping time of the procedure when there is no signal,
denoted as EH0 Tð Þ: The following theorem provides an approximation for EH0 Tð Þ:

Table 2. Simulated and approximated significance level when the signal fx‘g follows a VAR(1)
model (h 2 ½0:1, 0:9�, N¼ 50 and q ¼ 0:3).

p¼ 2 p¼ 9 p¼ 36

b Simulation Approximation Simulated Approximation Simulated Approximation

3.5 0.097 0.097 0.065 0.057 0.036 0.042
4 0.063 0.068 0.036 0.030 0.013 0.019
4.5 0.038 0.047 0.018 0.019 0.006 0.008
5 0.033 0.032 0.011 0.012 0.003 0.003
5.5 0.022 0.021 0.005 0.007 0.002 0.001
6 0.015 0.014 0.003 0.004 0.0004 0.0005
6.5 0.006 0.009 0.002 0.002 0.0002 0.0002
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Theorem 4.2 (Approximation of average run length). Assume that b ! 1. For the stop-
ping time defined in (3.8),

EH0 Tð Þ ¼ 2pð Þ
d
2

ð
h2H

bn0 x, hð Þ
� 	d

2

n0 x, hð Þ g x, hð ÞjH x, hð Þj
1
2
b2l x, hð Þ

2x
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l x, hð Þ

x

r !
dh

 !�1

1þ o 1ð Þð Þ:
(4.8)

Figure 1. Histograms and q-q plots of Wðh, sÞ for fixed values of h and s: (a), (c) s¼ 30, h ¼ 0:3 and
(b), (d) s¼ 40, h ¼ 0:2:

572 J. CHEN ET AL.



The derivation of Theorem 4.2 uses a similar technique based on the change of measure
as in the derivation of Theorem 4.1. By Theorem 4.1, we can first obtain an approxima-
tion to the probability PH0 T � mð Þ, where m> 0 is fixed and sufficiently large:

Figure 1. Continued.
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PH0 T � mð Þ ¼ PH0 max

1�t�m
h2H

Wt x, hð Þ � b
 !

¼ 2pð Þ�
d
2
Xm
t¼1

ð
h2H

bn0 x, hð Þ
� 	d

2

n0 x, hð Þ g x, hð ÞjH x, hð Þj
1
2
b2l x, hð Þ

2x
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l x, hð Þ

x

r !
dh

0
@

1
Aþ o 1ð Þ:

(4.9)

As argued in Siegmund and Venkatraman (1995) and Siegmund and Yakir (2008), the
stopping time T is asymptotically exponentially distributed and is uniformly integrable.
Hence, for large m, PH0 T � mð Þ � 1� exp �kmð Þ

� 	
! 0, where k is approximately

equal to the right-hand side of (4.9) divided by m. Then by the first-order Taylor
expansion of an exponential term, we can obtain EH0 Tð Þ � k�1, which leads to (4.8).
The accuracy of Theorem 4.2 is verified by comparing the simulated and the approxi-

mated EH0 Tð Þ: In the experiments, the signal x‘f g is generated by a VAR(1) model,

x‘ ¼ 1� hð Þlþ hx‘�1 þ �‘, where h 2 R: Hence, Vs hð Þ has the form in (2.6).
Meanwhile, we assume that the spatial correlation of the signal follows a spherical
model, as defined in (2.3), with parameter q ¼ 0:3: The search space of parameter h is
0:1, 0:2, � � � , 0:9f g: In addition, the covariance matrix of the noise process R is assumed
to be a p by p identity matrix. The results based on 5,000 replications are presented in
Figure 2. The comparison between the simulated and approximated ARLs shows that
the approximation in Theorem 4.2 is quite accurate.

5. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the proposed detection procedures.
Online change point detection is the focus here because it is the most relevant setting
for our targeted applications of water quality monitoring. The performance comparison
for offline change point detection will be similar. We adopt the commonly used per-
formance metric for sequential change detection, the expected detection delay (EDD),
after a change has occurred. There is a trade-off between the in-control ARL and the
EDD. Typically, we choose the threshold for each procedure so that its ARL meets a
prespecified large value (e.g., 5,000 or 10,000), so that there is rarely a false alarm. We
also compare with other methods on simulated and real data.

5.1. Simulation

The detection procedure defined in (3.8) is compared with two other procedures: (i) an
online detection procedure defined similarly to (3.8) using the quadratic score statistic
~S s, hð Þ and (ii) a multivariate cumulative sum (MCUSUM) procedure (Healy 1987). In
the MCUSUM procedure, at each time step, a T2 statistic (Hotelling 1947) is calculated,
which is combined with a CUSUM procedure.
In the experiment, the signal is generated from a VAR(1) model, x‘ ¼ 1� hð Þlþ

hx‘�1 þ �‘, with p¼ 2 and parameter h ¼ 0:5: The spatial model of the signal follows

the spherical model defined in (2.3) with q ¼ 0:3: For both procedures, based on S3T
and the quadratic score statistic, respectively, we use a window length x¼ 50 and the
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search space for the parameter h, 0:1, 0:2, � � � , 0:9f g: Thresholds for all three procedures
are calibrated so that they have the same false alarm rate EH0 Tð Þ ¼ 100: To evaluate the
EDD, we assume that the change occurs at t¼ 1. The mean of the signal l ¼ E x‘½ � ¼
l 1p, l � 0: We explore different values of l for the mean shift and c for the magni-
tude of covariance matrix of the signal. If l¼ 0 and c > 0, then there is only a
change in covariance; if both l and c are positive, then there are both mean shift and
covariance change. Hence, the experiments demonstrate that the proposed detection
procedure is suitable for both cases where there is either mean and/or covari-
ance change.
Table 3 reports the simulated EDD of three procedures based on 5,000 repetitions.

