The Netivus Manifesto: Making Collaborative Network
Management Easier for the Rest of Us

Joseph Severini
Carnegie Mellon University, USA
jseverin@andrew.cmu.edu

Sujata Banerjee
VMware Research, USA
sujatab@vmware.com

Radhika Niranjan Mysore
VMware Research, USA
rniranjan @ vmware.com

Vyas Sekar
Carnegie Mellon University, USA
vsekar @andrew.cmu.edu

Michael K. Reiter
Duke University, USA
michael.reiter @duke.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

Abstract

We study operational issues faced by Small and Medium Enterprise
(SME) network owners and find that SME network management
practices have stagnated over the past decade, despite many recent
advances in network management. Many of these advances target
hyperscalers and ISPs and cannot be directly applied to SME net-
works that are operated with vastly different constraints. In our work,
we outline these constraints and explain how they impact challenges
around debugging, namely: representing, reproducing, and reme-
diating network problems. This article takes a fresh look at these
challenges in the light of SME practices around collaborative debug-
ging and presents a roadmap aimed to help resolve SME operational
issues quickly.

CCS Concepts

* Networks — Network manageability.

Keywords
Collaborative Debugging, Manageability

1 Introduction

Networking research has made progress on multiple fronts with
technologies such as software-defined networking, network function
virtualization, new transport algorithms, new directions in network
verification and testing, and even hardware capabilities. Unfortu-
nately, most of these advances are driven by, and are largely restricted
to, the “giants” (e.g., hyperscaler datacenters, large ISP networks).
An open question is whether these advances in network manage-
ment matter to the rest of us; i.e., small and medium enterprise (SME)
networks. These networks are little understood, much less served,
by the research community. Anecdotal evidence and surveys [18]
suggest that these networks do not have the capital/operating bud-
gets for adopting new technologies and implementing “DevOps”
workflows associated with these developments. Instead of being
“software-driven”, where network operators can develop custom
management toolchains, these networks are vendor-driven and re-
liant on vendor-specific tools. Managing a network composed of
devices from multiple vendors is hard, because common tooling
(beyond a few like ping, traceroute) is usually unavailable.

ACM SIGCOMM Computer Communication Review

10

Given these vendor-driven constraints, a natural recourse avail-
able to SME operators when they encounter unexpected issues is the
wisdom of others who have faced similar challenges. Indeed, there
is a rich tradition of operator events [10], mailing lists [8], and more
recent StackExchange-style online forums [3], by which SME op-
erators engage in collaborative debugging of network management
issues. While these forums bring together a community of operators
to collectively share their experiences, pain points, and wisdom,
these platforms are neither smooth nor perfect for trouble-shooting
and often leave problems unsolved (Section 2).

This paper presents the Netivus Manifesto! —Given that opera-
tors are already attempting collaborative debugging, can we make it
easier and more effective? We argue that this is a more pragmatic
approach to improve the status quo for SME networks, in contrast
to new paradigms or software-defined agendas. Our manifesto was
informed by analyzing 100 operation-related posts to the Network
Engineering Stack Exchange (NESE) forum. Only 36 of the 100
were answered within 3 days, and 35 questions were never resolved.
Operators struggled to describe their problem, needing a median of
1.1 days to create a post that contained the information collaborators
required. Collaborators needed a median of 1 week to understand
the problem before suggesting fixes. The poor resolution and delays
were not due to a lack of collaboration; 80% of unresolved questions
received > 2 comments, and 75% received at least one answer.

Our findings point to three key challenges that operators face
when representing, reproducing, and remediating network issues
(we call these the “3R” steps) using collaborative debugging. First,
operators must be able to describe the issue sufficiently to collab-
orators; we find that operators today have no shared language or
practices for specifying network problems and most (81%) question
posters rely on their collaborators to help them do so. We call this
the representation challenge with collaborative debugging. Sec-
ond, collaborators must construct mental models of the problem
scenario with just the problem text and configuration files provided;
our own attempts (Section 4.3) show this is hard to do, and the
data shows collaborators can take days to form a sufficient model.
This problem of creating a shared network model between problem
posters and collaborators is the reproduction challenge. Finally,

'A tongue-in-cheek reference to a Festivus for the rest of us [28].

Volume 51 Issue 2, April 2021

204
o EEE A Little Bit
g 03 Somewhat
> Very
9 0.2 Completely
S
c
201
[$)
UE: 0.0 — = | = —_— - - |
Hardware Internal External Software Attack Workload Unknown Other
Failure Config Config Upgrade Occurred
Change Change

Figure 1: Distribution of triggers for operational issues

since collaborators must rely on their intuition and experience to
identify root-causes and suggest fixes, they often ask the problem
posters to test potential fixes on the live operational network. Doing
so is daunting even for the most well-managed and instrumented
networks [20]. We call this heavy reliance on collaborators’ intuition
for root causing and identifying fixes as the remediation challenge.

Our contribution is in formulating these challenges and outlining a
vision for a new collaborative debugging roadmap for SME operators.
Although we do not have answers on how to address these challenges,
we identify promising starting points. We hope the community can
collectively come up with solutions to open questions we raise and
address the needs of this under-served community.

