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Abstract

Generative adversarial networks (GANSs) are
often billed as "universal distribution learn-
ers", but precisely what distributions they
can represent and learn is still an open ques-
tion. Heavy-tailed distributions are preva-
lent in many different domains such as finan-
cial risk-assessment, physics, and epidemiol-
ogy. We observe that existing GAN architec-
tures do a poor job of matching the asymp-
totic behavior of heavy-tailed distributions,
a problem that we show stems from their
construction. Additionally, when faced with
the infinite moments and large distances be-
tween outlier points that are characteristic of
heavy-tailed distributions, common loss func-
tions produce unstable or near-zero gradi-
ents. We address these problems with the
Pareto GAN. A Pareto GAN leverages ex-
treme value theory and the functional proper-
ties of neural networks to learn a distribution
that matches the asymptotic behavior of the
marginal distributions of the features. We
identify issues with standard loss functions
and propose the use of alternative metric
spaces that enable stable and efficient learn-
ing. Finally, we evaluate our proposed ap-
proach on a variety of heavy-tailed datasets.

1 INTRODUCTION

Heavy-tailed, and particularly power-law, distri-
butions are regularly encountered in a diverse set
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of applications such as spectroscopy, particle mo-
tion, finance, geological processes, epidemiology,
etc. (Michel and Chave, 2007; Fortin and Clusel,
2015; Gilli and kéllezi, 2006; Caers et al., 1999;
Evans and Erlandson, 2004). Analysis of these distri-
butions is often focused on the prevalence (i.e., risk)
of rare events. Models that can fit sample data while
accurately predicting the probabilities of extreme
events are useful for risk assessment in these fields.

How suitable are GANSs to serve as these models? They
have proven to be wildly successful at learning com-
plex distributions in the image domain, without sim-
ply memorizing the data (Brock et al., 2018). They
can famously generate convincing images of the faces
of non-existent celebrities (Karras et al., 2017). Can
they also convincingly generate samples of the default
rates of mortgages and the features of 100-year floods?

The universal approximation theorem (Hornik et al.,
1989) and effective loss functions like Wasserstein dis-
tance (Arjovsky et al., 2017) suggest that GANs can
learn to generate an arbitrary dataset, regardless of
the distribution it was drawn from. Of course, simple
bootstrap sampling from the dataset can do the same.
It is the ability of GANs (or any generative model) to
appropriately generalize from training examples that
separates them from a static dataset.

In the case of heavy-tailed distributions, this general-
ization is not effective. As we will show in section 4,
the asymptotic behavior of a GAN marginals is pre-
dictable based solely on the combination of input dis-
tribution and activation function, irrespective of the
training data. In most cases, the generator is able to
fit the training data closely and interpolate between
these points, but it does not extrapolate in a reason-
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able fashion.

This does not have to be the case, however. In their
extremes, most naturally occurring marginal distribu-
tions follow one of a handful of asymptotic behaviors
(Balkema and de Haan, 1974). These behaviors are all
captured by the generalized Pareto distribution. Since
we are able to predict the asymptotic behavior of a
GAN from its architecture, we can therefore also de-
sign our GAN to take on a particular belief about
the tail behavior of its marginals. To create such a
generator, we feed a standard neural network a noise
function with heavy-tailed characteristics and provide
a few mechanisms for controlling how heavy the tails
should be.

Given such a generator, we must be able to find
a reliable gradient to train it. Heavy-tailed distri-
butions introduce challenges to learning. In section
5, we show that common metrics, such as Wasser-
stein distance (Arjovsky et al., 2017) and energy dis-
tance (Bellemare et al., 2017) are infinite between suf-
ficiently heavy-tailed distributions. In these cases,
sample gradients do not converge and mini-batch gra-
dient estimates are unstable. We propose a solution to
this problem where we evaluate the loss function over
a metric space on which the distributions are better
behaved.

We name the combined approach Pareto GAN. Pareto
GAN uses methods from extreme value theory to esti-
mate the tail index of the marginal input distributions.
It uses this tail index to construct a generator with
matching tails and a loss metric that ensures a use-
ful gradient for training. We show how Pareto GAN
can be used to generate multivariate distributions that
have different marginal tail indexes, which suggests a
high degree of flexibility in future applications.