The smallest EDD values for each setting are marked in bold. The comparison shows
that the two score statistic procedures, which capture both spatial and temporal correl-
ation, outperform the MCUSUM procedure (which only captures the spatial correlation
information). Such an advantage is more significant when the signal is weak; that is,
when c or l are both small. This demonstrates that incorporating temporal correlation

information indeed improves detection performance. We also find that S3T outper-
forms the quadratic score statistic in many settings. This can be explained by the fact
that the quadratic score statistic needs to search more unknown parameters (the

unknown l); thus, the statistic is noisier than S3T when there is no change.
Therefore, to achieve the same ARL, the threshold for the quadratic score statistic

tends to be higher, which may cause a larger detection delay. Given that S3T enjoys
tractable theoretical analysis and an accurate approximation for its false alarm rate, it
is a good option for practitioners.

5.2. Real data example: Solar flare detection

We apply our detection procedure to a data set, which is acquired by the Solar Data
Observatory (National Aeronautics and Space Administration 2013). The data are a
video sequence that contains an abrupt emergence of a solar flare that occurs around
time t¼ 227. In this video, the normal state is a sequence of slowly drifting images of
the solar surface, and the changes are much brighter transient solar flares. Figure 3
shows a snapshot when a solar flare occurs at t¼ 227.
The size of the images is 232� 292 pixels. After vectoring the images, this leads to

67,744 dimensional vectors. Due to the high dimensionality, it is computationally
expensive to apply our detection procedure on the original images directly. Hence, we
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Figure 2. Comparison of approximated and simulated ARL for (a) p¼ 1, (b) p¼ 2, and (c) p¼ 9.
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apply a spatial scanning scheme by breaking the original image into overlapping patches
of dimension 20� 20, as demonstrated in the right panel of Figure 3. The detection
statistic is calculated for each image patch (of dimension p¼ 400). Then, we take the
maximum of the detection statistic over all of the patches.
We assume that before the solar flare, the data form a white noise process with no

spatial and temporal correlation. The mean and variance of the noise process are esti-
mated by the first 50 samples in the sequence. For the signal, we use a VAR(1) model,
x‘ ¼ 1� hð Þlþ hx‘�1 þ �‘ to capture the temporal correlation. The spatial model of
the signal is captured by a spherical model defined in (2.3). Online procedures are

implemented with a window length of x¼ 10. Figures 4(a)–4(c) show the values of S3T

statistic, the quadratic score statistic, and the MCUSUM statistic on a logarithmic scale,
respectively. Because in this case we do not have the ground truth, we cannot evaluate

the true EDD. However, as we can observe, both S3T and the quadratic score statistics
obtain peak detection statistics at around t¼ 227, and another solar flare at around
t¼ 173, indicating that both statistics can successfully detect the emergence of solar
flares. However, the MCUSUM statistic misses both solar flares.

5.3. Case study: Water quality monitoring

In this section, we consider a case study of real-time water quality monitoring using a
sensor network deployed along the Altamaha River in Georgia, United States. The goal
is to detect contaminant spills that pollute the river as quickly as possible.
We study the Altamaha River in Georgia, United States. The shape of the river is

shown in Figure 5(a). The nodes in the river network represent monitoring locations,
where concentration data are collected. The contaminant concentration data for such a
river network are simulated by the Storm Water Management Model (SWMM; see
Rossman 2010) developed by the United States Environmental Protection Agency.
SWMM is widely used in environmental engineering for water-related studies. SWMM
requires geologic, geometric, and fundamental hydrodynamics data to construct a river
network. Given rainfall information, as well as the location, intensity, and duration of a
contaminant spill, SWMM simulates the contaminant transport process through the
river over a period. Data generated by SWMM are highly close to real data and hence
are widely used for water-related study when real data are not available.
In river dynamic simulation systems, rain events and spill events bring randomness

to the contaminant transport. We use the same data as those in Telci and Aral (2011)
to generate rain events. The Altamaha River watershed is divided into 10

Table 3. Simulated expected detection delay.
S3T Quadratic score statistic MCUSUM

cnl 0 0.1 0.5 1 2 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.01 97.27 59.08 6.37 2.80 1.49 98.05 65.82 6.45 2.77 1.51 98.37 77.67 9.43 3.56 1.79
0.05 96.28 57.96 5.95 2.72 1.49 95.32 63.19 6.74 2.81 1.52 96.79 71.97 9.28 3.54 1.79
0.1 72.93 53.16 6.04 2.78 1.50 82.49 56.78 6.74 2.86 1.49 80.70 65.16 9.21 3.54 1.78
0.2 65.32 46.16 5.96 2.77 1.50 74.87 48.83 6.28 2.78 1.47 67.33 55.17 9.02 3.52 1.79
0.5 39.40 30.32 5.81 2.78 1.56 37.07 33.42 6.07 2.80 1.50 41.52 35.87 8.36 3.47 1.78
1 20.91 19.42 5.65 2.75 1.51 22.75 20.51 5.64 2.76 1.55 23.71 21.31 7.45 3.45 1.77

