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Abstract
We consider active learning for binary classifi-
cation in the agnostic pool-based setting. The
vast majority of works in active learning in the
agnostic setting are inspired by the CAL algo-
rithm where each query is uniformly sampled
from the disagreement region of the current ver-
sion space. The sample complexity of such algo-
rithms is described by a quantity known as the
disagreement coefficient which captures both the
geometry of the hypothesis space as well as the
underlying probability space. To date, the dis-
agreement coefficient has been justified by min-
imax lower bounds only, leaving the door open
for superior instance dependent sample complex-
ities. In this work we propose an algorithm that,
in contrast to uniform sampling over the disagree-
ment region, solves an experimental design prob-
lem to determine a distribution over examples
from which to request labels. We show that the
new approach achieves sample complexity bounds
that are never worse than the best disagreement
coefficient-based bounds, but in specific cases
can be dramatically smaller. From a practical
perspective, the proposed algorithm requires no
hyperparameters to tune (e.g., to control the ag-
gressiveness of sampling), and is computation-
ally efficient by means of assuming access to an
empirical risk minimization oracle (without any
constraints). Empirically, we demonstrate that our
algorithm is superior to state of the art agnostic
active learning algorithms on image classification
datasets.

1. Introduction
Most applications of machine learning have an enormous
amount of unlabeled data. Yet, many powerful machine
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learning methods require that this data be labeled and reli-
able labels are costly since they require human intervention.
The cost of providing labels has become one of the main
bottlenecks in applications of machine learning, generating
much interest in the problem of active classification where
the learner is given an unlabeled pool of examples and her
goal is to identify an accurate hypothesis using the minimum
number of labels possible (Settles, 2011).

One of the most popular algorithmic paradigms is
disagreement-based active classification (Hanneke et al.,
2014). Under this approach, after observing k labels a
version space Vk of the most promising classifiers is main-
tained, and the learner queries an example x if there are
two hypotheses h1 and h2 belonging to Vk that disagree on
the label of x. This approach has received much attention
because it applies to generic hypothesis classes, it can be
made robust to label noise, and it can be efficient by using a
constrained cost-sensitive classification oracle, a problem
for which there are many reasonable heuristics (Agarwal
et al., 2018; Beygelzimer et al., 2010).

However, disagreement-based active classification suffers
from two significant shortcomings. First, it queries uni-
formly any example on which there is disagreement even
though intuitively some of these examples may be much
more informative than others. Second, disagreement-based
active classification algorithms tend to take a naive union
bound over all hypotheses, which ignores many of the de-
pendencies among the hypotheses. Indeed, recent work
in pure exploration combinatorial and linear bandits has
shown that such naive union bounds can be highly subopti-
mal and have a significant impact on empirical performance
(Cao & Krishnamurthy, 2019; Jain & Jamieson, 2019; Katz-
Samuels et al., 2020). Given that these naive union bounds
are very loose and appear in the confidence bounds used
by the algorithms, in practice, many works instead replace
these union bounds with a constant that can be tuned to
control the aggressiveness of the algorithm (Beygelzimer
et al., 2010; Huang et al., 2015). Unfortunately, this constant
introduces a hyperparameter to the active learning algorithm
that is difficult to set before seeing lots of data.

We design a new algorithm for pool-based active classi-
fication that addresses these shortcomings. It optimizes
a novel experimental design objective that finds the best
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subset of examples in the disagreement region to query in
order to identify the best classifier. It avoids wasteful union
bounds by adapting to the geometry of the hypothesis space
and thus avoiding the need to choose hyperparameters. We
introduce a new notion of sample complexity inspired by
experimental design that improves on disagreement-based
active classification by a factor up to

√
n where n is the size

of the pool while being only a logarithmic factor worse than
disagreement-based learning in the worst case.

1.1. Preliminaries

Let X denote the input space, and let {x1, . . . , xn} ⊂ X
denote a pool of examples. LetH denote a class of hypothe-
ses where each h : X 7→ {0, 1} assigns a label to each
example in the pool. Let Hx := {(h(xi))i∈[n] : h ∈ H}
denote the set of labelings over the pool induced by the
hypothesis class H. Let d denote the VC dimension of H.
When example i ∈ [n] is queried, the agent receives label
Yi ∼ Bern(ηi) where η = (ηi)

n
i=1 ∈ [0, 1]n. We define the

error of a hypothesis h ∈ H on the pool of examples as
given by

err(h) =
1

n

n∑
i=1

P(Yi 6= h(xi)) (1)

=
1

n

∑
i∈[n]

ηi(1− h(xi)) + (1− ηi)h(xi).