2 Background and Motivation

To better understand the constraints and challenges faced by SME
network operators, we analyzed operational issues posted on Net-
work Engineering Stack Exchange [3] forum (NESE), for the past 7
years. Users use this forum to post questions and get help with their
network-related queries, and experts weigh in by posting comments
(for clarification and criticism [2]) or answers (for answering the
question [4]). Questions are edited by the user who posted them
(to include additional information, clarify, etc.) or by others (e.g.,
to correct minor mistakes [13]). The original poster can mark the
answer that best serves as a solution.

Methodology. We sampled 1200 posts from this forum and (manu-
ally) identified a subset of 100 posts relevant to debugging live SME
networks. We then used a combination of approaches to analyze
these posts. First, we manually scanned the posts to gather anecdotal
evidence of the types of problems SMEs face. Second, we analyzed
the posts quantitatively to get a sense of the degree and success of
collaboration, e.g., using measures like number of comments and
answers and time to resolution. Third, we used a crowd-sourced ap-
proach using an Institutional Review Board (IRB) approved survey
to help classify the posts across various axes.

The survey participants included graduate students, researchers,
and experts from NANOG [7]. Each survey participant was presented
a set of posts, for which they classified the types of problems re-
ported, their triggers, and their root causes into predefined categories
(raw results available here [11]). These questions were inspired by
prior work on analyzing network failures [20, 29, 37]. The x-axis of
Figures 1-2 shows the categories used for triggers and root causes.
The participant was also asked to classify the post as a connectiv-
ity problem and/or a performance problem, and/or something else
("other" category). Respondents used a Likert scale [25] to spec-
ify the extent to which the problem fits into each category, from
“not-at-all” to “completely”.

ACM SIGCOMM Computer Communication Review

11

2
506 A Little Bit
g Somewhat
S04 Very
9 Completely
]
5 0.2
©
200 — | - - - —
Lack of Bug Misconfig Missing External ~ Unknown Other
Hardware Feature
Redundancy

Figure 2: Distribution of diagnosis of operational issues

2.1 Complexity of SME operations

While this analysis is preliminary, it sheds light on a number of
unique challenges SME network operators face.

o SME networks are largely unstructured and are grown organically
over years. Many have a high degree of heterogeneity with devices
from multiple vendors. Therefore, most SMEs cannot limit opera-
tions to uniformly using a single management toolchain from a
vendor for their entire network, unlike hyperscalers [22, 35, 38].
From our reading of the posts, SME operators might not even
have a topology map of the network unlike other well-managed
settings [30, 34], nor expertise with vendor solutions.

Most SME network operations are not automated. Our findings are
consistent with the 2019 DevOps survey [18] that found that only
10-20% of participants used automated solutions for troubleshoot-
ing and remediation. Without shared and widely-understood tool-
ing and debugging solutions, SME operators lack a common
language to discuss issues, making it hard to adopt state-of-art
techniques to analyze network issue reports like NetSieve [33].

Figure 1 shows that SME operational issues can be triggered by
a diverse variety of events. Issues can seem to crop up randomly
(e.g., unknown triggers), while others are caused by workload
or configuration changes (e.g., due to introduction of new net-
work hardware or application upgrades that break the network).
Many triggers are identified only after significant back and forth
with collaborators. The fact that many issues have unknown trig-
gers points to a lack of tools that can provide comprehensive
operational visibility and monitoring in SME environments.

Figure 2 shows that roughly half of the operational issues are
attributed to misconfigurations; others are mostly missing features
or bugs. Diagnosing misconfigurations has been tackled by a large
body of literature, including on verification [17, 23, 24]. They
rely on complete knowledge of configurations from a network,
which is often unavailable in SME network environments.
Our analysis also revealed that recent advances in network au-
tomation, monitoring, and verification are not widely used by SME
networks. As such, they are restricted to using canonical tools like
ping, tcpdump, traceroute, snmp, among others.
Anecdotally, we also found that often the only alternative to
collaborative debugging for SME:s is expensive service engagements
with the relevant device vendors (e.g., [9]).

2.2 Challenges of collaborative debugging

Our quantitative analysis of posts in NESE showed problems with
current collaborative debugging practices available to SME opera-
tors today. By reading 1000 other posts, we also verified that these

Volume 51 Issue 2, April 2021

100%
80%
60%
40%
20%

Cumulative %

15mins 1hour 12hours24 hours72 hours1month 1week 1Year
Time Window

3Years

Figure 3: Resolution time across posts (35 unresolved)

100%
80%
60%
40%
20%

Measure Names

@ All Questions

M Resolved Questions
Unresolved Questions

Cumulative %

0 1 2 3 4 5 6 7 8
Number of Edits + Comments by Question Poster

Figure 4: Distribution of question updates across posts

challenges exist for posts that go beyond debugging, e.g., that seek
help on network deployment and configuration. We do not present
those results because we did not manually categorize these posts as
we did the 100 posts around debugging live networks. We present
our observations below.

