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Abstract—With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink
scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller.
Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On
the other hand, periodically collecting all such information from a large number of users typically incurs a prohibitively high
communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling
algorithm that is suitable for large-scale IoT applications. Specifically, we first characterize a capacity outer bound subject to the
sampling constraint where only a small subset of users are allowed to use control channels for system state reporting at each time.
Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of
channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this
capacity-achieving algorithm allow us to develop a low-overhead scheduling algorithm that can strictly satisfy the sampling constraint
with asymptotically diminishing throughput loss.

Index Terms—Internet-of-Things, Uplink scheduling, Low-complexity algorithm, Throughput performance.
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1 INTRODUCTION

INTERNET of Things (IoT) refers to the internetworking of
a large number of heterogenous smart devices (e.g., smart

phones, tablets, sensors and actuators) to meet the demands
of the ever-increasing applications in personalized health
care, smart home, ubiquitous environmental monitoring,
smart manufacturing, etc. It is estimated that the global
market for IoT will reach 20.4 billion devices by 2020 [1].
However, unlike traditional data communication networks
where the predominant amount of data is transmitted in
the downlink, a distinct feature of IoT applications is that
a significant portion of the IoT data traffic is carried in the
uplink (i.e., from user devices to the central controller). In
most IoT applications, each device generates sparse or inter-
mittent data traffic and transmits them to a central controller
or access point (AP) for data processing, typically through
wireless connections (referred to as wireless IoT uplink
systems in this paper). As a result, to support the enormous
amount of devices given limited spectral resources, there
is a pressing need for efficient and low-overhead wireless
IoT uplink scheduling algorithms that determine when and
which devices (referred to as users in the rest of the paper)
are allowed to transmit, with the goal of supporting as
many users as possible, or equivalently, throughput-optimal
scheduling.

Over the years, throughput-optimal scheduling has been
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extensively studied in the networking research community
and many results are available. However, due to its unique
features and applications, IoT uplink scheduling design
is far more challenging compared to its counterparts in
traditional wireless networks (see Section 2 for a detailed
discussion). In particular, due to the sheer size of IoT
systems, a well-designed uplink scheduling policy not only
has to be near throughput-optimal, it also needs to be low-
overhead. To this end, in this paper, we propose an efficient
and simple design based on the key idea termed “pick and
compare (PC)” (e.g., [6], [20], [28], [30]). Simply speaking,
a PC scheme always stores the most congested user and
compares its queue-length with a randomly selected user. It
has been shown that the class of PC algorithms achieves the
maximum throughput through gradually improved quality
of transmission decisions over time. The simplicity, low-
complexity, and scalability of PC algorithms motivate us
to consider the adoption in large-scale IoT uplink systems,
where extensive coordination from the AP is infeasible.

However, due to several technical challenges, develop-
ing a PC-based scheduling scheme for IoT uplink systems
and conducting rigorous performance analysis is highly
non-trivial. Traditionally, PC algorithms were developed for
systems where the queue-length evolution processes are
smooth. Unfortunately, in the presence of wireless channel
fading, the time-varying channel rates could change rather
abruptly. Consequently, most of the proof techniques used
for establishing the throughput-optimality of PC-based al-
gorithms fail under wireless channel fading settings. In fact,
it remains an open question whether it is possible to design an
efficient and low-overhead PC-based scheduling algorithm
for IoT uplink systems with wireless channel fading. A key
contribution of this paper is that we show that the answer
is “yes.” Our main results in this paper are summarized as
follows:
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Scheduling algorithm Required information for the scheduling de-
cision in each time slot

Amount of communication overhead in
uplink scheduling

[Tassiulas, Ephremides,
1992,1993,1997]

Each user’s queue-length information and
its channel rate in each channel

MN

[Gopalan, Caramanis,
Shakkottai, 2015],
[Ouyang, Ying, 2013]

Each user’s queue-length information and
K users’ channel rates in each channel

max{N,MK}

Our proposed IPC Algo-
rithm

K users’ queue-length information and
channel rates per channel

MK

TABLE 1: A wireless system with N users and M channels.

• First, we characterize a capacity outer bound for a wireless
uplink system subject to a sampling constraint, i.e., we
limit the number of users that can use control channels
for reporting system state information and probing uplink
channels. This capacity outer bound lays the foundation
for the performance analysis of our proposed algorithms.

• Next, we consider an efficient and low-overhead up-
link scheduling design. In particular, we relax the sam-
pling constraint and propose a two-stage MaxWeight-
type scheduling algorithm that utilizes the full knowledge
of channel state distributions and instantaneous queue
lengths to achieve the capacity outer bound.

• Finally, building upon this capacity-achieving algorithm,
we develop an iterative pick-and-compare (IPC) algo-
rithm that strictly satisfies the sampling constraint with a
vanishing throughput loss. More precisely, let ΛN (M,K)
denote the capacity outer bound for anN -userM -channel
uplink system with K-user sampling constraint. We show
that our IPC algorithm can stabilize any arrival rates
within the region ΛN (M,K−1). Further, the gap between
ΛN (M,K) and ΛN (M,K−1) is vanishing asK ↑ ∞, and
thus proving the asymptotic throughput-optimality of our
IPC algorithm.
To our knowledge, our work is the first to offer asymp-

totic throughput-optimality for IoT uplink scheduling. The
remainder of this paper is organized as follows. Section 2
presents related work. Section 3 introduces the network
model and problem formulation. Section 4 provides a capac-
ity outer bound characterization. Section 5 covers the key
elements of our low-overhead uplink scheduling design.
Section 6 presents numerical results, and Section 7 concludes
this paper.