Let h∗ := arg minh∈H err(h) be the hypothesis of mini-
mum error, and let ν = err(h∗). The goal in active classi-
fication is to find an h ∈ H with error close to that of h∗
using as few label queries as possible. In this paper, we
quantify performance as follows:

Problem. Agnostic Pool Based PAC Active Classifica-
tion: Given ε > 0, δ ∈ (0, 1), identify an ε-good classifier,
that is, an h ∈ H such that err(h) − err(h∗) ≤ ε with
probability at least 1− δ using as few labels as possible.
Remark 1. The goal of finding an ε-good classifier over
a pool of examples is closely related to the goal of using
an active classification algorithm to find a classifier with
good generalization. Suppose V Cdim(H) = d and let D
be a distribution over X × {0, 1}. For i = 1, . . . , n let
(xi, yi) ∼ D. If ĥ satisfies err(ĥ) ≤ minh∈H err(h) + ε,
then with probability at least 1− δ

P(x,y)∼D(ĥ(x) 6= y) ≤

min
h∈H

P(x,y)∼D(h(x) 6= y) + ε+O
(√d ln(1/δ)

n

)
.

by standard passive generalization bounds (Boucheron et al.,
2005).

1.2. Main contributions

We briefly summarize our contributions:

• We cast pool-based active binary classification as an adap-
tive experimental design problem that computes an op-
timal sampling distribution over the pool of unlabelled
examples. We demonstrate that an ε-good classifier can
be obtained with probability at least 1− δ by requesting
just γ∗(ε) +ρ∗(ε) log(1/δ) labels if examples to label are
drawn from the optimal design, where γ∗(ε) and ρ∗(ε) are
problem-dependent quantities defined in the next section.

• Since this optimal design uses problem dependent infor-
mation like η, it is not a constructive strategy or algorithm
for a learner. Treating the sample complexity achieved
by this optimal design as a target, we design an algorithm
that performs sequential stages of experimental design
to match the sample complexity of the optimal design,
γ∗(ε) + ρ∗(ε) log(1/δ) up to a log(1/ε) factor. The algo-
rithm employs the use of a novel estimator that appeals
to a chaining argument. Unfortunately, the method is not
computationally efficient.

• We propose a second algorithm that is computationally
efficient given access to an empirical risk minimization or-
acle. The price for computational tractability is a slightly
worse sample complexity. Besides being computationally
efficient, our approach avoids the need to tune hyper-
parameters and the use of a constrained empirical risk
minimization oracle which are required by other active
learning algorithms (Beygelzimer et al., 2010; Huang
et al., 2015).

• We compare our sample complexity results to those of
state-of-the-art disagreement-based learning algorithms
that are given in terms of the so-called disagreement coef-
ficient. We demonstrate that our results, up to log factors,
are never worse than previous results, but can be substan-
tially better in certain cases.

• Empirically, we compare our procedure to state-of-the-
art algorithms for the agnostic setting including vari-
ants of the importance weighted active learning algo-
rithm (IWAL) (Beygelzimer et al., 2010) and active cover
(Huang et al., 2015). We demonstrate that our method is
superior across four image classification tasks.1

2. Experimental Design for Active
Classification

We seek to identify an ε-good classifier by seeing as few
labels as possible. To this end, we can take motivation
from experimental design to consider the optimal sampling
distribution over our pool of unlabeled examples [n]. For an
arbitrary distribution λ ∈ 4n := {p ∈ Rn : pi ≥ 0,∀i ∈
[n];

∑n
i=1 pi = 1} suppose we sampled I1, · · · , It ∼ λ and

then observed ys for each s ∈ [t]. Then an unbiased natural
estimator for the error of a classifier h ∈ H defined by (1)

1Code can be found at https://github.com/jifanz/
ACED.

https://github.com/jifanz/ACED
https://github.com/jifanz/ACED
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is given by

ẽrr(h) =
1

t

t∑
s=1

1/n

λIs
1{h(xIs) 6= ys}.

Indeed, by i.i.d. sampling from λ, we have for any s ∈ [t]

E[ẽrr(h))] = E
[1/n

λIs
1{h(xIs) 6= ys}

]
=

n∑
i=1

P(Is = i)
1/n

λi
E[1{h(xi) 6= ys}|Is = i]

=
1

n

n∑
i=1

P(Yi 6= h(xi)) = err(h)

since by definition, P(Is = i) = λi. Likewise, an estimator
for the excess risk is given by

ẽrr(h)− ẽrr(h∗) = (2)

1

t

t∑
s=1

1/n

λi
(1{h(xIs) 6= ys} − 1{h∗(xIs) 6= ys}).

It is straightforward to show that the variance of ẽrr(h) −
ẽrr(h∗) is upper bounded by 1

n

∑n
i=1

1
λin21{h∗(xi) 6=

h(xi)}, using the upper bound 1{h(xI) 6= ys} −
1{h∗(xI) 6= ys}) ≤ 1{h∗(xI) 6= h(xI)}. Applying Bern-
stein’s inequality (and ignoring the 1/t term) with probabil-
ity at least 1− δ

|ẽrr(h)− ẽrr(h∗)− (err(h)− err(h∗))| /√∑n
i=1

1
λin21{h∗(xi) 6= h(xi)} log(|Hx|/δ)

t
. (3)

This then suggests that to estimate the excess error of
this particular h with probability at least 1 − δ, it suf-
fices to take t large enough to make the RHS of (3)
less than ε. To upper bound the excess risk of ev-
ery h ∈ H simultaneously, it suffices to take t ≥

suph∈H

∑n
i=1

1
λin

2 1{h∗(xi)6=h(xi)}
max{ε2,(err(h)−err(h∗))2} log(|H|/δ). If we seek

to minimize the total number of observations, we simply
minimize over all λ ∈ 4n, motivating the complexity mea-
sure:

ρ∗(ε) := inf
λ∈4n

sup
h∈H\{h∗}

∑n
i=1

1
λin21{h∗(xi) 6= h(xi)}

max(err(h)− err(h∗), ε)2
.

