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Abstract

Recently there have been many research ef-
forts in developing generative models for self-
exciting point processes, partly due to their
broad applicability for real-world applications.
However, rarely can we quantify how well
the generative model captures the nature
or ground-truth since it is usually unknown.
The challenge typically lies in the fact that
the generative models typically provide, at
most, good approximations to the ground-
truth (e.g., through the rich representative
power of neural networks), but they cannot
be precisely the ground-truth. We thus can-
not use the classic goodness-of-fit (GOF) test
framework to evaluate their performance. In
this paper, we develop a GOF test for genera-
tive models of self-exciting processes by mak-
ing a new connection to this problem with the
classical statistical theory of Quasi-maximum-
likelihood estimator (QMLE). We present a
non-parametric self-normalizing statistic for
the GOF test: the Generalized Score (GS)
statistics, and explicitly capture the model
misspecification when establishing the asymp-
totic distribution of the GS statistic. Nu-
merical simulation and real-data experiments
validate our theory and demonstrate the pro-
posed GS test’s good performance.

1 Introduction

Self- and mutual- exciting point processes, as known
as the Hawkes processes, are introduced by the orig-
inal papers by Hawkes (1971a,b); Hawkes and Oakes
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(1974). They become popular in machine learning
due to their wide applicability in modeling triggering
effect in discrete event data, which is ubiquitous in
modern applications ranging from seismology (Ogata,
1988, 1999; Zhuang, 2011), infectious disease modeling
(Meyer and Held, 2014; Schoenberg et al., 2019), crime
events (Mohler et al., 2011), wildfire occurrence (Peng
et al., 2005), civilian deaths in Iraq (Lewis et al., 2012),
terrorist activity forecasting (Porter and White, 2012),
social network analysis and so on.

Classical Hawkes processes are largely parametric,
which focus on modeling the conditional intensity func-
tion of the point process (since the conditional intensity
function completely specifies the distribution of the
process). Hawkes process assumes that the intensity
function consists of the sum of a deterministic back-
ground intensity (which can be time-varying) and a
stochastic term, which captures the influence from the
past events. It is common to assume that the influence
from past events is additive, and the so-called trigger-
ing function measures an individual event’s influence.
One key problem in the Hawkes process is to specify
the triggering kernel. Popular parametric triggering
functions include exponential kernel, power kernel, and
Matérn kernel (Reinhart, 2018).

When facing more complex data with complex temporal
triggering patterns, parametric models can become too
restrictive and even mis-specified. Thus, recently, there
have been many efforts in developing more general gen-
erative models for point processes, including probability
weighted kernel estimation with adaptive bandwidth
(Zhuang et al., 2002), probability weighted histogram
estimation (Marsan and Lengline, 2008) and with inho-
mogeneous spatial background rate (Fox et al., 2016)
and neural Hawkes process (Mei and Eisner, 2017).

Since the specified models (including those generative
models) are very likely to be incorrect due to the ig-
norance of the ground-truth, a natural and important
question yet to be answered is which model to select
in practice. Here, we proposed to use how well those
models capture the data, i.e. goodness-of-fit of these
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Hawkes process models, as the metric to rank models
in practice. As well-said in Engle (1984): "At any
stage in the specification search, it may be desirable to
determine whether an adequate representation of the
data has been achieved.” For generative models, since
they tend to be further away from the probabilistic
framework of Hawkes processes, it is more difficult to
evaluate their GOF to the real data. For these genera-
tive models, the classic statistical GOF test framework
may not apply.

There are two major difficulties in utilizing existing
GOF tests for the self-exciting point processes. (1)
Generative models typically provide, at most, good
approximations to the ground-truth (e.g., through the
rich representative power of neural networks), but they
cannot be precisely the ground-truth. For instance, it
is unlikely that neural networks truly specify the data
distribution; rather, the neural networks are being used
because of their universal approximation power and
can generate a good approximation to the ground-truth
(Mei and Eisner, 2017). Typically, it is impractical to
access the GOF via testing with unknown ground-truth
g*, as illustrated in the left panel in Figure 1. In both
theory and practice, the best we can do is to test how
close our fitted model ¢ is to the approximation gg, as
illustrated in the middle panel in Figure 1. Neverthe-
less, we still consider model misspecification explicitly
since it is vital in establishing the asymptotic per-
formance of our proposed GOF test. (2) When we
fit conditional intensities from various families, direct
comparison between GOF measures from different fam-
ilies is not reasonable; we need to find a unifying space
to access comparable GOF measures for all considered
families, as illustrated by red lines in the right panel
in Figure 1. This space, or rather function family, for
GOF, should be carefully chosen such that it is both
expressive enough and not too complex to develop a
valid, consistent, and tractable test statistic thereon.