Smallest EDD values for each setting shown in bold.
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subcatchments, as shown in Figure 5(b). The rainfall measurements are obtained from
different United States Geological Survey stations close to these 10 subcatchments in
2006. Based on the statistical analysis of these measurements, five rain patterns are gen-
erated for each subcatchment. Each rain pattern describes time-dependent rainfall
events and keeps changing hydrologic conditions in each catchment during the simula-
tion. Note that the rain patterns for each subcatchment are different, and thus there are
510 possible combinations for the entire watershed.
Due to the nature of hydrodynamics, there is a strong spatial correlation among the

concentration data collected at different locations in the river network. However, the
shape of the network and the direction of the stream impose constraints on spatial
modeling. For example, there should not be a correlation for data collected at two loca-
tions that do not share a common flow. A reasonable spatial correlation model is crit-
ical here.
We adopt the so-called tail-up spatial model for stream networks, which is proposed

based on the moving average constructions in Ver Hoef and Peterson (2010). The tail-
up models have the following desired properties: (i) they use stream distance rather
than the Euclidean distance, which is defined as the shortest distance along the stream
network between two locations; (ii) statistical independence is imposed on the samples
located on stream segments that do not share a common flow; and (iii) proper

Figure 3. Detection of solar flare at t¼ 227: (left) snapshot of the original SDO data at t¼ 227; (right)
overlapping image patches for dimensionality reduction.

Figure 4. Detection statistics on logarithmic scale.
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Figure 5. Water quality monitoring using sensor network: (a) shape and monitoring locations, (b) 10
subcatchments of the Altamaha River (Telci and Aral 2011), and (c) an example of stream network
with nine stream segments (i ¼ 1, :::, 9) and three locations s1, s2, s3.
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weighting is incorporated on the entries of the covariance matrix when the line seg-
ments in the network are splitting into multiple segments to ensure that the resulting
covariance is stationary.
To explain the tail-up models, we first introduce some notation. A stream network

consists of a finite number of stream segments. We index them with i ¼ 1, 2, � � � :
Denote the index set of stream segment as I and the locations on the network as sj, j ¼
1, 2, � � � : Let Dsj � I be the index set of all stream segments that are downstream of

location sj (which means that water from sj flows into these segments) including the
segment containing sj. Figure 5(c) illustrates a simple stream network with I ¼
1, 2, � � � , 9f g, Ds1 ¼ 1f g, Ds2 ¼ 1, 3, 5f g, and Ds3 ¼ 1, 3, 4, 6f g: Two locations, sj and sk,
are said to be “flow connected” if Dsj \ Dsk ¼ Dsj or Dsk : Finally, define

Bsj, sk ¼
Dsj \ Dsk
� � \ Dsj [ Dsk

� �
, if sj and sk are flow-connected;

Ø, otherwise:



Here Bsj, sk is the set of stream segments between two locations, including the segment

for the upstream location but excluding the ones for the downstream location. For
example, Bs1, s3 ¼ 3, 4, 6f g and Bs2, s3 ¼ Ø: To ensure the stationarity of the variances,
Ver Hoef and Peterson (2010) suggested assigning weights to each stream segment in
the network. In a stream network, one segment splits into two segments when it goes
upstream. For example, segment 1 splits into segments 2 and 3 in Figure 5(c). One way
to weight the segments is based on the flow volume of each segment. For example, we

Figure 5. Continued.
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weight segments 2 and 3 by w2 and w3, where w2 þ w3 ¼ 1 and w2=w3 equals the ratio
of the flow volume between segments 2 and 3. Using tail-up models, the covariance
between two locations, sj and sk on the stream network is given by

C sj, skjf
� �

¼

0, if sj and sk are not flow-connected;

f1, if sj ¼ sk;Q
i2Bsj, sk

ffiffiffiffiffi
wi

p
f1q d sj, skð Þ=f2
� �

, otherwise,

8>>><
>>>:

(5.1)

where d sj, skð Þ is the stream distance between sj and sk, f1 is the variance parameter,

q �jf2ð Þ is the correlation function with a parameter f2, and wi is the weights on the seg-
ment i. The correlation function q �jf2ð Þ can be derived from many commonly used spa-
tial models that we discussed in Section 2.
For illustration, consider the example in Figure 5(c). If an exponential model is used

for spatial correlation, the covariance matrix of s1, s2, and s3 can be constructed based
on (5.1) as follows:

1
ffiffiffiffiffiffiffiffiffiffiffi
w3w5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3w4w6

pffiffiffiffiffiffiffiffiffiffiffi
w3w5

p
1 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w3w4w6
p

0 1

0
B@

1
CA


f0 þ f1 f1e�d s1, s2ð Þ=f2 f1e�d s1, s3ð Þ=f2

f1e�d s1, s2ð Þ=f2 f0 þ f1 f1e�d s2, s3ð Þ=f2

f1e�d s1, s3ð Þ=f2 f1e�d s2, s3ð Þ=f2 f0 þ f1

0
BB@

1
CCA,

where 
 denotes the Hadamard (element-wise) product operation between
two matrices.
In our case study, we use the tail-up model with an exponential correlation function

to model the data collected at different locations on the Altamaha River network. Both
the signal and the noise share the same spatial correlation structure. The spatial covari-
ance matrix for p¼ 100 nodes on the river network is constructed based on the stream
distance and flow volume information. We use SWMM to generate data when there is
no change and obtain the maximum likelihood estimates for the parameters in the

model, f̂1 ¼ 0:027 and f̂2 ¼ 0:68: The covariance matrix is illustrated in Figure 6. For
temporal correlation, we use a VAR(1) model x‘ ¼ 1� hð Þlþ hx‘�1 þ �‘ to capture the
temporal correlation of a contaminant spill as suggested in Clement and Thas (2007)
and Clement et al. (2006).

