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Abstract

This paper re-examines a continuous optimization framework dubbed NOTEARS
for learning Bayesian networks. We first generalize existing algebraic charac-
terizations of acyclicity to a class of matrix polynomials. Next, focusing on a
one-parameter-per-edge setting, it is shown that the Karush-Kuhn-Tucker (KKT)
optimality conditions for the NOTEARS formulation cannot be satisfied except in a
trivial case, which explains a behavior of the associated algorithm. We then derive
the KKT conditions for an equivalent reformulation, show that they are indeed
necessary, and relate them to explicit constraints that certain edges be absent from
the graph. If the score function is convex, these KKT conditions are also sufficient
for local minimality despite the non-convexity of the constraint. Informed by the
KKT conditions, a local search post-processing algorithm is proposed and shown
to substantially and universally improve the structural Hamming distance of all
tested algorithms, typically by a factor of 2 or more. Some combinations with local
search are both more accurate and more efficient than the original NOTEARS.

1 Introduction

Bayesian networks are directed probabilistic graphical models used to model joint probability
distributions of data in many applications [21, 27]. Automatic discovery of their directed acyclic
graph (DAG) structure is important to research areas from causal inference to biology. However,
DAG structure learning is in general an NP-hard problem [8]. Many learning algorithms have been
proposed to circumvent exhaustive search in the discrete space of DAGs, including those for discrete
variables [7, 1, 26, 16, 9, 32, 12] and continuous variables [6, 29].

Recently, Zheng et al. [33] proposed a continuous optimization formulation, referred to as NOTEARS,
in which acyclicity of the graph is enforced by a trace of matrix exponential constraint on a weighted
adjacency matrix. Several works have since successfully extended the formulation to nonlinear and
nonparametric models [31, 20, 18, 34].

This paper takes further steps toward fulfilling the promise of [33] in opening the door to continuous
optimization techniques for score-based structure learning. We contribute in particular to theoretical
understanding of this framework, leading to significant algorithmic improvements.

First, in Section 2, the acyclicity constraints of [33, 31] are generalized to a class of matrix polynomials
with positive coefficients whose traces characterize acyclicity. We also provide a characterization
involving the gradient of functions in this class, which is not only essential to proving later results but
also has an intuitive graphical interpretation.

In Section 3.1, we revisit the NOTEARS formulation of [33] in which a weighted adjacency matrix is
obtained by element-wise squaring of the parameter matrix. It is shown that the Karush-Kuhn-Tucker
(KKT) optimality conditions for this constrained optimization cannot be satisfied except in a trivial
case. This negative result is somewhat surprising given the empirical success of the augmented
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Lagrangian algorithm of [33], and we use the result to explain why the algorithm does not converge
to an exactly acyclic solution even when the penalty parameters are very high.

In Section 3.2, we consider an equivalent reformulation in which the adjacency matrix is given by the
absolute value of the parameter matrix, motivated in part by the connection between the `1 norm and
sparsity. We show that the KKT conditions for this reformulation are indeed necessary conditions
of optimality, i.e. they are satisfied by all local minima, although even here common constraint
qualification methods turn out to fail. If the score function is convex, then the KKT conditions are
also sufficient for local minimality, despite the non-convexity of the constraint. We then relate the
KKT conditions to the optimality conditions for score optimization subject to explicit edge absence
constraints. The KKT conditions can thus be understood through edge absences: together these must
be sufficient to ensure acyclicity, but each absence must also be necessary in preventing a cycle.

The theoretical development of Section 3.2 naturally suggests two algorithms: an augmented La-
grangian algorithm as in [33] with an absolute value adjacency matrix instead of quadratic, and a
local search algorithm, KKTS, informed by the KKT conditions and proven to satisfy them. We
find in Section 5 that neither of these algorithms yields state-of-the-art accuracy by itself. However,
when combined with other algorithms, KKTS substantially reduces structural Hamming distance
(SHD) with respect to the true graph, typically by a factor of at least 2. Moreover, this improvement
is consistent across dimensions and base algorithms. In the case of NOTEARS, new state-of-the-art
accuracy is obtained, while other combinations can outperform NOTEARS and take less time.

More on related work Bayesian network structure learning has long been an active research area.
Constraint- and score-based methods utilize independence tests and graph scores respectively to learn
the DAG structure. Optimization methods such as greedy search [7], dynamic programming [19],
branch and bound [10], A* search [32, 30], local-to-global search [13] as well as approximation
methods [23] have all been proposed. As mentioned, this paper is most closely related to the
continuous framework of [33] and subsequent works [31, 34]. Regression-based methods for DAG
learning, without the matrix exponential constraint, have also been carefully studied [24, 6, 2, 14].

2 Characterizations of acyclicity

In this first section, we provide algebraic characterizations of acyclicity for a directed graph in terms
of its adjacency matrix. For a directed graph G = (V, E) with vertices V = {1, . . . , d} and directed
edges (i, j) ∈ E , a non-negative matrix A is a (weighted) adjacency matrix for G if Aij > 0 for
(i, j) ∈ E and Aij = 0 otherwise.

We consider a class of functions h(A) corresponding to matrix polynomials of degree d with positive

coefficients, P (A) = c0I + c1A+ · · ·+ cdA
d with cp > 0 for p = 1, . . . , d, from which we define

h(A) = tr(P (A))− c0d =

d
∑

p=1

cp tr(A
p). (1)

This class includes the function h(A) = tr
(

(I + A/d)d
)

− d from [31], which corresponds to

cp =
(

d
p

)

/dp, and the trace of matrix exponential from [33],

h(A) = tr(eA)− d =

∞
∑

p=1

tr(Ap)

p!
. (2)

Although (2) appears to be an infinite power series, it can be rewritten as a finite series with no powers
higher than d using the Cayley-Hamilton theorem [15], which equates Ad to a linear combination of
I, A, . . . , Ad−1, and similarly for all higher powers of A.

Any function h(A) in (1) can characterize acyclicity. We defer all proofs to the supplement (SM).

Theorem 1. A directed graph G is acyclic if and only if its (weighted) adjacency matrix satisfies
h(A) = 0 for any h defined by (1).

The proof of Theorem 1 is facilitated by Lemma 1 below. We recall that a matrix B is said to be
nilpotent if Bp = 0 for some power p ∈ N , or equivalently if tr(Bp) = 0 for all p ∈ N [15]. We
state the lemma here as there may be independent interest in alternative ways of enforcing nilpotency.
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Lemma 1. A directed graph G is acyclic if and only if its (weighted) adjacency matrix A is nilpotent.

The gradient of h(A) in (1) is a matrix-valued function given by ∇h(A) =
∑d

p=1 pcp
(

Ap−1
)T

.

Off-diagonal elements (∇h(A))ij have an intuitive interpretation in terms of directed walks from
j to i, i.e. a sequence of edges (j, i1), (i1, i2), . . . , (il−1, i) ∈ E . If there is a directed walk from j
to i, then there is also a directed path, i.e. a directed walk in which all vertices j, i1, . . . , il−1, i are
distinct [5].

Lemma 2. For any h(A) defined by (1) and i 6= j, (∇h(A))ij > 0 if and only if there exists a
directed walk from j to i in G.

The gradient∇h(A) can also be used to characterize acyclicity, which will prove useful in the sequel.

Lemma 3. A directed graph G is acyclic if and only if the Hadamard product A ◦ ∇h(A) = 0 for
any h defined by (1).

With the help of Lemma 2, we can give a simple graphical interpretation of Lemma 3: If a directed
graph is acyclic, then for every pair (i, j), we must either not have an edge from i to j, i.e. Aij = 0,
or not have a return path from j to i, i.e. (∇h(A))ij = 0.

3 Analysis of continuous acyclicity-constrained optimization

In the remainder of the paper, we address the problem of learning a Bayesian network (a probabilistic
directed graphical model) for the joint distribution of a d-dimensional random vector X , given a data
matrix of n samples X ∈ R

n×d. We assume that the Bayesian network is parametrized by a matrix
W ∈ R

d×d such that the sparsity pattern of W corresponds to the adjacency pattern of the graph:
Wij 6= 0 if and only if (i, j) ∈ E . In other words, each edge is associated with a single parameter
Wij . The most straightforward instance of this setting is a linear structural equation model (SEM)

given by Xj = WT
·jX + zj , where W·j is the jth column of W and zj is random noise. More general

models such as generalized linear models E [Xj |X] = g
(

WT
·jX

)

are also included. While we
experiment only with continuous variables in Section 5, it is straightforward to accommodate binary
variables as well: in a generalized linear structural equation, a single parameter Wij can account for
the effect of a binary input variable Xi, while a suitable link function g (e.g. logistic) can be used for
a binary output Xj .

This section analyzes the continuous optimization problem of minimizing a score function F (W )
subject to the acyclicity constraint h(A) = 0 for any h defined by (1) (thanks to Theorem 1). For
simplicity, it is assumed in this section that F (W ) is continuously differentiable, although it is not
hard to extend the analysis to account for an `1 penalty as in (11). We consider two ways of defining
a weighted adjacency matrix A from W . Section 3.1 re-examines the quadratic case A = W ◦W
proposed in [33], while Section 3.2 studies the absolute value case A = |W |.

3.1 Quadratic adjacency matrix

With A = W ◦W as the element-wise square of W , the optimization problem is

min
W

F (W ) s.t. h(W ◦W ) ≤ 0. (3)

The constraint h(W ◦W ) ≤ 0 is equivalent to h(W ◦W ) = 0 because h(A) ≥ 0 for non-negative
A, as seen from (1). The matrix exponential case of (3) with h(A) as in (2) was proposed in [33].

Applying Lemma 3 yields the following consequence.

Lemma 4. Let W be a feasible solution to problem (3). Then ∇W (h(W ◦W )) = 0.

The vanishing gradient in Lemma 4 has theoretical and practical implications. First, the Karush-
Kuhn-Tucker (KKT) conditions of optimality [4] for problem (3), namely

∇F (W ) + λ∇W (h(W ◦W )) = 0 (4)

with Lagrange multiplier λ ≥ 0, are not satisfied for any feasible solution except in a trivial case.

Proposition 2. Let W be a feasible solution to problem (3). Then unless W is an unconstrained
stationary point of F (W ), i.e. ∇F (W ) = 0, the KKT condition (4) cannot hold.

3



In particular if F (W ) is convex, the condition∇F (W ) = 0 holds only for unconstrained minimizers
of F (W ), so if these solutions are already acyclic, there is nothing more to be done.

On the practical side, Lemma 4 sheds light on the augmented Lagrangian algorithm proposed in [33].
The augmented Lagrangian corresponding to (3) with penalty parameters α and ρ is

F (W ) + αh(W ◦W ) +
ρ

2
h(W ◦W )2, (5)

with gradient ∇F (W ) + (α+ ρh(W ◦W ))∇W (h(W ◦W )).

Proposition 3. Let W be a feasible solution to problem (3). Then unless W is an unconstrained
stationary point of F (W ), W cannot be a stationary point of the augmented Lagrangian (5).

Proposition 3 explains the following observed behavior of the augmented Lagrangian algorithm,
namely that it does not converge to an exactly (or within machine precision) feasible solution of (3)
even when the penalty parameters α, ρ are very high (ρ ∼ 1016). The reason is that a minimizer
of the augmented Lagrangian (5) cannot be a feasible solution to (3) except in the trivial case
discussed above. However, when α and ρ are very large, minimizers of (5) do tend to have gradients
∇W (h(W ◦W )) ≈ 0, and accordingly h(W ◦W ) ≈ 0 by continuity. Thus as α and ρ increase, the
augmented Lagrangian algorithm yields solutions that are closer and closer to being feasible.

3.2 Absolute value adjacency matrix

As an alternative, we turn to the absolute value definition A = |W |. The problem becomes

min
W

F (W ) s.t. h(|W |) ≤ 0. (6)

Formulation (6) is motivated in part by the failure to satisfy KKT conditions in Section 3.1 and in
part by the connection between the absolute value function/`1 norm and sparsity, which is needed for
acyclicity. While it will be seen that (6) has different theoretical and numerical properties from (3),
the two formulations are equivalent in a sense because acyclicity depends only on the sparsity pattern
of W , which is clearly the same regardless of whether |W | or W ◦W is used.

An equivalent smooth optimization Problem (6) is not a smooth optimization because of the
absolute value function. To avoid any issues with continuous differentiability, we make use of the
following alternative formulation, which we show in the SM to be equivalent to (6):

min
W+,W−

F
(

W+ −W−
)

s.t. h
(

W+ +W−
)

≤ 0, W+,W− ≥ 0. (7)

Given any solution (W+,W−) to (7), a solution to (6) is obtained simply as W = W+ −W−.

3.2.1 KKT conditions and constraint qualification

We proceed to analyze the KKT conditions for the smooth reformulation (7), which are as follows:

±∇F
(

W+ −W−
)

+ λ∇h
(

W+ +W−
)

= M± ≥ 0 (8a)

W± ◦M± = 0, (8b)

in addition to the feasibility conditions in (7). The ± versions of (8a) result from taking gradients
with respect to W+ and W− respectively, where λ ≥ 0 is a Lagrange multiplier. M+, M− are
non-negative matrices of Lagrange multipliers corresponding to the non-negativity constraints in (7),
with complementary slackness conditions (8b).