GOF test for the whole conditional intensity has been
developed by Ogata (1988); Schoenberg (2003), but the
theory therein is established under the classic set-up
and may fail to generalize to model misspecification
setting. Moreover, the triggering effect is the main
effect-of-interest in many Hawkes process models since
(1) it characterizes the dynamics between events and (2)
the background rate can be separately estimated from
the well-established declustering procedure (Zhuang
et al., 2002; Marsan and Lengline, 2008; Fox et al.,
2016). However, the background rate usually dominates
the conditional intensity, and the existing tests may
not detect subtle triggering function differences. Thus,
a principled method to quantify the goodness-of-fit
for triggering effect in Hawkes processes under model
misspecification is essential.

Classic set-up under
model misspecification

Proposed set-up under

lassic testi t- . . .
Classic testing set-up model misspecification

Figure 1: The ground-truth is g¢*; the as-
sumed /specified family of candidate models is G in
the left two panels and G; and Gs in the right panel.
GOF addresses how close the fitted model g is to the
unknown true one g*. In classic set up, one assumes
there exists a go € G such that ¢* = go. Under a more
general model misspecification case where ¢g* may not
be contained in G, classic GOF measures the distance
between g and a good approximate go € G to ¢g* (in
K-L divergence sense). When we want to rank models,
we need to find the approximation of gi, go, and ¢g* in
a unifying space G and compare models gy, g2 therein.

Contribution. In this paper, we present a non-
parametric goodness-of-fit (GOF) test statistic, called
the Generalized Score (GS), which can be broadly ap-
plied to evaluating the self-exciting part in Hawkes
process generative models. The GS test is constructed
by translating the GOF test into a two-sample test:
whether the real data and synthetic data from the
generative model have the same distribution? Based
on this, we derive the likelihood score statistic with
estimated piecewise constant kernels, which is flexible
and has little model restrictions. We further estab-
lish asymptotic properties for MLE of the Quasi-model
(QMLE), asymptotic x? null distribution, as well as
the power function of GS statistic. The main ingredi-
ents of our analysis include (1) making a connection
between GS test and the classic theory on MLE un-
der model misspecification (QMLE) (White, 1982) and
(2) generalizing the asymptotic properties of MLE of
Hawkes process in Ogata (1978) to model misspecifi-
cation case. Our GS test provides a tool for model
diagnosis and comparison of the self-exciting part in
Hawkes process generative models. We demonstrate
the effectiveness of our proposed test via numerical
simulation and real-data examples.

Several features of our GS test include: (1) We develop
the test for generative models considering their inherent
“model misspecification nature”; (2) we focus on GOF
of the triggering effect in Hawkes process models; (3)
due to its construction, the GS statistic enjoys simple
asymptotic distribution specified by x? distribution and
analytical form of the power function, which enables
us to calibrate the test without sampling.

Related Work. The one-sample goodness-of-fit prob-
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lem is closely related to the two-sample test problem.
For independent and identically distributed (i.i.d.) ob-
servations, two-sample test is well studied (e.g. energy
statistic (Székely and Rizzo, 2004; Baringhaus and
Franz, 2004) and maximum mean discrepancy (MMD)
(Gretton et al., 2012)) and so is the GOF based on it.
Chwialkowski et al. (2016) developed Stein operator
based MMD (which they call squared Stein discrep-
ancy) and changed the two-sample test statistic to a
one-sample GOF test metric. Bounliphone et al. (2015)
reformulated the one-sample GOF problem into a two-
sample test problem and developed a model selection
tool based on MMD. Extension of those methods to
point process is missing until Yang et al. (2019) pro-
posed a kernel goodness-of-fit test by defining a Stein
discrepancy for generic point process; However, a com-
mon drawback of a kernel-based test is that the null
distribution is hard to evaluate (since they depend on
infinite series involving the eigenvalues of the kernel).
In contrast, our GS statistic follows a simple x? null
distribution and is easy to calibrate. Our proposed
method allows the distribution under the null to be
flexible and estimated from data by comparing the data
to the generative model via the test statistic. Other
model diagnostics include likelihood of fitted model
and the observed data (Schorlemmer et al., 2007) and
Information Criterion (IC) (Chen et al., 2018). The
likelihood is the most commonly used, but overfitting
makes it less convincing and even questionable (as dis-
cussed via numerical simulation). Chen et al. (2018)
assumed correct model specification, which typically
does not hold in the real study, and the consistency
result of IC is restricted to exponential triggering func-
tion case. For more on the kernel-based two-sample
test as well as model diagnosis and selection method
of the point process, one can refer to Harchaoui et al.
(2013) and Bray and Schoenberg (2013).

2 Problem set-up

We first introduce some necessary mathematical prelim-
inaries, and then formulate the one-sample goodness-
of-fit problem into a two-sample test problem.