1. Problems take a long time to resolve or remain unsolved. Only
36% of posts were resolved within 72 hours and 46% of posts
within a week. Also, 35% were never resolved (Figure 3). While
we do not have conclusive data whether the operators were able to
maintain critical network functionality during the debugging period,
this suggests a non-trivial amount of downtime for SMEs.

2. Initial problem descriptions are often incomplete. 81% of
questions were edited at least once (Figure 4), typically in response
to clarifications requested by collaborators.? Posts that were resolved
and posts that were not resolved showed similar trends. Clarifying
the question took a median time of 16 hours, again suggesting sig-
nificant time during which some service may be down.

A question titled “Access port config” [1] illustrates this issue.
The poster operates a network (see Figure 8) with a star topology,
consisting of several layer-3 switches, VoIP phones, and a VoIP
server on VLAN 10. When the operator connected a new switch
to the central switch in the star-topology, the VoIP server became
unreachable (from some unspecified point in the network), but the
phones continued to work. The poster initially posted this problem
without topology or configuration information. Once the collaborator
pointed out the missing information, the poster was able to supply
them within a couple of hours, after which the issue was resolved.
The root-cause, an IP address conflict on VLAN 10, was apparent
from the configuration files.

3. There is significant discussion, yet issues are unresolved. One
possible hypothesis for Observation 1 is that there is little engage-
ment for many of these unresolved questions. However, we find this
is not the case. Collaborators engaged with the operator in more than
80% of posts (Figure 5) (both comments and significant edits) and

2This is not counting edits to question titles or tags.

ACM SIGCOMM Computer Communication Review

12

100%
80%
60%
40%
20%

0%

Measure Names

@ All Questions

M Resolved Questions
Unresolved Questions

Cumulative %

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Edits + Comments

Figure 5: Distribution of number of updates across posts

100%
80%
60%
40%
20%

0%

Measure Names

@ All Questions

[l Resolved Questions
Unresolved Questions

Cumuative %

0 1 2 3 4 5 6
Number of Answers

Figure 6: Distribution of number of answers across posts

we see no difference between the activity for resolved vs. unresolved
posts. This leads us to believe that lack of collaborator engagement
is not a cause for posts going unresolved.

4. Proposed fixes might not work. We found that in nearly all
resolved questions, the poster had to test it on their live network. 44%
of questions received more than one answer (Figure 6), suggesting
significant operator effort—not all answers posted by collaborators
work and the burden of identifying the right ones is left to the poster.
This trend is similar across resolved and unresolved posts.

3 Research Challenges in Netivus

In the last section, we outlined constraints of operating SME net-
works and challenges of collaboratively debugging them. In this
section, we revisit the challenges in the framework of the 3R steps,
by viewing them against the requirements of each step.

3.1 Representation

To get help, operators must first describe (represent) the issue to
collaborators. Observation 2 in Section 2.2 shows that doing so can
be hard. Ideally, operators must describe their problem sufficiently
but concisely and in a privacy preserving manner. To be sufficient,
the problem representation must supply all aspects required to model
the problem, both the network behavior and the observed error.
But to be concise, only the right subset of the network must be
described; naively providing the entire network configuration may
distract collaborators and complicate the debugging process. To be
privacy-preserving, operators must not reveal sensitive data (e.g., IP
addresses, personally identifiable information (PII), firewall rules)
about their network when representing the problem. An example of
how operators can inadvertently reveal sensitive information is given
in Figure 9 in Section 4.3.

Challenges. To create a problem representation that meets all three
criteria, operators face several challenges. First, they must be able
to describe their topology, even when they might not readily have
a topology map of the network they operate; this usually happens
when the operator inherits an already running network. Second, as

Volume 51 Issue 2, April 2021

they construct this topology description, they must identify any miss-
ing pieces that are needed to create a sufficient description. Third,
instead of just sharing a sufficient description, they must decide
which parts of the topology description are relevant, to avoid over-
whelming collaborators. This is incredibly hard to do, and we find
some operators trying to diagnose the problem to choose such a sub-
set before they post their question to get debugging help! Lastly, it is
incredibly hard for operators to measure or describe their workload
characteristics. Measuring network traffic might alter live networks’
performance characteristics (reducing availability of their applica-
tions). Describing it might require compromising sensitive private
configurations associated with applications they use. Given these
challenges, unsurprisingly, many posts we analyzed had little to no
description of workloads.

3.2 Reproduction

To debug the problem, collaborators must construct an accurate
mental model (reproduction) of the problem and network behavior.
Observation 3 in Section 2.2 reveals that constructing such a model
is hard. Collaborators need details of connectivity and QoS across
relevant network layers. It also helps to know of events that might
have triggered the issue. Many such details might not be readily
available in the problem description (Observation 2, Section 2.2).
Challenges. Even when collaborators are supplied with a good prob-
lem description, bugs (which cause 15% of posts we analyze), miss-
ing features (which cause 21% of posts we analyze) and default
settings in vendor devices (counted as part of misconfiguration is-
sues that comprise 50% of posts) might change network behavior in
unexpected ways. To identify these hidden elements, collaborators
might ask operators to run simpler, well known tests (e.g., ping,
traceroute, specific workloads) on their live network and report
outcomes (e.g., interface counters). While this process often helps to
clarify network behavior, it also consumes time and effort both on
the part of the operator, who must run these tests without disrupting
their network, and the collaborator who must work with the operator
until they can construct an accurate mental model.