2 RELATED WORK

In this section, we provide a quick overview of throughput-
optimal scheduling to put our work into perspective. In
the literature, a well-known class of throughput-optimal
scheduling algorithms is the family of MaxWeight policies,
which date back to the seminal work by Tassiulas and
Ephremides (e.g., [31], [32]) and consist of many follow-
ups (e.g., [7], [9], [16], [22], [23], [29]). The basic idea un-
derpinning MaxWeight policies is to schedule users who
have both good channel qualities and high congestion levels
(evaluated by queue lengths or delays, etc.). Ironically, it
is exactly the requirement of both congestion and channel
state information that renders MaxWeight policies unsuitable
for large-scale IoT uplink scheduling. In many IoT appli-
cations, due to the large number of devices, congestion

and channel state information is prohibitively expensive to
collect. Exacerbating this problem is the fact that even those
reduced channel-probing-overhead MaxWeight variants de-
signed for large-size downlink systems (e.g., for energy
minimization [17] or limited channel quality feedback [8],
[15], [25]) cannot be directly applied in IoT uplink systems.
The reason is that these MaxWeight variants still require
queue-length information of all users, while the AP in IoT
uplink systems usually has limited queueing information
about their associated users. As a result, the assumption of
accurate congestion level information for all users, which is
usually valid for downlink scheduling, no longer holds in
the uplink counterpart. Table 1 lists the amount of commu-
nication overhead of existing policies.

To overcome the limitations of MaxWeight policies, one
research thread focuses on the development of distributed
but suboptimal randomized/greedy strategies (e.g., [5], [14],
[18]). Another exciting thread is to adopt the carrier sense
multiple access (CSMA) design (e.g., [13], [24], [26]), where
each user judiciously selects its CSMA parameters to adapt
to its congestion levels (e.g., the queue-lengths). However,
most existing CSMA-based schemes assume that the weight
of each user (typically some function of the queue-length)
changes slowly over time, which makes their extensions
to settings with wireless channel fading quite difficult. In-
deed, in the presence of fading, the weight of each user
(determined by the product of the queue-length and the
current feasible service rate) is stochastic and can change
rather abruptly. Although this restriction on slow time-
varying weight has been relaxed in recent works (e.g., [15],
[34]), a more fatal limitation of CSMA-based policies is
that the average time required for successfully acquiring
the channel in the channel contention grows exponentially
with the number of users. This limitation renders CSMA-
type schemes impractical for IoT applications that typically
involve a huge number of users. As will be seen shortly,
our proposed PC-based scheme avoids both the slow time-
varying restriction and the scalability pitfall of CSMA.

3 SYSTEM MODEL

We consider an IoT uplink system with one Access Point
(AP) and N users, where each user transmits data to the AP
through M orthogonal channels. We assume that the system
operates in slotted time with normalized slots t ∈ {1, 2, . . .}.
We use C[t] = (Ci,j [t], i = 1, 2, . . . , N, j = 1, 2, . . . ,M) to
capture the wireless channel fading, where Ci,j [t] denotes
the maximum amount of service available for user i to
transmit packets on channel j in slot t. Due to the finite
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number of modulation and coding schemes, we assume
that each channel for each user has R possible channel
rates c1, c2, ..., cR with 0 = c1 < c2 < ... < cR = cmax,
which measure the maximum number of packets that can
be delivered in one time slot. We assume that C[t] are
independently distributed across both users and channels,
and independently and identically distributed (i.i.d.) over
time.

In the IoT uplink system, each user needs to send a
control message to the AP in order for the AP to obtain
its state information (e.g., congestion levels and channel
rates). In particular, the AP fetches the congestion level of
a user by decoding its control message, and obtains its
channel rate by measuring the signal-to-noise ratio of the
received control message. However, due to the restrictive
amount of uplink resources, the AP usually has very limited
information about the state of each user in a large-scale IoT
uplink system. Therefore, we assume that the AP can at
most sample K (K � N ) users to acquire their channel
states and congestion levels on each channel at the begin-
ning of each time slot. We denote the sampling schedule
as X[t] = (Xi,j [t], i = 1, 2, . . . , N, j = 1, 2, . . . ,M), where
Xi,j [t] = 1 if user i is sampled to send a control message
such that the AP acquires its congestion level and the state
of channel j in time slot t, and Xi,j [t] = 0 otherwise. Let
X (K) be the collection of all sampling schedules where
K users are sampled to send their control messages on
each channel. To avoid interference, at most one user is
allowed to transmit over each channel in each time slot. We
call a schedule where at most one user is active on each
channel in each time slot as a feasible schedule and denote it
as S[t] = (Si,j [t], i = 1, 2, . . . , N, j = 1, 2, . . . ,M), where
Si,j [t] = 1 if user i is scheduled on channel j in time slot t
and Si,j [t] = 0 otherwise. We use S to denote the collection
of all feasible schedules. Here, we assume that only the
sampled users are allowed to transmit in each time slot.

We assume that each user i serves its own data traffic
and maintains packets in a queue with Qi[t] denoting its
queue length at the beginning of time slot t, which reflects
its congestion level. The larger the Qi[t], the more congested
the user i. Let Ai[t] denote the number of packets arriving
at user i in time slot t, which is independently distributed
across users and i.i.d. over time with mean λi > 0. We
assume Ai[t] < Amax, ∀t ≥ 0, for some positive constant
Amax < ∞. This is a reasonable assumption since, as
mentioned earlier, most IoT data traffic are low-rate and
intermittent. Then, the evolution of user i’s queue can be
described as follows:

Qi[t+ 1] =

(
Qi[t] +Ai[t]−

M∑
j=1

Xi,j [t]Si,j [t]Ci,j [t]

)+

for i = 1, 2, . . . , N , where (x)+ , max{x, 0}. In this
paper, we are interested in developing an efficient uplink
scheduling algorithm with limited coordination from the
AP. In particular, our goal is to find a joint sampling and
transmission schedule {X[t],S[t]}t≥1 such that, in each time
slot and for each channel, (i) K users are allowed to send
their control messages in order for the AP to acquire their
queue-lengths and channel rates; and (ii) At most one user
can be scheduled among these K sampled users. A key

difficulty of this joint sampling and scheduling problem
is that the information available for making transmission
scheduling decision S[t] heavily relies on the sampling
decision X[t].

We consider the class P of stationary sampling and
transmission policies that first decide the sampling sched-
ule X[t] at slot t based on the available information
Q[t] = (Q1[t], . . . , QN [t]) and channel state distributions,
and then determine the transmission schedule S[t] based on
(Q[t] ⊗ X[t], C[t] ⊗ X[t]), where ⊗ stands for component-
wise multiplication. In other words, a joint sampling and
transmission policy in P is a two-stage mapping where it
first maps from the space of Q[t] to the space of sampling
schedules X (K) during the sampling stage and then maps
from the space of (Q[t] ⊗X[t], C[t] ⊗X[t]) to the space of
feasible schedules S during the transmission stage. Under
any policy in P , the queue length process {Q[t]}t≥1 forms
a Markov Chain.

