
Improving Grasp Classification through Spatial Metrics Available from
Sensors

Nigel Swenson, Garrett Scott, Peter Bloch, Paresh Soni, Nuha Nishat, Anjali Asar,
Cindy Grimm, Xiaoli Fern, Ravi Balasubramanian

Abstract— We present a method for classifying the quality of
near-contact grasps using spatial metrics that are recoverable
from sensor data. Current methods often rely on calculating
precise contact points, which are difficult to calculate in real life,
or on tactile sensors or image data, which may be unavailable
for some applications. Our method, in contrast, uses a mix
of spatial metrics that do not depend on the fingers being in
contact with the object, such as the object’s approximate size
and location. The grasp quality can be calculated before the
fingers actually contact the object, enabling near-grasp quality
prediction. Using a random forest classifier, the resulting system
is able to predict grasp quality with 96% accuracy using spatial
metrics based on the locations of the robot palm, fingers and
object. Furthermore, it can maintain an accuracy of 90% when
exposed to 10% noise across all its inputs.

I. INTRODUCTION

Robotic grasping is challenging for several reasons. First,
it is difficult to understand, the physical interaction between
the hand and the object. Second, there are a large number
of potential grasp configurations, making grasp planning
challenging and requiring large amounts of data collection. A
wide variety of sensors attempt to remedy the first problem,
including cameras, tactile sensors and distance sensors. Other
works have built classifiers that can determine when a grasp
is successful based on contact information, images or tactile
sensor data [1]–[3]. This paper presents a grasp stability
classifier that uses limited sensing information, reducing
the potential cost and expanding its applicability to more
environments. This classifier is also usable before the hand
contacts the object (near-contact grasping), enabling grasp
testing before, potentially, knocking the object over. It can
also be used to ensure that a robot has a good grasp on an
object before moving with the object [3], to train a grasp
planner [4] or enable for regrasping [5].

Previous works that use contact-based grasp metrics have
accuracy close to 85% [1], [6]. More recent work using phys-
ical tactile sensors achieved accuracy up to 93% on a variety
of different objects, [3], [5]. Other methods instead rely on
computer vision, using images to generate 3d representations
of the objects and using these to classify grasps, resulting in
an accuracy of 77% [2]. Lastly, some approaches combine
tactile sensors with image data to plan grasps and evaluate
grasp quality [4]. These approaches are promising, but many
rely on the hand being in contact with the object to evaluate
grasp quality.

Our contribution is a grasp classifier that uses spatial
metrics that do not rely on contact points, is more resistant
to noise and subtle variation, and works even when the hand

Fig. 1: Top left: Hand orientations: rotated, top down and
normal. Bottom left: Shapes: tall bottle, rounded bowl, rect-
angular bowl, hourglass, short bottle, vase, cylinder and box.
All shapes shown are medium sized. Right: The three sizes;
all shapes have three sizes with these relative proportions.

is close, but not in contact with the object. We trained this
on a wide array of shapes and hand orientations, as shown in
Figure 1, to make it applicable to a large number of potential
grasps.

II. RELATED WORKS

Previous works have demonstrated the usefulness of grasp
quality classifiers and numerous methods to determine grasp
quality. Grasp quality classifiers have been used for grasp
planning, re-grasping, and accident prevention. These can
be used to evaluate the necessary qualities of a good grasp
classifier. Common methods used in grasping are calculated
contacts, image-based analysis, 3D-shape analysis, and tac-
tile sensors. We discuss each of these in turn.

A. Related Works: Grasp Classifier Uses

For grasp planning, Varley et al. [4] used contact forces
and image data to calculate two grasp energy terms. These
were used in conjunction with GraspIt! to plan grasps.
Mahler et al. developed Dex-Net 4.0 [7], an ambidextrous
grasp policy that used a depth camera to determine the
optimal location to grasp based on wrench resistance. More
accurate grasp classifiers can be used to further evaluate the
potential grasps selected by the grasp planner.

Grasp classifiers are also useful for re-grasping, as shown
by Chebotar et al. [5]. They used a grasp classifier to predict
the success or failure of both their initial grasp and their re-
grasp. This allowed them to determine the quality of their
grasp before testing it, and if needed, pick a different position
to re-grasp the object. In this use case it is important for the
grasp classifiers to produce a smoothly-changing metric in
order to support optimization search.

