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Abstract

Multivariate Hawkes processes are commonly used to model streaming networked
event data in a wide variety of applications. However, it remains a challenge to
extract reliable inference from complex datasets with uncertainty quantification.
Aiming towards this, we develop a statistical inference framework to learn causal
relationships between nodes from networked data, where the underlying directed
graph implies Granger causality. We provide uncertainty quantification for the
maximum likelihood estimate of the network multivariate Hawkes process by
providing a non-asymptotic confidence set. The main technique is based on the
concentration inequalities of continuous-time martingales. We compare our method
to the previously-derived asymptotic Hawkes process confidence interval, and
demonstrate the strengths of our method in an application to neuronal connectivity
reconstruction.

1 Introduction

Recently, there has been a surge of interest in using Hawkes processes networks to model discrete
events data in both the statistics and the machine learning community (see a review in [21]]). The
popularity of the model can be attributed to its wide range of applications, including seismology,
criminology, epidemiology [25]], social networks [[15]], neural activity [23]], and so on. The model is
capable of capturing a spatio-temporal triggering effect reflected in real-world networks — one event
may trigger subsequent events at different locations. Existing works for recovery of the Hawkes
network focus on performing point estimators: most of them rely on estimating influence coefficients
(representing the magnitude of the influence) and thresholding by a pre-specified value to recover
the Hawkes network structure. However, most existing work does not quantify the uncertainty, for
instance, in the form of a confidence interval.

One outstanding issue with point estimators is that, without accurate uncertainty quantification,
one cannot claim any statistical significance of the results. For instance, it is difficult to assign
a probability to the existence of a directed edge between two nodes. This problem is critical for
certain problems, such as causal inference. In Hawkes network models, Granger causality has a
very simple form: there is a causal relationship between two nodes in the network if and only if
there exists an edge between the two nodes, and there is no casual relationship otherwise [8]. Thus,
uncertainty quantification (UQ) is critical in scientific studies, because we wish to test whether a
causal relationship exists between one node to another node at a given statistical confidence level. The
development of easy-to-implement and robust UQ tools is crucial for a variety of scientific problems,
from medical data to social networks to neural spike train data and more.

In this paper, we study the uncertainty quantification for maximum likelihood estimates of multivariate
Hawkes processes over networks. Each node can represent a location, a region of a brain, or a user in
a social network. We are particularly interested in recovering the underlying structure (connections)
between different nodes with uncertainty quantification, meaning providing accurate upper and lower
confidence intervals for the influence coefficients (which is linked to the causal relationships between
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these nodes). Since we are particularly interested in the existence (or non-existence) of an underlying
edge, one of the most critical aspects of our study is to perform network topology recovery. Motivated
by applications where the recovery guarantee is usually required, we focus on quantifying the
uncertainty of the maximum likelihood estimate of the unknown parameters by providing confidence
intervals (CIs). We proposed a novel non-asymptotic approach to establish a general confidence
polyhedral set for hidden network influence parameters (from which the confidence sets can be
extracted). The non-asymptotic confidence set is established by constructing a continuous-time
martingale using the score function (the gradient of the log-likelihood function) of the network
Hawkes process. This enables us to apply a concentration bound for continuous-time martingales.
The non-asymptotic confident set is more accurate than the classic asymptotic confidence intervals,
since the concentration bound approach captures more than the first and second-order moments
(which are essentially what the asymptotic confidence intervals are capturing). We compared the two
methods for establishing CIs using synthetic neural activity data, to demonstrate the effectiveness of
our approach.

Contributions. Our main contribution can be summarized as follows: (1) We give a non-asymptotic
confidence set for the maximum likelihood estimate (MLE) of the Hawkes process over networks,
and (2) Our confidence set is more general and can be approximated by a polyhedron; the CIs can be
solved efficiently from a linear program. In contrast, the classic CI essentially provides a box in the
high-dimensional space for the multi-dimensional parameters.

Related Work. There has been much effort made on network inference for multivariate point
processes. Learning algorithms for Granger causality of Hawkes processes has been proposed in [29]
using the regularized MLE. [1] proposed a nonparametric way to estimate the mutual inference and
causality relationship in multivariate Hawkes processes. [30] considers the spatiotemporal Hawkes
process and develop a nonparametric method for network reconstruction. [16]] studies the detection
of changes in the underlying dynamics. Moreover, recent work has also focused on causal inference
for different applications, such as online platforms [[14], infectivity matrix estimation [29], etc.