2.1 Mathematical background

Consider a counting process {N(t) : t > 0}, with
associated history Ho, = {t; : 0 < ¢; < t} (¢t > 0)
indicating the occurrence time of a sequence of discrete
events. For simplicity, we use H; instead. A point
process is characterized by its conditional intensity,
which is defined as:

A (M) = lim BIN{(t, + A} 0] /A

Hawkes process is a self-exciting point process with
conditional intensity takes the following form:

AtH) =p+ Y. ¢t—t), (1)

{’L’:ti <t}

where p is called the background intensity and ¢ :
(0,00) = [0, 00) is called the triggering function.

We assume the separability of triggering function into
components for magnitude and time: ¢ (t—1t;) =
ag(t — t;), where temporal triggering function g is
a probability density function (p.d.f.) and « repre-
sents the magnitude of triggering effect, i.e. how many
subsequent events one event can trigger on average.
Given the past trajectory Hp with N events, the log-
likelihood over time interval [0,7] can be expressed
as:

N T
£40) = 3 log (\(tfH,) - / AulHo)du.

One can refer to Laub et al. (2015) and Reinhart (2018)
for a more comprehensive introduction of Hawkes pro-
cess and a detailed deviation of its (log-)likelihood
function.

2.2 Problem formulation

Suppose we have two data sequences D, =
(tgz), ) ..t%z)), (2 = 1,2), which represent the arrival
times of a sequence of events. Here, D; is from real
world and D5 is generated from the fitted generative
model. Assume D; ~ A" and Dy ~ A, where \* is the
unknown true conditional intensity and A is the fitted
one. Further assume both conditional intensities take
form in (1). We aim to test

Hi: N =X, versus Hj: A # A

Note that A* in the above formulation is unknown. As
illustrated in Figure 1, we cast the problem above into
testing Hp : Aj = Ao by projecting the unknown ground-
truth onto a piecewise constant function family G, on
which we can develop a tractable goodness-of-fit test
statistic. Empirically, this projection is done by mixing
Dy and D, and fitting a piecewise constant triggering
function to the mixed data. Most importantly, when
we have several candidate models, this statistic serves
as a quantitative metric to compare models.

We calculate this test statistic in the following three
steps: Mix the two data sequences up to get an aggre-
gated sequence; Estimate 6y, maximizer of the Quasi-
likelihood, from a Quasi-parameter space © for the
aggregated sequence; Compute a test statistic GSp
based on the estimation in the last step.
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Remark 1 (Singleton null). In our setting, the
triggering function’s unknown parameter is infinite-
dimensional, so the null hypothesis Hy is an uncount-
able set. To make the problem tractable, we cast H|)
to Hy by representing the unknown triggering function
using some basis function (in our case, we use indicator
function on mutually disjoint intervals (2)) such that
we reduce this into a finite-dimensional problem. Be-
sides, testing with unknown A\* is impractical, and we
can only handle the projected problem Hy to draw the
inference for H/, anyways.

Remark 2 (Model mismatch). We use the term
"Quasi" here since commonly speaking, there will be a
mismatch between a machine learning algorithm class
we specify and the unknown true intensity, i.e., this
class is misspecified as illustrated in Figure 1. We
add a prefix "Quasi-" for everything under this class,
e.g., Quasi-conditional intensity and Quasi-likelihood
function. Since conditional intensity characterizes a
point process and we assume the triggering function
¢* = ag*, we only need to specify the approximate
class for g*. We choose a piecewise constant function
class as G. The reason is three-fold: (i) a piecewise con-
stant function can approximate any integrable function
arbitrarily well by reducing the size of the discretiza-
tion bin; (ii) there exists go € G, which corresponds
to our estimand 6y, serving as a good approximation
to g* and it is identifiable; (iii) most importantly, we
can develop an easy-to-calibrate hypothesis test on this
family. We will elaborate on these in the next section.

3 Proposed goodness-of-fit test

The idea behind this test comes from a critical observa-
tion that under Hy (or H{)), mixing two sequences will
lead to a Hawkes process with scaled intensity function.
Based on this observation, we can derive a Generalized
Score (GS) test, which is known to be locally most
powerful (Neyman—Pearson lemma).

Step 1: Mix two data sequences and model the
aggregated sequence.

In this step, we derive the Quasi-log-likelihood function
for the aggregated sequence. The proof is deferred to
Appendix A.

Proposition 1 (Log-likelihood of mixing of two
Hawkes processes). Suppose we have two Hawkes pro-
cesses with conditional intensities

Z ¢(Z)

(it <t}

Az (tHz ) — ) (z=1,2).