Lastly, grasp classifiers have been used to ensure a stable
grasp before moving, thus preventing accidents. Kwiatkowski
et al. used their grasp classifier to determine the quality of
a grasp before attempting to pick up objects [3].

In summary, an effective grasp classifier should be fast,
accurate and smooth. Next, we breakdown grasp classifiers
by the metrics that they take as input.

B. Related Works: Grasp Classifier Inputs

Traditionally, classifiers were built from a small number
of metrics calculated from finger and object contacts, forces
at those contacts, and poses [8]–[10]. Balasubramanian et al.
studied grasp metrics for their usefulness in [11], [12]. Later,
Goins evaluated 12 of these metrics and were able to achieve
a success rate of 88% on a set of 522 real world trials of nine
objects of varying shapes [1]. Kim et al. utilized metrics that
focused on the dynamics of the object and the uncertainty of
its position [13]. Numerous works have found efficient ways
to generate complex metrics from object shape and finger
position to be used in grasp classification or planning [14]–
[16]. Recent work developed metrics that worked relatively
similarly across different hands and shapes [17]. However,
almost all metric based approaches rely on the fingers being
in contact with the object. By contrast, we use distances
and relative orientations, which are more stable and are
applicable before the fingers come into contact.

Some newer approaches build a classifier based on images
of the hand and object [2]. This approach used RGBD
images to generate 3d representations of the object that they
were trying to grasp, then used these representations (in
simulation) to evaluate the grasps.Similarly, Mahler et al.,
generates point clouds from image data to evaluate grasp
quality and plan grasps, and similar approaches have been
used elsewhere [7], [18], [19].

Tactile sensors are a promising area [3]–[5], [20], [21] that
can also be used with image data to calculate grasp quality
and plan grasps. Currently, despite giving a large amount of
information about the interaction of the finger and the object,
tactile sensors are often expensive and more prone to failure
than simpler sensors such as time of flight [22]. However,
our approach would support using both time of flight and
tactile sensors.

The key difference in this work in relation to previous
work is the focus on near-contact grasping and developing
a fast and smooth classifier that could be utilized before the
hand contacts the object.

III. METHODS

For our grasp classifier, the overall approach was to begin
with a large set of possible metrics and then use simulation-
based data analysis to bring this large set down to a smaller
set, reducing complexity and risks of over-fitting without
losing prediction accuracy. We then used a small set of real-
world tests to validate the resulting metrics.

We began with a large set of metrics grouped by both type
and location on the hand (see Table I, Section III-A). We
then specified a larger set of possible grasps with different

Fig. 2: All locations are relative to a coordinate system
centered on the palm. The object position is the center of
the object. We place two range finders on each link and five
on the palm, shown as red dots in this image.

objects and hand poses (Section III-B), using a Mujoco based
simulation of a Kinova JACO 2 three-fingered gripper to
label the grasp’s success and determine which point in the
grasp sequence to use for calculating the metrics (Section III-
C). We used feature selection methods to determine which
groups of metrics were the most effective at predicting grasp
selection (Section III-D). We also tested the metric groups
with noise to simulate real-world behavior of the metrics
(Section III-E). Finally, we tested our best noise-trained
model on real world shapes (Section III-F).

A. Methods: Metrics

Our choice of metrics is motivated by three constraints.
First, it should be feasible to implement the sensors on
a real hand and/or calculate them with minimal reliance
on computer-vision. Second, the metrics should change
smoothly as the hand-object configuration changes. Third,
the metrics should characterize the shape of the space
between the hand and the object — not just the pose of the
object relative to the hand. This last constraint is motivated
by the fact that many grasps fail because of the fingers
contacting the object at different times, which de-stabilizes
the object before balancing contact forces can be applied.

The metrics are described in Table I and shown in Figure 2.
They are grouped by type and by their location on the hand
(palm, proximal, or distal link). Object location, size, and
pose are similar to existing metrics, except we define them
relative to the coordinate system of the palm. The range
finders and distance metrics measure the space between the
object and the hand; the rangefinder directly casts a ray to the
object (time-of-flight sensor), while the distance metric —
together with the object size — are a more indirect measure
of the time to contact. Altogether, we have 19 distinct feature
groups built from 76 total individual metric values.