However, there is relatively little literature that provides theoretical guarantees on the significance
level of the estimation results. The concentration results for inhomogeneous Poisson processes
were studied in [22]. The non-asymptotic tail estimates for the Hawkes process were established in
[24]. [7] studies Granger causality for brain networks and characterizes the significance level using
numerical methods, while our result gives a theoretical guarantee on the confidence level. The CI
for parameter recovery of discrete-time Bernoulli processes is given in [12]]. At the same time, this
paper focuses on the continuous-time Hawkes process, which is more complicated in uncertainty
quantification. In Bayesian statistics literature, works have been done in quantifying the uncertainty
of the network parameters by imposing a prior model on the model hyperparameters; the posterior
is approximated using Markov chain Monte Carlo [20, 27]. Recently, there has been an effort to
establish time-uniform CI based on concentration inequalities [11} [10]].

The field of uncertainty quantification itself is very broad, with important applications in computer
simulations [26]], aerospace engineering [[17] and climatology [19]. This literature can be grouped
into two categories [28]]: inverse UQ (the inference of parameters from a generating model) and
forward UQ (the propagation of uncertainty through numerical models). The current work focuses on
the inverse problem for the network multivariate Hawkes process and, in particular, in providing the
confidence interval for the maximum likelihood estimates of parameters.

2 Background

A temporal point process is a random process whose realization consists of a list of discrete events
localized in time. Let (uy,t1),- - , (un, t) be a series of events happened during time period [0, T']
on a multivariate Hawkes process with D nodes, where ¢; denoted the time of the i-th event, and
u; € [D] is the index of node where the event happens. The intensity function at node 7 at time ¢ is

Ai(t) = pi + Z i, iy, (t—15), i =1,--- D,
Jit; <t

where ; is the background rate of events happening at i-th node, ;; > 0 is a parameter representing
the influence of node j to node i, and ¢;; is a function supported on [0,00). Let N; € NP be a
vector where the i-th entry N; is the number of events happened on node i during [0,¢). For any



function f, define the following integral with counting measure
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where H; = {t1,...,t, : t,, < t} denotes the list of times of history events up to but not including
time ¢. Therefore, we can rewrite the intensity function as

_MZ+Z/ amap” le j=1,---,D. (1)

We may consider different types of influence function ¢, including: (i) the gamma function
o(At) = (At)F—1e=AB /(T'(k)B*), At > 0. Note that when k = 1, it becomes the commonly-
used exponential function, p(At) = Be*ﬁm, At > 0, which shows that the influence of events on
future intensity is exponentially decaying. The decay starts immediately following the onset (thus,
there is no delay); (i) the Gaussian function: p(At) = exp{—B(At — 7)o}/ 210, At > 0,
where 7 > 0 is the unknown delay which means that the influence attains its maximum value 7 time
after the event happens.

2.1 Decoupled log-likelihood function

Let A = (aij)L je[p)> @ij = 0, be a matrix that contains all the influence parameters between nodes
and our parameter-of-interest to be estimated. Given the events on [0, T'], the likelihood function is
(detailed derivation can be found in, e.g., [21])

L(A) —exp< Z/ dt)H)\

where )\; () is the intensity as defined in (I)). Note that A;(¢) depends on A, but we omit the term for
simplicity.

The log-likelihood function can be written in the form of integral with counting measure N; at i-th

node,
D T T )
(A) =log L(A) =) ( / t)dt + / log Ai(t)dN,Z) .
0

i=1

We note that the log-likelihood function ¢(A) can be decoupled into summation of D terms, each for
a specific node,

D

0A) =Y tila),

i=1

where ;== |1, -+, ;p|T € RP is a column vector denoting influence of other nodes to node ¢,
and

T
li(oy) = A dt+/0 log(\i(t))dNy. )

Since ¢;(a;) only depends on the parameter «;, the statistical inference for each node (therefore
each «;) can be decoupled, which enables us to perform the computation in parallel and simplify our
analysis. For the rest of this paper, we focus on the inference of a single ;.

Notation. We use o to denote the true parameter which is unknown, o; to denote the estimated

parameter for i-th node, A;(t) to denote the intensity computed using the estimator &;, and \*(t) to
denote the intensity under the true parameter ;.



2.2 Score function and Fisher information

The statistical properties of the multivariate Hawkes process are closely related to its score function
and the Fisher Information. The score function for ¢-th node given data, is defined as as

) N azl(al) _ ) 7
Silen) = oa;  Jo aaz dt / A 80@ o, i
[ ON(t) i
= /O A D (N} — Xi(t)dt), 3)

where O\;(t)/0a; is a vector independent of the choice of «;. For simplicity, we denote this gradient
by n,(t) € RP, with j-th entry being

AN (1)

Oaij

t
Jo

Note that 7 includes information about the influence function between two nodes; this holds for any

general influence function ¢;;.