We say that queue i is strongly stable if

limsup
T→∞

1

T

T∑
t=1

E[Qi[t]] <∞. (1)

The system is stable if all queues in the system are strongly
stable. We let ΘN (M,K) denote the capacity region for an N -
user IoT uplink system with M orthogonal channels and K
allowed users in sampling for each channel in each time slot,
which represents the maximum set of arrival rate vectors
λ = (λi)

N
i=1 for which the system is stable under some

policy. We call an algorithm optimal if it keeps the system
stable for any arrival rate vector that lies strictly inside
ΘN (M,K). An algorithm is called asymptotically optimal if
it achieves the capacity region ΘN (M,K) as K ↑ ∞ (here
N ↑ ∞ due to the fact that K ≤ N ). Note that it is in general
difficult to directly characterize ΘN (M,K). To that end, we
first derive an outer bound for the capacity region in the
next section.

4 CAPACITY OUTER BOUND CHARACTERIZATION

In this section, we characterize an outer bound of the
capacity region ΘN (M,K) for a N -user wireless uplink
system with M orthogonal channels under both sampling
and scheduling constraints. Here, the sampling constraint
refers to that K users are allowed to send their control
messages on each channel in order for the AP to acquire
their channel rates and queue-lengths, while the scheduling
constraint means that at most one user is allowed to transmit
on each channel in each time slot.
Proposition 1 (Capacity Outer Bound). ΘN (M,K) is con-

tained in the rate region ΛN (M,K) (i.e., ΘN (M,K) ⊆
ΛN (M,K)), where ΛN (M,K) is defined as the set of
arrival rate vectors λ = (λi)

N
i=1 for which there exist

non-negative numbers α(x) and β(x, c; s) such that the
following expressions are satisfied:

λi≤
∑

x∈X (K)

α(x)
∑
c

p(c)
∑
s∈S

β(x, c; s)
M∑
j=1

xi,jci,jsi,j , ∀i,

(2)∑
s∈S

β(x, c; s) = 1, ∀x, c, and
∑

x∈X (K)

α(x) = 1, (3)
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where p(c) , Pr{C[t] = c} denotes the probability
that the channel state is c, and α(x) and β(x, c; s) de-
note the probabilities of selecting the sampling schedule
x ∈ X (K) and selecting the transmission schedule s ∈ S
given the sampling schedule x and channel state c,
respectively.

Remark: In (2), the right-hand-side is the total average
service rate provided for each user, and the left-hand-side is
the user’s average arrival rate. Thus, in order to ensure that
the system is stable under some policy, (2) must be satisfied.

Proof: The proof follows a similar line of analysis as
that in [22]. For completeness, we provide the detailed proof
in Section 8.1.

Having established the capacity outer bound ΛN (M,K),
we are now in a position to develop an efficient and low-
overhead uplink scheduling algorithm.

5 LOW-OVERHEAD UPLINK SCHEDULING

In this section, we consider an efficient and low-overhead
uplink scheduling design based on the idea of pick-and-
compare (PC). In particular, we first develop an iterative
sampling and transmission algorithm with full information
to achieve the capacity outer bound ΛN (M,K), which
motivates the development of an efficient and low-overhead
uplink scheduling design. Then, we discuss the throughput
deficiency of a natural variant of the proposed algorithm
in the single-channel system under the stringent constraint
that K users are allowed to send their control messages
on each channel. Finally, we propose a PC-based low-
complexity iterative sampling and transmission algorithms
under the strict sampling constraint.

5.1 Iterative Sampling and Transmission Algorithm

In this subsection, we develop an efficient joint sampling
and transmission algorithm that can achieve the capacity
outer bound ΛN (M,K). Although this algorithm requires
full knowledge of channel state distributions and instanta-
neous queue lengths of all users, it provides a guideline for
our design with the desired sampling constraint. We con-
sider M+1 rounds in each time slot. By slightly abusing the
notations, we useQi,j [t] to denote the (virtual) queue-length
of user i at the end of round j, where j = 0, 1, 2, . . . ,M , and
Qi,0[t] = Qi[t].

Iterative Joint Sampling and Transmission (IJST) Algo-
rithm: In each time slot t, all users report their queue-
lengths, i.e., Q[t] = (Qi[t])

N
i=1. Then, for each round j =

1, 2, . . . ,M , perform the following:
(1) Sampling Decision: Set the sampling vector X∗j [t] as:

X∗j [t] ∈ arg max
Xj∈Xj(K)

E
[
max
i
Qi,j−1[t]Xi,jCi,j [t]

]
, (4)

where Xj is the j-th column of a N × M matrix X and
Xj(K) denotes the collection of sampling schedules on
channel j under the constraint that at most K users can
send their control messages on channel j. Thus, users with
X∗i,j [t] = 1 are required to send their control messages on
channel j.

(2) Transmission Scheduling Decision: Schedule the transmis-
sion of user i∗j [t] on channel j that satisfies:

i∗j [t] ∈ arg max
i

Qi,j−1[t]X∗i,j [t]Ci,j [t]. (5)

(3) (Virtual) Queue-length Update:

Qi∗j [t],j [t+ 1] =
(
Qi∗j [t],j−1[t]− Ci∗j [t],j [t]

)+
. (6)

After M -round decision making, users {i∗j [t]}Mj=1 trans-
mit on their corresponding channels in the rest of time slot
t.