3.3 Remediation

Ideally, at the end of the debugging process, operators and collabora-
tors know the root cause of the problem and identify modifications
to the network that will resolve it (remediate). The root cause must
be accurate, and modifications easy to apply quickly. Ideally, an in-
experienced operator seeking help is not expected to try out multiple
different modification suggestions on a live network (Observation
4); applying such changes and rolling back those that do not work is
hard even in well-managed networks [20].

Challenges. In our experience, while identifying the root cause of
a network problem is incredibly hard, coming up with remedying
modifications can be an art. To ensure that a modification will work,
collaborators might need accurate knowledge of causal interactions
between devices and protocols in the network, even some that are
not part of the original problem description! Under-represented
aspects of the network can especially hurt; if the operator is unlucky,
device defaults, bugs, or missing features can get in the way of
remediation and create new problems. Collaborators might also
need to understand the original intent of the network operator to
suggest feasible fixes. For instance, in one of the posts, a collaborator

ACM SIGCOMM Computer Communication Review

13

Network Error Network
Setup Traces Modules

Refinement Loop

Config Snapshot, ResrealvEen

Abstract Traces

Representation

Concrete
Traces

Diagnosis
Library

Refinement Loop

Refinement Loop

Remediation

Recommendations

Figure 7: Netivus workflow. 3R steps highlighted.

suggested using BGP to enable routing, only to learn that pure L2
solutions were desired by the operator [6].

3.4 Summary

When we view collaborative debugging in the framework of the 3R
steps, we observe that missing information at every step prevents
operators and collaborators from having a complete, shared picture
of network behavior. For example, operators might not have full
knowledge of network topology, let alone shared language and prac-
tices to describe a problem completely, and collaborators might be
in the dark regarding the operators intent and network specifics. It is
this fundamental challenge that we want to remedy with Netivus.

We envision that it is possible to build tooling that helps identify
what might be missing at every step rather than solely depending on
collaboration to do so. As the operator and collaborator fill in the
missing information flagged by Netivus, they can refine their shared
mental model of the network and get a collective understanding
of the problem. We also hope such tooling can help standardize
the collaborative process. It must help operators represent network
problems with details that collaborators commonly look for, and
allow collaborators to focus on parts of the problem that tooling
cannot help supply. This intent shapes our preliminary thoughts on
improving the collaborative debugging experience.

4 Preliminary Approach

Our mental model of collaborative debugging viewed in the frame-
work of the 3R steps is shown in Figure 7. We use this figure to also
capture the Netivus workflow: a workflow that augments each step
with software modules (tooling) to aid the collaborative debugging
process. The figure shows the inputs and outputs of the software
modules. We expect the network information (e.g., network setup,
configuration snapshot) used in prior steps of the workflow will need
to be refined iteratively by using information from subsequent steps
(e.g., concrete traces, diagnosis recommendations), and that such
refinement will further clarify the shared mental model between
operators and collaborators. For example, if the concrete traces from
the reproduction step shows that relevant network devices are miss-
ing from the problem description, operators might be able to supply
missing configurations of these devices as input to the representation
module, and that in turn will result in a better reproduction. We cap-
ture this process of refinement using bidirectional arrows between
the three steps (labeled ‘refinement loops’).

In this section we describe existing work that we can use as
starting points to implement the Netivus vision. We then posit how

Volume 51 Issue 2, April 2021

refinement will work, and end with a sketch of how the Netivus
workflow might help debug a problem described on NESE.

4.1 Starting points

Representation. To help operators create complete and useful de-
scriptions of their problems, we envision a representation module
that enables operators to describe their network using topology di-
agrams, device configurations, any available workload traces (e.g.,
pcap), and error traces (e.g., interface counters). From the operators’
description, the module must construct a network model consisting
of relevant parts of the configuration files that describe its connec-
tivity, QoS, and error characteristics (configuration snapshot); in
addition, it must produce an abstract trace that describes the error
in this network model. If it cannot do so, it must identify missing
information that it needs to construct such a model (or trace). The
representation module must interface with the reproduction and re-
mediation modules to aid refinement, and it must be able to flag
missing information identified in any step to the operator.