As in Section 3.1, we must consider whether the KKT conditions are necessary conditions of
optimality, i.e. whether a local minimum must satisfy them. Theorem 6 gives an affirmative answer;
however, it turns out that common constraint qualifications used to establish necessity do not hold.
We refer to [4] and the SM for definitions of regularity and quaisnormality below.

Proposition 4. A feasible solution (W+,W−) to problem (7) cannot be regular.

Proposition 5. A feasible solution (W+,W−) to problem (7) cannot be quasinormal.

In spite of these negative results, the SM provides a direct proof of the necessity of the KKT conditions
(8). The proof uses the following lemma, which we highlight because of its graphical interpretation
in terms of directed paths not being created/destroyed by the addition/removal of certain edges.
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Lemma 5. For a non-negative matrix A, if (∇h(A))ij > 0, changing the values of Akj for any k
cannot make (∇h(A))ij = 0. Similarly if (∇h(A))ij = 0, changing the values of Akj for any k
cannot make (∇h(A))ij > 0.

Theorem 6. Let (W+,W−) be a local minimum of problem (7). Then there exist a Lagrange
multiplier λ ≥ 0 and matrices M+ ≥ 0, M− ≥ 0 satisfying the KKT conditions in (8).

3.2.2 Relationships with explicit edge absence constraints

We now discuss relationships between the KKT conditions (8) and the optimality conditions for
score optimization problems with explicit edge absence constraints, which correspond to zero-value
constraints on the matrix W . Given a set Z of such constraints, we consider the problem

min
W

F (W ) s.t. Wij = 0, (i, j) ∈ Z (9)

and denote by W ∗(Z) an optimal solution. The necessary conditions of optimality for (9) are

(∇F (W ))ij = 0, (i, j) /∈ Z, Wij = 0, (i, j) ∈ Z. (10)

In one direction, given a KKT point (W+,W−), we define the set P := {(i, j) : (∇h(W+ +
W−))ij > 0}, i.e. the set of (i, j) with directed walks from j to i, according to Lemma 2.

Lemma 6. If (W+,W−) satisfies the KKT conditions in (8), then W ∗ = W+ −W− satisfies the
optimality conditions in (10) for Z = P . If in addition F (W ) is convex, then W ∗ is a minimizer of
(9) for Z = P .

Under the assumption that F is convex, we can use Lemma 6 to show that the KKT conditions (8)
are sufficient for local minimality in (6), despite the constraint h(|W |) ≤ 0 not being convex.

Theorem 7. Assume that F (W ) is convex. Then if (W+,W−) satisfies the KKT conditions in (8),
W ∗ = W+ −W− is a local minimum for problem (6).

In the opposite direction of Lemma 6, we focus on the case in which a minimizer W ∗(Z) of
(9) is feasible, i.e. h(A∗(Z)) = 0 for A∗(Z) = |W ∗(Z)|. Then by Lemma 3, we must have

(W ∗(Z))ij = 0 wherever
(

∇h(A∗(Z))
)

ij
> 0. If Z does not include such a pair (i, j), we may add

(i, j) to Z while preserving the optimality of the existing solution W ∗(Z) with respect to (9) (since
it already satisfies the new constraint Wij = 0). Hence for feasible W ∗(Z), we adopt the convention

that all (i, j) with (W ∗(Z))ij = 0 and
(

∇h(A∗(Z))
)

ij
> 0 are included in Z .

We call Z irreducible if it contains only pairs (i, j) for which
(

∇h(A∗(Z))
)

ij
> 0.

Theorem 8. If a minimizer W ∗(Z) of (9) is feasible and Z is irreducible, then W+ = (W ∗(Z))+,
W− = (W ∗(Z))− satisfy the KKT conditions in (8).

If W ∗(Z) is feasible but Z is not irreducible, then the following result guarantees that Z may
be reduced to an irreducible set without losing feasibility. We assume that F (W ) is separable

(decomposable) as F (W ) =
∑d

j=1 Fj

(

W·j

)

.

Lemma 7. Assume that the score function F (W ) is separable. Suppose that W ∗(Z) in (9) is feasible

and Z0(j) = {(i1, j), . . . , (iJ , j)} ⊆ Z is a subset for which
(

∇h(A∗(Z))
)

ij
= 0, (i, j) ∈ Z0(j).

Then W ∗(Z\Z0(j)) is also feasible.

Since the removal of a constraint (i, j) ∈ Z for which
(

∇h(A∗(Z))
)

ij
= 0 does not affect feasibility,

we call such a constraint unnecessary as a somewhat colloquial shorthand.

The development in this subsection suggests the meta-algorithm in Algorithm 1, which we refer to as
KKT-informed local search. An instantiation is described in Section 4.2.

Theorem 9. If F (W ) is separable, KKT-informed local search satisfies the KKT conditions (8).

When combined with Theorem 7 and a convex F (W ), Theorem 9 guarantees that KKT-informed
local search will result in local minima. However, due to the non-convex constraint, the quality of
such local minima is highly dependent on the particular instantiation of the meta-algorithm. Section 5
shows for example that the choice of initialization plays a large role.
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Algorithm 1 KKT-informed local search (KKTS)

Require: Initial set Z of edge absence constraints. Solve (9).
1: while W ∗(Z) infeasible do

2: Select edge(s) in cycle ((W ∗(Z))ij 6= 0,
(

∇h(A∗(Z))
)

ij
> 0). Add to Z . Re-solve (9).

3: while Z reducible do
4: Remove one or more unnecessary constraints (i, j) ∈ Z (see Lemma 7). Re-solve (9).

4 Algorithms

For the algorithms in this section, we let the score function F (W ) be the sum of a smooth loss
function `(W ;X) with respect to the data X and an `1 penalty to promote overall sparsity, as in [33]:

F (W ) = `(W ;X) + τ‖W‖1. (11)

4.1 Augmented Lagrangian with absolute value adjacency matrix

Formulation (6) naturally suggests an augmented Lagrangian algorithm as in [33] but with h(|W |)
instead of h(W ◦W ). Using the (W+,W−) representation as in (7), the augmented Lagrangian
minimized in each iteration is

L(W+,W−, α, ρ) = `
(

W+−W−;X
)

+τ1T
(

W++W−
)

1+αh
(

W++W−
)

+
ρ

2
h
(

W++W−
)2
,

subject to W+ ≥ 0 and W− ≥ 0, where 1 is a vector of ones. The gradients are given by

∇W±L(W+,W−, α, ρ) = ±∇`
(

W+−W−;X
)

+τ11T+
(

α+ ρh
(

W+ +W−
))

∇h
(

W++W−
)

.

We otherwise closely follow the algorithm in [33].

4.2 KKT-informed local search

We now describe an instantiation of the KKT-informed local search meta-algorithm in Algorithm 1,
covering initializing the set Z of edge absence constraints, selecting edges for removal (line 2),
reducing unnecessary constraints (line 4), and re-solving (9). We also discuss an additional operation
of reversing edges, which is not part of Algorithm 1 but helps in attaining better local minima.

Initializing Z Given any matrix W as an initial solution, we set to zero elements in W that are
smaller than a threshold ω in absolute value. The set Z is then defined as Z = {(i, j) : Wij = 0}.

Selecting edges for removal (line 2) We consider an approach of minimizing the Lagrangian
F (W ) + αh(|W |) of (6) subject to the existing constraints Wij = 0 for (i, j) ∈ Z . For α = 0, the
minimizer is the existing solution W ∗(Z), and as α increases, weights Wij will be set to zero to
decrease the infeasibility penalty h(|W |) , trading off against the score function F (W ).

We implement a computationally simple version of the above idea. First, h(A) = h(|W |)
in the Lagrangian is linearized around A∗(Z) = |W ∗(Z)| as h(A) ≈ h

(

A∗(Z)
)

+
〈

∇h
(

A∗(Z)
)

, A−A∗(Z)
〉

. After dropping constant terms and expanding the inner product, the
constrained, linearized Lagrangian to be minimized is as follows:

min
W

F (W ) + α
∑

(i,j):i 6=j

(

∇h(A∗(Z))
)

ij
|Wij | s.t. Wij = 0, (i, j) ∈ Z. (12)

Problem (12) is a score minimization problem with a weighted `1 penalty and parameters Wij ,
(i, j) ∈ Z being absent. Furthermore, if F (W ) is separable column-wise, (12) is also separable.

Second, we follow the solution path of (12), defined by α, from W ∗(Z) at α = 0 only until the first

existing edge belonging to a cycle ((W ∗(Z))ij 6= 0,
(

∇h(A∗(Z))
)

ij
> 0) is set to zero. If `(W ;X)

in (11) is the least-squares loss, the solution path is piecewise linear and we have implemented a
modified version of the LARS algorithm [11] to efficiently track the path. The modification accounts
for the non-uniformity of the weights

(

∇h(A∗(Z))
)

ij
, some of which may be zero, in the `1 penalty

in (12). It is described further in the SM.
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Reducing unnecessary constraints (line 4) We also refer to this step as restoring edges (“restore”
because these edges were likely present in an earlier iteration when W was denser), in analogy with
the previous step which removes edges. When there are multiple unnecessary constraints, the order in
which they are removed can matter because the removal of constraints and re-optimization of (9) can
make previously unnecessary constraints necessary. Because of this, even though Lemma 7 allows
for multiple unnecessary constraints (i1, j), . . . , (iJ , j) to be removed at a time, we opt to do so only
one at a time. Given multiple unnecessary constraints (i, j), we greedily choose one for which the
absolute partial derivative of the loss function, |(∇`(W ;X))ij |, is largest. This strategy gives the
largest instantaneous rate of decrease of the loss as the constraint Wij = 0 is relaxed.

Reversing edges In addition to removing and restoring edges, we consider reversing edges, which
involves two operations: adding (i, j) toZ to remove an existing edge (W ∗(Z))ij 6= 0, and removing
(j, i) from Z (which must have been a necessary constraint if W ∗(Z) is feasible, to avoid a 2-cycle)
to introduce the opposite edge. In contrast to removing edges, which generally increases F (W ) but
decreases h(A), and restoring edges, which decreases F (W ) and is guaranteed by Lemma 7 not to
increase h(A), reversing edges does not necessarily decrease F (W ) or h(A). We therefore accept an
edge reversal only if it decreases one of F (W ), h(A) relative to the original direction and does not
increase the other, and otherwise reject the reversal.

There are many possible variations in when to perform edge reversals within Algorithm 1. In our
implementation, we restrict reversals to the second while-loop and alternate between restoring one
edge (reducing Z by one) and attempting all possible reversals given the current state. When there
are multiple reversal candidates, similar to restoring edges, we evaluate the loss partial derivatives
|(∇`(W ;X))ji|, this time associated with introducing the reverse edges (j, i), and proceed in order
of decreasing |(∇`(W ;X))ji|.

The edge reversal operation is made much more efficient by keeping a memory of previously attempted
reversals that do not have to be attempted again for some time. When the reversal of edge (i, j) is
attempted, it is recorded in the memory, and if the reversal is accepted, reversal of (j, i) is also added
to the memory as it would revert to the previous inferior state. The memory for (i, j) is cleared when
either column i or j is updated since this may change the value of reversing (i, j).

Re-solving (9) (lines 2, 4) Removing, restoring, and reversing edges all involve re-solving (9) after
adding to Z , reducing Z , or both in the case of reversals. When `(W ;X) in (11) is the least-squares
loss, these re-optimizations can be done efficiently using the LARS algorithm. In the case of adding
(i, j) to Z , an increasing penalty is imposed on |Wij |, while in the case of removing (i, j) from Z , a
penalty equivalent to the constraint Wij = 0 is inferred and then decreased to zero. Further details
are in the SM.

5 Experiments

We compare the structure learning performance of the following base algorithms: NOTEARS [33],
the FGS implementation [22] of GES [7], MMHC [29], PC [28], augmented Lagrangian with absolute
value adjacency matrix A = |W | (Section 4.1, abbreviated ‘Abs’), and KKT-informed local search
(Section 4.2, KKTS) initialized with the unconstrained solution (Z = {(i, i), i ∈ V} just to avoid
self-loops). We also experimented with CAM [6] but defer those results to the SM as we found
them less competitive in the tested settings. In addition, we use each of the above base algorithms to
initialize KKTS (denoted by appending ‘-KKTS’ and excepting KKTS itself). Algorithm parameter
settings are detailed in the SM. Of note are the default termination tolerance on h, ε = 10−10, and
the threshold on W , ω = 0.3 following [33], applied after NOTEARS, Abs, and KKTS as well as to
initialize Z before KKTS.