The D-by-D Hessian matrix of the log-likelihood function, given observations d N}, is then

0%l N :
Hilew) = Gotid = = [ A 2Ol @)an, ®

The Fisher Information I* is defined as the expected variance of the score function S;(c;), and also
as the negative expected Hessian of the log -likelihood function over unit time, assuming the process
is stationary under true parameter {a} }2 |,

I} =E A;f*2(t)ni(t)n}(t)dzvg x|/ AN O (tm] (tdt | =E (A 'nn] ]
0 0

An example of the exponentially decaying kernel for the above quantities is given in Appendix
Remark 1 (Multiple sequences). In practice, we may not be able to collect data long enough to
achieve good confidence bound. Instead, we may have observations of many trials of independent
Hawkes processes. We can write down the corresponding log-likelihood function and perform a
similar analysis.

3 Main Results

We assume that the influence functions ¢;; and background intensities (; are given, and our goal is
to estimate the unknown parameters ;. We estimate the unknown parameters o; by maximizing the
log-likelihood function, i.e,

a; = argmax {; (). (6)

xzceRP

For each node 7, by (EI) A; is linear in «;, and by @ we see that the log-likelihood function is
concave in \;. Therefore, the MLE can be computed efficiently using convex optimization.
Remark 2. In the general case, the Hessian matrix H;(-) is negative definite everywhere when at
least D events happened on node ¢, and the MLE is unique. Indeed, when at least D events happened
in the time interval [0, T'), the vectors {n,(t) : dN; = 1} will have (in the general case) a linearly
independent component of size D, and H; as the welghted sum of {—n;(t)n] (t) : AN} =1,t < T},
is negative definite.

In this section, we present two different ways of uncertainty quantification for the MLE &;. The first
one is the classic asymptotic CI (for each entry «;; ), which uses the fact that the MLE of such Hawkes
processes is consistent and asymptotically normal. The second approach is our proposed method,
which entails building a general confidence set for o} based on the more precise concentration-bound.

3.1 Asymptotic Confidence Intervals

It is known that the MLE of a temporal point process is asymptotically normal, and the empirical
Fisher Information converges to the true Fisher Information with probability 1 [18]]. Under our
context, this translates into the following theorem.



Theorem 3.1 (Asymptotic CI [18]). Denote the empirical Fisher Information as
. 1 ali(a;) 1 [To, ;
Li(oy) = —7 5% = = A7 C(m, ()] (B AN,
thenas T — oo,
VT (@; — o) = N(0, 1771,
Ii(a;) — I}
Since our focus is on the CI for each «v;;, Theoremimplies that as T — oo,
\/T(alj - a:j) - N(O, O—:}?)v

and
;@) = o7,
2

where o2 is the j-th diagonal entry of r, 0;;(;) is the j-th diagonal entry of I7Y(&;). An

asymptotic CI on each entry «;; is given by

Qij £ Z.j2py/57 () /T,

where Z, /5 p is the corresponding percentage point for standard normal distribution, i.e., o(Z, /2 D) =
1 —¢/2D, and ®(-) is the cumulative distribution function of standard normal distribution.

3.2 Generalized confidence sets based on concentration bound

The classic asymptotic CI has a nice form and is easy to compute, but its confidence level has no
guarantee when 7 is not large enough. To be specific, there are three types of convergence involved
in the asymptotic behavior of the MLE and the classic CI:

o the score function S;(a) is asymptotically normal,
o the empirical Hessian at o} converges to the Fisher Information,

e &; — af, and the statistical properties of &; converge to those of .

In this section, we propose a general non-asymptotic confidence set for MLE &; by providing a
concentration bound on the first type of convergence. In other words, we give the concentration
bound on S;(e}), which in turn provides the confidence set for a}. This concentration result does
not seem dependent on the convergence rate of the second term, and we further propose to use the
third term’s asymptotic behavior to approximate this confidence set and facilitate computation.

Our proof idea is as follows. We start with a similar step to proving the asymptotic result but follow
with a tighter bound for the score function (the gradient of the log-likelihood function), leveraging a
concentration bound for the continuous-time martingale.

First, we present the following general result. Since A} (t) denotes the intensity function under true
value o}, we have the conditional expectation, given observations before time ¢, of dN} — A} (t)dt is
0, and

t
Sualad) = [ N omr) @ - X (r)dn)
0
can be shown to be a continuous-time martingale.