Table I includes Location from Rangefinder and Object

TABLE I: Metric and Feature Group Description

Metric Feature Groups Description
Finger
Position

• Proximal Link
• Distal Link

X,Y,Z position of the center of
the link

Object
Position

X,Y,Z position of the center of
the object

Hand
Position

X,Y,Z position of the hand
relative to its starting position

Joint Angle • Proximal Joint
• Distal Joint

Angle of the joint

Object Size X,Y and Z dimensions
Finger
Object
Distance

• Proximal Link
• Distal Link

Distance to center of object from
center of finger link

Object-Palm
Alignment

• In-plane Angle
• Out-of-plane Angle

Angle of deviation of the object
position measured from the Y
axis about the X and Z axes

Rangefinder • Palm
• Proximal Link
• Distal Link

Ray-cast distance to object

Gravity
Vector

The direction of gravity

Location
from
Rangefinder

Approximate object position
from rangefinder metrics

Object Ratio • Side
• Top

Ratios of the size of the object to
the open space on the top and
side of the hand

Location from Rangefinder and Object Ratio are derived
from existing metrics.

Ratio as separate metrics, even though they are both derived
from other metrics. We did this to determine if the classifier
would be more accurate if it was trained on data with lower
dimensions rather than the raw data. The in-plane and out-
of-plane angles were found using the formulae below where
ObjX , ObjY and ObjZ are the X,Y, and Z position of the
object respectively.

In-plane = cos−1(
[ObjX , ObjY , 0] ∗ [0, 1, 0]
|[ObjX , ObjY , 0]|

) (1)

Out-of-plane = cos−1(
[0, ObjY , ObjZ] ∗ [0, 1, 0]
|[0, ObjY , ObjZ]|

) (2)

B. Methods: Object and Hand pose Test Set

We collected a data set utilizing a large variety of object
shapes, sizes and hand approach angles (Figure 1) to ensure
robustness. We initiated grasps from three different primary
starting configurations, which we label as normal, top-down
and rotated. We added noise both to the hand’s pose (adding
up to ±5 degrees tilt in all axes) and to the finger starting
angles. Finger joint noise was added by closing the fingers
at different speeds and randomly moving the fingers in or
out.

The objects used were a rectangular prism, cylinder, two
bowls (rectangular and rounded), two different bottles and
two vases with different cross sections (see Figure 1). The
bowls, bottles, and vases were chosen to be similar to the
shapes used in Goins [1] and Rubert [6] to make our results
comparable to theirs. In addition, we used 3 different sizes of

each shape, labeled as small, medium and large. The medium
and small shapes were scaled down 15% and 30% from the
large shape, respectively. In total we used 8 ∗ 3 = 24 shapes
with three primary hand positions, for a total of 72 unique
grasps, each of which were randomly tweaked with slight
changes to the hand position and orientation to generate
additional data points.

C. Methods: Data Collection

For each generated hand and object pose, we needed to
both label the grasp (successful or not) and produce metrics
for when the fingers were near the object (less than 5 cm
away), but not quite grasping. To do this, We pick an initial
hand-object pose, add noise to the orientation and object
position, then run a simulation where the hand first attempts
to grasp the object, then to lift it.

More specifically, we try to grasp each object/size pair
at 5000 randomly generated object positions and hand ori-
entations. Across 9 shapes and 3 orientations, this resulted
in 135,000 total grasp attempts. To add noise to the finger
angles the fingers were set to close with random speeds 80%
of the time and move completely randomly (open or close)
the other 20% of the time. After 1 second of motion, the state
was saved and the hand would try to lift the object by moving
straight up. If the object reached a height of 20 cm above the
table, the grasp was labeled a success and the metrics from
before lifting were recorded. Using this approach we ended
up with 24% positive examples and 76% negative examples.
This is beneficial because it is better that a classifier be biased
towards bad grasps to prevent accidents caused by moving
before a firm grasp is established.

D. Methods: Feature Selection

We used backward elimination to remove the least-
contributing feature group until only one group remained. We
performed elimination on groups — rather than individual
metrics — both for efficiency and because all metrics in
one feature group would be collected by the same sensor.
We created 19 models with 1 different feature group omitted
from each model. The feature groups contained in the model
with the maximum Area Under the Curve (AUC) were used
as the starting point for the next iteration of model creation.
Figure 3 shows this process with n feature groups remaining.
Although we used Area Under the Curve (AUC) for the
backwards elimination criterion, we also tracked accuracy;
the results were similar. We tested the best-performing model
15 times in order to generate means and standard deviations.