The experimental setup is similar to [33]. In brief, random Erdös-Rényi or scale-free graphs are
generated with kd expected edges (denoted ERk or SFk), and uniform random weights W are
assigned to the edges. Data X ∈ R

n×d is then generated by taking n i.i.d. samples from the linear
SEM X = WTX + z, where z is either Gaussian, Gumbel, or exponential noise. 100 trials are
performed for each graph type-noise type combination, which is an order of magnitude larger than in
e.g. [33, 31] and reduces the standard errors of the estimated means.

7







The predominant contribution of this work is to theoretical understanding of the optimization problem
that is score-based structure learning, and specifically a continuous formulation thereof. This
understanding has resulted in improvements in accuracy (as measured by structural Hamming
distance), and we expect that further improvements will be made in future work. We also believe
that this understanding may lead to advances in computational efficiency as well, beyond the simple
measure of terminating the NOTEARS algorithm early when it has no hope of reaching feasibility,
or observing that the absolute value version (Abs) converges more quickly. For example, new
optimization algorithms may be proposed for problems (3) and/or (6) that take better advantage of
their properties.

As the accuracy and scalability of Bayesian network structure learning continue to increase, we
hope that it becomes an even more commonly used technique for modeling data than it is now. We
are particularly interested in its use as the first step in causal structure discovery, which may then
facilitate other causal inference tasks. We recognize however that errors in structure learning may
compound into potentially more serious downstream errors. This is an issue calling for further study.
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A Proofs

A.1 Proofs for Section 2

A.1.1 Proof of Lemma 1

Given a weighted adjacency matrix A, we define the weight of a directed walk from i to j to be the
product Ai,i1Ai1,i2 . . . Ail−1,j . It is well-known that (Ap)ij is the sum of the weights of all length-p
directed walks from i to j [5]. Therefore tr(Ap) is the sum of the weights of all length-p directed
circuits. If G is acyclic, then all of these sums are zero, i.e. A is nilpotent according to the definition.
The converse also holds.

A.1.2 Proof of Theorem 1

Using Lemma 1, we equivalently show that A is nilpotent if and only if h(A) = 0. The “only if”
direction is clearly true.

If h(A) = 0, then because cp > 0, p = 1, . . . , d, and tr(Ap) ≥ 0 due to the non-negativity of A,
we must have tr(Ap) = 0, p = 1, . . . , d. The extension to higher powers of A can be shown by

induction using the Cayley-Hamilton theorem. For the base case d+ 1, Ad+1 can be expressed as a
linear combination of A, . . . , Ad, specifically by multiplying the characteristic polynomial of A by
another power of A. Therefore tr(Ad+1) = 0. For the inductive step p > d+ 1, Ap can similarly be

expressed as a linear combination of Ap−d, . . . , Ap−1, the traces of which are all known to be zero.
We conclude that tr(Ap) = 0 for all p ∈ N.

A.1.3 Proof of Lemma 2

From the power series expression for ∇h(A),

(∇h(A))ij =

d
∑

p=1

pcp
(

Ap−1
)

ji
=

d−1
∑

p=1

(p+ 1)cp+1 (A
p)ji (13)

for i 6= j. Thus if (∇h(A))ij > 0, then (Ap)ji > 0 for at least one p, i.e. there exists a directed walk
of length p from j to i.

Conversely, if there is a directed walk from j to i, then there is also a directed path from j to i. A
directed path can have length at most d− 1 since no vertices can be repeated. Therefore (Ap)ji > 0
for at least one p in {1, . . . , d− 1} and (∇h(A))ij > 0 from (13).

A.1.4 Proof of Lemma 3

We first make an elementary observation from the expression∇h(A) =
∑d

p=1 pcp
(

Ap−1
)T

.

Lemma 8. For non-negative matrices A, ∇h(A) is non-negative and h(A) is therefore a non-
decreasing function in the sense that h(A) ≥ h(B) if A−B ≥ 0.

Lemma 3 then follows from Lemma 9 below and rewriting tr
(

(∇h(A))TA
)

as the inner product

tr
(

(∇h(A))TA
)

=
∑

i,j

(∇h(A))ijAij .

Since A is non-negative and ∇h(A) is also non-negative (Lemma 8), tr
(

(∇h(A))TA
)

= 0 if and

only if (∇h(A))ijAij = 0 for all i, j.

Lemma 9. A directed graph G is acyclic if and only if tr
(

(∇h(A))TA
)

= 0 for any h defined by
(1).

Proof. Again from the power series expression ∇h(A) =
∑d

p=1 pcp
(

Ap−1
)T

,

tr
(

(∇h(A))TA
)

=

d
∑

p=1

pcp tr (A
p) .
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Similar to (1), this is a strictly positive linear combination of non-negative traces tr(Ap), p = 1, . . . , d.

Thus tr
(

(∇h(A))TA
)

= 0 if and only if tr(Ap) = 0 for p = 1, . . . , d. Similarly from (1), h(A) = 0
if and only if tr(Ap) = 0 for p = 1, . . . , d. Theorem 1 completes the chain of equivalences.

A.2 Proofs for Section 3.1

Propositions 2 and 3 are immediate consequences of Lemma 4.

A.2.1 Proof of Lemma 4

By the chain rule,
∇W (h(W ◦W )) = ∇h(W ◦W ) ◦ 2W,

where ∇h(W ◦W ) refers to

∇h(A) =

d
∑

p=1

pcp
(

Ap−1
)T

evaluated at A = W ◦W . (The above gradient expression generalizes eq. (8) in [33].) If W is
feasible, i.e. h(W ◦W ) = 0, then Lemma 3 with A = W ◦W implies that∇h(W ◦W )◦W ◦W = 0.
Since the latter is true if and only if ∇h(W ◦W ) ◦W = 0, we have ∇W (h(W ◦W )) = 0.

A.3 Equivalence of problems (6) and (7)

We map between solutions to (6) and (7) as follows:

W 7→
(

W+,W−
)

= ((W )+, (W )−) , (14a)
(

W+,W−
)

7→W = W+ −W−, (14b)

where
(W )+ := max{W, 0}, (W )− := −min{W, 0},

and the maximum and minimum are taken element-wise. (W )+ and (W )− are therefore the positive
and negative parts of W , motivating the W+, W− notation.

To establish the equivalence, we introduce the following intermediate formulation with the additional
constraint W+ ◦W− = 0:

min
W+,W−

F
(

W+ −W−
)

s.t. h
(

W+ +W−
)

≤ 0, W+,W− ≥ 0, W+ ◦W− = 0.
(15)

The mappings in (14) define a one-to-one correspondence between R
d×d and non-negative pairs

(W+,W−) satisfying W+ ◦W− = 0. Thus we have the following.

Lemma 10. If W is a feasible solution to problem (6), then applying mapping (14a) to W yields
a feasible solution to (15) with the same objective value. Conversely if (W+,W−) is a feasible
solution to (15), then W = W+ −W− is a feasible solution to (6) with the same objective value.

Proof. Mapping (14a) satisfies the constraints W± ≥ 0 and W+◦W− = 0. Under this last condition,
we also have W+ +W− = |W |. These facts show that (14) preserves feasibility in both directions.
Since (W )+ − (W )− = W , (14a) preserves the objective value, and clearly (14b) does as well.

We now show that the additional constraint W+ ◦W− = 0 in (15) does not change the optimal value,
i.e. there is no advantage from dropping it.

Lemma 11. If (W+,W−) is a feasible solution to problem (7) and W+ ◦W− 6= 0, then there exists

a feasible solution
(

W+
0 ,W−

0

)

with the same objective value and satisfying W+
0 ◦W

−
0 = 0.

Proof. For any (i, j) such that W+
ijW

−
ij > 0, we can obtain another feasible solution by reducing

each of W+
ij , W−

ij by the same amount until W+
ijW

−
ij = 0. Since the objective is a function of

W+ −W−, its value is unchanged. At the same time, Lemma 8 ensures that h(W+ +W−) cannot
increase since it is a non-decreasing function, and thus the solution remains feasible.
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In particular, an optimal solution to (7) not satisfying W+ ◦W− = 0 can be reduced to another
optimal solution that does satisfy W+ ◦W− = 0. Hence it suffices to solve (15) in order to solve (7).

The combination of Lemmas 10 and 11 yields the following equivalence:

Proposition 10. If W ∗ is an optimal solution to problem (6), then applying mapping (14a) to W ∗

yields an optimal solution (W+∗,W−∗) to (7). Conversely if (W+∗,W−∗) is an optimal solution to
(7), then W ∗ = W+∗ −W−∗ is an optimal solution to (6).

A.4 Proofs for Section 3.2.1

A.4.1 Proof of Proposition 4

To begin, we recall that a feasible solution to an inequality-constrained problem such as (7) is said to
be regular if the gradients of the active (i.e. tight) constraints are linearly independent [4]. If a local
minimum is regular, then the KKT conditions necessarily hold.

We first give expressions for the gradients of the constraints in (7). With A = W+ + W−, the
gradient of h(A) with respect to either W+ or W− is given by∇h(A) itself. Recalling that W± ≥ 0
is a collection of constraints W±

ij ≥ 0, the gradient of (say) constraint W+
ij ≥ 0 is a matrix Eij with

entry (i, j) equal to 1 and 0 elsewhere. A linear combination of these gradients with respect to W+

(respectively W−) can be represented as a matrix M+ (respectively M−). It will be seen shortly that
we can take a non-negative linear combination of these gradients, so M+, M− are non-negative and
we reuse the symbol M from (8a).

If (W+,W−) is feasible, then we must have h(A) = 0 so the constraint h(A) ≤ 0 is active. Consider
then the equation

M+ = M− = ∇h(A), (16)

which expresses the gradient of the constraint h(A) ≤ 0 (with respect to W+ or W−) as a linear

combination of gradients of the constraints W+
ij ≥ 0 or W−

ij ≥ 0. More specifically, M+ and M− in

(16) are linear combinations only of those gradients (i, j) for which (∇h(A))ij > 0. By Lemma 3,
h(A) = 0 implies that

∇h(A) ◦A = ∇h(A) ◦
(

W+ +W−
)

= 0.

In particular, if (∇h(A))ij > 0, then W+
ij = W−

ij = 0, i.e. these two constraints are active. Thus

M+, M− are linear combinations of active constraint gradients only, and (16) equates these linear
combinations to the gradient of active constraint h(A) ≤ 0. We conclude that (W+,W−) is not
regular.

A.4.2 Proof of Proposition 5

Quasinormality is a weaker constraint qualification than regularity and is described in [4, Sec. 3.3.5,

p. 336]. We follow the framework therein. We let the convex set X be Rd×d
+ × R

d×d
+ , the set of pairs

of non-negative matrices, to account for the constraints W± ≥ 0. Thus h(A) ≤ 0 remains as a single
inequality constraint, where again A = W+ −W−.

A feasible solution (W+,W−) is not quasinormal if it satisfies conditions (i)–(iv) in [4, Sec. 3.3.5,
p. 336]. Translated to the current case of a single inequality constraint, these conditions are (i)

∑

i,j

(∇h(A))ij
(

W ′+
ij +W ′−

ij −W+
ij −W−

ij

)

≥ 0 ∀
(

W ′+,W ′−
)

∈ X , (17)

and (iv) in every neighborhood around (W+,W−) (e.g. `2 balls), there exists a (W ′+,W ′−) ∈ X
for which h(W ′+ + W ′−) > 0. Conditions (ii) and (iii) are easily satisfied by setting the single
multiplier µ = 1.

To show that condition (i) (17) is satisfied, we consider the cases (∇h(A))ij > 0 and (∇h(A))ij = 0.

In the former case, since (W+,W−) is feasible, Lemma 3 requires that Aij = W+
ij + W−

ij = 0.

Hence the corresponding term in (17) becomes (∇h(A))ij
(

W ′+
ij +W ′−

ij

)

and is always non-negative.

In the latter case (∇h(A))ij = 0, the contribution to the sum is zero. Therefore (17) is satisfied.

Condition (iv) can be satisfied by choosing W ′ = W ′+−W ′− to be a fully dense matrix (correspond-
ing to a complete graph) that is arbitrarily close to W = W+ −W−. Concretely, let W ′− = W−,
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W ′+
ij = ε wherever W+

ij = W−
ij = 0, and W ′+

ij = W+
ij otherwise. Then h(W ′+ +W ′−) > 0 for all

ε > 0.

A.4.3 Proof of Lemma 5

We provide a graphical proof by viewing A as an adjacency matrix and (∇h(A))ij > 0 as an indicator
of a directed walk from node j to i, the latter as ensured by Lemma 2. If (∇h(A))ij > 0, i.e. there
exists a directed walk from j to i, then there also exists a directed path from j to i. Since a directed
path connects distinct vertices, it cannot contain an edge (k, j). (Any directed walk from j to i that
does have an edge (k, j) must have a final subwalk from j to i that is a path.) Thus changing the
values of Akj , and specifically removing edges into j, cannot remove directed paths from j to i (and
thereby set (∇h(A))ij = 0).