Here, the IJST Algorithm uses the idea of iterative
scheduling that is similar to that of [4], [10] in order to
improve delay performance. This is due to the fact that users
with the larger queue-lengths may have priority over mul-
tiple channels, and thus users with slightly smaller queue-
lengths suffer from poor delay performance (see [3], [10],
[11] and [12] for an overview), especially when the number
of channels is large. In the IJST Algorithm, all users need
to report their queue-length information at the beginning of
each time slot. Then, in the j-th round of the IJST Algorithm,
(i) we first solve the optimization problem (4) to get the
optimal sampling schedule X∗j [t]; (ii) users with X∗i,j [t] = 1
send their control message in order for the AP to acquire
their channel state information; (iii) After collecting both
queue-length and channel state information from users, user
with the maximum product of queue-length and channel
rate is selected for data transmission on channel j, and then
the AP virtually updates the queue-length of the selected
user. After M -round decision making, the selected users
{i∗j [t]}Mj=1 are allowed for data transmission in the rest of
the time slot t. The next proposition shows that the proposed
IJST Algorithm can stabilize the system for any arrival rate
vector strictly within the capacity outer bound ΛN (M,K).

Proposition 2. The IJST Algorithm achieves the capacity
outer bound ΛN (M,K), i.e., for any arrival rate vector
λ that is strictly inside ΛN (M,K), the IJST Algorithm
stabilizes the system subject to the constraints of K
allowed sampling users on each channel.

Proof: Select the Lyapunov function V (Q) =
1
2

∑N
i=1Q

2
i and follow the standard Lyapunov arguments.

The details can be found in Section 8.2.

Note that the IJST Algorithm incurs a large amount of
communication overhead that is linearly increasing with the
number of users N before each data transmission. This is
because the AP needs to know queue-length information
of all N users to solve the optimization problem in (4) to
obtain the optimal sampling schedule X∗[t]. This motivates
us to investigate whether there exist efficient policies that
only allow K users to send their control messages on
each channel, which significantly reduces the amount of
communication overhead. Next, we provide an example to
illustrate a non-trivial design of such policies starting from
the single channel setting for the ease of exposition.
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5.2 A Motivating Example of Low-Overhead Uplink
Scheduling: From “Power-of-K-Choices” to “Pick-and-
Compare”

One way to reduce the amount of coordination by the
AP in a single-channel wireless IoT uplink system works
as follows: the AP randomly samples K users and asks
them to report their system state information as well as
channel state information at the beginning of each time
slot, and then selects the user with the maximum product
of queue-length and channel rate for data transmission in
the rest of the time slot. This algorithm is called Power-of-
K-Choices (e.g., [19], [33]). However, this algorithm suffers
from a large throughput performance loss in wireless uplink
systems even in the single-channel setting. To see this, we
consider a single-channel uplink example with two groups
of users without channel fading, where the first group has
dφNe users with the same mean arrival rate of 0.5/dφNe
and the other has N − dφNe users with the same mean
arrival rate of λ, where φ ∈ (0, 1) and dxe denotes the
minimum integer no smaller than x. Here, it is easy to
see that the capacity region is {λ : (N − dφNe)λ < 0.5}.
For the Power-of-Two-Choices policy (i.e., when K = 2),
the probability that at least one user is sampled from the
second group is 1 −

(dφNe
2

)
/
(N
2

)
. Therefore, the Power-of-

Two-Choices policy can at most support the throughput re-
gion:

{
λ : (N − dφNe)λ < 1−

(dφNe
2

)
/
(N
2

)}
. Thus, the sec-

ond group of users suffer throughput loss by at least:

0.5−
(

1−
(dφNe

2

)
/
(N
2

))
0.5

× 100%, (7)

which amounts to 61.82% when N = 100 and φ = 0.9.
This simple example shows that the Power-of-K-Choices
policy suffers from large throughput degradation even in
the single-channel and non-fading case, let alone in general
settings with multiple channels and wireless channel fading.
This is because the congested or heavily loaded users may
not have an opportunity to be sampled and hence are not
able to obtain service under the Power-of-K-Choices policy.

Interestingly, in the single-channel non-fading case, there
is a variant of the Power-of-Two-Choices policy, known
as the Pick-and-Compare (PC) algorithm (e.g., [6], [20],
[28], [30]), which is known to be throughput-optimal. A PC-
based scheme keeps track of the most congested user in the
memory and compares its weight with a randomly selected
user. The PC algorithm achieves the maximum throughput
by gradually improving the scheduling decisions over time.
However, we note that the PC algorithm in the literature
only works under non-fading setting, while fading is the one
of the key features in wireless communication channels. So
far, it remains unclear how to generalize the PC algorithm to the
fading settings and still achieve throughput performance guaran-
tee. The main challenge in developing the PC algorithm for
fading settings lies in the fact that the channel rates are time-
varying and can change abruptly. This is very different from
the smooth evolution of the queue-length process. In the
next subsection, we will address this challenge and propose
an efficient and low-overhead uplink scheduling algorithm.
Moreover, this algorithm works for general multi-channel
settings with fading.

5.3 Iterative Pick-and-Compare Algorithm Design

In this subsection, we focus on the efficient uplink schedul-
ing design under the stringent constraints that K users
are allowed to transmit their control messages on each
channel. The key element in our approach is to decouple
the optimization problem (4) such that it can be solved
by only considering a small subset of users. To that end,
we assume that the wireless fading channels satisfy the
following assumption.

Assumption 1. For any given non-negative numbers
n1, n2, . . . , nN , there exists a stochastic order among
random variables n1C1,j , n2C2,j , . . . , nNCN,j , i.e., there
exists a permutation (m1,m2, . . . ,mN ) of (1, 2, . . . , N)
such that

nm1
Cm1,j ≥st nm2

Cm2,j ≥st . . . ≥st nmN
CmN ,j , (8)

where j = 1, 2, . . . ,M . Here, Z1 ≥st Z2 means that
random variableZ1 is stochastically greater than random
variable Z2 (see [27]), i.e., Pr{Z1 > z} ≥ Pr{Z2 >
z}, ∀z ∈ R.

Remark: If channel states are i.i.d., then (8) trivially holds.

Assumption 1 provides an opportunity for decoupling
the optimization problem (4) by only allowing a small
portion of users to be sampled in order for the AP to
obtain system state information of sampled users. Indeed,
if Assumption 1 does not hold, it is almost impossible to obtain
the optimal value of (4) by only collecting information from a
small subset of users due to the abrupt changes of channel rates.
Next, we incorporate wireless channel fading to generalize
the traditional PC algorithmic design in the general multi-
channel systems. Similar to the IJST Algorithm, we use
Qi,j [t] to denote the queue-length of user i at the end of
round j, j = 0, 1, 2, . . . ,M , and Qi,0[t] = Qi[t]. Also, we
use Ci,j [t] to denote the j-th channel rate of user i in time
slot t, while Ci,j without time index t denotes a random
variable with the same distribution as the j-th channel rate
of user i.