Thus, we’d expect that if t ≥ ρ∗(ε) log(|H|/δ) samples
are drawn from the λ that minimizes ρ∗(ε), then ĥ =
arg minh∈H ẽrr(h) will be ε-good.

2.1. Sidestepping the Naive Union Bound

A significant shortcoming of the standard approach of ap-
plying Bernstein’s inequality with a naive union bound is

that the the naive union bound incurs an additional factor
of log(|Hx |) in the sample complexity. For infinite classes,
log(|Hx |) can be replaced by the VC-dimension of Hx,
however this can still be very loose. In practice, active learn-
ing algorithms replace log(|Hx |) by a tunable parameter
C0 (Beygelzimer et al., 2010; Huang et al., 2015). Ideally
C0 would be chosen via cross-validation but since our data
is being chosen adaptively, under an active algorithm that
depends on C0, it is unclear how to make the choice a priori.

To improve upon the naive union-bound we appeal to re-
sults from empirical process theory. Appealing to the
Talagrand/Bousquet inequality (Boucheron et al., 2005),
for all h ∈ H, especially the empirical risk minimizer
ĥ = arg minh∈H ẽrr(h), we have

ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)
≤2E[sup

h∈H
|ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)|]

+

√
suph∈H

∑n
i=1

1
λin21{h∗(xi) 6= h(xi)} log(1/δ)

t

+
4 supi∈[n] 1/λi log(1/δ)

3t
.

Traditionally, we compute the expectation of the suprema
using symmeterization to obtain the Rademacher complex-
ity of H\{h∗}. In general, the Rademacher complexity is
within a log(n) factor of the Gaussian Width (Bartlett &
Mendelson, 2002). In particular,

E[ sup
h∈H
|ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)|]

≤ 1√
t
Eζ∼N(0,I)

[
sup
h∈H

∑
i∈[n]

ζi
nλ1/2

(h∗(xi)− h(xi))
]
.

Using the same argument that motivated ρ∗(ε) but applying
Bousquet’s inequality instead of Bernstein’s inequality, we
introduce the following new complexity measure for active
classification:

γ∗(ε) := inf
λ∈4n

Eζ
[

sup
h∈H

∑
i∈[n]

ζi(h∗(xi)−h(xi))

nλ
1/2
i

max(err(h)− err(h∗), ε)

]2
.

Analogous to above, if we ignore the 1/t term, we’d expect
that if t ≥ γ∗(ε) + ρ∗(ε) log(1/δ) samples are drawn from
the λ that minimizes the maximum of γ∗(ε) and ρ∗(ε), then
ĥ = arg minh∈H ẽrr(h) will be ε-good.

We can relate γ∗(ε) to ρ∗(ε) in the following way.

Proposition 1 (Katz-Samuels et al. (2020)). γ∗(ε) ≤
c log(|Hx |)ρ∗(ε) ≤ cd log(nd )ρ∗(ε).

The first inequality parallels the application of Massart’s
finite class lemma to bound the Rademacher complexity in
statistical learning theory and the second inequality follows
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from the Sauer-Shelah Lemma. Katz-Samuels et al. (2020)
also demonstrates a lower bound on γ∗(ε) that is dominated
by ρ∗(ε). In the appendix, we show that γ∗(ε) matches the
minimax rates for classification given for the hypothesis
class of thresholds in (Castro & Nowak, 2008).

Main Takeaway: In Section 3 we will establish an al-
gorithm that achieves a sample complexity of (γ∗(ε) +
ρ∗(ε) log(1/δ)) log(1/ε) to obtain an ε-good classifier with
probability greater than 1− δ. In the next section we com-
pare this result to disagreement based methods. Note that
we will write ρ∗ := ρ∗(0) and γ∗ := γ∗(0).

2.2. Comparison with the Disagreement Coefficient

To date, theoretically grounded active learning algorithms
in the agnostic setting are disagreement region sampling
methods. At the beginning of each round t these algorithms
construct a version space V ⊂ H which is defined to be
the set of classifiers that have yet to be ruled out by the
algorithm using the observed labels up to round t−1. These
algorithms then choose xIt to be uniformly sampled from
DIS(V), the disagreement region, which is the set of points
on which any two hypotheses in V disagree:

DIS(V) = {i : ∃h, h′ ∈ V s.t. h(xi) 6= h′(xi)}.

In the notation of the previous section, these algorithms
are sampling from λt where λt is the uniform distribution
supported on DIS(V) (Hanneke et al., 2014).