The difficulty for a concentration bound here is that the variance of this process changes over time and
cannot be bounded from above. Therefore, a standard Hoeffding or Bernstein type of concentration
bound does not apply. Here we derive a concentration bound using the intrinsic variance, which
depends on the data. Similar to [9], our intrinsic variance is a random process. Then we bound
S;(af) in K different directions and convert these concentration bounds into a confidence set for a;.

Theorem 3.2 (Confidence set for ;). Given data, for each o;, let

T
Vizas) = [ Oult)exp (02T m(0) - mni(6) - (o) dr )
0
For any given {z1, ...,z }, a confidence set for o; at level 1 — ¢ is given by a polyhedron
Ci ={a; € RP :Vk € [K], 2] Si(e;) — Vi(zp, o) < In(K/e)} . (8)



UQ for each «;;. Based on the confidence set for vector «;, we can construct the CI for each entry.
So, naturally, we would like our confidence set C; . to resemble an orthotope parallel to the axes.
Based on the mean value theorem, for any «; in the confidence set, there exists &; between a; and
a; such that

Si(a) — Si(ay) = Hi(&y)(a; — o).
Since @; is the maximum likelihood estimate, we have S;(&;) = 0. The confidence set is supposed
to be a small neighborhood of o, and when T is large, we have

Intuitively, we can let K = 2D, z4,-- - , zop be in the same direction with the columns of 41 Z* _1,

each is supposed to correspond to the upper/lower bound on the entries of «;, and the confidence set
C;.. will approximately be a box around the MLE. Formally speaking, we have the following lemma.

Lemma 3.1. Under the assumption that the moment generating function of 1, exists, there exists a
neighborhood U of 0, such that

1Si(ei) = TI (i — @) || < O(T)||es — @i|* + o(T)|lev; — @i, ©)
and

T _
Vi(z, i) = 52T 2| < o(T)|[2l* + O(T)lev; — &ill[[ 21| + O(T)] 2%, (10)

uniformly for any ou; - || denotes l5 norm.

To make the confidence set at level 1 — ¢ as small as possible, we can choose z as the following:
Proposition 1. Let K = 2D, and z1,--- , zop be

2In(2D/e) _,_ .
780*,2/ )IZ lej7.7:17"' aDa (11)
ij

respectively. As T — oo, for any j € [D], the width of C;. in the direction of oj is
2\/2 In(2D/e)o;? /T(1 + o(1)) with probability 1.

Note that the width of C; . is asymptotically a constant times the classic asymptotic confidence
intervals.

3.3 Concentration confidence bound with adapted z

In reality, we don’t have the true parameter o or the Fisher Information I. So to make the
confidence set as small as possible, we will have to estimate the Fisher Information. The challenge
is that we cannot estimate the Fisher Information by simulation, because we don’t know the true
parameter, and simulation using the MLE will make our choice of zj; depend on the data. What we
can do, though, is use data that comes earlier to estimate the Fisher Information I and the proper
choice of z for future data. This leads to our concentration bound with adapted z:

Theorem 3.3 (Martingale concentration for score function with adapted z). For any measurable
process (z(t) € RP)L adapted to (H,-)1_,, where (H)L_,, is the filtration of the Hawkes process,
any € € (0,1), we have

Pr (/T 2T(t)dS; (o)) — Vi(z,af) > ln(l/a)> <e, (12)
0

where

dS;(ce;) = Ni(t) " () (AN] — Ni(t)dt),
and

T
log (E (exp (27 (t)dS; +(c;)) ‘Htf))

Vi(z, o)

Bexp (A7 (=T (0, () — =7 (¢, (8) — Ai(8) d.

/OT
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Corollary 1 (UQ for each ;). Forany o, t € [0,T], let fi(ai, t) be some estimator for the Fisher
Information given data up to time t~. Let z1(t, &), -+ , zap(t, ;) be

21n(2D .
:t\/rwl-l(ai,t)ej,j: 1,---,D,

Te}fi_l(ai, t)ej !

respectively. Then
T
Cie =10y € RP : / z] (t,a;)dS; ¢ (o) — Vi(zk, o) <In(2D/e), k =1,--- ,2D
0

is a confidence set for a; at level 1 — e.

Remark 3. An example of estimator for the Fisher Information is

. 1 [t ,
fait) =~ [ A7 m I (ans,
0
and if the estimator is rank deficient, we simply take it to be the identity matrix.