Iterative Pick and Compare (IPC) Algorithm: In each time
slot t, given users (̂ik,j [t − 1], k = 1, 2, . . . ,K − 1, j =
1, 2, . . . ,M) selected by the IPC Algorithm in time slot t−1,
perform the following: For each round j = 1, 2, . . . ,M ,

(1) Pick Phase: Randomly pick one user rj [t], and ask it
to report its current queue-length Qrj [t][t] and channel state
Crj [t],j [t] on channel j to the AP.

(2) Report Phase: Ask users (̂ik,j [t−1])K−1k=1 to report their
queue-lengths and channel states of channel j to the AP.

(3) Compare Phase (Transmission Scheduling): Determine
the transmission schedule of user i on channel j that sat-
isfies:

ĩj [t] ∈ arg max
i

{
Qi,j−1[t]X̂i,j [t]Ci,j [t]

}
, (9)

where X̂i,j [t]=1 if i∈
{
rj [t], îk,j [t−1], ∀k = 1, 2, . . . , K−1

}
,

and X̂i,j [t] = 0 otherwise.

(4) Update Phase: Select users (̂ik,j [t])
K−1
k=1 that achieve the

K− 1 largest Ql[t]Cl,j among users (̂ik,j [t− 1])K−1k=1 and the
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newly reporting user rj [t] in the stochastic ordering sense 1,
i.e.,

(̂ik,j [t])
K−1
k=1 ∈ arg max

l∈{(̂ik,j [t−1])K−1
k=1,rj(t)}

{Ql[t]Cl,j}, (10)

where Qî1,j [t][t]Cî1,j [t],j ≥st . . . ≥st QîK−1,j [t]
[t]CîK−1,j [t],j

.
(5) (Virtual) Queue-length Update:

Qĩj [t],j [t+ 1] =
(
Qĩj [t],j−1[t]− Cĩj [t],j [t]

)+
. (11)

After M -round decision making, users {̃ij [t]}Mj=1 trans-
mit on their corresponding channels in the rest of the time
slot t.

In the IPC Algorithm, the AP exactly requires K sam-
pling users

{
(̂ik[t− 1])K−1k=1 , r(t)

}
on each channel, and thus

the total amount of communication overhead is KM . This
significantly reduces the amount of coordination from the
AP compared to the IJST Algorithm. Next, we will show
that the IPC Algorithm still possesses excellent throughput
performance.

Proposition 3. Suppose that the channel state Cj =
(Ci,j)

N
i=1 on each channel j satisfies Assumption 1. Then,

for any arrival rate vector λ = (λi)
N
i=1 that is strictly

inside the rate region ΛN (M,K − 1), the IPC Algorithm
stabilizes the system subject to the constraints that K
users are allowed to send control messages on each
channel.

Proof: The key step is to establish that the IPC Algo-
rithm performs similarly as its centralized counterpart (i.e.,
the IJST Algorithm) does, i.e.,

Pr

{
E

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]
≥ E

[
max

k=1,2,...,K−1
Qi∗k,j [t],j

[t]Ci∗k,j [t],j

∣∣∣∣Q[t]

]
−Gγ,j

}
≥ 1− γ, ∀j = 1, 2, . . . ,M, (12)

holds for any γ ∈ (0, 1), where Gγ,j > 0 is some constant.
The rest of the proof follows the standard Lyapunov argu-
ments. The detailed proof is available in Section 8.3.

Corollary 1. The IPC Algorithm is asymptotically optimal in
the sense that it achieves the capacity region ΘN (M,K)
as K ↑ ∞.

Proof: Note that under the constraint of K allowable
sampling users for each channel, according to Proposi-
tion 1, the capacity region ΘN (M,K) is upper bounded
by ΛN (M,K), while our IPC Algorithm can achieve the
throughput region ΛN (M,K − 1) with the same amount
of communication overhead. It is easy to see that the gap
between ΛN (M,K) and ΛN (M,K − 1) is vanishing as
K ↑ ∞, since both ΛN (M,K) and ΛN (M,K − 1) approach
ΘN (M,N) as K ↑ ∞ (here N ↑ ∞ due to the fact
that K ≤ N ). This indicates the asymptotic throughput-
optimality of our IPC algorithm.

1. In the presence of homogeneous fading channels (i.e., channel
states are i.i.d. across users and time), we just need to compare the
queue-lengths.

While the IPC Algorithm is asymptotically optimal, in
practice, the achieved throughput region ΛN (M,K − 1)
is close to the capacity outer bound ΛN (M,K) even for
a small K . For example, in a M -channel system of N
users with i.i.d. ON-OFF fading on each channel with
p = Pr{C[t] = 1}, then ΛN (M,K − 1) = {λ : Nλ <
M
(
1− (1− p)K−1

)
} and ΛN (M,K) = {λ : Nλ <

M
(
1− (1− p)K

)
}. Thus, the throughput performance loss

is at most
(
1−

(
1− (1− p)K−1

)
/
(
1− (1− p)K

))
× 100%,

independently of the number of channels M . Fig. 1 shows
the throughput performance loss percentage under the IPC
Algorithm when p = 0.8. We can observe from Fig. 1
that the throughput loss decays exponentially fast with the
increase of the number of allowed sampling users K , and is
at most 3.23% even when K = 3. Therefore, the throughput
performance loss under the IPC Algorithm is small.
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Fig. 1: Throughput loss in the presence of ON-OFF fading

6 NUMERICAL RESULTS

In this section, we perform simulations for our proposed
low-overhead IPC Algorithm and compare it to the IJST
Algorithm in both single-channel and multi-channel cases.
In the simulations, we consider N = 20 users. We assume
that the number of arrivals occurring at each user in each
time slot follows a Bernoulli distribution with mean λ. In
order to capture the burstiness feature of IoT traffic, we
assume that each incoming arrival brings F packets, where
F is equal to 20 with probability 4/19 and 1 otherwise.
Therefore, the expected number of packets that each arrival
carries is equal to 5, i.e., E[F ] = 5. We consider ON-OFF
channel fading models that are independently distributed
over users and i.i.d. over time, where the first ten users have
channel availability probability of 0.9 and all others have
probability of 0.5. We assume that all M channels have the
same channel fading model.