We then applied forward selection, starting with the re-
maining feature group, to ensure re-addition of any necessary
features that may have been eliminated prematurely. This
was implemented using a similar procedure as backward
elimination. The last two remaining feature groups with
and without rangefinder were used to seed forward feature
selection. This was continued until there was less than a 1%
increase between additions.

Since rangefinder metrics are both the most numerous
and more difficult to implement in the real world than our

Fig. 3: Backwards elimination with n feature groups remain-
ing. First, n models are created with 1 of the feature groups
omitted, then the models are evaluated based on their AUC.
The feature groups contained within the best performing
model are used for the next iteration.

other metrics, we performed a separate cycle of backward
elimination and forward selection on a set of feature groups
that did not include the rangefinder metrics.

For this and future sections, we used random forest clas-
sifiers (20 trees) in PyTorch [23]. We also attempted Neural
Networks, but found that they trained far slower for the
same performance. For this reason, we used random forest
classifiers for all our experiments.

The best performing set of metrics are referred to as the
reduced input space in the remainder of this paper.

E. Methods: Noise Generation

In order to model real world sensor errors and imperfect
input data, we performed two different tests with noise added
to the grasp metrics. In the first comparison we trained on a
model with noise steadily added to both the training and the
test sets. In the second comparison noise was only introduced
to the metrics of the test set.

The “noisy” metrics m′k, were calculated from the original
metric values mk using the Equation 3 below. vk is the
difference between the maximum and minimum range of
variation from metric k in the training set and p is the
magnitude of noise added:

m′k(p) = mk + rand(−0.5, 0.5)vkp (3)

Percentage p was set to increments of 2.5%. Each value mk

was clamped in order to insure that the new values were
not outside of a realistic case (eg. Rangefinder values should
never be less than 0).

F. Methods: Real-world Evaluation

After testing and training in simulation, we evaluated
our results on a physical Kinova JACO 2 with a three
finger gripper. We attempted to grasp four shapes (Cube,
Cylinder, Vase, Hourglass) of two sizes (small and large)
for 10 different hand-object poses (normal orientation), then
recorded the metrics and the grasp success. This built a
database of 80 grasps (51 successful, 29 unsuccessful) to
validate our classifier’s performance.

Tests were performed by moving the hand to a position
near the object, closing the fingers, then lifting the hand and
moving it over a box on the edge of the table. If the object

Fig. 4: Real world test setup. The ArUco markers were used
to measure the finger, object and palm location and the box
was used to tell if grasps were successful or not.

was moved to the box, the grasp was considered to be a
success. This setup is shown in Figure 4

We used an overhead camera with ArUco markers [24]
placed on each of the fingers and the object to implement
the metrics. These markers gave us the position of the fingers,
object and hand, which were used to calculate the joint
angles, finger object distance and in/out-of-plane alignment.
The object size was added in based on the shape being tested,
but could easily be found from image data.

We chose to use an overhead camera to implement the
sensors because we did not want to modify the Kinova
gripper. However, these metrics could all be determined
via sensors that would not require an overhead camera.
The finger position and joint states could be collected from
sensors built into the hand, or by tracking the end-poses
of the fingers using inertial measurement units (IMUs). The
object position, object size and object-palm alignment could
be collected from a small hand-mounted camera, and the
remaining metrics from time of flight sensors.

IV. RESULTS

In this section, we present results on which metrics and
feature groups were the most effective (Section IV-A) fol-
lowed by a noise analysis. The noise analysis focuses on
the groups that were either highly effective or ineffective
(Section IV-B). Lastly, we discuss our results on real world
test data (Section IV-C).

In summary, with only three feature groups (12 metrics
total) we were able to achieve ≈ 96% accuracy with a
random forest classifier.

A. Results: Feature Selection

In Figure 5 we plot the best-performing model’s AUC and
accuracy at each iteration. None of the forward additions
increased model AUC or accuracy.