There are tools like Batfish [17], that can parse configurations
to construct a layered view (L1-L4) of how packets flow across a
topology, that we can leverage for building the representation mod-
ule. Tools like Netconan [5] are already able to anonymize IP ad-
dresses in configurations, a feature that can be useful to build privacy-
preserving problem representations. For developing workload repre-
sentations, we can look to synthetic traffic generators [21, 36] that
have long been used for network testing. We think that an interesting
question around workload generation is whether Generative Adver-
sarial Network (GAN)-based traffic generation can be leveraged as a
privacy-preserving alternative to sharing raw traces [26]. We hypoth-
esize that the GAN could potentially be trained using recent packet
logs (e.g., from router SPAN ports) triggered during the event.
Reproduction. This module takes the output of the representation
module along with any vendor-supplied modules, such as device im-
ages, and creates an emulation of the problem to the extent possible.
If the error is reproducible, then the module must make it possible
to extract the concrete error trace and supply it to the remediation
module. If the error is not reproducible, the module must identify
information it might be missing to recreate the error trace, and feed
this information back to the representation module (refinement).

There are a wide range of simulation and emulation tools such as
CrystalNet [27], ns3 [32], and GNS-3 [19] that can be leveraged as
the starting point for the reproduction module. Some, like GNS-3,
also allow users to input images to improve emulation fidelity. For
devices without images or configurations, we imagine we might
be able to synthesize their behavior models using tools similar to
Alembic [31], and use these models for reproduction.
Remediation. The remediation module will take the output of the
reproduction module and a diagnosis library that might, for instance,
provide a canned set of candidate hypotheses to help narrow down
the potential root causes and solutions. It must then not only help
localize the network issue, but also recommend modifications to the
network to ideally resolve the issue. To make such recommendations,
the module might need information about parts of the network that
are not impacted by the issue. Therefore, the remediation module
must interface with the representation and reproduction modules to
clarify aspects of the network before suggesting modifications.

ACM SIGCOMM Computer Communication Review

14

Network verification techniques [17, 23, 24] already help localize
certain issues from configuration and dataplane snapshots; if the
representation module can supply similar snapshots, these tools can
be leveraged in the remediation module for fault localization. We
also imagine that mining vendor manuals/best practices [12] and
NESE posts using techniques from NetSieve [33] might provide
initial lists of hypotheses. If the operator is able to supply the set
of configuration changes they made to the network before running
into the problem, techniques like differential provenance [15] can be
used to identify relevant configuration changes that might be triggers.
Once problematic configuration snippets are identified, we speculate
we can use techniques like NetComplete [16] to generate alternative
configuration snippets that might help resolve the problem.

4.2 Refinement Loops

We have so far described the Netivus modules. We now describe how
operators, collaborators, and the modules themselves might interact
to refine network representation, issue reproduction, and remediation
recommendations. We believe that these refinement loops are key to
improving collaborative debugging resolution rates and outcomes.

We envision that an operator has access to a private instance of
the representation module that they iterate with to supply missing
information, until the module can construct a complete representa-
tion of the network and the corresponding abstract error trace. The
module must then remove any private information and supply the
operator with a representation that they can share with collaborators,
perhaps by using an online version of the representation module.
To be effective, the representation module must reduce the amount
of collaboration needed to arrive at a complete, privacy-preserving
problem description.

The online version of the representation module will interface
with an online reproduction module to recreate the issue. If the issue
is reproducible, then these modules must interface and iterate until a
minimal subset of the network that is sufficient to reproduce the issue
is identified, by gradually whittling away parts that do not impact
the issue. We believe that creating such a minimal representation
for collaborators will help reduce problem complexity and might
improve their chances of arriving at a remediation quickly.

If the reproduction module is unable to reproduce the issue, it
must suggest other workloads and tests the operator can try in order
to localize the mismatch between the real network and the module’s
network model. The operator can then supply the outcomes of these
tests to the representation module to further refine the network model
that the reproduction module uses. By suggesting workloads and
tests that are routinely requested, the reproduction module can reduce
the number of unknowns that collaborators will encounter.

If the reproduction is successful, the remediation module must
generate a ranked list of candidate hypotheses that are most likely
to cause the issue. The reproduction and the list of hypotheses are
starting points for collaborators’ investigations. Once collaborators
identify changes that might remedy the problem, they can test them
using the reproduction module. This ensures that disruptive modifi-
cations can be weeded out before presenting them to the operator.

On the other hand, if the collaborators need more information to
debug or remedy the issue, they can fall back to asking the operator
to supply those inputs to the representation module and restart the
Netivus workflow.

Volume 51 Issue 2, April 2021

Abstract Trace
(1) Packet to VoIP server sent from Cisco 3750 switch
(2) No response
Table 1: Abstract events that provoke error symptoms.

Concrete Trace

(1) Packet to VoIP server sent from Cisco 3750 switch

(2) Packet arrives at layer-3 switch connecting VLANs 5 and 10 (the
new Cisco 3850x switch)

(3) New Cisco 3850x switch floods packet out all interfaces except
the one that the packet arrived one

(4) All flooded packets dropped

Table 2: Concrete events that lead to error symptoms.