Fig. 2 shows the impact of the number of sampling users
K on the system performance of the IJST Algorithm and
the IPC Algorithm in the single-channel case. In such a
case, the capacity region is equal to {λ : λ < 0.01} when
K = 20. From Figs. 2a and 2b, we can observe that as K
increases, both throughput and delay performance of these
algorithms improve. Especially, we can see that K = 4
sampling users are sufficient for both algorithms to almost
achieve the maximum throughput (i.e., when K = 20).
Moreover, the delay performance under the IPC Algorithm
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Fig. 2: Impact of number of sampling users K
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Fig. 3: Performance comparison: single channel case

is only slightly worse than that under the IJST Algorithm,
and their gap becomes smaller as K increases, as shown in
Fig. 3b. This indicates that in the single channel case, the
IPC Algorithm with only four sampling users can achieve
almost the same throughput and delay performance as the
IJST Algorithm, which requires all queue-length information
available before each data transmission and thus requires a
significant amount of communication overhead. Hence, our
proposed IPC Algorithm dramatically reduces the commu-
nication overhead with a negligible performance loss.

In Fig. 4, we study the performance of our proposed
IPC Algorithm in a multi-channel case and compare it to
the IJST Algorithm. From Figs. 4a and 4b, we can observe
that our proposed IPC Algorithm still performs well in both
three and five channel cases compared to the IJST Algorithm
when the number of allowable sampling users is four. This
indicates that the IPC Algorithm is quite robust to the num-
ber of channels, which is significantly more advantageous
in large-scale multi-channel uplink systems.
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Fig. 4: Performance comparison: multi-channel case

7 CONCLUSIONS

In this paper, we considered the design of efficient and
low-overhead uplink scheduling algorithms for large-scale

IoT applications, where the central controller has a limited
amount of information about the users. We first derived a
capacity outer bound under the sampling constraint, where
only a small subset of users are allowed to use control
channels for system state reporting and channel probing.
Then, we proposed a joint sampling and transmission al-
gorithm with full information before each transmission and
show that it achieves the capacity outer bound. However,
this algorithm incurs a huge amount of communication
overhead before each data transmission. To that end, we
developed an efficient and low-overhead uplink scheduling
algorithm that is suitable for large-scale IoT applications. Fi-
nally, we validated our theoretical results through extensive
simulations.

8 PROOFS

8.1 Proof of Proposition 1

Suppose all queues are strongly stable and each channel
satisfies its maximum allowable number of sampling users
constraint under some policy Φ which determines the sam-
pling schedule X[t] ∈ X (K) and the transmission schedule
S[t] ∈ S in every time slot t. For some positive integer num-
ber L, we define µi(L) , 1

L

∑L
τ=1

∑M
j=1Xi,j [τ ]Ci,j [τ ]Si,j [τ ]

as the empirical average service rate for user i.
Let Tx

L be the set of slots in the interval [1, L] in which
the sampling schedule is x ∈ X (K), and Tx

L(c) be the set
of slots in Tx

L in which the channel state vector is c. Next,
we consider the empirical average service rate µi(L).

µi(L) =
1

L

L∑
τ=1

M∑
j=1

Xi,j [τ ]Ci,j [τ ]Si,j [τ ]

=
1

L

∑
x∈X (K)

∑
c

∑
τ∈Tx

L(c)

M∑
j=1

xi,jci,jSi,j [τ ]

=
∑

x∈X (K)

|Tx
L|
L

∑
c

|Tx
L(c)|
|Tx

L|
· 1

|Tx
L(c)|

∑
τ∈Tx

L(c)

M∑
j=1

xi,jci,jSi,j [τ ]

=
∑

x∈X (K)

αL(x)
∑
c

σL(c)
M∑
j=1

yL,j(x, c), (13)

where αL(x) , |Tx
L|
L , σL(c) , |Tx

L(c)|
|Tx

L|
and yL,j(x, c) ,

1
|Tx

L(c)|
∑
τ∈Tx

L(c) xi,jci,jSi,j [τ ].
Observe that yL,j(x, c) is a convex combination of

the set {0, xi,jci,j}. By Caratheodory’s theorem [2], there
exists a non-negative real sequence {βL(x, c; s)}s∈S with∑

s∈S βL(x, c; s) = 1, such that yL,j(x, c) can be rewritten
as

yL,j(x, c) =
∑
s∈S

βL(x, c; s)xi,jci,jsi,j . (14)

Hence, we have

µi(L) =
∑

x∈X (K)

αL(x)
∑
c

σL(c)
M∑
j=1

∑
s∈S

βL(x, c; s)xi,jci,jsi,j

=
∑

x∈X (K)

αL(x)
∑
c

σL(c)
∑
s∈S

βL(x, c; s)
M∑
j=1

xi,jci,jsi,j .
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For each positive integer number L, αL(x) and
βL(x, c; s) are bounded. By compactness, we can find a
subsequence of integers {Lk} such that Lk → ∞, and such
that there exist limiting probabilities α(x) and β(x, c; s)
satisfying:

αLk
(x)

Lk→∞−→ α(x), ∀x ∈ X (K),

βLk
(x, c; s)

Lk→∞−→ β(x, c, s), ∀x ∈ X (K), c.

In addition, channel states are i.i.d. over time, we have

σLk
(c)

Lk→∞−→ Pr{C[t] = c}. (15)

Hence, the sequence {µi(Lk)} converges to

∑
x∈X (K)

α(x)
∑
c

Pr{C[t] = c}
∑
s∈S

β(x, c; s)
M∑
j=1

xi,jci,jsi,j .

Since the policy Φ makes all queues strongly stable, by
[21, Theorem 2.8], the arrival rate to each queue should be
no greater than its service rate, i.e., (2) should be satisfied.