For simplicity, we use gx(c;) to denote
T
/ z;(t,ai)dSi,t(ai)—Vi(zk,ai), k‘: 1, 72D
0

The CI of entry o is then {c; : gr(oy;) < In(2D/e),k =1,--- ,2D}, This CI can be computed
by numerically inverting the functions gx,k = 1,---,2D, but it may be time-consuming. Since
a; — a with probability one when T — oo, we can approximate gy (ce}) using first order Taylor
expansion at &;. Let

)T Igi (i)
60[1‘ ’

gr(ai) = gr(@;) + (a; — @
an approximated confidence set for o; is
Cl.={o; €R”: Gi(o;) <In(2D/e),k =1,--- 2D},
which is a polyhedron.
With the polyhedron ij » we can easily get CI on each entry «;;
[min{aij fq; € Cﬁs},max{aij fqy € Cfﬁ}} .
using linear optimization.

Algorithm [I| summarizes how to find the concentration-bound based confidence set.

Algorithm 1: Polyhedral Confidence Set for a;

Input: confidence level 1 — ¢, data {(t;, u;)}, estimator I, '(-,-);
Compute the MLE &; by convex optimization (6));
fork=1,---,2D do

T
(@) = / 05, 4(@:) 2, G) — Viza, &),
0

N Ogr(ay;
g (@) = gg%)

end
Output: Cf,s = {OLZ' eRP: gk(ai) + (ai - al)ng(&,) < 111(2D/€), k=1,--- ,2D}

4 Numerical Experiment

In this section, we present a numerical example based on synthetic data to demonstrate the per-
formance of the proposed confidence intervals. We compare the coverage ratio of the confidence
intervals: the percentage of confidence intervals that contain the true parameters, for the same nominal
confidence level (1 — ¢).
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Figure 1: (a) and (b): Visualizing the “true” and estimated influence matrix A as edges and background
rates p as nodes. Wider edges indicate greater influence, and larger nodes indicate greater background
rates. (c): Edges whose 95% CIs do not cover the true influence parameter for the proposed CI
method. The coverage rate for the proposed and asymptotic CIs are 96.8% and 100%, respectively.
(d): Visualizing the difference in 95% CI widths between the proposed and asymptotic CIs. Purple
edges and green edges indicate narrower and wider widths for the proposed CI, respectively.

We study uncertainty quantification for reconstructing neuronal networks. Recent developments
in neural engineering have allowed researchers to simultaneously record precise spike train data
from large numbers of biological neurons [[13]. A key challenge is harnessing this data to learn the
connectivity of biological neural networks, which provides insight on the functions of such networks.
We show next how the proposed method can quantify the uncertainty of the reconstructed neuronal
connectivity from spiking data. This uncertainty is crucial for neuronal reconstruction: it provides a
principled statistical framework for testing different neurological theories and hypotheses.

The experimental set-up is as follows. The neural spike train data is simulated via the PyNN
Python package [6] with the NEURON simulator [5]], which was chosen over in vivo recordings for
straightforward data collection. The neuronal network consists of excitatory and inhibitory networks
in a ratio of 4 to 1, which are connected sparsely and at random. The neurons are modeled as
exponential integrate-and-fire neurons with default parameters, which have been shown to accurately
capture biological neural dynamics [3]. Following [4], each excitatory neuron receives a stochastic
Poisson process-distributed excitation from an external source, reflecting the external inputs from
biological networks either from the environment or from neurons which are not being recorded.

Using the above network structure with D = 32 neurons, we simulate a long sequence (2000 seconds)
of spiking data, and fit a Hawkes network using an exponential influence function with a decay
rate of 1 millisecond. This fitted model (with estimates of the influence matrix A and background
rate vector pt) can be viewed as the Hawkes network “closest” to the complex neuroscience model
which generated the data. The fitted parameters for A and p (see Figure|[l|(a)) are then set as the
“true” parameters for evaluating CI coverage. We then simulate a shorter sequence (400 seconds) of
spiking data for constructing the proposed (non-asymptotic) and asymptotic CIs on A. Figure[I](b)
shows the MLE of A, estimated using this shorter sequence. Note that, while the connectivity for the
“true” topology is quite sparse, the estimated connectivity is noticeably more dense, perhaps due to
the limited data in the shorter sequence. In this limited data setting, there is an increasing need for
uncertainty quantification to validate neuronal connectivity.