2 PRELIMINARIES

2.1 Generative adversarial networks

A GAN consists of a generator and a discriminative
loss function. The generator is represented as a neural
network f that transforms a random variable Z with a
known distribution (e.g., uniform, normal) into a new
random variable in some output space:

X =[f(2) (1)

The generator network f is trained to minimize
a loss function that discriminates between samples
from two distributions. The ideal training outcome
is that X matches a particular target distribution
over the output space and the loss function cannot

discriminate between the two distributions. Popu-
lar GAN loss functions include Wasserstein distance
(Arjovsky et al., 2017) and maximum mean discrep-
ancy (MMD) (Gretton et al., 2012)(Li et al., 2017).
This paper focuses on Wasserstein distance and en-
ergy distance (Sejdinovic et al., 2013), which is a type
of MMD loss function (see section 5).

2.2 Tail distributions and extreme value
theory

Definition 1. Let X be a random variable. Define
F(z) = P(X < x) as the cumulative distribution func-
tion (CDF) of X. Define F(x) =1 — F(z) as the com-
plementary cumulative distribution function (CCDF).
For random variable X, the conditional excess distri-
bution function is defined

F.(y)=P(X —u<y|X >u)
Fu+y) — F(u) (2)
1—F(u)

Definition 2. The generalized Pareto distribution
(GPD), parameterized by tail index £ € R and scaling
parameter o € R, has the following CCDF, which is
defined over R :

(1 —i—{z/a)_%, for £ #£0

S(Z;gvo—): {e—z/a7 fOI’é-:O' (3)

The Pickands—Balkema-de Haan theorem
(Balkema and de Haan, 1974) states that the condi-
tional excess of a broad class of distributions converge
to the GPD as u — oo. These distributions include
bounded distributions, exponential family distribu-
tions (e.g., Gaussian, Laplacian), stable distributions
(e.g., Cauchy, Levy), and power law distributions
(Student-t, Pareto). There are a variety of definitions
in the literature for what constitutes a "heavy-tailed"
distribution, but we will use the term to denote
distributions with a tail index £ > 0.

3 RELATED WORK

Works using GANs on heavy-tailed data (Lin et al.,
2019)(Wiese et al., 2019b) often train on logarithmi-
cally transformed data, and exponentiate the GAN
output to get back to the original data domain. While
this can help the learning process, the learned distri-
bution does not meet our definition of heavy tailed,
as we will show in section 4. Other works have used
heavy tailed input distributions on bounded domains
(e.g. images) (Sun et al., 2018)(Upadhyay and Awate,
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2019). These works focus on representations with non-
Gaussian characteristics, but are not concerned with
the tails of the output domain (since it is bounded).
(Wiese et al., 2019a) presents a proof that a genera-
tor network cannot make the tails of its input distri-
bution heavier. Our work mirrors some of the argu-
ments in (Wiese et al., 2019a), but presents a viable
solution to the problem in the Pareto GAN. Concur-
rent work (Feder et al., 2020) uses a Student-t prior to
produce unbounded heavy-tailed data, which has sim-
ilar tail characteristics to our GPD prior. However,
their choices for tail index and loss function were cho-
sen through trial and error. We present an approach
for choosing these parameters grounded in theory and
existing extreme value literature.

4 THE ASYMPTOTIC BEHAVIOR
OF GAN GENERATORS

We now examine the asymptotic behavior of GAN gen-
erators. To do so, we draw heavily on a property of
most neural networks (including all those which we will
consider): Lipschitz continuity. Roughly speaking, a
Lipschitz continuous function has bounded slope; for
brevity, we place a full definition of Lipschitz continu-
ity in the appendix.

4.1 Generators with bounded support

Proposition 1. Let Z4 be a random variable in met-
ric space (Z,dz). Let f : Z — X be a Lipschitz con-
tinuous neural network with respect to metrics dz and
dx. If Za lies within ball of radius ¢ centered around
20, Belzo] € Z, with probability 1, then there exists a
ball Bg|zo] C X such that P(f(Za) € Bg(xp)) = 1.

In short, a Lipschitz continuous function always maps
a bounded distribution to another bounded distribu-
tion. Generators with a standard uniform input dis-
tribution, therefore, must be bounded. So are genera-
tors with a bounded intermediate layer such as a tanh
or sigmoid activation, since such a layer produces a
bounded random variable that serves as input to the
rest of the network. While a generator of this type can
potentially fit an arbitrary training set (regardless of
the distribution that generated it), the probability of
producing a sample outside of Bg[xo] is exactly zero.

The left side of Figure 1 illustrates this phenomenon.
We trained a GAN with uniform input noise on a heavy
tailed data set, namely samples from a mixture of two
Cauchy distributions. The GAN matches the modes of
the distribution somewhat, but as predicted, the tails
have a hard cutoff: every sample we generated was
between + /- 15.

4.2 Generators with zero tail index marginals

A generator that would seem to address this problem
combines an unbounded input distribution with an un-
bounded neural network, such as Xy defined below.