Similarly for the second statement, if (∇h(A))ij = 0, then there is no directed walk from j to i,
including directed paths. Then changing the values of Akj , and specifically adding edges into j,
cannot create a directed walk from j to i because it would require a final subwalk from j to i that is a
directed path, which was assumed not to exist.

A.4.4 Proof of Theorem 6

By definition, (W+,W−) is a feasible solution to (7). We prove that (8a) and (8b) can be satisfied.
Again letting A = W+ + W−, we consider two cases for the entries of the constraint gradient
∇h(A).

Case (∇h(A))ij = 0: In this case, the only way in which (8a) can be satisfied is if (∇F (W+ −
W−))ij = 0, and we show that this is indeed true. First we establish by a graphical argument that all
(

W̃+, W̃−
)

of the form W̃+ = W+ + wEij and W̃− = W− are feasible solutions to (7), where

W+
ij + w ≥ 0 to maintain non-negativity. The only potential obstacle is if W+

ij = W−
ij = 0 so that

varying w introduces an edge (i, j). However, since (∇h(A))ij = 0, there is no directed walk from j

to i, and Lemma 5 ensures that none can be created by varying W̃+
ij . Therefore

(

W̃+, W̃−
)

remains

acyclic and feasible. The above argument can be repeated for W̃+ = W+ and W̃− = W− + wEij .

From the previous paragraph, we conclude that W = W+ −W− + wEij is feasible for all w ∈ R.
Then if (W+,W−) is a local minimum, we must have the partial derivative (∇F (W+−W−))ij = 0.
Otherwise, entry (i, j) could be increased or decreased (w > 0 or w < 0) to reduce the cost while
remaining feasible.

Given that (∇h(A))ij = (∇F (W+ −W−))ij = 0, we take M+
ij = M−

ij = 0 to satisfy component

(i, j) of constraint (8b) as well as (8a).

Case (∇h(A))ij > 0: Since (W+,W−) is feasible, h(A) = 0 and Lemma 3 implies that

(∇h(A))ijAij = (∇h(A))ij
(

W+
ij +W−

ij

)

= 0.

Hence W+
ij = W−

ij = 0, satisfying (8b).

To satisfy (8a), we take

λ ≥ max
(i,j):(∇h(A))ij>0

∣

∣

∣

(

∇F (W+ −W−)
)

ij

∣

∣

∣

(∇h(A))ij

and define M+
ij , M−

ij to be the resulting slack in component (i, j) of (8a). This completes the proof.

The above proof is related to the idea discussed in [4] that the directions of first-order feasible
variations around (W+,W−) do not include a direction of descent. The latter idea is used to prove
existence of Lagrange multipliers in [4, Prop. 3.3.14].

A.5 Proofs for Section 3.2.2

A.5.1 Proof of Lemma 6

The proof follows from that of Theorem 6. Case (∇h(A))ij = 0 in Theorem 6 corresponds to
(i, j) /∈ P and was shown to imply (∇F (W+−W−))ij = (∇F (W ∗))ij = 0. Case (∇h(A))ij > 0
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corresponds to (i, j) ∈ P and implies W+
ij = W−

ij = W ∗
ij = 0. If F is convex, then conditions (10)

are also sufficient for optimality in (9).

A.5.2 Proof of Theorem 7

Let W be a feasible solution to (6) with ‖W −W ∗‖F < ε (the Frobenius norm is used for concrete-

ness), A = |W |, and A∗ = |W ∗|. Since the gradient∇h(A) =
∑d

p=1 pcp
(

Ap−1
)T

is a continuous

function of A and therefore of W , there exists a sufficiently small ε > 0 such that (∇h(A))ij > 0
wherever (∇h(A∗))ij > 0, in other words for (i, j) in the set P . Then for feasible W within
such an ε-ball around W ∗, it follows from Lemma 3 that Aij = Wij = 0 for (i, j) ∈ P . W is
therefore a feasible solution to (9) for Z = P . By Lemma 6 and the convexity of F , we then have
F (W ∗) ≤ F (W ) for all feasible W such that ‖W −W ∗‖F < ε.

A.5.3 Proof of Theorem 8

By assumption, W ∗(Z) is feasible. For (i, j) ∈ Z , the constraint Wij = 0 satisfies (8b). Since Z is

irreducible,
(

∇h(A∗(Z))
)

ij
> 0. We may then choose λ large enough as in the proof of Theorem 6

to satisfy (8a).

For (i, j) /∈ Z , the optimality conditions (10) imply
(

∇F (W ∗(Z))
)

ij
= 0. If (W ∗(Z))ij 6= 0, then

we must have
(

∇h(A∗(Z))
)

ij
= 0 by the feasibility of W ∗(Z) and Lemma 3. If (W ∗(Z))ij = 0,

then the convention in defining Z also ensures that
(

∇h(A∗(Z))
)

ij
= 0. Letting M+

ij = M−
ij = 0

then satisfies (8a) and (8b).

A.5.4 Proof of Lemma 7

Since F (W ) is separable and the pairs in Z0(j) have j in common, removing the constraints Wij = 0
for (i, j) ∈ Z0(j) affects only the subproblem of (9) for node j. This subproblem is now given by

argmin
W·j

Fj

(

W·j

)

s.t. Wij = 0, (i, j) ∈ Z\Z0(j). (18)

By the definitions of Z and Z0(j), we have
(

∇h(A∗(Z))
)

ij
= 0 for (i, j) /∈ Z\Z0(j), i.e. there

are no directed walks from j to such i. From Lemma 5, it follows that re-optimizing the values of
Wij , (i, j) /∈ Z\Z0(j) in (18) cannot create directed walks from j to i. For (i, j) ∈ Z\Z0(j), Wij

is constrained to zero. We conclude that re-solving (18) does not introduce new cycles.

A.5.5 Proof of Theorem 9

The first while-loop adds more and more elements to Z , i.e. constrains more and more edges to be
absent, and is hence guaranteed to eventually produce a feasible (acyclic) solution W ∗(Z). If the
resulting set Z is not irreducible, then repeated application of Lemma 7 in the second while-loop will
make it so while maintaining feasibility. The algorithm thus yields a solution satisfying the conditions
of Theorem 8.

B Modified LARS algorithms

B.1 Adding zero-value constraints

This appendix describes a modification of the LARS algorithm [11] to efficiently re-solve problem
(9) under the following conditions: a) the score function F (W ) is given by (11), b) the loss function
`(W ;X) is the least-squares loss, `(W ;X) = 1

2n‖X−XW‖2F , and c) we have an optimal solution
W ∗(Z) for the existing set Z of zero-value constraints and a new pair (i0, j) is being added to Z .

Given conditions a) and b), F (W ) is separable column-wise and hence we only have to re-solve the
subproblem of (9) for column j. Define Zc(j) = {i : (i, j) /∈ Z} to be the set of rows in column j
that are not constrained to zero by Z . Then the subproblem for column j can be written as

min
WZc(j),j

1

2n

∥

∥X·j −X·Zc(j)WZc(j),j

∥

∥

2

2
+ τ

∥

∥WZc(j),j

∥

∥

1
,
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to which we wish to add the constraint Wi0j = 0. To simplify notation, let y = X·j , X̃ = X·Zc(j),

and w = WZc(j),j . Our approach is to add a penalty α|wi0 | to the objective function, giving

min
w

1

2n

∥

∥y − X̃w
∥

∥

2

2
+ τ‖w‖1 + α|wi0 |, (19)

and increase α from zero until we obtain wi0 = 0.

LARS is an active-set algorithm, where the active set A corresponds to the set of non-zero wi,
i.e. A = {i : wi 6= 0}. The initial active set is given by the existing optimal solution W ∗

Zc(j),j(Z).

We assume that it includes i0, as otherwise wi0 = 0 and we are done.

In each iteration of LARS, the active elements of w are updated as

wA ← wA − γd, (20)

where γ is the step size and d is an |A|-dimensional direction vector determined below. The step size
γ will be made equal to the increase in α and is chosen to be the largest possible before a change in
the active set occurs.

One set of conditions on γ and d comes from maintaining the optimality of w. Define

g =
1

n
X̃

T
(

y − X̃w
)

=
1

n
X̃

T
(

y − X̃·AwA

)

(21)

to be the negative gradient of the least-squares term in (19), where the second equality is due to wi

being zero for i /∈ A. The update equation for w (20) implies that the gradient changes as

g ← g + γc, (22)

where

c =
1

n
X̃

T
X̃·Ad. (23)

The optimality conditions of (19) for i ∈ A require

gi + γci =

{

sign(wi)τ, i ∈ A, i 6= i0,

sign(wi)(τ + α+ γ), i = i0,
(24)

where α is increased by γ as mentioned. Defining ei0 to be the |A|-dimensional standard basis

vector with ei0i0 = 1 and ei0i = 0 otherwise, we must have cA = sign(wi0)e
i0 from (24). This in

combination with (23) determines the direction d:

d =

(

1

n
X̃

T
AX̃·A

)−1

sign(wi0)e
i0 . (25)

To determine the step size γ, we consider the optimality conditions for i /∈ A, namely |gi + γci| ≤ τ .
By expanding the absolute value function and disregarding one of the cases because it is always
satisfied, we obtain

γ ≤
τ − sign(ci)gi

|ci|
, i /∈ A. (26)

We also have the constraints wi − γdi 6= 0 to maintain the current active set, which imply

γ ≤
wi

di
, i ∈ A :

wi

di
> 0, (27)

where the constraint is never binding if wi/di < 0. Combining (26) and (27) yields

γ = min

{

min
i∈A:wi/di>0

wi

di
, min

i/∈A

τ − sign(ci)gi
|ci|

}

. (28)

Let i∗ denote the minimizing index in (28). The active set is updated as

A ←

{

A\{i∗}, i∗ ∈ A,

A ∪ {i∗}, i∗ /∈ A.
(29)

Equations (20), (22), (23), (25), (28), and (29) define one iteration of the LARS algorithm. The
algorithm terminates with wi0 = 0 when i0 leaves the active set.
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B.2 Relaxing zero-value constraints

We now discuss the use of the LARS algorithm to re-solve problem (9) after a pair (i0, j) is removed
from the set Z of zero-value constraints. Other assumptions remain as in Appendix B.1, and thus
we again only have to re-solve the subproblem of (9) for column j. Recalling the definition of

Zc(j) from Appendix B.1 and defining Z̃c(j) = Zc(j) ∪ {i0}, the subproblem for column j can be
expressed as

min
W

Z̃c(j),j

1

2n

∥

∥

∥
X·j −X·Z̃c(j)WZ̃c(j),j

∥

∥

∥

2

2
+ τ

∥

∥

∥
WZ̃c(j)j

∥

∥

∥

1
s.t. Wi0j = 0, (30)

where we wish to relax the constraint Wi0j = 0.

To simplify notation as before, let y = X·j , X̃ = X·Z̃c(j), and w = WZ̃c(j),j . We show that

problem (30) is equivalent to (19) for a sufficiently large penalty α. Let w∗ = W ∗
Z̃c(j),j

(Z) denote

the existing optimal solution of subproblem j, and g∗ be the corresponding negative loss gradient
from (21). Then the optimality conditions for (19) imply that wi0 = 0 if the loss gradient satisfies
|g∗i0 | < τ + α. Therefore α = |g∗i0 | − τ is the first value at which wi0 becomes active. If |g∗i0 | − τ is

non-positive, i.e. |g∗i0 | ≤ τ , then relaxing the constraint wi0 = 0 does not change wi0 as w∗ is still

optimal without the constraint. In this case, we are done. Assuming therefore that |g∗i0 | − τ > 0, we

initialize α = |g∗i0 | − τ and seek to decrease α to zero.

Given this initial value for α, the modified LARS algorithm proceeds in the reverse direction of that
in Appendix B.1. In each iteration, we update

wA ← wA + γd, (31)

g ← g − γc, (32)

α← α− γ, (33)

where d and c are still given by (25) and (23), except that when wi0 is still zero, we use sign(g∗i0) in

place of sign(wi0) in (25) ([11] shows that these two signs must agree). The determination of the
step size γ is slightly modified from that in (28) because of the change in signs in (31), (32) relative
to (20), (22):

γ = min

{

min
i∈A:wi/di<0

−
wi

di
, min

i/∈A

τ + sign(ci)gi
|ci|

}

. (34)

The update for the active set A remains as in (29).

In summary, each LARS iteration is defined by (31)–(34), (25), and (23). As mentioned, the algorithm
terminates when α decreases to zero.

B.3 Solution path of (12)

The LARS algorithm can also be adapted to compute the solution path of problem (12) as the penalty
parameter α increases from zero. This adaptation differs from the one in Appendix B.1 in two
respects: First, (12) involves updates to the entire matrix W , with a common step size γ, and not
just to a single column. At the same time, assumptions a) and b) in Appendix B.1 remain in effect,
allowing the computation of update directions to be done in a separable manner. Second, (12) includes
a weighted `1 penalty with weight matrix ∇h(A∗(Z)) instead of an unweighted `1 penalty plus an
additional penalty on a single element wi0 . To ease notation, let P = ∇h(A∗(Z)).