The main complexity measure considered for disagreement
based algorithms is the disagreement coefficient defined as

θ(ξ) = sup
r≥ξ

|DIS(B(h∗, r))|/n
r

where B(h∗, r) is the ball of radius r centered at h∗:

B(h∗, r) = {h ∈ H :

∑
i∈[n] 1{h∗(xi) 6= h(xi)}

n
≤ r}.

We consider sample complexity results for finding an h with
err(h) ≤ ν + ε, where ν = err(h∗) under two common
settings.

1. The Agnostic Setting: we make no assumptions on η ∈
[0, 1]n. In this case the best known sample complexities
scale like

θ(ε)(
ν2

ε2
+ log(1/ε))d

where d is the VC dimension ofH (Hanneke et al., 2014).
Note that the noiseless setting of η ∈ {0, 1}n is a special
case.

2. The Tsybakov noise condition: for some a ∈ [1,∞)
and α ∈ (0, 1] every h ∈ H \ {h∗} satisfies∑

i∈[n] 1{h∗(xi) 6= h(xi)}
n

≤ a(err(h)− err(h∗))α.

In this case the best known sample complexities scale
like:

a2 1

ε2−2α
θ(aεα)d log(1/ε).

We now compare our claimed sample complexity of γ∗(ε) +
ρ∗(ε) log(1/δ) to these known sample complexity results.
Define ∆min := minh∈H\{h∗} err(h)− err(h∗).

Proposition 2. • Suppose that η ∈ {0, 1}n.

ρ∗(ε) ≤ c log(n∆−1
min ∨ ε

−1) θ(ε)[1 +
ν2

ε2
].

• Suppose that the Tsabokov noise condition holds for some
a ∈ [1,∞) and α ∈ (0, 1]. Then,

ρ∗(ε) ≤ ca2 1

ε2−2α
θ(aεα) log(n∆−1

min ∨ ε
−1).

Recall that Propositions 1 shows γ∗(ε) ≤ cdρ∗(ε) log(n/d).
Hence from Proposition 2, we see that our sample complex-
ity, γ∗+ρ∗ log(1/δ) is always as good as the state-of-the-art
sample complexities of disagreement-based learning up to
logarithmic factors in n and ε−1 in both settings.

However, the converse is not true. In general the disagree-
ment based active classification sample complexities can be
substantially larger than ρ∗ and γ∗.

Proposition 3. There exists an instance where for suffi-
ciently small ξ, θ(ξ) ≥ Ω(n1/2) while ρ∗ = O(1) and
γ∗ = log(n).

We emphasize that this is not just a feature of the analysis;
any algorithm that selects queries uniformly at random in
the region of disagreement will perform poorly on the in-
stance in the proposition. This gap demonstrates a provable
improvement over prior art.

3. Fixed Confidence Algorithm
Algorithm 1 is an elimination-style algorithm, in the style
of A2 (Balcan et al., 2009; Dasgupta et al., 2007; Huang
et al., 2015; Jain & Jamieson, 2019), but optimizes the
querying distribution similarly to algorithms from the pure
exploration linear bandits literature (Fiez et al., 2019; Katz-
Samuels et al., 2020). It chooses a distribution λk over
the examples in (4) that minimizes the confidence bounds
from Theorem 1 and queries enough random examples from
λk to ensure that the estimates of the difference in error
rates, err(h)− err(h∗), improve at least by a factor of 2 for
all remaining hypotheses h ∈ Hk. Using these improved
estimates of the gaps, it then eliminates all hypotheses that
can be shown to be suboptimal using the confidence bound
in Theorem 1.

Given an estimator η̂ for η, denote the induced estimate for
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Algorithm 1 ACED (Active Classification using Experi-
mental Design).

Input: Confidence level δ ∈ (0, 1).
H1 ←− H, k ←− 1, δk ←− δ/2k2.
while |Hk| > 1 do

Let λk and τk be the solution and value of the following
optimization problem

inf
λ∈4n

Eζ∼N(0,I)

[
max
h∈Hk

∑
i∈[n]

h(xi)
ζi

nλ
1/2
i

]2
(4)

+2 log(
1

δk
) max
h,h′∈Hk

max
h,h′∈G

n∑
i=1

1

λin2
1{h(xi) 6= h′(xi)}

Set Nk ←− cτk22(k+1) where c is a universal constant.
Query I1, . . . , INk ∼ λk and receive rewards y1, . . . , yNk .
Let η̂k := η̂(Hk, δk) be the estimator defined in Theo-
rem 1 for Hk with failure probability δk using the samples
{(xIs , ys)}

Nk
s=1

Hk+1 ←− Hk \ {h ∈ Hk : ∃h′ such that ẽrr(h′, η̂k) −
ẽrr(h, η̂k) + 1

2k+1 ≤ 0}.
k ←− k + 1

end while
Return: Hk = {ĥ}.

the error as

ẽrr(h, η̂) =
1

n

∑
i∈[n]

η̂i(1− h(xi)) + (1− η̂i)h(xi).