Definition 3. Let fpw : R® — R be a piecewise
linear (PWL) function with a finite number of linear
regions.

Remark 1. fpyw is Lipschitz continuous with respect
to Minkowski distances (metrics which generate the p-
norms).

Definition 3 encompasses a broad class of neural net-
works (see, e.g., (Arora et al., 2016, Theorem 2.1)).
PWL functions are closed under composition, so it is
easy to show that a neural network composed of opera-
tions such as ReLUs, leaky ReLUs, max pooling, max-
out activation, linear layers, concatenation, addition,
and batch normalization (in "test" mode) all meet the
requirements of Definition 3.

Definition 4. Let N(u,0) be a normal distribution.
A normal generator Xy is

XN = fewir(Zn), Zn ~ N(0,1). (4)

Note that fpw is univariate, and that an arbitrary
neural network can be broken up into a set of univari-
ate functions like fpyr. In that setting, the distri-
bution of Xy represent a marginal distribution of the
output. While it is possible to construct fpy 1 in such
a way that Xy is bounded, in general, X x has support
across the whole real line. However, we now show that
X n has Gaussian tails.

Theorem 1. Let F,(x) be the conditional excess dis-
tribution of Xn. If Xy is not bounded above, then
F,(z) converges to the normal conditional excess dis-
tribution as u — oo, i.e., F(x) is a member of the
Gumbel domain of attraction.

We put the formal proof in the appendix, but outline
the intuitions here. Because fpy; has a finite num-
ber of convex linear regions, its asymptotic behavior
is therefore linear. Moving along any line in the in-
put space eventually enters a "final" linear region, and
fpwr acts linearly on all points beyond this thresh-
old. The tails of the input distribution, therefore, are
scaled and shifted by fpw, but they retain the shape
of their original distribution. Multiple regions of the
input space may map to a single output region so the
output tail acts like a mixture of Gaussians, which
asymptotically behaves like a single Gaussian.

A practice commonly used in GAN literature with
heavy tailed data is to exponentiate the output of a
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Figure 1: Probability densities of generators with (from left to right) bounded, normal, lognormal and Pareto
tails. Generators are trained on a Cauchy mixture with density shown in orange. The top row shows the center
of the distribution on a linear scale, while the bottom row shows the tails on a log scale.

generator such as Xy:

XLNZGXp(fPWL(ZN)—l), ZNNN(O,l) (5)

Since the tails of X act like a Gaussian, the tails of
X n follow lognormal asymptotics. This is a signifi-
cant improvement in practice, but it still produces a
distribution with a tail index of zero. The center two
columns of Figure 1 capture these predicted behaviors.
In the Gaussian case, the exponential decay is clearly
evident in the poor tail approximation. The lognor-
mal generator fares better, but undercounts extreme
events.

4.3 Pareto generators

Ideally, our GAN generator would match some belief
we have about the marginal tail behavior. The gener-
ators we have discussed so far are not able to capture
this type of belief for heavy-tailed distributions. We
address this shortcoming with the Pareto GAN gener-
ator. In its basic form, a Pareto GAN generator takes
a GPD input with tail index &, which matches the tail
index belief from the data. £ can be chosen in a variety
of ways, such as a tail index estimator (e.g. Hill’s es-
timator (Deheuvels et al., 1988; Resnick and Stérica,
1997), a kernel-type estimator (Wolf et al., 2003)), a
prior belief, or estimation during the training process.

Definition 5. Let Z = (U™¢ — 1)/, U ~
Uniform(0,1), which is a GPD random variable with
tail index £ and a CCDF of the form S(z;&,1). A
Pareto GAN generator X; parameterized by tail in-
dex & is defined

Xe = frwr(Ze). (6)

Theorem 2. Let F,(x) be the conditional excess dis-
tribution of X¢. If X¢ is not bounded above, then F,(z)
converges to S(x;€,0) for some o € R.

The proof is included in the appendix and follows a
similar argument to that of Theorem 1. Figure 1 illus-
trates the effectiveness of the Pareto GAN compared
with the other approaches. All three trained GANs use
the exact same network architecture and are trained
using energy distance (Sejdinovic et al., 2013)!. With
¢ = 1, the tails of the GPD input noise match the
tail index of the Cauchy mixture, but the distribu-
tions are very different around the modes. The GPD
is one-sided with a uniformly decreasing density. The
Cauchy mixture is two-sided and bimodal. The Pareto
GAN, however, is able to learn an accurate approxi-
mation, both around the modes and in the tails.

We can also define a more general form of the Pareto
generator.