As in Appendix B.1, in each iteration, α is increased by γ,

α← α+ γ, (35)

and other quantities are updated accordingly. Equations (20) and (22) are generalized to matrices as
follows:

WA ←WA − γDA, (36)

G← G+ γC, (37)

where the active set A = {(i, j) : Wij 6= 0} is now a set of pairs, Dij = 0 for (i, j) /∈ A, and

G =
1

n
X

T (X−XW ) (38)

19



is the negative loss gradient matrix. From (36)–(38), it can be seen that

C =
1

n
X

T
XD. (39)

To determine Dij for (i, j) ∈ A, we use the corresponding optimality conditions for (12):

Gij + γCij = sign(Wij) (τ + (α+ γ)Pij) , (i, j) ∈ A. (40)

DefineA(j) to be the set of active elements in column j. By combining (39) and (40) and considering
each column j separately, we obtain

sign
(

WA(j),j

)

◦ PA(j),j = CA(j),j =
1

n
X

T
·A(j)XD·j =

1

n
X

T
·A(j)X·A(j)DA(j),j ,

where the last inequality follows because Dij = 0, (i, j) /∈ A(j). Hence

DA(j),j =

(

1

n
X

T
·A(j)X·A(j)

)−1
(

sign
(

WA(j),j

)

◦ PA(j),j

)

, j ∈ V. (41)

To determine the step size γ, we consider the optimality conditions for (i, j) ∈ Zc\A, i.e.

∣

∣Gij + γCij

∣

∣ ≤ τ + (α+ γ)Pij .

Similar to Appendix B.1, this can be reduced to the following upper bound on γ:

γ ≤
τ + αPij − sign(Cij)Gij

|Cij | − Pij
, (i, j) ∈ Zc\A : |Cij | > Pij , (42)

whereas no bound is imposed if |Cij | ≤ Pij . We also have the conditions Wij − γDij 6= 0 for
(i, j) ∈ A. Define Γ as the resulting matrix of upper bounds,

Γij =























Wij

Dij
, (i, j) ∈ A :

Wij

Dij
> 0,

τ + αPij − sign(Cij)Gij

|Cij | − Pij
, (i, j) ∈ Zc\A : |Cij | > Pij ,

+∞ otherwise.

(43)

Then we have

γ = min
i,j

Γi,j , (44)

and given the minimizing pair (i∗, j∗) from (44), we update the active set as

A ←

{

A\{(i∗, j∗)}, (i∗, j∗) ∈ A,

A ∪ {(i∗, j∗)}, (i∗, j∗) ∈ Zc\A.
(45)

The update to the active set (45) affects only A(j∗) in column j∗. We may take advantage of this by
updating only column j∗ of D and C, i.e. computing (41) for j = j∗ and (39) only for column j∗.
The other columns are unchanged. Similarly, the upper bounds Γij are recomputed using (43) only
for j = j∗. For columns other than j∗, it suffices to subtract the previous step size:

Γij ← Γij − γ, j 6= j∗. (46)

In summary, each iteration of the modified LARS algorithm is given by (35)–(37), (41), (39), (43)–
(46), together with the simplification noted in the previous paragraph. The algorithm terminates as
soon as (i∗, j∗) coincides with an edge belonging to a cycle in the existing optimal solution W ∗(Z),
i.e. (i∗, j∗) such that W ∗

i∗j∗(Z) 6= 0 and Pi∗j∗ > 0.
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Table 1: Algorithm parameter settings

parameter symbol value applicable to

threshold on W ω [33] 0.3 NOTEARS, Abs,
KKTS before and after

loss function `(W ;X) 1
2n‖X−XW‖2F NOTEARS, Abs, KKTS

`1 penalty parameter τ 0.1 NOTEARS, Abs, KKTS

acyclity penalty h(A) tr
(

(I +A/d)d
)

− d NOTEARS, Abs, KKTS

h tolerance ε [33] 10−10 NOTEARS, Abs, KKTS
h progress rate c [33] 0.25 NOTEARS, Abs
initial solution W0 [33] 0 NOTEARS, Abs
initial Lagrange multiplier α0 [33] 0 NOTEARS, Abs
ρ increase factor 10 NOTEARS, Abs

ρ maximum 1016 NOTEARS, Abs
variablesel True CAM [6]
pruning True CAM [6]

C Additional experimental details and results

C.1 Algorithm parameter settings

Parameter settings for all algorithms are shown in Table 1. We use the least-squares loss `(W ;X) =
1
2n‖X−XW‖2F regardless of the noise type. We found the polynomial acyclicity penalty h(A) =

tr
(

(I + A/d)d
)

− d from [31] to take less time and perform slightly better than the exponential

penalty h(A) = tr
(

eA
)

− d from [33] (polynomial is now also the default in the NOTEARS code).

Similarly, we preferred a tolerance on h of ε = 10−10 compared to ε = 10−8 in [33]. We did not
attempt to tune other parameters.

For baseline method causal additive models (CAM), we use Causal Discovery Toolbox (CDT) [17]
in Python and only tuned two input parameters, “variablesel" and “pruning". We found with both
turned on, the results are the best.

For baseline method fast greedy equivalent search (FGS), we use py-causal package2 in Python from
Carnegie Mellon University. We use the default parameter settings and did not tune any.

For PC, we also used CDT, and for MMHC, we used the bnlearn package [25] in R by adapting
CDT’s interface for calling other bnlearn algorithms. The main parameter for both PC and MMHC is
the significance level α for the conditional independence tests that they conduct. While we considered
the same range of α values as in [2], we found α = 0.01 or α = 0.05 to be the best in all cases. The
differences between α = 0.01 and α = 0.05 are not large, and in any case, PC and MMHC are not
the most competitive algorithms in our experiments.

C.2 Computing environment

Solution times were obtained using a single 2.0 GHz core of a server with 64 GB of memory (only
a small fraction of which was used) running Ubuntu 16.04 (64-bit). The limitation to a single core
was done to control for different multi-threading behavior of different algorithms and for different
dimensions d.

C.3 Effect of mean subtraction

We show the effect of subtracting the mean from the data X as a preprocessing step in Figure 3.
Tables 2 and 3 present the same results in tabular form. As one may see, subtracting the mean
improves the SHD in the ER4 Gumbel case for all the methods shown and slightly decreases the
running time. Mean subtraction has less effect in the Gaussian case. In our experience, subtracting
the mean improves results or at least does not hurt in all the cases we studied, not just the ones shown
in Figure 3.

2https://github.com/bd2kccd/py-causal
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Table 3: Effect of mean subtraction (‘nzm’ means nonzero mean) on ER4 graphs with Gumbel noise

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS-nzm 2.47±0.26 19.11±0.31 3.3±0.1 7.49±0.99 60.47±0.79 68.9±3.2
NOTEARS 2.00±0.26 19.24±0.32 2.6±0.1 6.11±0.89 60.59±0.76 49.9±3.6
NOTEARS-KKTS-nzm 1.37±0.16 19.33±0.32 3.4±0.1 3.23±0.49 59.97±0.73 73.0±3.2
NOTEARS-KKTS 0.94±0.15 19.42±0.30 2.8±0.1 3.07±0.54 60.47±0.72 54.1±3.6
Abs-nzm 4.25±0.42 19.52±0.35 1.2±0.1 15.33±1.28 64.34±0.96 13.1±0.8
Abs 3.58±0.42 19.55±0.35 1.0±0.1 13.27±1.07 63.52±0.87 11.2±0.7
Abs-KKTS-nzm 1.67±0.22 19.30±0.32 1.3±0.1 6.15±0.83 60.90±0.75 17.2±0.8
Abs-KKTS 1.14±0.18 19.36±0.31 1.1±0.1 5.21±0.68 60.87±0.76 15.2±0.7
FGS-nzm 12.29±0.66 27.85±0.83 0.5±0.0 53.42±3.56 119.62±4.82 1.3±0.1
FGS 12.29±0.66 27.85±0.83 0.5±0.0 53.42±3.56 119.62±4.82 1.3±0.1
FGS-KKTS-nzm 3.97±0.46 18.75±0.33 0.7±0.0 14.75±1.48 62.64±0.92 4.9±0.1
FGS-KKTS 3.58±0.45 19.12±0.31 0.7±0.0 12.36±1.38 62.05±0.85 4.8±0.1

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS-nzm 12.45±1.19 100.58±1.16 205.7±6.4 23.73±1.90 201.65±1.63 918.6±18.2
NOTEARS 12.05±1.28 101.03±1.20 169.4±7.6 22.97±1.92 202.58±1.61 768.4±19.5
NOTEARS-KKTS-nzm 6.57±0.76 100.50±1.13 223.8±6.5 11.46±1.09 200.99±1.45 1066.1±18.5
NOTEARS-KKTS 5.34±0.69 100.16±1.09 187.8±7.7 10.71±1.08 201.68±1.41 922.2±19.6
Abs-nzm 27.49±1.67 108.09±1.43 45.5±3.1 53.92±2.23 217.77±1.86 222.6±12.9
Abs 25.16±1.62 107.75±1.41 40.9±2.7 51.18±2.19 216.54±1.88 169.8±9.7
Abs-KKTS-nzm 9.98±0.91 101.67±1.15 63.4±3.1 20.28±1.47 204.09±1.70 365.7±12.8
Abs-KKTS 9.67±0.92 101.62±1.15 58.6±2.7 19.20±1.44 204.36±1.61 312.2±9.9
FGS-nzm 76.40±4.77 184.04±6.73 2.2±0.1 110.21±6.39 312.84±8.48 4.2±0.2
FGS 76.40±4.77 184.04±6.73 2.2±0.1 110.21±6.39 312.84±8.48 4.2±0.2
FGS-KKTS-nzm 22.77±1.82 104.63±1.37 17.0±0.4 34.17±2.71 209.42±2.06 135.0±3.7
FGS-KKTS 19.48±1.62 104.23±1.26 18.5±0.4 31.32±2.64 209.63±1.98 136.3±3.9

23





Table 4: Results of KKTS combinations without reducing unnecessary constraints (‘-noReduce’) and
without reversing edges (‘-noReverse’) on ER4 graphs with Gumbel noise.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 2.00±0.26 19.24±0.32 2.6±0.1 6.11±0.89 60.59±0.76 49.9±3.6
NOTEARS-KKTS 0.94±0.15 19.42±0.30 2.8±0.1 3.07±0.54 60.47±0.72 54.1±3.6
NOTEARS-KKTS-noReduce 1.79±0.23 19.02±0.30 2.6±0.1 4.80±0.77 59.26±0.69 49.0±3.5
NOTEARS-KKTS-noReverse 1.93±0.24 19.24±0.30 2.7±0.1 4.23±0.58 60.70±0.73 49.5±3.5
Abs 3.58±0.42 19.55±0.35 1.0±0.1 13.27±1.07 63.52±0.87 11.2±0.7
Abs-KKTS 1.14±0.18 19.36±0.31 1.1±0.1 5.21±0.68 60.87±0.76 15.2±0.7
Abs-KKTS-noReduce 2.54±0.35 18.82±0.31 1.0±0.1 9.06±0.97 59.59±0.75 11.5±0.7
Abs-KKTS-noReverse 3.39±0.38 19.51±0.34 1.1±0.1 11.13±0.92 63.74±0.83 11.4±0.7

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 12.05±1.28 101.03±1.20 169.4±7.6 22.97±1.92 202.58±1.61 768.4±19.5
NOTEARS-KKTS 5.34±0.69 100.16±1.09 187.8±7.7 10.71±1.08 201.68±1.41 922.2±19.6
NOTEARS-KKTS-noReduce 9.62±1.08 98.05±1.03 165.3±7.4 16.99±1.52 196.47±1.39 776.2±19.9
NOTEARS-KKTS-noReverse 6.72±0.76 100.69±1.07 165.1±7.4 12.31±1.15 202.03±1.41 781.3±19.9
Abs 25.16±1.62 107.75±1.41 40.9±2.7 51.18±2.19 216.54±1.88 169.8±9.7
Abs-KKTS 9.67±0.92 101.62±1.15 58.6±2.7 19.20±1.44 204.36±1.61 312.2±9.9
Abs-KKTS-noReduce 15.60±1.27 98.73±1.12 41.2±2.7 30.99±1.88 198.78±1.60 197.6±11.2
Abs-KKTS-noReverse 19.88±1.22 107.66±1.25 41.4±2.7 38.84±1.65 216.96±1.73 197.9±11.1
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Table 5: Results (mean ± standard error over 100 trials) on ER2 graphs with Gaussian noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.78±0.15 10.04±0.31 1.1±0.1 0.90±0.14 29.41±0.52 8.6±0.8
NOTEARS-KKTS 0.54±0.13 10.13±0.32 1.2±0.1 0.58±0.10 29.50±0.53 10.5±0.8
NOTEARS-1e-5 0.83±0.15 10.00±0.31 0.7±0.0 1.19±0.16 29.18±0.52 3.9±0.2
NOTEARS-1e-5-KKTS 0.55±0.13 10.12±0.32 0.9±0.0 0.66±0.11 29.47±0.53 5.9±0.2
Abs 0.91±0.17 10.12±0.32 0.4±0.0 2.75±0.34 29.54±0.55 2.3±0.2
Abs-KKTS 0.39±0.09 10.12±0.31 0.5±0.0 1.00±0.16 29.37±0.53 4.2±0.2
FGS 3.36±0.34 12.04±0.59 0.5±0.0 7.65±0.56 32.87±0.88 0.7±0.0
FGS-KKTS 0.88±0.21 10.15±0.31 0.6±0.0 1.15±0.24 29.49±0.53 2.6±0.1
MMHC 5.20±0.34 9.38±0.23 0.4±0.0 11.71±0.46 28.13±0.42 0.8±0.0
MMHC-KKTS 1.25±0.21 9.92±0.31 0.5±0.0 3.34±0.42 29.56±0.57 2.0±0.0
PC 5.94±0.36 12.21±0.27 2.8±0.1 14.42±0.53 36.83±0.47 3.2±0.0
PC-KKTS 1.05±0.20 10.05±0.31 3.0±0.1 2.37±0.36 29.46±0.54 5.0±0.1
Search 2.18±0.31 9.89±0.29 0.2±0.0 7.45±0.58 28.76±0.52 2.7±0.1
CAM 7.79±0.54 12.75±0.49 13.8±0.4 20.83±0.90 37.78±0.85 68.6±1.2
CAM-KKTS 1.41±0.22 10.19±0.33 14.0±0.4 3.81±0.49 29.49±0.54 71.0±1.2