Rangefinders on the distal link were the last feature group
to remain from the full set, while finger object distance
distals were the last to remain when rangefinder metrics were
removed. This indicates that the most important information
is how far the fingertips are from the object, which is to

be expected since they are usually the part of the hand
that makes contact with the object. Table II summarizes the
accuracy for the last three groups in the process. For both
cases, object position and size were kept, along with distance
information on the distal ends of the fingers. The standard
deviation of the accuracy per iteration was negligible (max-
imum 0.145%). A confusion matrix for the random forest
trained on 21 metrics is given in Table III.

Fig. 5: Figure 5 displays the AUC and accuracy as feature
groups are removed. The vertical line marks the performance
with only 3 feature groups (12 metrics total) from both sets of
experiments. Models with and without rangefinder achieved
96.7 ± .1% and 96.2 ± .1% accuracy respectively.

TABLE II: Accuracy and AUC of Random Forests Trained
on Reduced Feature Groups

Total Metrics Features Groups AUC Accuracy

With Rangefinder

18

• Obj Pos
• Rangefinder Distals
• Obj Size
• Finger Obj Dist Distals

0.994±.0 96.9±.1%

12
• Obj Pos
• Rangefinder Distals
• Obj Size

0.992±.1 96.7±.1%

9 • Obj Pos
• Rangefinder Distals 0.987±.1 95.5±.1%

Without Rangefinder

21

• Obj Pos
• Finger Obj Dist Distals
• Obj Size
• Finger Pos Dist

0.992±.0 96.3±.1%

12
• Obj Pos
• Finger Obj Dist Distals
• Obj Size

0.991±.1 96.2±.1%

9 • Obj Pos
• Finger Obj Dist Distals 0.982±.1 94.6±.1%

TABLE III: Confusion Matrix for Testing on Simulation Data

Good Grasp Bad Grasp
Predicted Good 92.6± .4% 2.2± .1%
Predicted Bad 8.8± .3% 97.8± .1%

B. Results: Noise Generation
Figure 6 shows the results of the two noise tests for

selected sets of feature groups, each run ten times and plotted

at the mean with error bars. The sets were chosen based
on their performance in the backwards elimination (kept
vs eliminated early). Broadly speaking, robustness to noise
was correlated with the number of metrics in the set. The
blue horizontal line marks the “always assume a bad grasp”
policy. Up to 25% noise introduction, all classifiers trained
with noise outperform this policy.

Notably, in the train without noise plot, all of the classifiers
that incorporated the rangefinder as a key grasp metric
suffered a 10% accuracy drop at only 5% untrained noise. We
hypothesize that the rangefinder data (which has 17 metrics)
was over-fitting the data.

C. Results: Physical Testing

We tested our results on the physical kinova with the
grasp classifier trained on the object position, finger object
distance distals, object size and finger position distals. On
the collected data, our simulation trained network had a
maximum accuracy of 76%. The accuracy of all tested
networks is given in Figure 7.

While this accuracy is lower than our simulation accuracy,
this is likely due to differences between simulation and
the real world. When we tested the same starting positions
in simulation, 40% had different outcomes.In addition, our
training set was 76% failed grasps, while the real world
data was 36% failed grasps. This likely preconditioned the
network to expect a failed grasp.

V. DISCUSSION

There are potentially a wide variety of sensors that can
be used to understand the interaction between the hand
and the object. In particular, we are interested in sensors
that can operate in near-contact situations and with limited
data. Using simulation, we have evaluated these metrics
for predicting grasp successes with a variety of poses and
objects.

At around 96% accuracy on the objects we tested, the
results from backwards elimination (shown in Figure 5)
provides evidence that only 12 metrics are sufficient for grasp
classification. Compared to the performance of grasp classi-
fiers with a similar number of metrics, our classifier achieves
higher accuracy without contact locations and contact forces
[1], [6]. Moreover, these metrics are feasible to implement
with time of flight sensors and simple image processing.

For the reduced input spaces, both with and without the
rangefinder data, 6 of the 12 metrics contain object size
and position, providing a general location of where it is in
space. The remaining 6 metrics — finger object distance
distals or rangefinder distals — provide a measurement of
how close the tips of the fingers are to the object in space.
Conceptually, this is the right minimal information needed
to evaluate grasps on the types of shapes we used.