8.2 Proof of Proposition 2

Select the Lyapunov function

V (Q) =
1

2

N∑
i=1

Q2
i , (16)

and consider the conditional expectation of its drift
∆V (Q) , V (Q[t+ 1])− V (Q[t]) given Q[t] = Q. Then,

E [∆V (Q)|Q[t] = Q]

=
1

2

N∑
i=1

E
[
Q2
i [t+ 1]−Q2

i [t]
∣∣Q[t] = Q

]
(a)

≤ 1

2

N∑
i=1

E

[Qi[t] +Ai[t]−
M∑
j=1

X∗i,j [t]S
∗
i,j [t]Ci,j [t]

2

−Q2
i [t]

∣∣∣∣∣Q[t] = Q

]
(b)

≤
N∑
i=1

E

Qi[t]
Ai[t]− M∑

j=1

X∗i,j [t]S
∗
i,j [t]Ci,j [t]

∣∣∣∣∣∣Q[t]

+B1

(c)
=

N∑
i=1

Qiλi +B1

−
M∑
j=1

max
Xj∈Xj(K)

E

[
max
i
Qi,j−1[t]Xi,jCi,j [t]

∣∣∣∣Q[t]

]
, (17)

where step (a) follows from S∗i,j [t] = 1 if i = i∗j [t] and
S∗i,j [t] = 0 otherwise, and the fact that (max{x, 0})2 ≤
x2 for any real number x; (b) is true for B1 ,
1
2N

(
A2

max +M2c2max

)
, which is an upper bound for

1
2

∑N
i=1 E

[(
Ai[t]−

∑M
j=1X

∗
i,j [t]S

∗
i,j [t]Ci,j [t]

)2]
; (c) follows

from the fact that the arrivalsAi[t] is independent fromQi[t]
and the operations of the IJST Algorithm (i.e., (4) and (5)).

Since λ = (λi)
N
i=1 lies strictly inside the region

ΛN (M,K), there exists an ε > 0 such that

λi ≤ −ε+
∑

x∈X (K)

α(x)
∑
c

p(c)
∑
s∈S

β(x, c; s)
M∑
j=1

xi,jci,jsi,j .

Hence, we have
N∑
i=1

λiQi ≤ −ε
N∑
i=1

Qi

+
N∑
i=1

Qi
∑

x∈X (K)

α(x)
∑
c

p(c)
∑
s∈S

β(x, c; s)
M∑
j=1

xi,jci,jsi,j .

(18)

For the second term of RHS of (18), we have
N∑
i=1

Qi
∑

x∈X (K)

α(x)
∑
c

p(c)
∑
s∈S

β(x, c; s)
M∑
j=1

xi,jci,jsi,j

=
∑

x∈X (K)

α(x)
∑
c

p(c)
∑
s∈S

β(x, c; s)
M∑
j=1

N∑
i=1

Qixi,jci,jsi,j

(a)

≤ − ε
N∑
i=1

Qi +
∑

x∈X (K)

α(x)
∑
c

p(c)
M∑
j=1

max
i
Qici,jxi,j

=
∑

x∈X (K)

α(x)
M∑
j=1

E

[
max
i
QiCi,jxi,j

]
(b)

≤ max
X∈X (K)

M∑
j=1

E

[
max
i
QiCi,jXi,j

]
, (19)

where step (a) uses the fact that at most one user can
be scheduled on each channel in each time slot; (b)
follows from the fact that

∑M
j=1 E [maxiQiCi,jxi,j ] ≤

maxX∈X (K)

∑M
j=1 E [maxiQiCi,jXi,j ] and the fact that∑

x∈X (K) α(x) = 1.
Next, we consider the second term in (17).
M∑
j=1

max
Xj∈Xj(K)

E

[
max
i
Qi,j−1[t]Xi,jCi,j [t]

∣∣∣∣Q[t] = Q

]
(a)

≥
M∑
j=1

max
Xj∈Xj(K)

E

[
max
i

(Qi[t]−Mcmax)Xi,jCi,j [t]

∣∣∣∣Q[t] = Q

]

≥
M∑
j=1

max
Xj∈Xj(K)

E

[
max
i
Qi[t]Xi,jCi,j [t]

∣∣∣∣Q[t] = Q

]
−Mc2max

(b)
= max

X∈X (K)

M∑
j=1

E

[
max
i
QiXi,jCi,j

]
−Mc2max, (20)

where step (a) is true that in each round j, at most cmax

packets are served and the maximum number of rounds is
M ; (b) uses the fact that all channels are independent from
each other.

By combining (18), (19) (20) and (17), we have

E [∆V (Q)|Q[t] = Q] ≤ −ε
N∑
i=1

Qi +B, (21)

where B , B1 +Mc2max.
By summing (21) over t = 1, 2, . . . , T and taking T →

∞, we have the desired result.
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8.3 Proof of Proposition 3

Since the channel states on each channel satisfy Assumption
1, the IJST Algorithm selects the K largest Qi,j [t]Ci,j among
N users on channel j + 1 (j = 0, 1, . . . ,M − 1) in the
stochastic order sense given Q[t] = (Qi[t])

N
i=1, i.e.,

Qi∗1,j [t],j [t]Ci∗1,j [t],j ≥st . . . ≥stQi∗K,j [t],j
[t]Ci∗K,j [t],j

≥stQi,j [t]Ci,j , (22)

where {i∗k,j [t]}Kk=1 are the users selected by the IJST Algo-
rithm for reporting their channel states and i /∈ {i∗k,j [t]}Kk=1.

Since the IPC Algorithm independently picks a user at
uniformly random on each channel in each time slot, for
any given γ > 0, there exists a Dγ,j > 0 such that

Pr
{
rj [τk] = i∗k,j [t] for some τk ∈ {t−Dγ,j , . . . , t− 1},

∀k = 1, 2 . . . ,K − 1
}
≥ 1− γ. (23)

Under the IPC Algorithm, we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

(a)

≥ st max
k=1,2,...,K−1

Qîk,j [t−1],j [t]Cîk,j [t−1],j

(b)

≥st max
k=1,2,...,K−1

(
Qîk,j [t−1],j [t− 1]− cmax

)
Cîk,j [t−1],j

≥st max
k=1,2,...,K−1

Qîk,j [t−1][t− 1]Cîk,j [t−1],j − c
2
max, (24)

where step (a) follows the definition of the IPC Algorithm,
and (b) uses the fact that at most cmax packets can be served
on each channel in each time slot.