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.83±0.28 50.07±0.68 29.0±2.5 3.18±0.40 97.21±0.91 175.2±10.9
NOTEARS-KKTS 1.05±0.16 50.18±0.68 36.8±2.5 1.59±0.22 97.51±0.89 232.6±11.1
NOTEARS-1e-5 2.31±0.26 49.79±0.69 11.8±0.7 3.85±0.35 96.64±0.90 62.3±3.1
NOTEARS-1e-5-KKTS 1.23±0.16 50.21±0.69 19.4±0.8 1.79±0.21 97.48±0.90 117.6±3.4
Abs 6.25±0.53 50.90±0.77 6.2±0.4 13.31±0.71 98.53±1.07 35.0±2.2
Abs-KKTS 1.87±0.25 50.03±0.70 13.5±0.5 3.25±0.30 97.12±0.93 91.1±2.5
FGS 10.65±0.88 54.85±1.32 0.8±0.0 20.33±0.84 104.42±1.38 1.3±0.0
FGS-KKTS 1.64±0.23 50.34±0.70 8.7±0.1 2.52±0.28 97.88±0.91 59.2±0.9
MMHC 18.66±0.60 46.42±0.52 1.0±0.0 36.71±0.81 93.25±0.77 2.3±0.0
MMHC-KKTS 6.26±0.59 50.18±0.74 5.6±0.1 10.71±0.91 98.14±0.99 32.7±0.5
PC 21.99±0.65 61.79±0.64 3.8±0.1 40.27±0.86 123.45±0.92 5.1±0.1
PC-KKTS 3.71±0.37 50.38±0.70 9.9±0.1 6.76±0.58 97.74±0.94 49.7±0.8
Search 13.81±0.86 48.70±0.68 11.2±0.3 27.89±1.08 95.02±0.94 120.2±3.0
CAM 34.90±0.98 64.16±1.03 127.9±2.1 65.40±1.31 123.84±1.29 253.8±2.7
CAM-KKTS 7.24±0.66 50.71±0.75 142.5±2.0 10.80±0.84 98.61±0.97 360.8±4.1
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Table 6: Results (mean ± standard error over 100 trials) on ER4 graphs with Gaussian noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 3.61±0.36 18.08±0.29 2.8±0.2 7.42±0.81 57.97±0.74 45.9±3.4
NOTEARS-KKTS 1.87±0.20 18.37±0.30 2.9±0.2 4.70±0.58 58.18±0.72 49.5±3.4
NOTEARS-1e-5 3.85±0.37 17.89±0.30 1.9±0.1 9.02±0.87 57.52±0.76 16.4±1.0
NOTEARS-1e-5-KKTS 1.95±0.22 18.35±0.30 2.1±0.1 5.00±0.57 58.08±0.70 20.1±1.0
Abs 4.52±0.41 18.16±0.30 0.9±0.1 15.06±1.06 60.39±0.81 9.8±0.6
Abs-KKTS 2.54±0.27 18.19±0.31 1.1±0.1 6.14±0.56 58.23±0.72 13.4±0.6
FGS 13.48±0.74 28.44±0.81 0.5±0.0 53.21±3.30 118.38±4.48 1.3±0.1
FGS-KKTS 4.92±0.47 17.79±0.30 0.7±0.0 15.03±1.38 59.72±0.87 4.5±0.1
MMHC 15.51±0.50 11.90±0.17 0.5±0.0 41.15±1.18 35.85±0.43 0.9±0.0
MMHC-KKTS 6.53±0.53 17.50±0.32 0.6±0.0 22.65±1.57 59.48±0.92 3.0±0.0
PC 16.35±0.50 15.26±0.23 2.4±0.0 46.28±1.23 45.46±0.46 3.2±0.0
PC-KKTS 6.17±0.52 17.26±0.32 2.5±0.0 20.00±1.44 59.15±0.85 5.6±0.1
Search 9.12±0.59 15.75±0.31 0.3±0.0 34.61±1.37 51.10±0.70 6.5±0.1
CAM 19.06±0.64 22.84±0.37 12.9±0.3 56.80±1.70 77.53±1.06 65.7±1.1
CAM-KKTS 6.64±0.57 17.42±0.30 13.1±0.3 19.55±1.45 59.48±0.84 70.8±1.2

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 11.79±1.05 99.69±1.06 156.8±7.7 22.57±1.74 199.65±1.52 741.0±23.0
NOTEARS-KKTS 6.21±0.64 99.07±0.94 173.5±7.7 11.85±0.96 198.76±1.46 874.3±23.4
NOTEARS-1e-5 13.25±0.99 98.51±1.06 52.2±2.2 23.16±1.57 197.89±1.48 264.9±10.1
NOTEARS-1e-5-KKTS 6.36±0.55 98.66±0.95 68.1±2.2 12.13±0.92 198.56±1.46 391.8±10.5
Abs 26.67±1.60 103.77±1.20 34.9±2.0 52.18±1.89 208.66±1.62 202.7±12.4
Abs-KKTS 12.25±1.04 99.46±0.95 50.9±2.0 25.45±1.40 201.45±1.54 334.0±12.7
FGS 83.28±5.61 196.78±8.01 2.5±0.2 114.07±8.35 321.52±11.14 5.1±0.5
FGS-KKTS 20.31±1.73 102.31±1.15 15.7±0.3 36.89±3.74 208.55±2.18 122.1±2.5
MMHC 66.13±1.50 61.29±0.55 2.3±0.1 120.66±2.06 128.66±1.10 13.6±0.3
MMHC-KKTS 36.27±2.05 104.06±1.32 11.1±0.2 69.24±3.35 213.52±2.14 87.0±1.2
PC 74.99±1.62 77.16±0.56 4.2±0.1 132.77±2.52 152.49±0.93 8.5±0.2
PC-KKTS 36.73±2.14 103.28±1.23 14.0±0.2 65.88±3.99 212.44±2.27 75.2±1.1
Search 56.23±1.66 89.33±0.98 34.3±0.6 106.24±2.58 181.97±1.41 484.0±7.1
CAM 91.13±2.02 129.64±1.43 130.2±1.9 159.91±3.11 247.67±1.86 271.4±3.2
CAM-KKTS 34.76±1.98 104.17±1.23 146.1±2.1 68.13±3.71 212.93±2.19 388.3±5.7

29



Table 7: Results (mean ± standard error over 100 trials) on SF4 graphs with Gaussian noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.48±0.12 13.67±0.18 0.7±0.0 0.99±0.16 49.91±0.33 4.5±0.2
NOTEARS-KKTS 0.29±0.09 13.64±0.16 0.8±0.0 0.76±0.10 49.95±0.33 7.0±0.2
NOTEARS-1e-5 0.48±0.12 13.67±0.18 0.5±0.0 1.00±0.16 49.90±0.33 3.2±0.1
NOTEARS-1e-5-KKTS 0.29±0.09 13.64±0.16 0.6±0.0 0.77±0.10 49.94±0.33 5.6±0.1
Abs 0.54±0.15 13.62±0.16 0.2±0.0 2.29±0.39 50.03±0.35 1.9±0.1
Abs-KKTS 0.35±0.12 13.63±0.16 0.4±0.0 1.01±0.12 49.93±0.33 4.3±0.1
FGS 4.42±0.55 17.25±0.71 0.4±0.0 22.37±1.96 65.48±2.39 0.7±0.0
FGS-KKTS 0.78±0.17 13.58±0.16 0.6±0.0 2.43±0.49 50.05±0.36 3.2±0.0
MMHC 6.53±0.37 11.59±0.14 0.5±0.0 27.73±0.68 34.48±0.41 11.8±3.9
MMHC-KKTS 0.93±0.20 13.58±0.17 0.6±0.0 4.36±0.66 49.78±0.37 13.4±3.9
PC 6.44±0.33 12.35±0.17 2.3±0.0 29.09±0.58 36.11±0.39 9.2±2.5
PC-KKTS 0.91±0.20 13.54±0.16 2.4±0.0 4.05±0.65 49.83±0.36 10.9±2.5
Search 1.78±0.31 13.28±0.17 0.3±0.0 11.11±0.98 49.18±0.43 3.6±0.1
CAM 13.70±0.76 19.90±0.53 11.5±0.2 46.72±1.35 57.86±1.03 51.5±0.7
CAM-KKTS 1.36±0.27 13.46±0.18 11.6±0.2 4.09±0.63 49.92±0.36 53.1±0.7

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.44±0.39 87.81±0.37 17.3±0.9 3.28±0.88 183.95±0.60 110.3±5.6
NOTEARS-KKTS 0.74±0.12 87.74±0.37 27.7±0.9 2.38±0.57 183.80±0.55 195.0±5.9
NOTEARS-1e-5 1.50±0.39 87.80±0.37 10.6±0.4 3.43±0.89 183.93±0.60 60.8±3.6
NOTEARS-1e-5-KKTS 0.75±0.12 87.74±0.37 21.2±0.4 2.42±0.58 183.78±0.55 146.2±3.9
Abs 5.14±0.73 88.45±0.47 7.4±0.4 15.40±1.74 186.68±0.74 50.7±4.1
Abs-KKTS 1.62±0.25 87.67±0.39 17.4±0.5 4.42±0.79 183.09±0.54 133.7±4.3
FGS 42.94±2.79 107.87±3.31 1.1±0.0 89.18±4.25 193.06±4.79 2.3±0.1
FGS-KKTS 5.61±0.95 87.94±0.50 11.5±0.1 11.42±1.51 181.64±0.79 92.7±1.1
MMHC 54.89±1.00 54.53±0.66 21.0±4.8 121.35±1.44 114.06±1.02 194.7±106.3
MMHC-KKTS 10.07±1.13 87.06±0.53 28.6±4.8 20.14±2.03 181.63±0.90 255.1±106.4
PC 54.98±0.80 58.14±0.68 10.1±1.4 118.74±1.12 120.68±0.98 54.4±23.1
PC-KKTS 8.34±0.93 86.42±0.56 16.7±1.4 21.56±2.08 180.15±0.93 100.7±23.1
Search 23.74±1.84 85.59±0.72 14.1±0.2 50.30±2.96 178.68±0.96 152.7±2.7
CAM 82.51±2.01 89.62±1.43 91.0±1.0 157.53±2.44 160.91±1.95 223.3±1.9
CAM-KKTS 11.91±1.36 88.47±0.65 98.8±1.0 24.74±2.16 184.40±0.97 288.3±2.4
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Table 8: Results (mean± standard error over 100 trials) on ER2 graphs with Gumbel noise, n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.40±0.10 9.49±0.27 1.4±0.2 0.43±0.10 29.71±0.56 8.2±0.5
NOTEARS-KKTS 0.07±0.04 9.56±0.27 1.5±0.2 0.12±0.03 29.69±0.56 10.5±0.5
NOTEARS-1e-5 0.45±0.10 9.45±0.27 0.8±0.1 0.63±0.12 29.52±0.55 4.0±0.2
NOTEARS-1e-5-KKTS 0.15±0.06 9.55±0.27 0.9±0.1 0.16±0.04 29.69±0.56 6.2±0.2
Abs 0.59±0.13 9.58±0.26 0.3±0.0 2.59±0.28 30.72±0.60 2.4±0.2
Abs-KKTS 0.18±0.08 9.52±0.27 0.5±0.0 0.23±0.06 29.68±0.56 4.7±0.2
FGS 2.90±0.27 10.63±0.45 0.4±0.0 7.18±0.64 33.09±0.98 0.6±0.0
FGS-KKTS 0.41±0.10 9.58±0.28 0.6±0.0 0.80±0.18 29.72±0.57 2.8±0.1
MMHC 4.33±0.29 8.82±0.20 0.4±0.0 11.36±0.51 28.05±0.41 0.8±0.0
MMHC-KKTS 1.13±0.21 9.54±0.27 0.5±0.0 2.72±0.38 30.27±0.61 2.2±0.0
PC 5.29±0.30 12.18±0.26 2.2±0.0 12.75±0.49 35.72±0.41 2.6±0.0
PC-KKTS 0.91±0.20 9.51±0.27 2.3±0.0 1.72±0.29 30.09±0.61 4.2±0.1
Search 1.92±0.30 9.50±0.27 0.2±0.0 6.25±0.48 29.71±0.57 3.3±0.1
CAM 9.84±0.43 12.93±0.42 10.4±0.2 30.88±0.97 41.95±1.01 48.7±0.7
CAM-KKTS 1.23±0.21 9.70±0.29 10.5±0.2 4.66±0.58 30.57±0.65 50.1±0.7