Our experiments indicate that these 12 metrics are the
basis of grasp classification for the objects tested and the
other metrics provide redundant information. For example,
in-plane angle, out-of-plane angle, and object ratios can all
be approximated from a combination of the 12 metrics. From

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of Noise Added

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ed
ic

tio
n

A
cc

ur
ac

y
Classifier Trained With Noise, Then Tested With Noise

[9, 67] Everything
[8, 50] Remove Rangefinder
[4, 21] Obj Pos, Finger Obj Dist Distals, Obj Size, Finger Pos Distals
[3, 12] Obj Pos, Finger Obj Dist Distals, Obj Size
[3, 23] Obj Pos, Obj Size, Rangefinder
[2, 9] Obj Pos, Finger Obj Dist Distals

0.00 0.05 0.10 0.15 0.20 0.25

Percentage of Noise Added

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Classifier Trained Normally, Then Tested with Noise

Fig. 6: Left: Testing and training with noise. Right: Just testing with noise. Legend policies ordered by feature groups and
length of grasp metrics. The blue horizontal line in each plot indicates the accuracy of an “assumed bad grasp” policy.

Fig. 7: Accuracy is highest when trained on mild noise

Table II, adding more than 12 metrics increases accuracy by
less than 1%. It is likely that they contain the vast majority
of the information for classifying a grasp and that adding
more metrics only accounts for noise.

When testing for noise, we also found that these metrics
(Object Position, Finger Object Distance Distals, Object
Size, and Finger Position Distals) are robust to noise, making
them good candidates for the transition from simulation to
real world grasping. Furthermore, there is evidence that the
increased size of the rangefinder metric groups may make
them susceptible to over-fitting.

From the real world tests, it is interesting that the best
performing network was trained on 7.5% noise. We suspect
that this is because the Aruco markers were not accurate,
and in general were off by about the same amount. This
indicates that training on noisy data is useful for real world
performance if the noise added in simulation matches the
noise present in the sensors.

Although simulation does not always accurately reflect
reality, our tests show that it is feasible to use simulation
to perform a “culling” of possible metrics to train an initial
classifier. Given the challenges and costs of physical imple-
mentation of sensors — and the costs of collecting real-world
training data — we believe this approach can be useful to
focus development on specific sensor types.

Note that our approach does not exclude using tactile
sensors in conjunction with the metrics outlined here. We
have chosen not to include them in our analysis for two
reasons. First, they are only active when the fingers are
actually in contact, and we are explicitly looking for effective
near-contact metrics. Second, the behavior of these sensors is
(currently) not well-modeled in existing physical simulators
because of the complex physical contact interactions.

Limitations: We have only evaluated this approach with a
single robot hand (Kinova arm). This is, in part, because we
wanted to validate our approach on a physical hand, and we
currently have limited access to robotic hardware. Although
this hand is emblematic of 3-fingered grippers, more testing
is needed to determine if these results will generalize to
other hands (and other objects). In particular, our objects
were mostly symmetric — asymmetric objects may require
more nuanced metrics.

VI. CONCLUSION AND FUTURE WORK

We found that, in general, information about the relation-
ship between the fingertips and the object is more important
than information about the relationship between the base
of the finger and the object. In addition, our noise testing
indicates that relatively simple metric based classifiers can
be made resilient to noise, and that this can improve its
performance on real world data.

Future work should focus on collecting additional, more
accurate real world test data and apply the methods here to
additional hands. Our classifier could also be used in grasp
planning by using it as a heuristic to pick actions. In addition,
this problem is an interesting avenue for transfer learning, as
it could be used to both improve the real world performance
and to broaden the applicability of the classifier to additional
hands.

ACKNOWLEDGMENT

This work supported in part by NSF grants CCRI 1925715
and RI 1911050.

REFERENCES

[1] A. K. Goins, “Improving robotic grasping performance using machine
learning techniques,” 2014.

[2] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson,
and H. Lee, “Learning 6-dof grasping interaction via deep geometry-
aware 3d representations,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 3766–3773.

[3] J. Kwiatkowski, D. Cockburn, and V. Duchaine, “Grasp stability
assessment through the fusion of proprioception and tactile signals
using convolutional neural networks,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 286–
292.

[4] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4415–
4420.

[5] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, pp. 1960–1966.

[6] C. Rubert, D. Kappler, J. Bohg, and A. Morales, “Predicting grasp
success in the real world - a study of quality metrics and human
assessment,” Robotics and Autonomous Systems, vol. 121, p. 103274,
09 2019.