Corollary 1. Let X, be a Pareto GAN generator with
tail indexr ov. Let

Xp = sign(Xa)|Xal”, >0 (7)

Let F,(x) be the conditional excess distribution of Xg.
If X3 is not bounded above, then F,(x) converges to
S(z;ap,0) for some o € R.

The proof builds on Theorem 2 and is in the appendix.
Corollary 1 gives a degree of flexibility in constructing

1To ensure convergence, we train the Pareto GAN with
the 2-root energy distance defined in section 5.
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a Pareto GAN generator. Importantly, in a multivari-
ate setting we can choose different values of g for each
output dimension. This allows us to learn a complex
joint distribution over variables with different tail in-
dexes. This flexibility suggests that there is a clear
path to apply Pareto GAN to a broad class of distri-
butions.

5 LEARNING HEAVY TAILED
DISTRIBUTIONS WITH GANS

Regardless of the form of the generator being used, in
order to train it, we need a loss function with a reliable
gradient. As discussed in (Arjovsky et al., 2017), said
loss function should provide a non-zero gradient for
manifolds with zero-measure intersections. This rules
out f-divergences such as Jensen-Shannon divergence.
We identify two additional properties that guide our
search for a loss function.

e Finiteness The loss function should be finite, with
both finite gradients and finite expectations of sam-
ple gradients. In particular, our choice of loss func-
tion must be well defined as such on the target dis-
tribution and all distributions that the GAN can
generate.

o Minimal outlier gradient decay The gradient of the
loss function with respect to an outlier should decay
as slowly possible.

The Wasserstein 1 distance? (aka Earth-Mover dis-
tance) is a very popular loss function for training
GANs (Bellemare et al., 2017; Arjovsky et al., 2017).
The Wasserstein distance between two distributions
is well defined when the distributions have finite first
moments®. However, when this is not the case, con-
vergence is no longer guaranteed. Energy distance
(Sejdinovic et al., 2013) is another metric with simi-
lar properties.

Definition 6. The energy distance, F between dis-
tributions P and @ with random variables X, X', Y,
and Y’ on a metric space (A4, d) is

E(P,Q) = 2Ed(X,Y) — Ed(X,X') —Ed(Y,Y’) (8)

which is finite, and well defined when P and () have
finite first moments (Sejdinovic et al., 2013).

We observe that by changing the metric on the under-
lying space we can give our target distributions finite
first moments. There are two ways that we can ap-
proach this. First, we consider bounded metrics. Un-
der a bounded metric all probability density functions
will have finite moments. For example,

2Full definition of Wasserstien distance in appendix
3Full definition of moments in appendix

Definition 7. Let @ > 0. The bounded Euclidean
metric induced by « is

|z = ylla

do(z,y) = ———————
@9 = o= ol

(9)
Remark 2. For «all z,y, it holds that
do(z,y) < 1, hence for all PDFs f and wvalues

20, [da(z,20)f(2)dz < [ f(z)dz = 1.

While using spaces with a bounded Euclidean met-
ric ensures the finiteness of our loss functions, the
produced gradient fails to provide much information
about the tails. Intuitively we note that because dis-
tances are bounded above by one, "large" and "very
large" distances are essentially impossible to distin-
guish using d,. Therefore, the gradient of this dis-
tance quickly decays to zero, and the metric is not
useful in gradient descent. Other GAN loss functions,
such as the RBF MMD (Gretton et al., 2012) are also
bounded and, as such, have this property. Hence, in
order to satisfy our second criteria, we instead modify
the standard Euclidean notion of distance on R.

Definition 8. Let v > 0. The v Root-Euclidean dis-
tance is

1
dy(,y) = [Jx —y||;" (10)
Remark 3. For all v > 1, dy defines a metric on Ry
as /7 is a monotonically increasing concave function.

Remark 4. The closer v is to one, the more similar
d, and the Euclidean distance metrics are.

Here, it is less obvious that we will get finite first mo-
ments. In fact, it is the case that in order to assure
finite moments on a given distribution, we must choose
our v to suit it. The following theorem presents the
appropriate bound on 7.

Theorem 3. Let P be a Generalized Pareto Distribu-
tion with tail index €. For all v > &, P has a finite
first moment on the space (R,d,).

Proof. Let f be the PDF of P, and consider the first

moment of f:

/alv(z,O)f(z)dZZ/]R zl/v(1+§z)7%dz. (11)

By estimation, the following two statements are equiv-
alent.

/ A4 e2) T dr < 0 (12)

Ry

/ (14 2)"H 19, < (13)
Ry

By the power rule for integral convergence we see that
this statement is equivalent to

—14+(1/y-1/8) < -1 (14)
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Figure 2: Top: log-log plot for Wiki Traffic data. Bot-
tom: Area of tail errors for different width generators
on keystroke data.

which is equivalent to the statement v > &. O

With this result, we can provide convergence guar-
antees for both Wasserstein and Energy distance on
heavy tailed distributions, so long as we are using the
correct distance metric.