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.90±0.31 50.89±0.71 39.7±3.6 2.91±0.40 100.61±0.98 220.2±12.5
NOTEARS-KKTS 0.62±0.14 51.09±0.70 49.3±3.7 1.02±0.19 100.68±1.00 301.6±12.8
NOTEARS-1e-5 2.41±0.33 50.72±0.73 14.1±0.8 3.63±0.43 100.32±0.98 89.0±4.7
NOTEARS-1e-5-KKTS 0.86±0.18 51.11±0.71 23.9±0.9 1.22±0.21 100.69±0.99 171.6±5.1
Abs 6.67±0.57 52.60±0.78 7.7±0.6 13.27±0.98 103.49±1.30 40.2±2.5
Abs-KKTS 1.31±0.30 51.23±0.72 17.1±0.7 2.55±0.33 101.25±1.02 118.1±3.0
FGS 10.83±0.67 54.93±1.14 0.8±0.0 20.47±0.76 106.67±1.37 1.2±0.0
FGS-KKTS 1.83±0.35 51.27±0.74 10.3±0.2 2.33±0.37 101.12±1.03 84.0±1.1
MMHC 19.93±0.59 48.54±0.52 1.0±0.0 40.88±0.86 100.67±0.72 2.5±0.0
MMHC-KKTS 6.06±0.60 51.92±0.76 6.8±0.1 10.22±0.77 102.97±1.09 47.2±0.6
PC 23.07±0.68 62.33±0.60 3.3±0.1 44.31±0.88 125.32±0.87 4.6±0.1
PC-KKTS 4.13±0.49 51.58±0.78 9.1±0.2 7.22±0.85 102.45±1.18 48.4±0.7
Search 14.61±0.81 51.13±0.74 16.4±0.4 29.84±1.26 100.76±1.05 269.1±4.2
CAM 51.11±1.13 71.25±1.19 90.3±0.8 100.67±1.61 140.15±1.55 210.9±1.4
CAM-KKTS 8.51±0.77 52.80±0.82 96.0±0.8 22.19±1.62 106.30±1.25 258.2±1.5
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Table 9: Results (mean± standard error over 100 trials) on ER4 graphs with Gumbel noise, n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 2.00±0.26 19.24±0.32 2.6±0.1 6.11±0.89 60.59±0.76 49.9±3.6
NOTEARS-KKTS 0.94±0.15 19.42±0.30 2.8±0.1 3.07±0.54 60.47±0.72 54.1±3.6
NOTEARS-1e-5 2.10±0.26 19.15±0.32 1.8±0.1 7.21±0.88 59.97±0.76 18.9±1.2
NOTEARS-1e-5-KKTS 0.94±0.15 19.42±0.30 1.9±0.1 3.38±0.54 60.42±0.72 22.9±1.1
Abs 3.58±0.42 19.55±0.35 1.0±0.1 13.27±1.07 63.52±0.87 11.2±0.7
Abs-KKTS 1.14±0.18 19.36±0.31 1.1±0.1 5.21±0.68 60.87±0.76 15.2±0.7
FGS 12.29±0.66 27.85±0.83 0.5±0.0 53.42±3.56 119.62±4.82 1.3±0.1
FGS-KKTS 3.58±0.45 19.12±0.31 0.7±0.0 12.36±1.38 62.05±0.85 4.8±0.1
MMHC 14.88±0.52 12.33±0.17 0.4±0.0 42.18±1.04 35.87±0.38 2.1±0.0
MMHC-KKTS 5.11±0.49 18.85±0.29 0.6±0.0 23.45±1.55 64.07±0.90 4.5±0.1
PC 16.01±0.52 15.25±0.24 2.8±0.1 47.03±1.16 45.27±0.47 3.7±0.0
PC-KKTS 5.41±0.50 18.62±0.29 3.0±0.1 21.45±1.56 64.64±0.98 7.0±0.1
Search 8.31±0.58 16.44±0.33 0.4±0.0 31.97±1.15 54.64±0.69 7.3±0.1
CAM 20.66±0.47 23.68±0.36 9.9±0.1 65.42±1.36 81.94±0.96 46.3±0.5
CAM-KKTS 5.62±0.49 18.66±0.31 10.0±0.1 22.34±1.42 63.18±0.92 48.5±0.5

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 12.05±1.28 101.03±1.20 169.4±7.6 22.97±1.92 202.58±1.61 768.4±19.5
NOTEARS-KKTS 5.34±0.69 100.16±1.09 187.8±7.7 10.71±1.08 201.68±1.41 922.2±19.6
NOTEARS-1e-5 12.99±1.19 100.38±1.18 61.8±2.9 23.66±1.81 201.62±1.60 313.9±11.2
NOTEARS-1e-5-KKTS 6.14±0.72 100.39±1.10 80.1±2.9 11.19±1.06 201.45±1.37 466.3±11.3
Abs 25.16±1.62 107.75±1.41 40.9±2.7 51.18±2.19 216.54±1.88 169.8±9.7
Abs-KKTS 9.67±0.92 101.62±1.15 58.6±2.7 19.20±1.44 204.36±1.61 312.2±9.9
FGS 76.40±4.77 184.04±6.73 2.2±0.1 110.21±6.39 312.84±8.48 4.2±0.2
FGS-KKTS 19.48±1.62 104.23±1.26 18.5±0.4 31.32±2.64 209.63±1.98 136.3±3.9
MMHC 64.74±1.59 60.97±0.68 1.5±0.0 119.00±2.10 129.00±0.96 14.3±0.2
MMHC-KKTS 38.28±2.48 108.72±1.65 11.6±0.2 76.75±3.87 224.75±2.57 103.7±1.2
PC 74.85±1.64 75.99±0.61 5.1±0.1 131.01±2.41 153.06±0.89 10.4±0.1
PC-KKTS 40.53±2.58 108.84±1.56 18.7±0.3 67.96±3.91 221.17±2.49 115.1±1.7
Search 51.67±1.96 92.10±0.98 39.4±0.7 97.72±2.46 189.95±1.61 630.7±7.9
CAM 105.83±2.02 134.77±1.41 91.7±1.0 187.69±2.68 256.63±1.77 216.3±1.9
CAM-KKTS 47.10±2.35 109.91±1.54 100.6±1.0 86.06±3.72 224.16±2.58 306.3±2.9
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Table 10: Results (mean ± standard error over 100 trials) on SF4 graphs with Gumbel noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.19±0.07 13.68±0.16 0.7±0.0 0.69±0.25 50.12±0.31 6.2±0.3
NOTEARS-KKTS 0.08±0.03 13.72±0.16 0.9±0.0 0.26±0.06 50.08±0.30 9.0±0.3
NOTEARS-1e-5 0.19±0.07 13.68±0.16 0.5±0.0 0.69±0.25 50.11±0.31 3.9±0.2
NOTEARS-1e-5-KKTS 0.08±0.03 13.72±0.16 0.7±0.0 0.35±0.10 50.12±0.31 6.7±0.2
Abs 0.23±0.06 13.74±0.16 0.3±0.0 2.92±0.60 50.96±0.46 2.6±0.2
Abs-KKTS 0.12±0.04 13.72±0.16 0.4±0.0 1.07±0.33 50.34±0.36 5.4±0.2
FGS 3.76±0.52 16.17±0.59 0.4±0.0 26.25±2.10 67.17±2.42 0.8±0.0
FGS-KKTS 0.26±0.09 13.70±0.15 0.6±0.0 3.31±0.67 50.51±0.39 3.6±0.0
MMHC 6.28±0.39 11.66±0.14 0.5±0.0 29.08±0.80 33.04±0.47 6.5±2.5
MMHC-KKTS 1.03±0.23 13.90±0.18 0.6±0.0 5.32±0.86 51.29±0.48 8.4±2.5
PC 6.55±0.28 12.56±0.16 2.5±0.1 29.18±0.56 35.36±0.39 7.8±1.2
PC-KKTS 0.84±0.21 14.05±0.16 2.6±0.1 3.79±0.63 50.45±0.42 10.0±1.2
Search 1.92±0.30 13.53±0.17 0.3±0.0 13.86±1.37 50.33±0.47 4.4±0.1
CAM 19.95±0.63 22.73±0.42 11.3±0.2 64.41±1.28 65.37±1.02 50.8±0.7
CAM-KKTS 1.32±0.32 13.81±0.18 11.4±0.2 7.74±1.04 51.65±0.59 52.7±0.7

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.22±0.45 88.35±0.40 24.4±1.3 2.53±0.57 184.08±0.65 157.4±7.4
NOTEARS-KKTS 0.43±0.12 88.34±0.38 36.9±1.4 1.53±0.50 183.66±0.59 262.6±7.8
NOTEARS-1e-5 1.26±0.46 88.35±0.40 13.3±0.7 2.64±0.59 184.04±0.65 84.6±5.2
NOTEARS-1e-5-KKTS 0.45±0.13 88.35±0.39 25.8±0.7 1.41±0.49 183.60±0.59 191.6±5.7
Abs 6.29±0.84 90.68±0.61 10.2±0.7 11.69±1.22 187.94±0.94 72.3±5.8
Abs-KKTS 1.82±0.52 88.73±0.45 22.7±0.8 4.33±0.82 184.23±0.64 179.3±6.4
FGS 43.64±2.76 107.99±3.43 1.1±0.0 90.96±3.91 188.82±4.27 2.3±0.1
FGS-KKTS 6.79±1.36 89.74±0.72 13.5±0.2 19.44±2.90 187.95±1.55 109.9±1.7
MMHC 55.35±0.95 55.43±0.63 21.3±7.8 124.12±1.43 112.37±0.96 118.1±49.3
MMHC-KKTS 9.09±1.25 89.84±0.65 30.7±7.8 21.86±2.21 186.37±1.13 194.8±49.4
PC 55.07±0.98 58.65±0.67 47.6±21.6 123.02±1.30 118.71±0.93 36.7±18.3
PC-KKTS 8.96±1.28 88.93±0.66 56.4±21.6 29.16±2.99 186.16±1.18 102.1±18.4
Search 26.20±1.82 88.97±0.73 20.2±0.4 54.18±3.33 183.98±1.10 274.7±3.5
CAM 104.84±1.34 99.24±1.14 89.6±1.0 212.09±2.31 182.76±2.08 211.1±1.4
CAM-KKTS 16.81±1.92 92.20±0.87 98.4±1.0 35.73±3.32 190.62±1.37 284.3±2.0
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Table 11: Results (mean ± standard error over 100 trials) on ER2 graphs with exponential noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.58±0.12 9.87±0.30 1.8±0.1 1.10±0.12 28.84±0.49 8.0±0.6
NOTEARS-KKTS 0.26±0.07 9.89±0.29 2.0±0.1 0.65±0.11 28.94±0.49 9.8±0.7
NOTEARS-1e-5 0.64±0.12 9.80±0.29 1.2±0.1 1.43±0.14 28.51±0.49 3.9±0.2
NOTEARS-1e-5-KKTS 0.26±0.07 9.89±0.29 1.4±0.1 0.78±0.12 28.87±0.49 5.8±0.2
Abs 0.95±0.18 9.86±0.29 0.6±0.1 2.37±0.26 28.97±0.50 2.8±0.2
Abs-KKTS 0.38±0.10 9.83±0.29 0.8±0.1 1.05±0.16 28.88±0.50 5.4±0.3
FGS 3.81±0.41 11.61±0.59 0.4±0.0 6.87±0.45 31.59±0.75 0.6±0.0
FGS-KKTS 0.58±0.12 9.81±0.29 0.6±0.0 1.10±0.20 29.00±0.50 2.5±0.0
MMHC 4.95±0.30 9.06±0.21 0.4±0.0 11.46±0.46 27.73±0.41 0.6±0.0
MMHC-KKTS 1.03±0.18 9.82±0.30 0.5±0.0 2.90±0.35 29.00±0.50 1.8±0.0
PC 5.86±0.31 12.34±0.29 2.9±0.1 13.61±0.43 35.86±0.46 2.5±0.0
PC-KKTS 0.87±0.17 9.69±0.29 3.0±0.1 1.98±0.25 28.92±0.49 3.8±0.0
Search 2.02±0.27 9.48±0.28 0.3±0.0 7.29±0.55 28.18±0.50 3.1±0.2
CAM 11.48±0.43 14.25±0.46 9.5±0.1 32.43±0.79 42.58±0.78 45.4±0.5
CAM-KKTS 1.69±0.25 9.76±0.29 9.6±0.1 5.50±0.53 29.16±0.52 46.5±0.5