Potential Root-Cause
IP address conflict
Server is down

Fix
Change one of the IP addresses
Restart server

ACL drops traffic Remove rule that drops traffic
Different VLAN Switch VLANs
Cable malfunction Replace cable

Table 3: Root-cause hypotheses and potential fixes

4.3 Collaborative debugging with Netivus

We now present a mental sketch of what it might look like to apply
collaborative debugging with the Netivus workflow to a problem
described in a post titled “Access port config” [1] described in Sec-
tion 2.2. Recall that the network had a VoIP server, which became
unreachable when the network operator connected a new switch. We
now describe the 3R steps for debugging this problem using Netivus.
Representation step. Using the configuration files inputted by the
operator, the representation module creates a configuration snapshot
(Figure 9) that describes the parts of the configuration file that are
needed by the network emulator in the reproduction step. This snip-
pet is constructed by removing personally identifiable information
(PII) and other information not needed for emulation, such as logging
and management settings, from the configuration files supplied by
the operator. The representation module also generates the abstract
trace (Table 1) concisely describing the error, and some information
of the action that led to the error, from the original error description.
Reproduction step. The reproduction module uses the configura-
tion snapshot and abstract trace to generate a minimum, sufficient
emulation of the problematic network. To do so, it uses available
device images and configures them based on the configuration snap-
shot. It then applies the actions in the abstract trace and checks if
the described problem occurs in the emulator’s event log. If it does,
then the snippet in the log associated with the error is captured as the
concrete trace, in addition to the information about the actions that
led to the error. Table 2 shows the concrete traces we constructed.
Since we did not have an actual emulation, we instead used a net-
work model we constructed using the configuration snapshot shown
in Figure 8 and the abstract trace to come up with the concrete trace.
Recall that the representation and the reproduction modules iterate
to refine the problem representation and make it more concise. By
removing network elements that do not impact the error condition,
this refinement loop eliminates the dotted lines shown in Figure 8.

ACM SIGCOMM Computer Communication Review

15

Layer 2
— (2) Connectivity lost
=) VolIP Server
A Tl - ﬂi s Flber Connection
. ~a -7
Wireless TN L7 (1) New switch
Router Smg VLAN10 s connected
< g,
NS be =Pl X]
VolP Cisco 3750~ Stack of Cisco I ~o Glsto .?ShSOx
Phone swnch 3850x switches Sx SWitc
- > -7 SS
- > I = ~
* a
RN
Motorola VolP Cisco 3750 Backup VolP
wifi Phone switch Server
Layer 3
Cisco 3750 - . Cisco 3750
switch m switch
VLAN 5 (Data) -
10.0.70.1 10.0.70.1 (Lgﬁ;i{égsh
10.0.0.1 y VLAN 1 (Management) 4 10.0.0.6 t
Stack of A W(Gappa)\
tack of N :
Cisco \ ‘/\/ CISCO.?8h50X
3850x { VLAN10 (Voice) Swic
switches | (2) Connectivity] = a2 4 -
lost Py oA Sso
VolP VolP Backup VoIP
VolP Server Phone Phone Server

Figure 8: Network representation: Dotted links were removed
for the minimal, sufficient representation.

Remediation step. The remediation module uses a list of hypotheses
from sources like Cisco network troubleshooting guide [12] as a
starting point for the diagnosis library. We can further refine some
of their high level suggestions (e.g., configuration problem, physical
layer issues) with more concrete ideas (e.g., server is down, ACL
drops traffic, different VLAN, cable malfunction), drawing from
the root-causes we find from the posts we analyzed. We expect that
the list of hypotheses will be similarly refined continuously in the
Netivus platform. The remediation module can also use verification
tools (e.g., [17]) to analyze configurations and generate intermediate
network models like Figure 8.

Both the hypotheses from the Cisco troubleshooting guide and
running reachability tests on the network model point to an IP ad-
dress conflict as the most likely root-cause. The refinement loop
with the reproduction module, and the verification tools, can help
pinpoint the exact IP address conflict. The remediation module sug-
gests this as the most likely issue among the hypotheses identified
in Table 3. It also suggests potential fixes, again mined from the
posts we analyzed. Finally collaborators and operators can use the
reproduction module to verify this is the simplest resolution.

5 Open Research Questions

Our journey to understand the problems faced by SME operators and
identify what might help has brought to light several open questions.
We conclude the Netivus manifesto by outlining them.

Usability. All of the starting points described in Section 4 require
considerable network, software, and hardware expertise before one
can use them. For network operators with limited resources, this

Volume 51 Issue 2, April 2021

New-Cisco-3850x-Switch

spanning-tree mode pvst
spanning-tree extend system-id

service timestamps debug datetime localtime Management
service timestamps log datetime localtime settings are
removed

enable secret 5 1M.jFETEYgV2toHpb/yTRI9cBIX1 | Pllis
enable password 7 00171105565808551C32 removed

interface Vian10
description Voice VLAN
ip address 10.10.20.1 255.255.255.0
ip helper-address 10.0.70.2

Figure 9: Snippet of the configuration snapshot.

presents a barrier to adopting some of these tools. There is a need to
rethink the software interfaces that many of these tools provide to
be usable by SME operators. We anticipate there is also much to be
learned from the experiences of the computer supported cooperative
work (CSCW) community to inspire broader adoption.