Define their mizing to be N (t)
it has background intensity ,u = u(l) + M(Q)
T= max{t(l) t(2)} and ®* fo

= Ni(t) + Na(t). Then
Denote
u)du. Given

the past trajectory: Hy = Hi U Hay, where H,y =

{tgz),...,tg\z)}, z = 1,2, we have that: (i) Under Hq,
let 2/ = 2(or 1) when z = 1(or 2), the full model log-
likelihood €1 (p, ¢V, 9P| Hy) is
2 N.
—uT+> > log (u + 3 () )
z=1i=1 j<i

1)) = 8T~ 1),

+Z¢(z) (=)

(;6 2) = ¢, the sub-model log-
(/Jﬂ ¢a ¢|Ht)

Note that the triggering function takes value zero on
(—00,0] and thus we did not consider the triggering
effect of events to its own history. By this proposition,
we can model the aggregated data via a univariate
Hawkes process with the same triggering function under
Hy. For each event in process z (z = 1,2), it does
not only dependent its original own history, but also
depends on the history of another process 2’ (z/ = 2,1).
See an illustration of this in Figure 2.

¢ @A Bvents in Hawkes Process 1
@A Brenta in Hawkes Process 2
>t

The occurrence of next
event may be triggered
by either history of

(i) Under Hy : (1) =
likelihood is Lo (1, p|Hy) =

B

Hawkes Process 1 or
Hawkes Process 2 and
thus it is dependent on
the joint history.

Gen. 1 P L 1 N Lyt

Figure 2: Tllustration of mixing of two Hawkes processes
N(t). Given the past sample trajectory, the upcoming
event of N(¢) may (1) come from background poisson
process of Hawkes process 1 or 2 OR (2) be a offspring
of history H1+ or Ha+. The grey dashed line in the
figure illustrated scenario (2).

Step 2: Discretize triggering function and learn
quasi-conditional intensity.

In this step, we choose piecewise constant function as
the approximation to the true triggering function for
the aggregated sequence. This means we will discretize
the time horizon into small intervals (which we call
bins) and estimate a "weight" on each interval. In
practice, the time horizon we discrete is truncated on
[0, Tp] and discretized into finitely many bins, since it
is unnecessary to estimate infinite number of weights
on infinite time horizon. More specifically, we assume
go(t) = >_1%, grlp, (t) and estimate it from the follow-
ing class:

g2 {g(t)

no

‘0<gk<ooand ngAtk—l} (2)
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Here, 0 = 0ty < 0t1 < --- < 0tp, = Tp and each bin
By, = (0tr—1,0tx] has length Aty = 0t — dtp_1(k =
1,27...777,0).

We apply Probability Weighted Histogram Estimation
(Marsan and Lengline, 2008; Fox et al., 2016) to learn
the weights g on each bin By, triggering magnitude
«a and background intensity p. Most importantly, our
Quasi-conditional intensity defined in (2) satisfies the
model assumption in Fox et al. (2016), which guarantees
the non-parametric stochastic declustering algorithm
as an EM algorithm. It maximizes a lower bound on
the Quasi-log-likelihood function, which is in fact the
complete-data Quasi-log-likelihood function derived by
Veen and Schoenberg (2008). Thus, it outputs the
MLE of Quasi-log-likelihood function (QMLE). See
Appendix B for further details.

Before moving on, we need to formally define the es-
timand 0y we want to learn. It is the parameter of
Quasi-conditional intensity which maximizes the ex-
pected Quasi-log-likelihood.

Definition 1 (Estimand). The estimand 6y is

o = arg max Elé; (01H1)], (3)

where the expectation is w.r.t. all trajectories Hr and
the expression of £1(0|Hr) is given in Proposition 1.

Remark (Information theoretic interpretation). Here,
6 € O in (3) has an information theoretic interpretation
(Akaike, 1998). It parameterizes the Quasi-conditional
intensity A = Ay and 6y defined above corresponds
to Ag = Ag,, which minimizes Kullback-Leibler (K-L)
divergence to the unknown ground-truth A\*:

0o = argmin E[" — £, (6]#7)] = arg min KL(A"[|g),

where £* is the true log-likelihood. That’s why we call
Ao “the best approximation to A*” or “projection onto
the user-specified space” (as illustrated in Figure 1).

Proposition 2 (Global identifiability). 6y defined by
(3) is globally identifiable.

We prove global identifiability by showing (3) is a
(strictly) concave program. Most importantly, when
the fitted model is actually the same as the unknown
true one, 6y will lie in Oy, i.e. Hy holds under H.
This justifies our projected test Hy, indicating that
the difference between mismatched models represents
the difference between true models. The detailed proof
is deferred to Appendix D. We should make a mild
assumption that g is interior to the convex Quasi-
parameter space ©. This makes sure that we have
VoE[¢1(0p|H1)] = 0, which guarantees that 6, is the
estimand which our QMLE is consistent for. We will
show this in detail later in the Appendix D.

Step 3: Compute GS statistic.