Corollary 2. If GPD distributions P and @ with
PDFs X and Y respectively have tail indezes &p,&q <
v, then the Wasserstein and energy distances between
them, W1(P,Q), and E(P,Q) respectively, on the
space (R, dy) are finite.

6 EXPERIMENTS

6.1 Approximating Univariate Distributions

We now demonstrate our GANs on a few different
types of data. First we demonstrate our Pareto GANs
on a handful of univariate heavy-tailed datasets:

e 136 million keystrokes. This dataset includes
inter-arrival times between keystrokes for a va-
riety of users (Dhakal et al., 2018).

o Wikipedia Web traffic. This dataset includes the
daily number of daily views of various Wikipedia

articles during 2015 and 2016%. We train the
GANs to reproduce the distribution of view
counts.

o SNAP LiveJournal. This dataset consists of a
network graph for the LiveJournal social network
(Leskovec et al., 2008). We train the GANs to
reproduce the distribution of edge counts.

e SE&P 500 Daily Changes. This dataset consists of
the daily prices of the S&P 500 stocks from 1999
through 2013 5. We train the GANs to reproduce
the distribution of daily percentage changes in in-
dividual stocks.

We randomly partition the data into training, valida-
tion, and test sets. Training and validation each have
a small fraction of the full dataset (<10%), while the
remainder becomes the test set. This allows us to test
the ability of the GANs to extrapolate the probabil-
ities events that are more extreme than those in the
training data. We normalize all datasets by dividing
by the average magnitude of the training set.

Our evaluations consider two metrics. First, we use
the Kolmogorov—Smirnov (KS) test statistic between
the real and generated samples. The KS statistic is
defined as the largest magnitude difference between
the CDFs of two distributions, and it is used to test
the hypothesis that two sets of samples are from dif-
ferent distributions (Hodges, 1958). KS gives us an
indication of how well the modes of the data match,
and is independent of any of the loss functions used
in training. We use the implementation in scikitlearn
(Pedregosa et al., 2011). Secondly, we compute the
area between the log-log plots of the empirical CCDFs
of the real and generated samples. This metric gives
us a good indication of how well the generated tails
match the real samples. Figure 2 (top) gives an ex-
ample of such a plot. For n real samples and inverse
empirical CCDFs F ' ! and Fc: ! the formula is

logFg! <l> —logFg! (1>’109H? .
n n 1

(15)

n

Area = Z

=1

We used a common network architecture and training
procedure for all experiments. The network consisted
of four fully connected layers with 32 hidden units per
layer and ReLU activations. For the Pareto GAN, we
estimate the tail index from the training data using

*https://www.kaggle.com/c/web-traffic-time-series-
forecasting

"Downloaded from https://quantquote.com /historical-
stock-data, data has been recently removed
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an open-source implementation® of the kernel-type es-
timator from (Wolf et al., 2003). We used a batch size
of 256 in all cases. We vary learning rate from 104
to 1076 and train for 20,000 iterations. From these
networks, we select the model with the best valida-
tion loss and evaluate on a test dataset. We use the
energy distance loss function from definition 6 in all
cases, but we vary the underlying d(-,-) metric to fit
the GAN. For Pareto GAN, we use the d,(-,-) from
definition 8, with v = 2 on all datasets. This en-
sured finite loss for all the tail index estimates of all
datasets. We used standard Euclidean energy distance
for the other GANSs. In the lognormal GAN, we follow
the common practice of computing the loss function
on the log-transformed space (Wiese et al., 2019b).

Table 1: Experimental Results

Keystrokes Wiki Traffic
GAN type KS Area KS Area
Uniform 0.017 | 67.8 || 0.025 | 10.3
Normal 0.020 | 59.5 || 0.023 | 8.6
Lognormal || 0.014 | 41.0 || 0.019 | 9.5
Pareto 0.013 | 21.1 || 0.017 | 4.5

LiveJournal S&P500
GAN type KS Area KS Area
Uniform 0.094 | 154 || 0.011 | 12.6
Normal 0.103 | 7.8 0.019 | 7.3
Lognormal || 0.111 3.1 0.014 6.5
Pareto 0.105 | 2.0 0.062 | 4.4

Table 1 compares Pareto GAN to the baseline GANs
on the four datasets. In all cases, Pareto GAN provides
better tail estimation than other techniques, while gen-
erally matching performance on the KS statistic. Fig-
ure 2 (top) shows an example of the tail distribution.