Consider now the coverage performance of the proposed (non-asymptotic) and asymptotic CIs. At a
confidence level of 95%, the coverage rate of the proposed method (over all influence parameters in
A) is 96.8%, whereas the coverage rate for the asymptotic method is 100%. Hence, the proposed Cls
indeed provide similar coverage to the desired confidence level of 95%, whereas the asymptotic Cls
are too wide and over-covers the true parameters. Figure[T|shows the edges with influence parameters
not covered by the proposed method. All of these edges have a true influence of 0, i.e., such edges
were not in the true topology, but had positive Cls. Figure[I] visualizes the difference in CI widths
between the proposed and asymptotic Cls, for edges with non-zero true influence. Here, purple edges
and green edges indicate narrower and wider widths for the proposed CI, respectively. We see that
the proposed method yields noticeably narrower CIs compared to the asymptotic approach, which
enables more precise inference on the influence matrix. This in turn provides greater certainty on the
reconstructed neuronal network, particularly given limited experimental data.



Broader Impact

Our method can be useful for many applications involving Hawkes processes, including seismology,
social networks, neuroscience and more. In particular, it is useful for performing causal inference and
making statistically significant claims. Recent developments in neuroscience and engineering have
allowed researchers to simultaneously record precise spiking data from large numbers of biological
neurons. A key challenge is harnessing this experimental data to learn the underlying connectivity of
biological neural networks, which is integral for understanding the functions of such networks. We
show how the proposed model can be used to both learn this connectivity information and quantify
uncertainty from observed neural spike data.
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A Example: Exponential decay function

Here we give the analysis for the score function and the Fisher information under exponential decay
function ¢;;(At) = Be P2t The score function is,

T t —ﬁ(t—T)dN )
sitet) = | Jo DN i ey,
0 pi+ ()T [y Be PE—TIAN

where dN; = (AN}, ---dNP)T.

We show that S;(a}) is small by giving an upper bound of its covariance matrix, which is 7" times
the Fisher information.

Assume the Hawkes process with parameter o;, p4;,¢ = 1,- -+, D, 3 is stationary, we have

(f Be~ ”dN)(f Be~ tTdN)

pi+ ()T 1 Be=Pt-TAN,

I} =E

Since al ffoo Be PE=T)dN, > 0, we have

t t T
(/ Be—ﬁ(t—f)dNT> (/ Be—ﬁ(t—T)dNT> ]’

w

I} <y 'E

where W has a close-form expression for Hawkes processes with exponential influence function,
derived from [2] and [16].

Lemma A.1.

W = AAT + gz + %4(}1 - AT+
where 1 is the identity matrix, A = (a3, - ,a5)7T, A = (I — A) "' is the expected intensity, and

Y = diag(A).

gZAT(]I— ATt

Proof. By Lemma 2 and 3 in [16], we have

E[dN.] = Adt,
and
Cov[dN,dNT| = c(t — t')dtdt’,
where
Be PUI=ATA(T+ 11— A)TTA) S, 7> 0;
e(r) = ¢ Xo(7), T =0;
e(—7)T, T <0,

where §(-) is the Dirac delta function. Then

</t Be—b’(t—T)dNT> </t 56—/3(t—T)dNT>T1
_E U / 82PN dNt/]

/ / B2 B+t )R E[dN,dN ]

=AAT +/ / 52eﬁ(t+t')C0v[dNt,dNt/]

0
= AAT + / B2e2Ptydt + / / B2ePCHT) (¢(1) 4 ¢(—7))dtdr
—00 <0 TE(O —t]

11



=AAT + gz n /OO(C(T) N c(_T))dT/fT BZBB(QH_T)dt
0

—00

e Bn s [T + e Ge
0o N2 1
= AAT + gz Jr/o % [eﬁ(QﬂA)TA(H + 5(]1 _ A)flA)E
+ (eﬂ(QJIA)TA(H+ %(]I— A)lA)E>T]dT
= AAT + §2 + § (20— A)~ T AT+ %(11 —A)1A)T

+ ((QJI ~ A AT ST~ A>—1A>2)T

We notice that
(21 — A)~LA(T + %(H —A)TTA) =21 - A)TTAT - A) I - A)2) = %A(H — A~
Together, we prove the lemma. O

Lemma A.2. For any vector z,

pt2TWz
)

P (zTSi(af) > 5\/T) <

Proof.
Var [27S;(a})| = T2}z < ;' T2TWz,

by Markov’s inequality on the random variable (27.5;(a}))?, we proof the lemma.