Theorem 1. Let G ⊂ H. There exists an estimator η̂(G, δ)
for η constructed from t samples drawn i.i.d. from λ such
that with probability at least 1− δ,

sup
h,h′∈G

|[ẽrr(h, η̂)− ẽrr(h′, η̂)]− [err(h)− err(h′)]|

.

√
log(2/δ) maxh,h′∈G

∑n
i=1

1
λin21{h(xi) 6= h′(xi)}

t

+

√
E[suph∈G

∑
i∈[n] h(xi)

ζi

nλ
1/2
i

]2

t
.

For now, we treat the estimator in Theorem 1 as a black-box
and defer its discussion until Section 4.1. Note that unlike
the Talagrand/Bousquet inequality presented before (3), this
confidence interval does not have a term depending on the
inverse of the worst case importance weight.

Algorithm 1 attains the following sample complexity.

Theorem 2. Let δ ∈ (0, 1) and ε > 0. With probability
at least 1 − δ Algorithm 1 returns ĥ ∈ H after τ samples
where err(ĥ) ≤ err(h∗) + ε and

τ . log(1/ε)[log(1/δ)ρ∗(ε) + γ∗(ε)].

4. Fixed Budget Algorithm

Algorithm 2 Fixed Budget ACED.
Input: Budget T , tolerance ε > 0

N ←−
⌊
T/ log2(ε−1)

⌋
, and η̂0 = 0

for k = 1, 2, . . . ,
⌊

log2(ε−1)
⌋

do

h̃k ←− arg minh∈H ẽrr(h, η̂k−1).
Let λk be the solution of the following optimization problem

inf
λ∈4n

Eζ∼N(0,I)

[
max
h∈H

∑
i∈[n](h̃k(xi)− h(xi))

ζi

nλ
1/2
i

2−k+1 + ẽrr(h, η̂k−1)− ẽrr(h̃k, η̂k−1)

]
(5)

Sample {xI1 , . . . , xIN } ∼ λk.
Query xI1 , . . . , xIN and observe y1, . . . , yN .
Compute an estimate η̂k.

end for
Return: arg minh∈H ẽrr(h, η̂k)

In many applications, the agent is given a budget of T
queries and a performance target ε > 0, and the goal is
to maximize the probability of outputing a classifier ĥ ∈ H
such that err(ĥ) ≤ err(h∗) + ε. We design a new algorithm
for this setting that can be made computationally efficient
given access to a weighted classification oracle (defined
shortly).

Algorithm 2 splits the budget into
⌊

log(ε−1)
⌋

phases.
In each phase, the algorithm computes the design that
optimizes (5), the objective of which approximates

E
[

maxh∈H\{h∗}

∑
i∈[n]

ζi

nλ1/2
(h∗(xi)−h(xi))

max(err(h)−err(h∗),2−k+1)

]2
. The algo-

rithm can use any estimator η̂k at each round k. The next
theorem uses the estimator of Theorem 1.
Theorem 3. Let T ∈ N and ε > 0. Let ĥ denote the h ∈ H
returned by Algorithm 2. There exists an estimator η̂k using
the samples {(xIs , ys)}Ns=1 in round k of Algorithm 2 such
that for an absolute constant c > 0

P(err(ĥ) ≥ err(h∗) + ε)

≤ log(nε−1)2 exp
(
− cT

log(ε−1)[γ∗(ε) + ρ∗(ε)]

)
.

If T ≥ c log(log(ε−1)) log(1/δ) log(ε−1)[γ∗(ε) + ρ∗(ε)],
then with probability at least 1−δ, Algorithm 2 outputs ĥ ∈
H such that err(ĥ) ≤ err(h∗) + ε. The proof of Theorem
3 leverages the estimator defined in Theorem 1 for H and
failure probability δk = exp(−Θ(N/γk)) with γk equal to
the value of (5).
Remark 2. Given {(It, yt)}Tt=1 where It ∼ λ define

η̂(Importance)
γ =

1

T

T∑
t=1

yt
λIt + γ

eIt . (6)

If importance-weighted estimator η̂(Importance)
γ with γ = 0 is

used in Algorithm 2 (with a slightly modified objective func-
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tion in (5), see the Supplementary Material), one can obtain
a computationally efficient algorithm whose probability of
error scales as

P(err(ĥ) ≥ err(h∗) + ε) ≤

log(nε−1)2 exp(− T − log(|Hx |)ψ∗(ε)
log(ε−1)[γ∗(ε) + ρ∗(ε) + ψ∗(ε)]

)

where

ψ∗(ε) := min
λ∈4n

max
i∈[n]:∃h∈H
h∗(xi)6=h(xi)

1/nλi
max(ε, err(h)− err(h∗))

.

There are instances where ψ∗(ε)� γ∗(ε) and therefore the
cost of computational efficiency is a worse sample complex-
ity. See the appendix for more details.