Here, we call the singleton that we want to test a
sub-model. We call the Quasi-parameter space under
Hy sub-model Quasi-parameter space and denote it
by Oq. Similarly, © is the full model Quasi-parameter
space, or rather, Quasi-parameter space under H;. Un-
der our proposed approximation class (2), the Quasi-
conditional intensity has a parameterization

= (M)¢(11)a"'a¢£110)7¢§2)7' "7¢(2))

where 1 2 u®M + 1® and qﬁgj) = a(z)g,(cz). The full
model Quasi-parameter space is given by
@:{9 | 1>0,0<a® <1,
Zg(z)lgk €gG (z= 1,2)} c R,

where d = 1 + 2ng. Note that the second constraint
guarantees the stationarity and ergodicity. We further
denote

&) = (7, dENT = (aPg?, ..,

to be the Quasi-parameter of the triggering function
of Hawkes process z (z = 1,2). The sub-model Quasi-
parameter space is

0 ={0ec0|s)) ¢ =

Oé(z)L(JT(le))T

kil,...,no} C Ritmo,

Denote the number of constraints (we’ll see later it’s in
fact degree-of-freedom of our test statistic) r = ng =
dim © — dim O, the null hypothesis Hy : 0y € ©g can
be re-expressed as Hy : h(fy) = ¢V — ¢ = 0, where
h:R% — R". We consider a test:

HO : h(ao) = 0, H1 : h(@o) 75 0

versus

and the following test statistic:

Definition 2 (GS statistic). Suppose the past sample
trajectory is Hr. Denote

Sr(0) = % € R4, Arp(0) = Sr(0)SL(0) € R4,
~ Oh(0) xd _ *hL(0HT) dxd

H(9) = 20 e R™ Br(d) =-— 20007 R

where H exists and has full row rank v, and log-

likelihood €1 is given in Proposition 1. Then, the Gen-
eralized Score (GS) test statistic is given by

GSp = S}(é\QMLE)i_IST(é\QMLE)a

where 5QMLE € Og is QMLE under null hypothesis
and X1 is given by:

St =B (0)H(0)" (H(0)BT(0)

9:§Q1\4LE
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Later, we will show TS lisa consistent estimator of in-
verse of covariance matrix of Sp(0gmrE)/ VT. Closed-
form expression for GSr is given in Appendix C.

Based on our testing procedure for two single data

sequences above (steps 1 ~ 3), we state a more general
version for two sets of data sequences in Algorithm 1.

Algorithm 1 Non-parametric goodness-of-fit test for
self-exciting point processes

Input: Two set of ii.d. data sequences D; =
{Dl,la ceey Dl,L} and .D2 = {D2,17 e ,DQ,L}.
Initialization: ng bins on time horizon [0, Ty]; repeat
times K; number of sequences N to calculate one GS
statistic GS.

Output: K i.i.d. GS statistics .

Step 1 Mix D;; and D, ; to get the aggregated
sequence D% (i =1,...,L).

Step I Apply Probability Weighted Histogram Es-
timation to learn QMLE.

Step IIT  Repeat the procedure for K times: randomly

shuffle the order of sequences in the D; and
repeat step I to get a different set of aggre-
gated sequences, from which we randomly
choose N sequences to calculate one GSp.

The stationarity of a stochastic process means the
unconditional probability distribution does not change
when shifted in time. More specifically, for a stochastic
process N (t), for all t € R, N(¢,t + 0] follows a same
probability distribution as long as § > 0 is fixed. Thus,
when T" — oo, we will have

E[(1(0|Hr)]
T E[& (9|7‘[1)]

This shows that the estimand defined by maximum
expected log-likelihood principle will not vary with dif-
ferent time horizon T' (otherwise, 6 is not well-defined).
Most importantly, this also shows that learning with
L short sequences on time horizon [0,Tp] is equiva-
lent to learning with one long sequence on time horizon
[0, LTp], which justifies our generalization to the testing
on two sets of data sequences in Algorithm 1.

4 Theoretical Analysis

Here, we will prove the asymptotic performance of our
GS statistics by establishing a novel connection with
classic results in statistics for QMLE and the GS test
based on it (White, 1982). We provide a generalization
of the asymptotic properties of MLE for Hawkes process
(Ogata, 1978) to model mismatch case, based on which

we get the asymptotic behaviors of testing procedure
such as score test and Wald test. The proofs and
numerical illustration on why we choose score test over
Wald test are deferred to Appendices D and E.

We use 0y to denote the projection of ground-truth and
test Hy : 0y € Og against Hy : 0y € ©y. Apparently,
under different hypothesis, 6y cannot be the same. To
avoid confusion, we say the projection is 8y = 6, € O
under Hy and 0y = 03 € ©g under H;.