B Proofs

The proof of Theorem[3.2]and Theorem[3.3]is an immediate results of the following two lemmas.
Lemma B.1. For any measurable random process (z(t) € RP),c(0, 1) adapted to the same filtration

(H+t)te[o,m) with the Hawkes process, let the intrinsic variance of fot z27(7)dS; (o) (denoted by
Vi.+(2)) be a random process also adapted to (H:)ic[o,1), such that there exists a supermartingale
(M¢(2))ieo,m) with respect to (H¢)eejo,1),

exp ( / ' £T(7)dS (o) m(z)) < My(2)

almost surely. Then Ve € (0,1),

T
Pr </0 2T (1)dS; () = Vir(z) = ln(]E[Mo(z)]/e)> <e

Proof. By the property of a supermartingale, we have
T
exp | [ 2708 u(a) - Vir(2)
0

12

E < E[Mr(z)] <E[Mo(2)],




and by Markov’s inequality,

Pr

T
/O 2T (t)dSi () = Vir(z) = 1H(E[Mo(2)]/€)]

= Pr

exp ( /0 2T()dSi () — V;,T(z>> > E[My(2)] /5]

_Efexp (J =7 (0d5..0) ~ Vir(2))]

<e.
- E[My(z)]/¢ -
O
Moreover, the intrinsic variance can be characterized explicitly by the following result.
Lemma B.2. Let
t
Via(z) = / (N (1) exp(A; ()27 (7)m(7)) — 27T (T)mi(7) — X (7)) dr. (13)
0

Mi(2) = exp ( /0 T (P)dSin (o) - vi,t(z)>

is a supermartingale, with My(z) = 1 almost surely.

Proof. For any t, since V; ; is continuous and the right derivative exists,

log E [Myyai(2)/Mi(2)Hi]

A%i—rf}ﬁ At
lo ex AL (1S, () — it(Z ¢
o loeB e (7 TS (@) - AV(a) 7]
At—0+ At
o exp (zT(t)n; IAN] — A ¢ 1 .
i B EHOMOR SN O ooz t2@m0) - =7 0m 0 - 5:0)
_ o 8 (A () Atexp(A\; 2T (8)m; (1)) + (1 = A; (1) At) exp(—2T(t)n; (1) At))

At—0+ At

= (Af exp(\ 2T () () — 2T ()i (8) — AP (1)
=0.

From this we can see that M, is actually a martingale. O

Proof of Theorem|3.2} Theorem[3.3|and Corollary[l} From Lemma[B.T] and Lemma [B:2] we have
immediately

T
Pr l/ 2T (t)dS; (o) — Vir(z) > ln(l/a)] <e, Vz eRP Ve € (0,1), (14)
0

where V; 7(z) is chosen as . Moreover, we can also choose multiple z to bound S; () in all
directions. By simple union bound, it holds that

Pr

T
dk e [K],/ 2] (t)dS; (o) — Vir(zk) > ln(K/s)] < Ke/K =¢,Vzy,-+- 2z € RP Ve € (0,1).
0

We define continuous process V; ; for any oy as (]Z[), o falls into the confidence set C; . with
probability at least 1 — €. O

The proof of Lemma 3| relies on the following lemma:
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Lemma B.3 (Ogata 18], Lemma 2). If&; is a stationary predictable process, then

T

with probability 1. In addition, if & has finite second moment, then

/Tftht — E[¢]

with probability 1.

Proof of Lemmal[3.1] Denote

Aai = ; — OA(Z
Using Taylor expansion and based on the mean value theorem, there exists &; between «; and &;,
such that

1 1 1 9?8 (a;)
=Si(ay) = Hi(au)Aay + —— = A Ay
i) = FHi@) At o7 D H o Aeuda
k,l€[D]
For any j, k,l € [D], the j-th entry of%ls

/ 205 (O)nik ()0 (t) i
0 Xe(t) "

Under the assumption that the moment generating function of 7, exists, and A > ;i > 0, by Lemma
B.3l as T — o0,

21; i i i 1 !
7/ i ” nl(t)dNZSTﬂ3/ 200i5 ()i ()i (£) AN
i JO

is uniformly bounded for any ¢&; Z 0 with probability 1. Now we have for any o,
1Si(eer) — Hi(é)Aex|| < O(T)|| Acxs]*.

Since )
with probability 1, we have

18i(ei) =TI Aci|| < O(T)[| Ay ||* + [|(Hi(&:) — TI)Acy|| < O(T) || Aci]|* + o(T)[| Acxi,
which is ().