We apply the online change point detection procedure based on S3T to detect con-
taminant spills in the Altamaha River network. We also compare it with two other
methods: (i) online detection based on the quadratic score statistic and (ii) the
Hotelling’s T2 chart. Among the 100 nodes on the river network, 10 of them (nodes 1,
15, 19, 33, 36, 50, 58, 67, 84, 95, marked by red stars in Figure 6(c)) are used as possible
contaminant spill locations, and the remaining 90 nodes are used for collecting meas-
urements every 15min. In each replication, we run SWMM to simulate the river net-
work during a 10-day period. A single instantaneous spill is generated, with a spill
location randomly selected from the 10 possible locations. The spill starting time is uni-
formly distributed between the first 15 to 20 h. The intensity of the contaminant spills
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follows a uniform distribution, and we consider three different levels: U(10, 100) (low),
U(100, 250) (medium), and U(250, 500) (high) in units of grams per liter.
The thresholds for the three detection procedures are adjusted so that the in-control

ARLs are set to be 10 days (960 samples). For the two procedures based on S3T and the
quadratic score statistic, the length of the sliding window is chosen to be 12.5 h (50
samples). Table 4 reports the average and standard error of detection delays obtained
from 100 simulated spills. For spills with high intensity, all three methods achieve simi-
lar performance regarding detection delay, because strong signals are easier to detect.
However, when the signal is relatively weak (low and medium spill intensity), the pro-

posed detection statistic S3T significantly outperforms the other two methods.

Figure 6. (a) Visualization of the spatial covariance matrix using the tail-up model for 100 sensor net-
works over the river system; the spatial covariance matrix has a block structure, with blocks in the
matrix corresponding to the branches of the river with matching colors in (b); (c) node indexes of the
Altamaha River network and potential spill locations marked by red stars.
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6. CONCLUSIONS

In this article, we propose a novel efficient score statistic S3T to detect the emergence
of a spatial–temporal signal from a noisy background in both the offline and online set-
tings. The statistic captures the spatial and temporal correlation simultaneously and
enjoys a relatively low computational cost. An accurate approximation for its false alarm
rate is presented. Numerical results based on simulated data, real solar flare data, and a

real case study of water quality monitoring show that the proposed S3T statistic has a
clear advantage over existing methods.

APPENDIX A: DERIVATION OF ›‘
›ljl50, c50:

The following propositions are used in the derivation of @‘
@l jl¼0, c¼0:

Proposition A.1. Let M tð Þ be a nonsingular square matrix whose elements are functions of a
scalar parameter a. Then

@M tð Þ�1

@a
¼ �M tð Þ�1 @M tð Þ

@a
M tð Þ�1

:

Proposition A.2. Let M tð Þ be a nonsingular square matrix whose elements are functions of a
scalar parameter a. Then

@jM tð Þj
@a

¼ jM tð Þjtr M tð Þ�1 @M tð Þ
@a

� �
:

By Proposition A.1, we can calculate

log jcVs hð Þ þ Rsj
@c

����
l¼0, c¼0

¼ 1

jcVs hð Þ þ Rsj
jcVs hð Þ þ Rsjtr cVs hð Þ þ Rs

� ��1
Vs hð Þ

� �����
c¼0

¼ tr R�1
s Vs hð Þ

� �
:

For convenience, here we use y and l to denote y kþ1:Nð Þ and l kþ1:Nð Þ: By Proposition A.2, we have

@ y� lð Þ> cVs hð Þ þ Rs

� ��1
y� lð Þ

@c

����
l¼0, c¼0

¼ y� lð Þ>
@ cVs hð Þ þ Rs

� ��1

@c
y� lð Þ

����
l¼0, c¼0

¼ �y> cVs hð Þ þ Rs

� ��1
Vs hð Þ cVs hð Þ þ Rs

� ��1
yjc¼0

¼ �y>R�1
s Vs hð ÞR�1

s y:

Hence, we have

@‘

@l

����
l¼0, c¼0

¼ � 1
2
tr R�1

s Vs hð Þ
� �

þ 1
2
y>R�1

s Vs hð ÞR�1
s y,

as appeared in equation (3.2).

Table 4. Simulated expected detection delay in hours (numbers in parentheses are standard errors).
Spill intensity S3T Quadratic score statistic T2

Low 38.285 (3.655) 45.822 (4.675) 52.959 (5.035)
Medium 26.301 (1.679) 28.522 (1.873) 30.753 (2.192)
High 25.519 (1.697) 25.489 (1.667) 25.563 (1.860)

Smallest EDD values for each spill intensity shown in bold.
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APPENDIX B: DERIVATION OF Var S s, hð Þ½ �
Here we calculate the variance of the statistic S s, hð Þ defined in (3.3). For convenience, we use y
to denote y kþ1:Nð Þ, use V to denote the matrix R�1

s Vs hð ÞR�1
s , use R to denote Rs, and use c and

d to denote c s, hð Þ and d s, hð Þ, respectively. Then we can write

S s, hð Þ ¼ y>Vy� c
� �2

d
þ y>R�1y:

We have that E S½ � ¼ psþ 1, and

Var S s, hð Þ½ � ¼ E S2½ � � E S½ �2:

In the following, we calculate E S2½ �:

E S2½ � ¼ E
y>Vy�cð Þ2

d þ y>R�1y

� �2
" #

¼ E y>R�1y
� �2h i

þ 2E
y>Vy� c
� �2

d
y>R�1y

" #
þ E

y>Vy� c
� �4

d2

" #
:

(B.1)

The first term can be calculated as

E y>R�1y
� �2h i

¼ p2s2 þ 2ps: (B.2)

We then expand the second term,

E
y>Vy� c
� �2

d
y>R�1y

" #
¼ 1

d
E y>Vy
� �2

y>R�1y
h i

� 2c
d
E y>Vyy>R�1y
� 	

þ c2

d
E y>R�1y
� 	

:

We calculate the three expectations separately:

E y>R�1y
� 	

¼ ps:

E y>Vyy>R�1y
� 	

¼ psþ 2ð Þc:

E y>Vy
� �2

y>R�1y
h i

¼ psþ 4ð Þ 2d þ c2ð Þ:

Combining we get

E
y>Vy� c
� �2

d
y>R�1y

" #
¼ 2psþ 4: (B.3)

Next we calculate the last term in (B.1),

E
y>Vy� c
� �4

d2

" #
¼ 3� 2ps� 24

c
d2

tr R�1VR�1VR�1Vð Þ þ 48
d2

tr R�1
s VR�1VR�1VR�1V

� �
: (B.4)

Note that the tedious calculation steps for (B.4) are omitted here.
Combining (B.2), (B.3), and (B.4), we can obtain

Var S s, hð Þ½ � ¼ 2psþ 10� 24
c
d2

tr R�1VR�1VR�1Vð Þ þ 48
d2

tr R�1VR�1VR�1VR�1Vð Þ:
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APPENDIX C: DIAGRAM TO ILLUSTRATE OFFLINE AND ONLINE S3T STATISTIC

APPENDIX D: DERIVATION OF THE CUMULANT GENERATING FUNCTION
OF W

Here we present the derivation of the cumulant generating function of W s, hð Þ under the null
hypothesis; that is, equation (4.5).

Let z ¼ R
�1

2
s y kþ1:Nð Þ: Under the null hypothesis, z � N 0, Ipsð Þ: For convenience, here we use B

to denote the ps by ps matrix R
�1

2
s Vs hð ÞR�1

2
s and use c and d to denote c s, hð Þ and d s, hð Þ,

respectively. Then, we have

W s, hð Þ ¼ z>Bz � cffiffiffi
d

p :

Under the null hypothesis, the cumulant generating function of W s, hð Þ can be calculated as

w nð Þ ¼ log E exp nW s, hð Þð Þ
� 	

¼ log E exp n
z>Bz � cffiffiffi

d
p

 ! !" #

¼ �n
cffiffiffi
d

p þ log E exp
nz>Bzffiffiffi

d
p

 !" #

¼ �n
cffiffiffi
d

p þ log
ð
z
exp

nz>Bzffiffiffi
d

p
 !

1

2pð Þ
ps
2

exp � 1
2
z>z

� �
dz

¼ �n
cffiffiffi
d

p þ log
ð
z

1

2pð Þ
ps
2

exp � 1
2
z> Ips �

2nBffiffiffi
d

p
� �

z
� �

dz

¼ �n
cffiffiffi
d

p þ log

����Ips � 2nBffiffiffi
d

p
�����

1
2

,

which is equivalent to equation (4.5). Note that the last equation uses the fact that

Figure C.1. (a) Diagram showing the construction of offline change point detection statistic and (b)
sliding window of length w for online detection.
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ð
z

1

2pð Þ
ps
2

exp � 1
2
z> Ips �

2nBffiffiffi
d

p
� �

z
� �

dz ¼
����Ips � 2nBffiffiffi

d
p

�����
1
2

:

APPENDIX E: PROOF OF THEOREM 4.1

After discretizing the parameter space, W s, hð Þ can be treated as a two-dimensional Gaussian
random field, which can be completely characterized by its covariance function. The following
lemma computes the covariance function of W s, hð Þ:

Lemma E.1. Under the null hypothesis, the covariance function of W s, hð Þ is

Cov W n, h1ð Þ,W m, h2ð Þ½ � ¼ tr An h1ð ÞAn h2ð Þð Þ
tr An h1ð ÞAn h1ð Þð Þtr Am h2ð ÞAm h2ð Þð Þ½ �1=2

, (E.1)

where n � m:

The following lemma shows that the first-order approximation of the covariance function in
(E.1) does not have any cross-product term. Thus, the two-dimensional random field is further
decomposed as a sum of two independent one-dimensional random processes.

Lemma E.2. Assuming that d and i 2 Z are small relative to h and s, respectively, the first-order
approximation of the covariance function in (E.1) is given as

Cov W s, hð Þ,W sþ i, hþ dð Þ½ � � 1� c2 s, hð Þd2 � l s, hð Þ
2s

iþ o d2ð Þ þ o ið Þ, (E.2)

where

c s, hð Þ ¼ tr _As hð ÞAs hð Þ
� �

tr As hð ÞAs hð Þ
� � , (E.3)

l s, hð Þ is defined in (4.2), and _As hð Þ ¼ @As hð Þ=@h:
The following two lemmas are needed in the proof. Both lemmas are proved in Xie and

Siegmund (2012).