Another promising property of the Pareto GAN is that
it can learn a more compact representation of heavy
tailed datasets than the other models. Other archi-
tectures don’t naturally produce power-law tails, so
they have to use the capacity of the neural network
to fit their shallow-tailed distributions into a power-
law shape. Since Pareto GAN does produce power-law
tails, it can use its neural network capacity to fit the
main body of the distribution while still maintaining
good tail approximation.

To demonstrate this behavior, we trained neural net-
works with different layer widths and computed the
log-log area metric. Figure 2 (bottom) demonstrates
how the Pareto GAN maintains its tail approximation
down to width 32, while the other GANs see a sharp
drop off in tail accuracies.

Shttps://github.com /ivanvoitalov/tail-estimation

6.2 Approximating Multivariate
Distributions

One of the attributes that makes GANs attractive
is that they can learn manifolds embedded in high-
dimensional spaces. In practice, high-dimension data
(e.g. images) does not always span the entire space;
instead, they are usually confined to a low dimensional
manifold. Learning to align manifolds is a hard prob-
lem that precludes the use of some loss functions, such
as Jensen-Shannon divergence (Arjovsky et al., 2017).
Data with heavy tails further complicates things. We
show in this section that Pareto GAN is capable of
learning distributions with all of these characteristics.

To apply Pareto GAN to multivariate data, we inde-
pendently estimate the tail index of each dimension,
which scales linearly the number of dimensions. We
construct Pareto GAN with & = 1 input noise and
leverage Corollary 1 once for each dimension, setting
[ to the estimated tail index. This results in a joint
distribution approximately matching the tail indexes
of each dimension. We then train with root-Euclidean
energy distance. We set v to be the largest estimated
tail index plus one. This ensures that the expected
loss is finite, but still emphasizes the tails sufficiently.

We now define some multi-dimensional distributions
with heavy-tailed characteristics and attempt to train
GANSs to approximate them. First, we define a joint
distribution [X(, X;] with components defined as fol-
lows:

Xo=A+B

16

X, = sign(A — B)|A — B|'/? (16)
where A and B are independent Cauchy RVs. Note
that Xy and X; have different tail indexes (1 and 1/2,
respectively) and are not independent.

We trained a Pareto GAN on this distribution. The
results of this process are shown in Figure 3. As ex-
pected, the marginals match closely, and the joint dis-
tributions appear to be close as well.

Our second multivariate distribution is a high dimen-
sional manifold. We define a d-dimensional distribu-
tion in which all points lie on a ¢ dimension manifold,
with ¢ < d. Furthermore, we give each dimension a
different tail index. The random vector is defined:

X = pow(CY,t) (17)
Y € R¢is a c-dimension hidden random variable inde-

pendently drawn from Cauchy distribution, C' € R4*¢
is a constant matrix for transforming the hidden vari-
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Figure 3: Left/Center: log-log plots of marginal distributions. Right: scatter plot of 1M data samples.

ables to the observable variables, t € R? is a con-
stant vector containing the target tail index, and pow
is the element-wise power operation. In the follow-
ing experiments, we set ¢ = 100, d = 1000. The el-
ements in C are independently drawn from A(0,1),
and the elements in ¢ are independently drawn from
Uniform(]0.5, 3]).

We trained four GAN variants on 10k samples from
this distribution. We trained "normal" and "lognor-
mal" GANSs as in previous experiments, and the Pareto
GAN as outlined above. In order to examine the im-
portance of our proposed loss function, we also trained
Pareto GAN with basic energy distance (i.e., with
v = 1). This allows the generator to express heavy
tailed distributions, but doesn’t guarantee that train-
ing will converge since the expected loss function is
infinite. For all GAN variants, we use 200-dimension
input noise to the generator. The generator network
consists of 4 fully connected layers with 256 units on
each layer. The batch size is 256, and the number of
training iterations is 200000. We use 10000 samples
for training, and a disjoint set of 1000000 samples for
evaluation.

For each marginal distribution, we computed the area
metric from equation 15 between 1M real and gener-
ated samples. Since the marginals are two-sided, we
compute the area metric for both sides and average
them. We report the average area metric across all
dimensions.

We also examined how well the generator captures
the data manifold based on how close samples are to
the true manifold. This would be very difficult to
do with real data, but our synthetic distribution al-
lows us to compute the distance exactly in a warped
version of the space. We invert the power transform
and project generated samples onto the linear mani-
fold represented by CY. The distance to the linear
manifold is

M Dist = d(pow ™' (&,t), pow™*(z,t)T P) (18)

where P is the projection matrix C(CTC)~*CT, 7 is
a generated sample, and d is Euclidean distance. We
report the mean (natural) log MDist to ensure that
our metric has finite expectation for all models.