Lemma 1 (Asymptotic properties of Quasi-MLE).
Let %MLE and 5QMLE be QMLE under Hy and H;.
For piecewise constant triggering function family (2),
QMLE satisfies the following asymptotic properties:

(i) Convergence to 0y almost surely. When T — oo,
under Hy: é\QMLE 2 0y; under Hy: 5QMLE % 0,:
(ii) Asymptotic normality. Define A(0) =E[Ar(0)] /T
and B(0) = E[Br(0)] /T, when T — oo, we will have:
Under Ho: VT (Bgrre — 61) = N(0,571(61));
Under Hi: VT (0gnne — 62) % N(0,271(6,)),

where ¥71(0) = B~1(0)A(6) B~1(9).

(iii) We also have asymptotically normality of the
Quasi-score function, no matter under Hy or Hy:

1 06 (01Hr)

N 4 N(0,A(60)) as

0=0¢

T — oco.

Remark. The score function should have the Fisher
Information Matrix (FIM) I(#*) as its asymptotic co-
variance matrix when the model is correct. Using FIM
will break the asymptotic x? distribution in the model
mismatch case. That’s why we need to consider the
model mismatch explicitly. Even though we cannot cor-
rectly specify the function family for unknown ground-
truth, using A(6p) instead of FIM as the covariance
matrix will still yield correct asymptotics for our pro-
posed test. Moreover, by Theorem 1 in Ogata (1978),
one can verify that Information Matrix Equivalence
Theorem in White (1982) still holds for stationary point
process, i.e. g = 0* and A(fy) = B(fy) = I(6p) hold
if and only if the model is correctly specified. Thus,
our results simplify to the form in Ogata (1978) in the
absence of model mismatch. Though the asymptotic
covariance matrix of QMLE is no longer inverse of the
FIM I~1(6*), we can still estimate it consistently.

Theorem 1 (Asymptotic null distribution of GSr).
Under Hy, the Generalized Score (GS) test statistic has
an asymptotic x2 distribution. More specifically,

@Tgxf as T — oc.
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Note that here the degree of freedom is r = ng, which
is exactly the number of bins we discretize [0, Tp] into.

Theorem 2 (Power function of GS test). Under Hy,
the GS statistic follows a asymptotic noncentral x>
distribution with degree of freedom r and noncentrality
parameter T)|¢(M) —¢P)||2. For any critical value ¢ > 0,
when T — oo, the test power is:

]P)Hl (@T > C)
Qra(VT|¢W — @ ||, /)

where || - ||2 s the vector €y norm and Qpr(a,b) is the
Marcum-Q-function.

— 1,

1.0 [
—r=24

Cq) 0.8 _::22 _
o — =20
§ —r=18
r=16

B 0.6 r=14| |
by —r=12
— =10

(% 04 r=8 n
Ay r=6

0.2 | | | | |
0 1 2 3 4 5 6

VT[|¢M — ¢l
Figure 3: Illustration of asymptotic power of GS test.

The asymptotic power function with the critical value
chosen to be the upper 95% quantile of the null distri-
bution is shown in Figure 3. Qs (a,b) — 1 as a — oo,
indicating our proposed test is consistent. See Ap-
pendix F for more on Qs(a,d).

5 Numerical experiments

In this section, we present numerical simulation to
(1) validate the asymptotic property of our method
by three simulation experiments; (2) demonstrate the
GOF test for synthetic and real data.

5.1 Validation of asymptotic properties

To validate Theorems 1 and 2 presented in Section 4,
we conduct three simulation experiments on a synthetic
data set. We repeat our experiments on five sub-data
sets generated from Hawkes process defined in (1) with
1,000 sequences, where 1 = 20 and an exponential trig-
gering function ¢(t—t;) = ae™10t=%) t; < t is adopted;
« in each sub-data set is from {1.25,1.5,1.75,...,3.75}.

The Q-Q plot in Figure 4 (a) shows that the GS statistic
follows the x? distribution, which is consisent with
Theorem 1; Figure 4 (b) visualizes the mean (red line)
and the error bar (green bars) of each testing point for
the GS statistics over different sample size N. Clearly,
the GS statistics tend to be linear in sample size under
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Figure 4: Simulation results: Left (a): quantiles of
calculated GS statistics against theoretical quantiles
of x2, distribution under Hy; Middle (b): mean and
variance of GS statistics with increasing N under Hj;
Right (c): ROC curve for different V.

Hy, which matches the theoretical results shown in
our power study in Theorem 2 and shows that our
asymptotic distribution analysis is reasonably accurate.
The ROC Curve in Figure 4 (c) shows that the GS
statistics has good performance when N = 100 (AUC is
approximately 1); We choose K to be 20, 5, 150 for three
experiments, respectively. Details on testing procedure
can be found in Appendix E.

In short, we have confirmed (a) the x? null distribution;
(b) the score is linear in sample size under Hy; (c) the
consistency of the proposed test. We also conduct
similar experiments for power triggering functions to
validate our method is model free. Results are deferred
to Figure 8 in Appendix E due to space limitation.