Lemma E.3. Assume n ! 1, b ! 1, N ! 1, with n
b � 1 and b

N � c, where c > 0 is some con-

stant. The discretized process b W sþ i, hþ Dffiffiffi
N

p
j

� �
� n

h i
, where i is an integer and j � 0, condi-

tioned on W s, hð Þ ¼ n, can be written as a sum of two independent processes:

b W sþ i, hþ Dffiffiffiffi
N

p j
� �

� n


 �����W s, hð Þ ¼ n

( )
¼ Si þ Vj,

where Si ¼
Pi

‘¼1 a‘, with

a‘ � N � l s, hð Þ
2s

b2,
l s, hð Þ

s
b2

� �
,

and

Vj ¼
ffiffiffi
2

p
c s, hð Þ bffiffiffiffi

N
p DjV � c2 s, hð Þ b

2

N
D2j2,

with V � N 0, 1ð Þ: l s, hð Þ and c s, hð Þ are defined in (4.2) and (E.3), respectively.
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Lemma E.4. Assume that x1, x2, � � � are independent and identically distributed N �l1, r
2
1

� �
ran-

dom variables (l1 > 0). Define the random walk S0 ¼ 0, Si ¼
Pi

‘¼1 x‘, i ¼ 1, 2, � � �, and the

smooth varying random process Vj ¼ bDjV � b2

2 D
2j2, for some constants D > 0, b > 0. As D ! 0,

for some constant a, we have

1
D

ð1
0
e�ax

P max
i�1

Si � �x
� �

P max
i�0

Si þmax
j�1

Vj � �x
� �

dx ��!D!0 jbjffiffiffiffiffi
2p

p 2l21
r21

 !
�

2l1
r1

� �
,

where � xð Þ is defined in (4.1).
In the following, we go through the main steps that lead to the approximation of the false

alarm rate in Theorem 4.1 for the case of d¼ 1.

Step 1: We first discretize the parameter h 2 h1, h2½ � by a rectangular mesh grid of size Dffiffiffi
N

p ,

where D > 0 is a small number. Note that the discretization mentioned here is used for asymp-
totic analysis only. The probability of false alarm can be approximated as

P max
i, jð Þ2D

W i, j
Dffiffiffiffi
N

p
� �

� b

 !
, (E.4)

where D is the index set

D ¼ i, jð Þ : 1 � i � N, h1 � j
Dffiffiffiffi
N

p � h2


 �
,

which covers the entire parameter space. Let J i0, j0ð Þ denote everything to the “future” of the cur-
rent index i0, j0ð Þ in the parameter space; that is,

J i0, j0ð Þ ¼ i, jð Þ 2 D : j � j0, or i � i0 and j ¼ j0
� �

:

Using a similar approach as in Siegmund (1988), the event

max i, jð Þ2DW i, j
Dffiffiffiffi
N

p
� �

� b

 �

can be decomposed into a series of “last hitting events” for which (i0, j0) is the “last” location

where W i, j Dffiffiffi
N

p
� �

hits the threshold b. Then, the probability in (E.4) can be written as the sum

of probabilities of W i, j Dffiffiffi
N

p
� �

last hits b at (i0, j0) over all possible (i0, j0):

P max
i, jð Þ2D

W i, j
Dffiffiffiffi
N

p
� �

� b

 !
�

X
i0, j0ð Þ2D

P W i0, j0
Dffiffiffiffi
N

p
� �

� b, max
i, jð Þ2J i0, j0ð Þ

W i, j
Dffiffiffiffi
N

p
� �

< b

 !

¼
X

i0, j0ð Þ2D

ð1
0
P W i0, j0

Dffiffiffiffi
N

p
� �

¼ bþ x
b

� �

� P max
i, jð Þ2J i0, j0ð Þ

W i, j
Dffiffiffiffi
N

p
� �

< b

����W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

 !
dx
b
:

(E.5)

Step 2: In the following, we obtain an approximation on the probability

P W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

� �
dx
b
:

To simplify the notation, we denote W i0, j0 Dffiffiffi
N

p
� �

as W here. The key idea is to approximate W

as a Gaussian random field. The Gaussian approximation performs well when the probability of
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interest is close to the mean of the true distribution but suffers from deviation if the probability
is in the tail of the true distribution. Hence, we apply the change of measure technique to shift
the mean of the random field W to the threshold b.

Denote the cumulant generating function of W as w nð Þ ¼ log E exp nWð Þ
� 	

: To construct the
new probability measure, we first choose a n0 > 0 such that w0 nð Þ ¼ b: The new probability
measure dFn0 is constructed using exponential embedding, as follows:

dFn0 ¼ exp n0W � w n0ð Þð ÞdF,

where dF is the original distribution of W. Let En0 and Pn0 denote the expectation and probability
under the new measure dFn0 , respectively. It can be verified that under the new measure

En0 W½ � ¼ E W exp n0W � w n0ð Þð Þ½ � ¼ e�w n0ð Þ @e
w nð Þ

@n

����
n¼n0

¼ w0 nð Þ ¼ b,

namely, the mean of W is close to the threshold b under the new probability measure.
The threshold crossing probability can be rewritten as

P W ¼ bþ x
b

� �
¼ En0

1
exp n0W � w n0ð Þ½ � 1 W ¼ bþ x

b


 �
 �

¼ exp w n0ð Þ � n0 bþ x
b

� �
 �
Pn0 W ¼ bþ x

b

� �
:

(E.6)

Now we can apply the Gaussian approximation to obtain Pn0 W ¼ bþ x
b

� �
and use (E.6) to get

the original probability. By treating W as a normal random variable with mean b and variance
r2n0 , we have

Pn0 W ¼ bþ x
b

� �
¼ 1ffiffiffiffiffi

2p
p

rn0
exp

�x2

2b2r2n0

 !
� 1ffiffiffiffiffi

2p
p

rn0
:

Note that in (E.5), the integrands with smaller x values contribute more to the integration,
because the integrand decays exponentially fast with x. Now, when b ! 1, x

b ! 0 for small x,

and hence exp �x2

2b2r2n0

� �
! 1: The above argument is similar to those used for Laplace’s method.