We ran these experiments with 3 random seeds (ar-
bitrarily chosen 1000, 1001, 1002). The seed impacts
the choices of C' and ¢, as well as network initialization,
training, and sampling. The three seeds produced sim-
ilar results. We report the average of these three trials
in Table 2

Table 2: Experimental Results

GAN type Mean Area | Mean Log MDist
Normal 132 22.1
Lognormal 216 35.7
Pareto (ED) 197 9.8
Pareto (root-ED) 28 7.7

The root-ED Pareto GAN clearly performs the best
on both metrics. It is able to match the tails of the
marginals fairly well while producing points close to
the manifold. Interestingly, the ED Pareto GAN also
produces points close to the manifold, but its tail es-
timation is quite bad. We investigated the cause of
this by looking at a few marginal distributions and
observed that the GAN marginals were often bounded
on one side”. We note that Theorem 2, does not pre-
clude a Pareto GAN from being bounded. Instead, the
Pareto GAN is failing to learn two-sided tails when we
use an unstable energy distance loss function. Replac-
ing this with a stable root-FEuclidean energy distance
allows learning to be successful.

"See Figure 6 in appendix
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7 CONCLUSIONS

In this paper, we have identified a specific bias in the
application of GANs to open domains, namely the im-
plicit prior of their tail behavior. We have also identi-
fied shortcomings of some common loss functions when
applied to heavy tailed data. Our proposed Pareto
GAN addresses both of these shortcomings, providing
a way for the generator to express heavy tailed distri-
butions and learn such distributions effectively.
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A DEFINITIONS

Definition 1. Given metric spaces (X,dx) and (Y, dy), we say a function f : X — ) is Lipschitz continuous if
and only if there is a constant k& where

Va1, x0 € X, dy(f(x1), f(22)) < kdx (1, 22) (19)

If the above equation holds for a particular k, we say k is a Lipschitz constant for f and that f is k-Lipschitz
continuous.

Roughly speaking, a Lipschitz constant is a bound on the slope of f. Lipschitz continuous functions are closed
under composition, so a network composed of Lipschitz continuous operations is also Lipschitz continuous.
The vast majority of common neural network operations meet this criterion, including fully connected and
convolutional layers, pooling layers, and activation functions such as sigmoid, tanh, and ReLU.

Definition 2. The Wasserstein distance, W7 between distributions P and @ on a metric space (A, d) is

WP = it [ dera) (20)

where II(P, Q) is the set of all joint probability distributions on A with marginals P and Q.

The Wasserstein distance uses the distance measure in the underlying space to consider how much mass must be
moved what distance in order to deform one distribution into the other. However, if two distinct distributions
do not have a well defined mean (or infinite mean) then it makes sense that the amount of work necessary to
deform one into the other can be infinite.

Definition 3. We say that a distribution P with PDF f has a finite n’th moment on the metric space (A, d) if

/ d(z,20)" f(2)dz < o0 (21)
A
for some zg € A.

Note that the first moment is the mean, and the second (when the funciton has the mean subtracted away) is
the variance. Moments represent information about a function over its whole domain, and the existance and
non-existance of moments tends to provide information about how well behaved a function is.

B PROOFS

B.1 Proof of Proposition 1

Proposition 1. Let Z4 be a random variable in metric space (Z£,dz). Let f : Z — X be a Lipschitz continuous
neural network with respect to metrics dz and dx. If Z 4 lies within ball of radius ¢ centered around zo, B.[zo] C
Z, with probability 1, then there exists a ball By|xo] C X such that P(f(Z4) € Bglzo]) = 1.

Proof. From the definition of Lipschitz continuity, there must exist some k where

Vz € Z,dx(f(20), f(2)) < kdz(z0,2) (22)
From the definition of a ball,
Vz € Be[zo],dz (20, 2) < c. (23)
P(Z4 €B. [ZO])
(dZ(ZQ, ZA) < C) =1
P(de(f o) (Za)) < o) = 2y
P(f(Za) € Bre[f(20)]) =1
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B.2 Proof of Theorem 1

Theorem 1. Let F,(x) be the conditional excess distribution of Xn. If Xn is not bounded above, then F,(x)
converges to the normal conditional excess distribution as u — oo.