4.1. Discussion of Theorem 1

Theorem 1 above demonstrates the existence of an estimator
that avoids any dependence on log(|Hx |). The construc-
tion of the estimator in Theorem 1 uses generic chaining,
a technique that builds a highly optimized union bound
to avoid extraneous logarithmic factors (Talagrand, 2014).
Generic chaining is most easily applied when a given esti-
mator η̂ satisfies the property that ẽrr(h, η̂) − ẽrr(h′, η̂) is
sub-Gaussian for every “direction” h− h′ of interest (e.g.,
see (Katz-Samuels et al., 2020)). Though the η̂(Importance)

γ

estimator has sub-Gamma tails in general, ruling out its
use, the following result shows that for h − h′ in a ball
under a certain norm, we can construct an estimator for
ẽrr(h, η̂)− ẽrr(h′, η̂) with a sub-Gaussian-like tail.

Proposition 4. Fix λ ∈ 4n, δ ∈ (0, 1), and h, h′ ∈ H.
If T samples are taken from λ and η̂ := η̂

(Importance)
γ is

computed with γ =

√
log(2/δ)

3
∑n
i=1

1
λin

2 1{h(xi) 6=h′(xi)}
then with

probability at least 1− δ

|[ẽrr(h, η̂)− ẽrr(h′, η̂)]− [err(h)− err(h′)]| ≤(√
2
3 + 1

)√
2
∑n
i=1

1
λin21{h(xi) 6= h′(xi)} log( 2

δ )

t
.

The idea behind Theorem 1 is to apply generic chaining to
all h− h′, but to use a different η̂ (specifically, a different
γ) based on the size of h− h′ prescribed by Proposition 4.
Details of the technique can be found in the supplementary
materials.

4.2. Computationally Efficient Experimental Design

In this section, we discuss how to solve (5) efficiently
given access to a weighted empirical risk minimiza-
tion oracle, which we will introduce shortly. First,
note that minimizing (5) is equivalent to minimizing

Eζ∼N(0,I)[maxh∈H f(λ;h; ζ)] with respect to λ where

f(λ;h; ζ) :=

∑
i∈[n](h̃k(xi)−h(xi))

ζi

nλ
1/2
i

2−k+1+ẽrr(h,η̂k−1)−ẽrr(h̃k,η̂k−1)

:=

∑
i∈[n](h̃k(xi)−h(xi))

ζi

nλ
1/2
i

2−k+1+
∑
i∈[n](1−2η̂k−1,i)(h̃k(xi)−h(xi))

.

It is known that Eζ∼N(0,I)[maxh∈H f(λ;h; ζ)] is convex in
λ (Katz-Samuels et al., 2020), hence we perform the mini-
mization over λ via stochastic mirror descent with stochas-
tic gradient g(λ, ζ) = ∇f(λ, h̃; ζ) where ζ ∼ N (0, I) and
h̃ ∈ arg maxh∈H f(λ, h; ζ). To obtain h̃ for a fixed λ and
ζ, first note that the value maxh∈H f(λ;h; ζ) is equal to

min
r∈R+

r subject to ar + b+ max
h∈H

∑
i∈[n]

(cir + di)h(xi) ≤ 0

where a = −2−k+1 −
∑
i∈[n](1 − 2η̂k,i)h̃k(xi), b =∑

i∈[n]
ζ

nλ
1/2
i

h̃k(xi), ci = 1− 2η̂k−1,i and di = − ζ

nλ
1/2
i

.

For any fixed positive value of r it suffices to check the
constraint. We can then use a line search procedure to find
the minimizing value of r (details in Appendix K).

Thus we have reduced to checking the constraint for a
fixed r ∈ R+. Specifically, the difficulty is to solve for
maxh∈H

∑
i∈[n] wi · h(xi) where wi are arbitrary weights.

This can be reduced to weighted 0/1-loss minimization
problem that is solvable by a weighted classification oracle:

oracle({w̃i, x̃i, ỹi}ni=1) :=arg min
h∈H

∑
i∈[n]

w̃i ·1{h(x̃i) 6= ỹi}

for inputs {w̃i, x̃i, ỹi}ni=1. Then,

max
h∈H

∑
i∈[n]

wi · h(xi) = oracle({|wi|, xi,1{wi ≥ 0}}ni=1).

5. Implementation and Experiments
In the previous section we reduced the experimental design
objective of (5) to a weighted 0/1 loss classification problem
using weights that are functions of the estimated vector η̂.
In practice we replace this 0/1 loss with a surrogate convex
loss, namely the logistic loss. However, to implement Al-
gorithm 2 we still have to specify the choice of estimator η̂.
Though the estimator specified in Theorem 1 is theoretically
grounded, it is difficult to implement in practice since it
involves a costly constrained linear optimization problem
over the set of hypothesis inHk. As described in Remark 2,
it is still possible to have a theoretical guarantee for other
estimators such as the IPS estimator. As described precisely
in Appendix K, in our implementation we take the estimate
for η̂k to be[
η̂

(Naive)
k

]
i

= average({y(j)
s : I(j)

s = i, s ∈ [Nj ], j ∈ [k]}),
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i.e. a simple average of the labels we see. Here I(j)
s indexes

the s-th query we made in round j. In our experiments we
only considered the persistent noise setting (i.e., querying
the same image more than once would always return the
same label as before, or formally, ηi ∈ {0, 1}). Thus, if
we sample a point x(j)

Is
(i.e., I(j)

s ) more than once, we set

y
(j)
s to be the previously observed label and we did not

count this observation in our count of total labels taken. To
take advantage of all of the labels observed so far, we also
employ a water-filling technique for sampling in practice
(details in Appendix K).