Interfaces. Stitching together various available stand-alone tools to
realize the Netivus manifesto is not easy. Each of the tools described
will require modifications before they can interface with other tools.
For instance, there is no way today to plug Batfish network repre-
sentations or behavioral models generated by Alembic into GNS-3.
While none of these tools were developed with such interactions
in mind, we believe that going forward, it will be critical to have a
principled approach to defining interfaces for each of these tools to
increase adoption and impact.

Missing Pieces. Even if the usability and interfaces of these tools are
improved, we will be left with the missing pieces and open questions
described in Section 3. For instance, how can one ensure a repre-
sentation sufficiently captures the details required for debugging
the problem? How can operators capture workload characteristics
faithfully across a network? We find that many of these questions
challenge the assumptions made by current tools around homogene-
ity of deployments and software defined nature of networks.

A broader manifesto. We focused on troubleshooting in SME net-
works since this was a major source of pain points for users on
NESE. Our analysis of the NESE forum, however, also reveals nu-
merous struggles with management operations, superfluous devices
or protocols, device/network setup, and upgrades. We believe there
is a rich opportunity in treating these topics as first-order research
problems; e.g., network debloating to cull out unnecessary compo-
nents, ML-driven configuration optimizations (e.g., [14]), or better
versioning or snapshotting tools for SMEs.

Acknowledgments

This work was funded in part by the NSF/VMware Partnership on
Software Defined Infrastructure as a Foundation for Clean-Slate
Computing Security (SDI-CSCS) program under Award No. CNS-
1700521.

ACM SIGCOMM Computer Communication Review

References

[1] Access port config. https://networkengineering.stackexchange.com/questions/

45650/access-port-config.

[2] Comment everywhere. https://networkengineering.stackexchange.com/help/

privileges/comment.

[3] Explore our questions. https:/networkengineering.stackexchange.com/.

[4] How do I write a good answer? https://networkengineering.stackexchange.com/

help/how-to-answer.

Intentionet network configuration anonymizer. https://github.com/intentionet/

netconan.

Multihomed internet edge without BGP. overlapping routes, a viable design?

https://networkengineering.stackexchange.com/questions/19763/multihomed-

internet-edge- without-bgp-overlapping-routes- a- viable-design.
[7] North American network operators group. http://nanog.org.
[8] North American network operators group mailing list. https://mailman.nanog.org/
mailman/listinfo/nanog.
[9] Qos woes - managed ip vpn. https://networkengineering.stackexchange.com/
questions/2427/qos- woes- managed-ip-vpn.

[10] Réseaux IP Européens (RIPE) Meetings. https://www.ripe.net/participate/
meetings/ripe- meetings.

[11] The-netivus-manifesto-data. https://github.com/fretbuzz/The-Netivus-Manifesto-
Data.

[12] Troubleshooting tcp/ip. https://www.cisco.com/en/US/docs/internetworking/

troubleshooting/guide/tr1907.html.

Why can people edit my posts? How does editing work? https://

networkengineering.stackexchange.com/help/editing.

[14] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cher-
rypick: Adaptively unearthing the best cloud configurations for big data analytics.
In 74th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 469—482, Boston, MA, Mar. 2017. USENIX Association.

[15] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The good, the bad,
and the differences: Better network diagnostics with differential provenance. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM 16, pages
115-128, New York, NY, USA, 2016. Association for Computing Machinery.

[16] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Netcomplete: Practical
network-wide configuration synthesis with autocompletion. In Proceedings of
the 15th USENIX Conference on Networked Systems Design and Implementation,
NSDI *18, pages 579-594, USA, 2018. USENIX Association.

[17] A.Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan,
and T. Millstein. A general approach to network configuration analysis. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation, NSDI " 15, pages 469-483, USA, 2015. USENIX Association.

[18] D. Garros. The state of network operation through automation / NetDevOps survey
2019. http://blog.networktocode.com/post/state- network-operations-netdevops-
survey-2019/, 28 Apr. 2020.

[19] GNS3 Technologies Inc. GNS3 | The software that empowers network profession-
als., 2016.

[20] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve or die:
High-availability design principles drawn from googles network infrastructure. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages
58-72, New York, NY, USA, 2016. Association for Computing Machinery.

[21] Ixia. Ixia traffic generator. https://www.ixiacom.com/.

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4: Experi-
ence with a globally-deployed software defined wan. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 3—-14, New
York, NY, USA, 2013. Association for Computing Machinery.

[23] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static check-
ing for networks. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI *12, page 9, USA, 2012. USENIX
Association.

[24] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation, nsdi’ 13, pages 15-28,
USA, 2013. USENIX Association.

[25] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
140:1-55, 1932.

[26] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar. Using GANSs for sharing
networked time series data: Challenges, initial promise, and open questions. In
Proceedings of the ACM Internet Measurement Conference, IMC *20, pages 464—
483, New York, NY, USA, 2020. Association for Computing Machinery.

[27] H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. Lopes, A. Rybalchenko,
G. Lu, and L. Yuan. Crystalnet: Faithfully emulating large production networks.
In SOSP ’17 Proceedings of the 26th Symposium on Operating Systems Principles,
pages 599-613. ACM, October 2017.