Proof. Let k be a Lipschitz constant of fpwr. Let f(2) = frwr(2) — fpwr(0). Note that subtracting a bias

does not change the Lipschitz constants of a function, and that f (z) still meets definition 3. It suffices to show
that

From definition 1 it is clear that for any c,
Lf ) > c= Ellz]] > c (25)
Since f has a finite number of convex linear regions, there exist positive number ¢ and real values wi, w2, by, bo

such that f(z) = wiz + by for z > ¢ and f(z) = w2z + by for z < —c. In this case, the conditional excess
distribution of f(Z) is

P(Z> “;—bl) o
P(z <zt p(z<ut)
+ [we < 0] (Z>ub2)
stuby | _ g (u=be
SILIC SR
. (27)

HEDRICY
=G

where @ is the normal CDF and square brackets evaluate to one if the condition is met and zero otherwise. Now
consider the conditions w; > 0 and we < 0. If both are false, then the distribution is bounded. If one of the
conditions is true, then F, () is exactly the conditional excess distribution of a normal random variable. If both
conditions are true, F,,(z) has the tail of a Gaussian mixture. As u — oo, F,,(z) is dominated by the component
with the larger weight (or the larger bias if the weight are identical), thus converging to a normal conditional
excess distribution. O

+[’LU2<O

B.3 Proof of Theorem 2

Theorem 2. Let F,(x) be the conditional excess distribution of Xe = fpwir(Ze). If X¢ is not bounded above,
then F,(x) converges to S(x;&,0) for some o € R.

Proof. The proof largely follows from the the proof for Theorem 1. Let f(z) = fpwr(2) — fpwL(0). There exist
positive number ¢ and real values wy, wa, by, b such that fpwr(2) = wiz+by for z > c and fpwr(z) = wez + bo
for z < —c. As in Theorem 1, if w; < 0 and wy < 0 then X¢ is bounded above.

Definition 4. Define the asymptotic moments of a random variable

t—o0

my(X) = hmE[( ) ‘X>t} (28)
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From Theorem 8(a) in (Balkema and de Haan, 1974), it suffices to show that for v > 0

1
v < = <= my(X¢) exists and is finite. 29
5 v 13

The behavior of a random variable over a finite region (e.g., Z¢ < ¢) does not affect which asymptotic moments
are finite, nor does scaling and shifting. For a mixture of random variables, an asymptotic moment mq(X) is
finite if and only if m. (X;) is finite for each constituent variable Xj;.

For Z¢ > ¢, X¢ is a mixture of scaled and shifted copies of Z;. Therefore X¢ has the same finite moments as Z,
and therefore its conditional excess distribution converges to S(x;¢&,1).

O
B.4 Proof of Corollary 1

Corollary 1. Let X, be a Pareto GAN generator with tail index «. Let

X5 = sign(Xa)|Xal?, 8 >0 (30)

Let F,(z) be the conditional excess distribution of Xg. If Xg is not bounded above, then F,(x) converges to
S(z;aB,0) for some o € R.

Proof. Considering the right tail, we can ignore the negative case and simply use X”. From theorem 2, X,, is
bounded or converges to a GPD. In the bounded case, raising X, to j still produces a bounded variable. As in
Theorem 2, in the unbounded case it suffices to show that for v > 0

1
v < — <= m,(Xg) exists and is finite. (31)

of

From Definition 4,

Jhood

(X
my(Xg) = lim E <Tﬁ
DI
— lim E <T°‘> ‘X£>t]
Xa
t

t—o0

B
— lim B ( ) [ X > ¢
t—o0
=my3(Xa)
Therefore, m.(Xg) is finite if and only if m.3(X4) is finite, which is true if and only if v < aLB
o

C ADDITIONAL RESULTS

Figures 4 and 5 show additional results from the experiments run in section 6. Figure 4 shows the tail approx-
imation of the different GANs on each of the four datasets. Figure 5 shows how the size of the neural network
affects its ability to model the tails of the data on three different datasets. Pareto GAN can accurately model
the tails with very small networks, while the other generators need more significant network capacity to do so.

Figure 6 shows an example of the positive and negative sides of the first marginal (X0) of the 1000-dimensional
distribution defined in equation 17 and used to produce the results in Table 2. This plot is from seed 1000. The
Pareto GAN trained with ED learns a one-sided (all negative) marginal distribution, even though the tail index
estimate is fairly good. Training with root-Euclidean ED allows for successful, stable optimization.
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Figure 4: Log-Log plot of the CCDFs for the Keystroke (upper left), Wiki Traffic (upper right), LiveJournal
(lower left), and S&P 500 (lower right) datasets
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Figure 5: Area vs. layer width for the Keystroke (left), Wiki Traffic (center), LiveJournal (right) datasets
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Figure 6: Log-log plots of the positive (left) and negative (right) tails of the first marginal of the real 1000-
dimensional distribution and the different GANs.
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