Baselines. To validate Algorithm 2 we conducted a set of
experiments against the following baselines that are con-
sidered to be state-of-the-art theoretically-justified methods
in disagreement based active learning. Our set of methods
are chosen based on the ones considered in (Huang et al.,
2015), the most recent work of relevance. Details on the
precise implementations of these methods are available in
the supplementary materials in Appendix K.

• Passive: We considered a passive baseline where we uni-
formly at random choose samples from our pool, retrain
our model on our current samples and report the accuracy.

• Importance Weighted Active Learning (IWAL) : IWAL
was originally introduced in Beygelzimer et al. (2009)
and is an active learning algorithm in the streaming set-
ting. Our implementation is based on the algorithm pre-
sented in Beygelzimer et al. (2010) which we refer to as
IWAL0. We also consider variants, IWAL1, and oracular
versions ORA-IWAL0, ORA-IWAL1 detailed in Huang
et al. (2015).

• Online Active Cover (OAC): OAC is described in Huang
et al. (2015). We used the implementation of OAC that is
available in Vowpal Wabbit (Agarwal et al., 2014).

Datasets. We evaluate on the following four real datasets.

• MNIST 0-4 vs 5-9 (LeCun et al., 1998). We considered
the standard MNIST dataset but in a binary setting where
digits 0-4 are labelled as 0, and 5-9 are labelled as 1. Our
pool has 50000 images in total, and we classified based
on the flattened images (784 dimensions).

• SVHN 2 vs 7 (Netzer et al., 2011). We considered the
binary classification problem of determining whether a
digit was a 2 or a 7 (ignoring all other images). To prevent
the logistic classifier from overfitting to arbitrary labels
and to restrict the hypothesis classH, we downsample the
images to 512 dimensional feature vectors through PCA.
There are 16180 images in total.

• CIFAR Bird vs Plane (Netzer et al., 2011). We con-
sidered the binary classification problem of determining
whether a digit was a bird or a plane (ignoring all other
images). To prevent the logistic classifier from overfitting
to arbitrary labels and to restrict the hypothesis class H,

we downsample the images to 576 dimensional feature
vectors through PCA. There are 10000 images in total.

• FashionMNIST T-shirt vs Pants (Xiao et al., 2017). We
considered the binary classification problem of T-shirt
vs Pants. Our pool has 12000 images in total, and we
classified based on the flattened images (784 dimensions).

Implementations. We use two implementations to measure
the performances of the algorithms.

• Implementation from Vowpal Wabbit (Agarwal et al.,
2014) that is used by Huang et al. (2015). The imple-
mentation employs an online learner that only updates
based on the latest queried label, therefore has time com-
plexity that scales linearly in the number of images n.

• For our implementation in a batched setting, we retrain
the entire classifier to convergence every time new labels
become available. We find that the online learner of above
can perform significantly better than our batched learner
during the first few batches of training. However, our
implementation has more stable accuracies during the
course of training and performs slightly superior (< 1%)
in final accuracy. This comes at a cost of an O(n2) time
complexity, which is too expensive in some of the settings.

In particular, we only use the Vowpal Wabbit implementa-
tion for the OAC experiments and the oracular variants of
IWAL algorithms for our MNIST experiement, due to the
high computation cost for running these algorithms with
exhaustive hyperparameter search. However, we think this
is still a fair comparison when evaluating some baselines
using the the two implementations since it is the best one
can achieve for those baselines within a computation budget
(single machine with state-of-art commercialized CPU that
runs for a month).

Hypothesis Class. In our implementation, we took the
hypothesis space to be the set of linear separators in the
underlying feature space. We used the logistic regression
implementation in Scikit-learn (Pedregosa et al., 2011) for
our underlying classification oracle.
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Figure 1. MNIST Performance

0 2500 5000 7500 10000 12500 15000
Number of Queries

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Ac
cu

ra
cy ORA, IWAL0, C0=0.001

ORA, IWAL1, C0=0.001
REG, IWAL0, C0=1E-06
REG, IWAL1, C0=1E-06
ACED
Passive
OAC (VW), C0=0.03

Figure 2. SVHN Performance
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Figure 3. CIFAR Performance
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Figure 4. FashionMNIST

Discussion. For each of the binary classification datasets,
we plot the running maximum accuracy on the unlabelled
pool against the number of queries taken as in Figure 1,2,4,3
(full scale images included in Appendix L). The passive
curves are evaluated based on the averages of 10 runs. In
the CIFAR experiment, ACED is an average over 5 runs. We
find the curve in this setting to be very consistent, and that
the standard deviations are minimal for visualization. All
of the other curves are evaluated based on a single run. For
baselines algorithms proposed in the streaming setting (vari-
ants of IWAL and OAC), in each round we uniformly sample
an example from the pool, and feed a fixed number of passes.
We select the best C0 based on which hyperparameter set-
ting takes the least amount of queries to reach the same
level of accuracy. Detailed hyperparameters considered for
the baselines are included in Appendix M. Furthermore, to
demonstrate active gains in generalization, we include plots
on holdout test sets in Appendix N.