[28] M. Locker. The origins of Festivus, the festival for the rest of us. https://time.com/
4617553 /festivus-holiday-origins-seinfeld/, 23 Dec. 2016.

[5

[6

[13

Volume 51 Issue 2, April 2021

https://networkengineering.stackexchange.com/questions/45650/access-port-config
https://networkengineering.stackexchange.com/questions/45650/access-port-config
https://networkengineering.stackexchange.com/help/privileges/comment
https://networkengineering.stackexchange.com/help/privileges/comment
https://networkengineering.stackexchange.com/
https://networkengineering.stackexchange.com/help/how-to-answer
https://networkengineering.stackexchange.com/help/how-to-answer
https://github.com/intentionet/netconan
https://github.com/intentionet/netconan
https://networkengineering.stackexchange.com/questions/19763/multihomed-internet-edge-without-bgp-overlapping-routes-a-viable-design
https://networkengineering.stackexchange.com/questions/19763/multihomed-internet-edge-without-bgp-overlapping-routes-a-viable-design
http://nanog.org
https://mailman.nanog.org/mailman/listinfo/nanog
https://mailman.nanog.org/mailman/listinfo/nanog
https://networkengineering.stackexchange.com/questions/2427/qos-woes-managed-ip-vpn
https://networkengineering.stackexchange.com/questions/2427/qos-woes-managed-ip-vpn
https://www.ripe.net/participate/meetings/ripe-meetings
https://www.ripe.net/participate/meetings/ripe-meetings
https://github.com/fretbuzz/The-Netivus-Manifesto-Data
https://github.com/fretbuzz/The-Netivus-Manifesto-Data
https://www.cisco.com/en/US/docs/internetworking/troubleshooting/guide/tr1907.html
https://www.cisco.com/en/US/docs/internetworking/troubleshooting/guide/tr1907.html
https://networkengineering.stackexchange.com/help/editing
https://networkengineering.stackexchange.com/help/editing
http://blog.networktocode.com/post/state-network-operations-netdevops-survey-2019/
http://blog.networktocode.com/post/state-network-operations-netdevops-survey-2019/
https://www.ixiacom.com/
https://time.com/4617553/festivus-holiday-origins-seinfeld/
https://time.com/4617553/festivus-holiday-origins-seinfeld/

[29]

[30]

[31]

[32]

(33]

[34]

A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah, and C. Diot.
Characterization of failures in an IP backbone. 4:2307-2317, 2004.

J. C. Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk, B. Koley, and X. Zhao.
Experiences with modeling network topologies at multiple levels of abstraction.
In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), pages 403-418, Santa Clara, CA, Feb. 2020. USENIX Association.
S.-J. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu, M. Yannakakis,
and Y. Zhang. Alembic: Automated model inference for stateful network functions.
In Proceedings of the 16th USENIX Conference on Networked Systems Design and
Implementation, NSDI ’ 19, pages 699-718, USA, 2019. USENIX Association.
NS3 Development Team. NS3 discrete-event network simulator for Internet
systems, 2011.

R. Potharaju, N. Jain, and C. Nita-Rotaru. Juggling the jigsaw: Towards automated
problem inference from network trouble tickets. In /0th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), pages 127-141,
Lombard, IL, Apr. 2013. USENIX Association.

B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul, A. Vahdat, M. Yu, E. Katz-
Bassett, and M. Rubin. Condor: Better topologies through declarative design. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 449-463, New York, NY, USA, 2015.
Association for Computing Machinery.

ACM SIGCOMM Computer Communication Review

17

[35]

[36]

[37]

[38]

A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,
G. Desai, B. Felderman, P. Germano, A. Kanagala, H. Liu, J. Provost, J. Simmons,
E. Tanda, J. Wanderer, U. Holzle, S. Stuart, and A. Vahdat. Jupiter rising: A
decade of Clos topologies and centralized control in Google’s datacenter network.
Commun. ACM, 59(9):88-97, Aug. 2016.

J. Sommers, H. Kim, and P. Barford. Harpoon: A flow-level traffic generator for
router and network tests. In Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’*04/Perfor-
mance "04, page 392, New York, NY, USA, 2004. Association for Computing
Machinery.

D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California fault lines:
Understanding the causes and impact of network failures. SIGCOMM Comput.
Commun. Rev., 40(4):315-326, Aug. 2010.

K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,
M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying,
M. Kallahalla, B. Koley, and A. Vahdat. Taking the edge off with espresso: Scale,
reliability and programmability for global internet peering. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 432-445, New York, NY, USA, 2017. Association for
Computing Machinery.

Volume 51 Issue 2, April 2021

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Complexity of SME operations
	2.2 Challenges of collaborative debugging

	3 Research Challenges in Netivus
	3.1 Representation
	3.2 Reproduction
	3.3 Remediation
	3.4 Summary

	4 Preliminary Approach
	4.1 Starting points
	4.2 Refinement Loops
	4.3 Collaborative debugging with Netivus

	5 Open Research Questions
	References