5.2 Effects of number of Bins ng

We use exponential synthetic data sequence D; and Do
with g = uo = 20, f1 = B2 = 10, a3 = as = 1.5 under
Hy and a3 = 1.5,a2 = 5 under H;. The histogram
estimate under Hy is given in Figure 5. We perform GS
test (confidence level 95%) under Hy and H; 100 times
for each ng and report Type I & II errors in Table 1.
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Figure 5: Histogram estimation of exponential kernel
with g = p1 + po = 40 and a = 0.15 with different
no. The red dashed line is ground-truth ae=?* and the
blue solid line is the histogram estimate. The bottom

middle panel (ng = 14) is the most accurate one.

From Figure 5, we can observe that with too many bins,
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the histogram will overfit the data (panel (f)), whereas
with fewer bins it underfits (panels (a)~(d)). However,
Table 1 shows that ng = 3 is most powerful in capturing
the difference in triggering function. By comparing
panel (a) and (b) in Figure 5, even though underfitting
still exists, it captures the triggering function, which
seems to be sufficient for our setting.

Table 1: Empirical Type I and Type II error (over 100
trials) for different number of Bins.

NUMBER OF BINS 2 3 4 7 14 28

TvyPE I ERROR 0.04 0.05 0.06 0.02 0.03 0.02
TvypPE II ERROR 0.59 0.09 0.19 0.34 0.79 0.83

5.3 Comparison with existing methods

The basic idea of existing GOF test due to Ogata (1988)
is to (i) transform the original process to a residual
process by keeping point ¢; with probability i/ X(tl |He,);
(ii) test if the residual is a homogeneous Poisson process
with rate zz. Commonly used homogeneity test statistic
is Ripley’s K function (Ripley, 1976) and we use K (t) =

N A . :
Doim1 2ji L{jt;—ti)<ty /AN as its estimate.

We apply both tests to exponential synthetic data with
B = 10. We still use histogram estimation to estimate
the conditional intensity. We calculate the GS statistics
with N = 50, K = 100 and the average of K(t) over
L = 100 sequences for time span ¢ € {1,...,10} but
only report t = 1,10 cases since the difference is not
large when ¢ doesn’t change a lot. The rest is plotted
in Figure 9 in Appendix E due to space limitation.

(a) GS statistics (b) Ripley's K (t=1) (c) Ripley's K (i=10) (w') Squared GS statistics

Figure 6: Heat map of (a) GS statistics, (b) IA((l), (¢)
I?(lO) and (a’) Squared GS statistics. For each pixel,
the data sequence D; and D are exponential synthetic
data with a7 and as specified by the z-axis and the
y-axis in (a). Squared GS statistics makes the gradual

changing pattern more obvious.

Figure 6 visualizes the GS statistics and K (t) when
D, and D5 are generated according to different o’s,
and show our method has more power in detecting
the subtle difference in triggering part over existing
methods. This is evident as in (a), the colors of the
diagonal pixels are lighter whereas the colors of pixels
on the bottom left are darker. This gradual changing
pattern shows that GS statistic is larger when two gen-
erating distributions (i.e. a’s) are further away whereas

is smaller when those two distributions are closer, i.e.
our proposed test can detect the subtle difference in
triggering function accurately. However, in (b) and
(¢) we do not observe this gradual changing pattern,
indicating Ripley’s K function values are approximately
the same when the true data generation mechanisms
of two data sequences vary within a small set. This
is because background intensity dominates the condi-
tional intensity and most of the events comes from the
background. Thus, testing of whole intensity will fail
to detect the subtle triggering function difference.

5.4 Demonstration for model comparison

We perform our proposed test procedure on various
synthetic and real data sets to compare four commonly
used models. For synthetic experiments, we gener-
ate 5,000 sequences for each data sets, which come
from the Hawkes process (¢ = 10) defined in (1) with
different types of triggering functions: (a) exponen-
tial (Exp): ¢(t — t;) = e 3(=%); (b) Matern kernel
(Matern): ¢(t—t;) = 0.2xCy.22(t—t;), where C, ,(d) =
o2(21V) /T (v)(V2vd/p) K, (v/2vd/ p), where T(-) is
the gamma function, K, (-) is the modified Bessel func-
tion of the second kind. For real data experiments,
we select a wide range of real data sets including: (c)
MIMIC-IIT (Johnson et al., 2016) (MIMIC): 2,246 se-
quences with average sequence length 4.09; (d) Meme-
Tracker (Leskovec et al., 2009) (MEME): randomly-picked
5,000 sequences with average sequence length 24.41.
There are 2,500 sequences in (a), (b), (d), and 1,746
sequences in (c) are used for fitting the model and
generating new sample sequences. The rest serves as
testing data to calculate our GS statistics.