[7] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[8] G. M. Bone and Yonghui Du, “Multi-metric comparison of optimal 2d
grasp planning algorithms,” in Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.01CH37164),
vol. 3, 2001, pp. 3061–3066 vol.3.

[9] A. T. Miller and P. K. Allen, “Examples of 3d grasp quality com-
putations,” in Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), vol. 2, 1999, pp.
1240–1246 vol.2.

[10] C. Rubert, D. Kappler, A. Morales, S. Schaal, and J. Bohg, “On
the relevance of grasp metrics for predicting grasp success,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 265–272.

[11] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Human-guided grasp measures improve grasp robustness on physical
robot,” in 2010 IEEE International Conference on Robotics and
Automation, 2010, pp. 2294–2301.

[12] ——, “Physical human interactive guidance: Identifying grasping prin-
ciples from human-planned grasps,” IEEE Transactions on Robotics,
vol. 28, no. 4, pp. 899–910, 2012.

[13] Junggon Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard,
“Physically-based grasp quality evaluation under uncertainty,” in 2012

IEEE International Conference on Robotics and Automation, 2012,
pp. 3258–3263.

[14] Y. Zheng, “An efficient algorithm for a grasp quality measure,” IEEE
Transactions on Robotics, vol. 29, no. 2, pp. 579–585, 2013.

[15] S. Liu and S. Carpin, “Partial convex hull algorithms for efficient grasp
quality evaluation,” Robot. Auton. Syst., vol. 86, no. C, p. 57–69, Dec.
2016. [Online]. Available: https://doi.org/10.1016/j.robot.2016.09.004

[16] Y. Zheng and W.-H. Qian, “Coping with the grasping uncertainties
in force-closure analysis,” The International Journal of Robotics
Research, vol. 24, no. 4, pp. 311–327, 2005. [Online]. Available:
https://doi.org/10.1177/0278364905049469

[17] E. Dessalene, Y. H. Ong, J. Morrow, R. Balasubramanian, and
C. Grimm, “Using geometric features to represent near-contact behav-
ior in robotic grasping,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 2772–2777.

[18] A. t. Pas and R. Platt, Localizing Handle-Like Grasp Affordances in
3D Point Clouds. Cham: Springer International Publishing, 2016,
pp. 623–638. [Online]. Available: https://doi.org/10.1007/978-3-319-
23778-7 41

[19] C. Gabellieri, F. Angelini, V. Arapi, A. Palleschi, M. G. Catalano,
G. Grioli, L. Pallottino, A. Bicchi, M. Bianchi, and M. Garabini,
“Grasp it like a pro: Grasp of unknown objects with robotic hands
based on skilled human expertise,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2808–2815, 2020.

[20] J. Venter and A. M. Mazid, “Tactile sensor based intelligent grasping
system,” in 2017 IEEE International Conference on Mechatronics
(ICM), 2017, pp. 303–308.

[21] S. Varkey and C. Achy, “Learning robotic grasp using visual-tactile
model,” in 2018 International Conference on Circuits and Systems in
Digital Enterprise Technology (ICCSDET), 2018, pp. 1–3.

[22] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A review of tactile
sensing technologies with applications in biomedical engineering,”
Sensors and Actuators A: Physical, vol. 179, pp. 17 – 31, 2012.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0924424712001641

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8026–
8037. [Online]. Available: http://papers.nips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[24] R. Munoz-Salinas, “Aruco: a minimal library for augmented reality
applications based on opencv,” Universidad de Córdoba, 2012.

https://doi.org/10.1016/j.robot.2016.09.004
https://doi.org/10.1177/0278364905049469
https://doi.org/10.1007/978-3-319-23778-7_41
https://doi.org/10.1007/978-3-319-23778-7_41
http://www.sciencedirect.com/science/article/pii/S0924424712001641
http://www.sciencedirect.com/science/article/pii/S0924424712001641
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	introduction
	Related Works
	Related Works: Grasp Classifier Uses
	Related Works: Grasp Classifier Inputs

	Methods
	Methods: Metrics
	Methods: Object and Hand pose Test Set
	Methods: Data Collection
	Methods: Feature Selection
	Methods: Noise Generation
	Methods: Real-world Evaluation

	Results
	Results: Feature Selection
	Results: Noise Generation
	Results: Physical Testing

	Discussion
	Conclusion and future work
	References