The cumulant generating function of W can be calculated as

w nð Þ ¼ �n
tr R�1

s Vs hð Þ
� �

2tr R�1
s Vs hð ÞR�1

s Vs hð Þ
� �� 	1=2 � 1

2
log

�����Ips � 2nR1=2
s Vs hð ÞR1=2

s

2tr R�1
s Vs hð ÞR�1

s Vs hð Þ
� �� 	1=2

�����:
Hence, n0 can be obtained by solving the following equation numerically:

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d s, hð Þ

p tr Ips �
2n0Bs hð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

d s, hð Þ
p

" #�1

Bs hð Þ � As hð Þ

0
@

1
A ¼ b:

Eventually, we have

P W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

� �
� g i0, j0ð Þ exp � n0

b
x

� �
, (E.7)

where gðÞ follows the definition in (4.4).

Step 3: Next we tackle with the conditional probability

P max
i, jð Þ2J i0, j0ð Þ

W i, j
Dffiffiffiffi
N

p
� �

< b

����W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

 !
:

The first-order expansion of the covariance function given by Lemma E.2 does not have any
cross-product term, which implies that if we approximate W s, hð Þ as a Gaussian random field, it
can be decomposed as a sum of two independent one-dimensional random processes.
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By Lemma E.3, the conditional probability can be written in terms of the decomposed random
processes using the techniques in Siegmund (1988) and H.-J. Kim and Siegmund (1989) as follows:

P max
i, jð Þ2J i0, j0ð Þ

W i, j
Dffiffiffiffi
N

p
� �

< b

����W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

 !

¼ P max
i, jð Þ2J i0, j0ð Þ

b W i, j
Dffiffiffiffi
N

p
� �

�W i0, j0
Dffiffiffiffi
N

p
� �
 �

� �x

����W i0, j0
Dffiffiffiffi
N

p
� �

¼ bþ x
b

 !

� P max
i�1

Si � �x
� �

P max
i�0

Si þmax
j�1

Vj � �x
� �

:

(E.8)

Step 4: Combining the approximations in (E.7) and (E.8), the approximated false alarm rate becomes

P max
i, jð Þ2D

W i, j
Dffiffiffiffi
N

p
� �

� b

 !

�
X

i0, j0ð Þ2D
g i0, j0

Dffiffiffiffi
N

p
� �

Dffiffiffiffi
N

p
ffiffiffiffi
N

p

Db

ð1
0

exp � n0
b
x

� �

� P max
i�1

Si � �x
� �

P max
i�0

Si þmax
j�1

Vj � �x
� �

dx:

(E.9)

Lemma E.4 enables us to find an expression for the integration in (E.9).

Finally, by Lemma E.4 with a ¼ n0
b , b ¼

ffiffiffi
2

p
c s, hð Þ bffiffiffi

N
p , l1 ¼ l s, hð Þ

2s b2 and r21 ¼
l s, hð Þ

s b2, we
have the approximated significance level

1
2
ffiffiffi
p

p
X

i0, j0ð Þ2D
g i0, j0

Dffiffiffiffi
N

p
� � b2l i0, j0 Dffiffiffi

N
p

� �
N � i0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l i0, j0 Dffiffiffi

N
p

� �
N � i0

vuut
0
B@

1
CAc i0, j0

Dffiffiffiffi
N

p
� �

Dffiffiffiffi
N

p : (E.10)

As D ! 0, the Riemann sum (E.10) converges to the approximation in Theorem 4.1.

APPENDIX F: PROOF OF LEMMA E.1: COVARIANCE FUNCTION OF W

Proof. Let Cs hð Þ ¼ R�1
s Vs hð ÞR�1

s , and rewrite Cm h2ð Þ as

Cm h2ð Þ ¼
C11 h2ð Þ C12 h2ð Þ
C21 h2ð Þ Cn h2ð Þ

" #
:

Denote y T�sþ1:Tð Þ as Ys, and let

Ym ¼
YD

Yn

" #
:

We have

Cov W n, h1ð Þ,W m, h2ð Þ½ � ¼ E Y>
n Cn h1ð ÞYnY>

mCm h2ð ÞYm

� 	
� E Y>

n Cn h1ð ÞYn

� 	
E Y>

mCm h2ð ÞYm

� 	
2 tr An h1ð ÞAn h1ð Þ

� �
tr Am h2ð ÞAm h2ð Þ
� �� �1=2 :

(F.1)
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The first term in the numerator is

E Y>
n Cn h1ð ÞYnY>

mCm h2ð ÞYm

� 	
¼ E Y>

n Cn h1ð ÞYn

� �
Y>
D C11 h2ð ÞYD þ Y>

n Cn h2ð ÞYn þ Y>
n C21 h2ð ÞYD þ Y>

DC12 h2ð ÞYn

� �h i
¼ E Y>

n Cn h1ð ÞYnY>
n Cn h2ð ÞYn

� 	
þ E Y>

n Cn h1ð ÞYn

� 	
E Y>

DC11 h1ð ÞYD

� 	
¼ 2tr An h1ð ÞAn h2ð Þ

� �
þ tr An h1ð Þ

� �
tr An h2ð Þ
� �

þ E Y>
n Cn h1ð ÞYn

� 	
E Y>

D C11 h1ð ÞYD

� 	
:

(F.2)

Note that we have utilized the fact that under null hypothesis, YD and Yn are independent
and E YD½ � ¼ 0:

The second term in the numerator is

E Y>
n Cn h1ð ÞYn

� 	
E Y>

mCm h2ð ÞYm

� 	
¼ E Y>

n Cn h1ð ÞYn

� 	
E Y>

DC11 h2ð ÞYD þ Y>
n Cn h2ð ÞYn þ Y>

n C21 h2ð ÞYD þ Y>
DC12 h2ð ÞYn

� 	
¼ E Y>

n Cn h1ð ÞYn

� 	
E Y>

n Cn h2ð ÞYn

� 	
þ E Y>

n Cn h1ð ÞYn

� 	
E Y>

D C11 h1ð ÞYD

� 	
¼ tr An h1ð Þ

� �
tr An h2ð Þ
� �

þ E Y>
n Cn h1ð ÞYn

� 	
E Y>

DC11 h1ð ÞYD

� 	
:

(F.3)

By combining (F.1), (F.2), (F.3), we obtain the covariance function in Lemma E.1.

APPENDIX G: PROOF OF LEMMA E.2: FIRST-ORDER EXPANSION OF THE
COVARIANCE FUNCTION OF W

Proof. We approximate the covariance function by expanding each term in (E.1) at h and keep-
ing only the first-order terms.

The numerator in (E.1) is approximated as

tr As hþ dð ÞAs hð Þ
� �

� tr As hð ÞAs hð Þ
� �

þ dtr _As hð ÞAs hð Þ
� �

¼ tr As hð ÞAs hð Þ
� �

1þ dc s, hð Þð Þ:
(G.1)

Partition the matrix Asþi hþ dð Þ as follows:

Asþi hþ dð Þ ¼ A11 hþ dð Þ A12 hþ dð Þ
A21 hþ dð Þ As hþ dð Þ

" #
:

Then rewrite the second term in the denominator in (E.1) as

tr Asþi hþ dð ÞAsþi hþ dð Þ
� �

¼ tr A11 hþ dð ÞA11 hþ dð Þð Þ þ tr A12 hþ dð ÞA21 hþ dð Þð Þ
þtr A21 hþ dð ÞA12 hþ dð Þð Þ þ tr As hþ dð ÞAs hþ dð Þð Þ:

After expanding each term at h, the denominator in (E.1) can be approximated as

tr As hð ÞAs hð Þ
� �

tr Asþi hþ dð ÞAsþi hþ dð Þ
� �h i1=2

� tr As hð ÞAs hð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2da
p ffiffiffiffiffiffiffiffiffiffiffi

1þ b
p

, (G.2)

where

a ¼ tr _A11 hð ÞA11 hð Þ
� �

þ tr _A12 hð ÞA21 hð Þ
� �

þ tr _A21 hð ÞA12 hð Þ
� �

þ tr _As hð ÞAs hð Þ
� �

tr A11 hð ÞA11 hð Þ
� �

þ tr A12 hð ÞA21 hð Þ
� �

þ tr A21 hð ÞA12 hð Þ
� �

þ tr As hð ÞAs hð Þ
� � , (G.3)

and

b ¼ 2i
s

1
2is tr Asþi hð ÞAsþi hð Þ

� �
� tr As hð ÞAs hð Þ

� �h i
1
s2 tr As hð ÞAs hð Þ
� � : (G.4)
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Because i and d are small compared to s and h, the terms tr A:s hð ÞAs hð Þ
� �

and tr As hð ÞAs hð Þ
� �

are
relatively larger than the subdiagonal elements in (G.3) and, hence, a can be further approximated
as

a � tr A:s hð ÞAs hð Þ
� �

tr As hð ÞAs hð Þ
� � : (G.5)

Meanwhile, we approximate the term 1
is tr Asþi hð ÞAsþi hð Þ

� �
� tr As hð ÞAs hð Þ

� �h i
in (G.4) using

1
s tr Asþ1 hð ÞAsþ1 hð Þ

� �
� tr As hð ÞAs hð Þ

� �h i
, and then we have

b � i
s
l s, hð Þ: (G.6)

The argument for the above approximation is as follows. First, note that

Asþi hð Þ ¼ R�1
sþiVsþi hð Þ ¼ Isþi 	 Rð Þ�1 Rsþi hð Þ 	 K

� �
¼ Rsþi hð Þ 	 R�1Kð Þ:

Then we have

tr Asþi hð ÞAsþi hð Þ
� �

¼ tr Rsþi hð Þ 	 R�1Kð Þ
� �

Rsþi hð Þ 	 R�1Kð Þ
� �� �

¼ tr Rsþi hð ÞRsþi hð Þ
� �

	 R�1KR�1Kð Þ
� �

¼ tr Rsþi hð ÞRsþi hð Þ
� �

tr R�1KR�1Kð Þ

¼ tr R�1KR�1Kð ÞP
j

P
k Rsþi hð Þ
� 	2

jk

¼ tr R�1KR�1Kð Þ i
P

j

P
k Rsþ1 hð Þ
� 	2

jk þ
P

jj�kj>s Rsþ1 hð Þ
� 	2

jk

� �
� tr R�1KR�1Kð Þ i

P
j

P
k Rsþ1 hð Þ
� 	2

jk

� �
:

The last approximation is due to the fact that the (j, k)th element of Rsþ1 hð Þ such that jj� kj >
s is small.

Combining (G.1), (G.2), (G.5), (G.6) and the Taylor expansion 1ffiffiffiffiffiffi
1þx

p � 1� 1
2 xþ o xð Þ, we

obtain the approximation in (E.2).
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