On all four datasets, our algorithm outperforms other base-
lines by taking much fewer queries to reach the passive
accuracy on the entire dataset. Sometimes the active learn-
ing algorithms even beat the passive accuracy on the whole
dataset, which is a known phenomenon of active learning
studied by Mussmann & Liang (2018). For the MNIST
dataset, we do not include performance curves for the orac-
ular variants of IWAL, since the Vowpal Wabbit implemen-
tation turns out to be performing at random chance. We
also notice that OAC stops taking queries very early on (no
longer making queries when given more passes over the
pool). However, when increasing C0, the aggressiveness
to make a query, OAC starts performing worst than pas-
sive pretty easily. We include Figure 9 in the appendix to
demonstrate how sensitive the OAC curves are to the hyper-
parameter C0, which one cannot tune in real applications.

As a special case, on the FashionMNIST dataset, our bi-
nary classification task is linearly separable and the baseline
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methods fail miserably. For all of the IWAL algorithms
on this dataset, we searched in an extended range of hy-
perparameters than the ones used in the other three tasks.
When fixing the random order of the stream, however, all
of the baselines become equivalent, and perform almost
identical to passive. Since in practice, only one set of hy-
perparameters can be deployed, this again demonstrates
the shortcoming of these baseline algorithms, whereas our
method does not rely on any aggressiveness hyperparameter.

6. Related Work and Discussion
Active Classification: Active classification has received
much attention with a large number of theoretical and em-
pirical works (see (Hanneke et al., 2014) and (Settles, 2011)
for excellent surveys). Cohn et al. (1994) initiated research
into the study of disagreement based active classification al-
gorithms, proposing CAL for the realizable setting. Balcan
et al. (2009) extended disagreement-based active classifica-
tion to the agnostic case, introducing the method, A2. Han-
neke (2007) provided a general analysis of A2 in terms of
the disagreement coefficient, with follow-up works improv-
ing on the sample complexity of this approach (Dasgupta
et al., 2007; Hanneke, 2009; Hanneke et al., 2011; Koltchin-
skii, 2010; Hanneke et al., 2014). The results in Section 2.2
show that our sample complexities are never worse than the
ones obtained by this line of work.

An extension of this line of work has aimed to attain simi-
lar sample complexities, while leveraging an empirical risk
minimization oracle to design more practical algorithms
(Dasgupta et al., 2007; Hsu, 2010; Beygelzimer et al., 2010;
Huang et al., 2015). With the exception of Huang et al.
(2015), these methods tend to have a conservative query
policy that samples uniformly in the disagreement region,
leading to an onerous label requirement. While Huang et al.
(2015) has a more aggressive query policy that does not
sample uniformly in the disagreement region, their sam-
ple complexity result could also be obtained by sampling
uniformly in the disagreement region and, therefore, their
theoretical result does not reflect gains from a careful se-
lection of points in the disagreement region. In particular,
the dominant term is still the disagreement coefficient and,
hence, it can be much worse than our sample complexity on
instances such as the one in Proposition 3.

Recently, Jain & Jamieson (2019) showed that active classi-
fication in the pool-based setting is an instance of combina-
torial bandits, an observation that is central to our analysis.
They provided the first analysis that shows the contribution
of each example to the sample complexity providing a more
fine-grained result than the disagreement coefficient. We
improve on this work by optimizing the sampling distri-
bution in the region of disagreement and using improved
estimators such as the one in Theorem 1. Proposition 4 of

Katz-Samuels et al. (2020) implies that our sample com-
plexity is always better than the sample complexity in Jain
& Jamieson (2019).

Finally, we also note that Zhang & Chaudhuri (2014) also
give an algorithm that improves on disagreement-based ac-
tive learning, but the sample complexity of their algorithm
is difficult to interpret and their algorithm is not computa-
tionally efficient.

Linear and Combinatorial Bandits. ρ∗ has been shown to
be the dominant term in a lower bound for pure exploration
linear bandits and combinatorial bandits (Soare et al., 2014;
Chen et al., 2017; Fiez et al., 2019). Recently Katz-Samuels
et al. (2020) introduced the notion of γ∗ for linear and
combinatorial bandits, showing that it is a lower bound
for any non-interactive oracle MLE algorithm. One of our
contributions is making the connection between the active
classification and linear/combinatorial bandit literature, and
showing that we can leverage the results from this work to
obtain improved sample complexities for agnostic active
classification.
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