The models we are testing/comparing include (1) ex-
ponential triggering function fitted by gradient descent
(Exp GD); (2) histogram estimation of triggering func-
tion fitted by EM algorithm (Hist EM) (Marsan and
Lengline, 2008; Fox et al., 2016); (3) Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997);
(4) Neural Hawkes Process (NHP) (Mei and Eisner,
2017); (5) Homogeneous Poisson process with random
average intensity (Random) as sanity check.

Table 2: GS statistic and Log-Likelihood; lower GS
value is better, higher likelihood is better.

GS STATISTIC LoG-LIKELIHOOD

Data Exp GD Hist EM LSTM NHP Ranpom Exp GD Hist EM  NHP
Exp 18.25 11.63 88.54 14.83 31.78 21.27 21.10 20.03
MATERN 21.01 18.40 81.37 21.86 26.11 19.09 19.49 14.91
MIMIC 29.52 27.90 41.34  25.24 31.04 10.46 8.605 8.973
MEME 36.92 34.29 56.04 29.98 39.37 69.51 62.66 73.15

We follow the exact testing procedure in Algorithm 1
with N =200, K = 5; we choose ng = 15 for Exp and
Matern data and ng = 13 for MIMIC and MEME data. We
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report the mean of scores and the likelihood of fitting
the model in Table 2. We observe that our proposed
GOF test can differentiate models under different set-
tings. In particular, the GS statistics can be used as
a ranking criterion. More specifically, the paramet-
ric models Exp GD and Hist EM achieve lower scores
(better performance) on synthetic data sets comparing
to NHP and LSTM, since the parametric assumptions
of the parametric models (e.g., the additivity in trig-
gering effects) are consistent with the Hawkes process
used in generating synthetic data. In the contrast,
NHP performs better on real data sets, including MIMIC
and MEME, where dynamics between events are more
complex and difficult to be captured using parametric
models. We also present the corresponding likelihood in
Table 2, which is commonly used to measure how well
the data are fitted by the model (higher likelihood the
better data is fitted). It shows that the likelihood result
generally agrees with our GS statistics. Moreover, we
also show that as a deterministic time series model,
LSTM is difficult to compete with other baselines.

We should mention Exp data and Exp GD method case
in particular, where the model is correctly specified.
We use GD to maximize the likelihood to obtain MLE
of the parameters. We observe that the estimates are
further away from ground-truth while the likelihood
keeps growing larger (see Figure 10 in Appendix E).
This means overfitting occurs and therefore likelihood
may be a questionable model comparison metric.

We next show that our proposed test can select the best
model. We use the ground-truth to generate the "fit-
ted" sequence, since it is hard to learn the parameters
correctly (potentially due to the overly short sequences),
and compare it with Hist EM. We adopt the same ex-
perimental setting with the first row in Table 2 (Exp
data) and report the result in Table 3.

Table 3: Comparison of ground truth and Hist EM on
Exp data. The GS statistic of Hist EM is different from
that in Table 2 since we use different synthetic data.

METHOD GS STATISTIC  LOG-LIKELIHOOD
GROUND TRUTH 13.24 21.64
Hist EM 17.38 21.65

From this table, we can see that log-likelihood cannot
differentiate those two methods and is even mislead-
ing, whereas our proposed GS statistic suggests the
ground truth is a lot better than the Hist EM method.
Together with the numerical results in the past exper-
iments, we demonstrate that our proposed GOF test
can select the best model in the sense that how well
the model captures the self-exciting part in the data.

Goodness-of-fit for 911 call data. To demon-
strate the use of our test statistic as a diagnosis tool for
the GOF of generative models, we test on 911 call data
in 2017 provided by the Atlanta Police. The Atlanta
Police Department divides its operation region into 78
beats, so we use this to partition the spatial region and
consider a non-homogeneous point process generates
sequences in each beat.

We first consider police events data in each beats in
one day as a sequence, and for each beat fit generative
model using NHP and Exp GD. Then we calculate the
value of the test statistic for each beat. The experiment
configurations are as follows: N =20, K =1, ng = 12.
The results are presented in Figure 7.
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Figure 7: Goodness-of-fit test for Atlanta 911 call data:
(a) for NHP; (b) for Exp GD. Each polygon in the map
represents a police beat in Atlanta. The color depth
represents the level of the test score. Lighter color:
smaller discrepancy between the generated data and
the real data. Overall speaking, we can see NHP has
better GOF than Exp GD, especially in populated area.

Clearly, the generative model has different GOF in
each beat. Also, the two generative models have differ-
ent patterns in their GOF over space. Note that we
do not know the ground-truth. This example demon-
strates that our tools provide a convenient and flexible
diagnosis tool for the GOF for generative models in
practice.
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