Without loss of generality, we assume that τm1
> τm2

>
. . . > τmK−1

, where (m1,m2, . . . ,mK−1) is a permutation
of (1, 2, . . . ,K − 1). Hence, we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

(a)

≥ st max
k=1,2,...,K−1

Qîk,j [τm1
],j [τm1

]Cîk,j [τm1
],j − (t− τm1

)c2max

(b)

≥st max

{
max

k=1,2,...,K−2
Qîk,j [τm1

−1],j [τm1 ]Cîk,j [τm1
−1],j ,

Qrj [τm1 ],j
[τm1

]Crj [τm1 ],j

}
− (t− τm1

)c2max

(c)

≥st max

{
max
k

(
Qîk,j [τm1

−1],j [τm1 − 1]− cmax

)
Cîk,j [τm1

−1],j ,

Qrj [τm1 ],j
[τm1

]Crj [τm1 ],j

}
− (t− τm1

)c2max

≥st max

{
max
k

Qîk,j [τm1−1],j
[τm1

− 1]Cîk,j [τm1−1],j
− c2max,

Qrj [τm1
],j [τm1 ]Crj [τm1

],j

}
− (t− τm1)c2max

≥st max

{
max

k=1,2,...,K−2
Qîk,j [τm1

−1][τm1 − 1]Cîk,j [τm1
−1],j ,

Qrj [τm1
],j [τm1

]Crj [τm1
],j

}
− (t− τm1

+ 1)c2max, (25)

where step (a) iteratively uses (24); (b) follows the definition
of the IPC Algorithm; (c) uses the fact that at most cmax

packets can be delivered on each channel in each time slot.

By using the similar argument in deriving (25), we can
show

max
k=1,2,...,K−l

Qîk,j [τml
−1],j [τml

− 1]Cîk,j [τml
−1],j

≥st max

{
Qrj [τml+1

],j [τml+1
]Crj [τml+1

],j ,

max
k=1,...,K−(l+1)

Qîk,j [τml+1
−1],j [τml+1

− 1]Cîk,j [τml+1
−1],j

}
− (τml

− τml+1
)c2max, ∀l = 1, 2, . . . ,K − 2. (26)

By using (25) and (26), we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

≥st max
k=1,2,...,K−1

Qrj [τk],j [τk]Crj [τk],j − (t− τmK−1
+ 1)c2max

(a)
= st max

k=1,2,...,K−1
Qi∗k,j [t],j

[τk]Ci∗k,j [t],j
− (t− τmK−1

+ 1)c2max

(b)

≥st max
k=1,2,...,K−1

(
Qi∗k,j [t],j

[t]− (t− τk)Amax

)
Ci∗k,j [t],j

− (t− τmK−1
+ 1)c2max

(c)

≥st max
k=1,2,...,K−1

Qi∗k,j [t],j
[t]Ci∗k,j [t],j

− (t− τmK−1
+ 1) (Amax + cmax) cmax

≥st max
k=1,2,...,K−1

Qi∗k,j [t],j
[t]Ci∗k,j [t],j

−Gγ,j , (27)

where step (a) uses the definition of τk, ∀k = 1, 2, . . . ,K−1;
(b) follows the fact that at most Amax packets arrives at
each queue in each time slot; (b) is true since the maxi-
mum channel rate is cmax; (c) is true for Gγ,j , (Dγ,j +
1) (Amax + cmax) cmax.

According to the property of the stochastic ordering, (27)
implies that

E

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]
≥E

[
max

k=1,2,...,K−1
Qi∗k,j [t],j

[t]Ci∗k,j [t],j

∣∣∣∣Q[t]

]
−Gγ,j . (28)

By combining (28) and (23), we have

Pr

{
E

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]
≥ E

[
max

k=1,2,...,K−1
Qi∗k,j [t],j

[t]Ci∗k,j [t],j

∣∣∣∣Q[t]

]
−Gγ,j

}
≥ 1− γ, (29)

which implies that

M∑
j=1

E

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]
(a)

≥ (1− γ)
M∑
j=1

E

[
max

k=1,2,...,K−1
Qi∗k,j [t],j

[t]Ci∗k,j [t],j

∣∣∣∣Q[t]

]
−B1

(b)
=(1− γ)

M∑
j=1

E

[
max
i
Qi,j [t]X

∗
i,jCi,j

∣∣∣∣Q[t]

]
−B1, (30)

where step (a) is true for B1 , (1 − γ)
∑M
j=1Gγ,j and

follows from the fact that E
[
maxkQi∗k,j [t],j

[t]Ci∗k,j [t],j

∣∣∣Q[t]
]
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is a fixed value; (b) is true since X∗i,j = 1 if i ∈ {i∗k,j , k =
1, 2, . . . ,K − 1}. This indicates that the selected weight by
the IPC Algorithm is very close to the IJST Algorithm. The
rest of the proof follows the standard Lyapunov arguments.
In particular, by selecting the same Lyapunov function in
the proof of Proposition 2, we have

E [∆V (Q)|Q[t] = Q]

≤
N∑
i=1

Qiλi +B1 −
M∑
j=1

E

[
max

k=1,2,...,K−1
Qîj,k[t],j [t]Cîj,k[t],j

∣∣∣∣Q]
(a)

≤
N∑
i=1

Qiλi − (1− γ) max
X∈X (K−1)

M∑
j=1

E

[
max
i
QiXi,jCi,j

]
+B

(b)

≤ − ε
N∑
i=1

Qi + γ max
X∈X (K−1)

M∑
j=1

E

[
max
i
QiCi,jXi,j

]
+B

≤− ε
N∑
i=1

Qi +Mcmaxγ
N∑
i=1

Qi +B

(c)

≤ − ε

2

N∑
i=1

Qi +B, (31)

where step (a) is true forB , B1+B1 > 0 and uses (30); (b)
uses the similar derivation as in (18); (c) is true by selecting
γ > 0 such that Mcmaxγ < ε/2.

By summing (31) over t = 1, 2, . . . , T and taking T →
∞, we have the desired result.
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