For (I0), similarly we use the Taylor expansion at z = 0 and &;, by the mean value theorem,

oVi(0, i) 1 _LPVi(0, i) 1 PVi(z, i)
Vilz o) =Vi(0.00) + =5 e 4 5a T m e D e A
Jk,1€[D]
B }zT (’)2%(0,ai)z n 1 83\/1,(2,011')2‘2 ;
) 02027 6 02;021,02 Ik
j,k,l€(D]
1 _9%*Vi(0,&;) 1 8V(Oa) BVi(z, ;)
= T BTy J Acy + = i),
2% T 9z0z1 2 02;0z,00; 3%k al+ Z 02;021,0% 02,0250 K
Jsk,l€[D] Jykl €[D]

for some z between 0, z, some &; between &;, ;. By the assumption that the moment generating
function of 7; exists and by Lemma[B.3] for the first term

1 2V.(0, & 1 T ()T T*
z-r(9 ‘/;(O>a2)z _ 7ZT/ nz(é)nz(t) dtZ N z I’L z
with probability 1. For the second term, for any j, k, 1 € [D],
1 9°Vi(0,6u)| _ 1/T Wij(t)mk(f)ml(t)dt
Tazjazkaazl T Jo 5\12(15)

2T 0z0zT T oT

<

1 /T Nig (O)ni ()0 (t) dt
T Jo I .
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is uniformly bounded for any é&; > 0 with probability 1. For the third term, for any i, j, k € [D],

LOVi(z )| |1 [T i (t)naw (&) (t) 1T :
T o | = 7, e (4 03)
< l/ Tij (t)mkét)mz(t) min {exp( LpT( ) l}dt
T Jo My ’

is convex in z. There exists a neighborhood U of 0 such that the expectation of the term above for
any z € U is finite, and by its convexity, it is uniformly bounded in U with probability 1.

Together, we have

T o
Vi(z, i) = 52T 2| < o(T)|[2l* + O(T) || Acull]l[* + O(T) 2] *.

O

Proof of Proposition[I] We prove a slightly weaker version: for any neighborhood U; of o, such

that the diameter of U; is o(1), the width of C; . N Uy in «y;; converges to 24 /2 ln(K/e)afj/T with
probability 1.

Before proving the proposition, we explain why we choose z1, - - - , z this way. Let z1,--- , 2op
be :l:c]I* ej,c;>0,j=1,---,D.By Lemma we have
(£c; 17 ) TS () = (e, 171 e))TTT; (o — éu) + ¢ (O(T)||ev; — & |* + o(T) || et; — &)
for any a; > 0. Note that

(:l:C]I* 1 )TTI;‘(al — (AIZ) = :I:ch(aij — (35”)

By (10), we have

AT

V(e IF ej, ;) = — e Ye; + % (o(T) + O(T)||evi — &) + O(T)c®
The constraints

z]Si(0;) — Vi(zk, ;) <In(K/e), k=1,---,2D

becomes
A C?T 2 2 3 2 N ~ 112
CjT|Oéij — Oéij| — 70'1-]-4- O(T)Cj + O(T)Cj + (O(T)C] + o(T)cj)Hai — a1|| + O(T)Cj”@i — alH

SIH(K/E)’ .]:17aD

If all the o(-), O(-) terms are negligible when T' — oo, the width of C; . in «; is
In(K/e) = cjol
2 Y
( c;T + 2 ’

2In(K/e)
o=\ "1z
ij

and is minimized when

The o(-), O(-) terms are indeed negligible with this choice of ¢;, because the constraints now becomes

2T In(K/e) /o3| aij—ij|+o(T/?) ||y — & |+ O(T'?) || — i |* < 2In(K/e)+o(1), (15)
j=1,---,D.Let U; be any neighborhood of o} with diameter o(1). For any at; € C; - N Uy, we
choose

J' = argmax|a;; — &;j|/0i;.
Jjelb
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By the way we choose j’, ||o; — é;]| can be upper bounded by |7 — d;¢| up to some constant
scale, and |a; ;7 — G;.| = o(1). There is

2Tln(K/5)/Ufj,|aij/ — Gjr| + o(TY?)|vijr — éuijr| < 2In(K/e) + o(1),

and

|aij' _aij'| < QIH(K/‘C:) (1+0(1))
Oij/ T

Again by the way we choose j, this inequality holds for any j € [D]. So the width of C; . in «; is
upper bounded by 2 /2In(K/e)o?; /T (1 + o(1)) with high probability. It is easy to see from (I3)

that there exists a; € C; o with o = Gij £ /2In(K/e)o?; /T(1 — o(1)). Together, we know that

the width of C; . converges to 2, /2In(K/e)o7; /T with probability 1. O
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