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.68±0.27 49.26±0.66 29.6±2.7 2.92±0.28 98.12±0.82 158.4±10.1
NOTEARS-KKTS 0.98±0.17 49.45±0.66 36.8±2.7 1.66±0.20 98.39±0.82 215.7±10.2
NOTEARS-1e-5 2.04±0.25 49.01±0.65 13.0±0.9 3.73±0.32 97.56±0.81 61.3±2.8
NOTEARS-1e-5-KKTS 1.03±0.18 49.40±0.65 20.5±0.9 1.88±0.22 98.29±0.82 117.8±3.0
Abs 6.11±0.47 50.24±0.74 6.9±0.5 14.47±0.66 100.20±1.02 30.9±1.5
Abs-KKTS 1.73±0.21 49.15±0.69 14.1±0.5 3.64±0.34 98.02±0.84 87.1±1.8
FGS 12.38±0.87 55.58±1.42 0.8±0.0 19.81±0.75 105.59±1.17 1.2±0.0
FGS-KKTS 1.92±0.29 49.48±0.65 7.9±0.1 2.77±0.37 98.76±0.83 58.1±0.8
MMHC 19.81±0.55 47.86±0.52 1.0±0.0 38.07±0.75 101.11±0.67 3.8±0.2
MMHC-KKTS 6.15±0.61 49.92±0.70 5.4±0.1 9.01±0.59 99.21±0.87 34.2±0.5
PC 22.46±0.67 61.68±0.63 3.1±0.1 40.36±0.73 124.45±0.82 4.6±0.1
PC-KKTS 3.81±0.39 49.57±0.69 7.6±0.1 5.39±0.46 98.62±0.84 33.1±0.5
Search 13.67±0.69 47.63±0.63 10.2±0.3 27.59±1.05 95.95±0.93 114.8±2.4
CAM 54.15±1.08 72.17±1.05 84.1±0.7 114.26±1.28 148.78±1.25 197.6±1.2
CAM-KKTS 9.71±0.85 50.35±0.72 88.4±0.7 20.48±1.21 101.37±0.94 229.1±1.2
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Table 12: Results (mean ± standard error over 100 trials) on ER4 graphs with exponential noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 2.92±0.27 18.05±0.35 2.9±0.2 6.21±0.64 58.41±0.77 37.8±2.6
NOTEARS-KKTS 1.80±0.19 18.28±0.34 3.1±0.2 3.55±0.43 58.11±0.76 41.5±2.6
NOTEARS-1e-5 3.07±0.28 17.82±0.35 2.0±0.1 6.97±0.61 57.67±0.77 15.4±0.8
NOTEARS-1e-5-KKTS 1.78±0.18 18.26±0.34 2.2±0.1 4.16±0.41 58.16±0.76 19.1±0.8
Abs 4.07±0.34 18.17±0.38 1.5±0.1 13.49±0.93 60.12±0.89 9.4±0.6
Abs-KKTS 2.24±0.25 18.29±0.34 1.8±0.1 4.99±0.53 57.96±0.77 13.2±0.7
FGS 13.20±0.81 29.51±0.98 0.5±0.0 49.28±3.29 113.40±4.46 1.2±0.1
FGS-KKTS 4.43±0.44 17.85±0.34 0.7±0.0 11.38±1.27 58.88±0.82 4.3±0.1
MMHC 14.81±0.53 12.04±0.19 0.5±0.0 41.11±1.13 36.41±0.42 2.1±0.0
MMHC-KKTS 6.01±0.52 17.35±0.34 0.6±0.0 21.05±1.39 59.09±0.92 4.2±0.0
PC 15.77±0.53 15.21±0.23 2.2±0.0 46.57±1.19 45.90±0.41 3.1±0.0
PC-KKTS 5.06±0.43 17.91±0.34 2.4±0.0 19.61±1.42 59.16±0.88 5.3±0.1
Search 8.68±0.60 15.94±0.35 0.5±0.0 31.58±1.39 52.62±0.70 6.9±0.2
CAM 20.12±0.52 23.58±0.41 10.0±0.1 67.48±1.65 82.05±1.14 45.0±0.6
CAM-KKTS 7.08±0.59 17.08±0.32 10.1±0.1 24.71±1.60 58.63±0.82 46.9±0.6

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 13.10±1.30 97.14±0.94 149.3±7.7 21.62±1.31 196.95±1.37 660.6±20.2
NOTEARS-KKTS 7.80±0.81 97.17±0.88 165.0±7.8 11.89±0.89 197.80±1.32 787.8±20.5
NOTEARS-1e-5 14.00±1.25 96.64±0.95 52.4±2.7 22.49±1.25 195.75±1.40 270.1±9.3
NOTEARS-1e-5-KKTS 8.35±0.85 97.24±0.88 68.1±2.8 12.81±0.88 197.48±1.33 396.6±9.6
Abs 28.00±1.61 101.50±1.19 33.4±2.1 54.99±2.39 208.17±1.99 193.2±9.6
Abs-KKTS 12.10±1.03 97.58±0.92 48.9±2.1 25.86±1.67 199.68±1.59 317.3±9.7
FGS 77.55±5.13 184.44±6.80 2.2±0.1 117.42±7.33 321.85±9.72 4.4±0.2
FGS-KKTS 21.17±1.90 99.95±1.12 15.1±0.3 36.27±3.03 206.12±1.99 119.4±2.5
MMHC 64.34±1.47 60.67±0.60 1.5±0.0 118.32±2.12 128.96±1.10 6.8±2.7
MMHC-KKTS 38.44±2.22 101.47±1.21 10.2±0.1 73.86±4.18 213.01±2.28 80.6±2.9
PC 72.39±1.54 75.24±0.59 4.5±0.1 130.04±2.49 154.14±0.92 8.7±0.1
PC-KKTS 36.55±2.16 102.24±1.26 13.4±0.2 64.06±3.88 210.39±2.26 73.3±1.0
Search 53.39±1.73 86.99±1.03 31.9±0.6 103.06±2.46 179.18±1.36 448.1±5.9
CAM 104.86±1.89 134.03±1.41 86.2±1.0 199.41±2.53 261.46±1.67 203.4±1.4
CAM-KKTS 41.92±2.29 102.43±1.15 94.2±1.0 85.55±3.39 213.69±1.91 273.9±2.0
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Table 13: Results (mean ± standard error over 100 trials) on SF4 graphs with exponential noise,
n = 1000.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 0.62±0.12 13.68±0.17 0.7±0.0 1.21±0.21 49.70±0.38 4.8±0.2
NOTEARS-KKTS 0.41±0.08 13.66±0.16 0.8±0.0 0.98±0.14 49.61±0.35 7.3±0.2
NOTEARS-1e-5 0.63±0.12 13.67±0.17 0.5±0.0 1.24±0.21 49.67±0.38 3.3±0.2
NOTEARS-1e-5-KKTS 0.41±0.08 13.66±0.16 0.6±0.0 0.98±0.14 49.61±0.35 5.7±0.2
Abs 0.66±0.11 13.66±0.17 0.3±0.0 3.21±0.44 49.90±0.43 2.2±0.2
Abs-KKTS 0.47±0.08 13.63±0.16 0.4±0.0 1.52±0.28 49.52±0.36 4.8±0.2
FGS 4.69±0.57 17.21±0.66 0.4±0.0 21.93±1.75 64.47±2.22 0.8±0.0
FGS-KKTS 0.92±0.20 13.63±0.17 0.6±0.0 2.37±0.46 49.72±0.37 3.3±0.0
MMHC 6.66±0.38 11.28±0.12 0.5±0.0 28.25±0.67 33.41±0.43 13.0±5.0
MMHC-KKTS 1.51±0.23 13.47±0.17 0.6±0.0 4.10±0.56 49.46±0.40 14.7±5.0
PC 6.84±0.33 12.52±0.16 3.1±0.1 29.71±0.73 35.75±0.43 25.8±12.2
PC-KKTS 1.03±0.20 13.88±0.17 3.2±0.1 3.90±0.57 48.88±0.38 28.2±12.2
Search 2.26±0.28 13.13±0.20 0.3±0.0 11.28±1.06 48.86±0.41 3.7±0.1
CAM 20.58±0.62 23.29±0.42 10.5±0.2 66.45±1.33 65.58±1.03 47.3±0.7
CAM-KKTS 2.02±0.28 13.26±0.18 10.6±0.2 7.03±0.81 49.63±0.43 49.0±0.7

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 1.60±0.23 87.37±0.42 16.6±0.8 2.91±0.57 183.84±0.58 122.3±6.1
NOTEARS-KKTS 1.37±0.23 87.44±0.41 26.8±0.9 2.51±0.52 183.83±0.58 210.7±6.5
NOTEARS-1e-5 1.62±0.23 87.33±0.41 10.3±0.5 2.90±0.56 183.78±0.57 66.8±4.0
NOTEARS-1e-5-KKTS 1.38±0.23 87.43±0.41 20.7±0.6 2.51±0.52 183.83±0.58 152.7±4.5
Abs 6.44±1.06 88.63±0.71 7.6±0.6 16.37±1.68 187.11±0.98 59.2±5.4
Abs-KKTS 2.75±0.54 87.66±0.51 17.8±0.7 6.75±0.98 183.86±0.74 147.5±5.7
FGS 42.04±2.52 105.22±2.87 1.1±0.0 94.46±4.56 197.61±5.14 2.4±0.1
FGS-KKTS 7.41±1.28 87.88±0.53 11.7±0.1 19.20±2.68 186.21±1.43 93.5±1.0
MMHC 54.17±1.01 54.60±0.71 119.4±66.9 122.83±1.35 99.62±0.97 61.9±43.5
MMHC-KKTS 10.23±1.45 86.82±0.61 127.2±66.9 26.85±2.69 181.25±1.08 121.9±43.5
PC 55.54±0.81 59.18±0.67 16.0±2.9 121.91±1.22 120.34±0.85 24.5±3.8
PC-KKTS 8.11±0.98 86.61±0.54 25.1±2.8 19.18±1.51 179.10±0.75 101.3±3.9
Search 22.98±2.00 85.41±0.73 14.5±0.3 51.99±3.33 181.09±1.14 160.7±2.9
CAM 112.37±1.77 104.55±1.53 89.8±1.0 230.42±2.11 195.68±1.83 212.5±2.1
CAM-KKTS 16.02±1.66 88.90±0.69 97.2±1.0 33.75±2.47 185.03±1.30 275.2±2.5
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Table 14: Results (mean ± standard error over 100 trials) on ER2 graphs with Gaussian noise,
n = 2d.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 5.40±0.31 12.40±0.31 1.9±0.1 3.75±0.24 29.65±0.53 22.6±0.8
NOTEARS-KKTS 5.32±0.29 12.86±0.32 2.0±0.1 3.48±0.25 29.96±0.54 25.2±0.8
NOTEARS-1e-5 5.40±0.32 12.33±0.31 0.9±0.0 3.94±0.29 29.45±0.53 4.8±0.3
NOTEARS-1e-5-KKTS 5.29±0.29 12.85±0.32 1.0±0.0 3.52±0.24 29.77±0.52 7.4±0.3
Abs 5.37±0.30 12.47±0.31 0.4±0.0 6.20±0.39 29.84±0.63 2.1±0.1
Abs-KKTS 5.42±0.28 12.85±0.31 0.6±0.0 4.21±0.31 29.76±0.56 4.7±0.1
FGS 15.27±0.44 25.78±0.60 0.4±0.0 16.04±0.89 30.28±0.82 0.5±0.0
FGS-KKTS 6.09±0.32 12.37±0.29 0.5±0.0 6.95±0.54 30.28±0.58 3.0±0.0
MMHC 8.78±0.33 5.01±0.12 0.4±0.0 20.03±0.54 21.90±0.28 0.5±0.0
MMHC-KKTS 6.71±0.37 11.98±0.35 0.5±0.0 9.72±0.70 30.35±0.62 2.1±0.0
PC 10.45±0.33 6.62±0.21 2.7±0.1 26.29±0.58 30.87±0.42 2.4±0.0
PC-KKTS 6.97±0.38 11.73±0.31 2.8±0.1 9.66±0.71 29.66±0.60 4.1±0.1
Search 6.56±0.37 11.77±0.28 0.3±0.0 11.59±0.70 29.04±0.55 5.9±0.1

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 3.88±0.32 49.32±0.69 60.7±1.9 5.06±0.49 96.05±0.90 222.0±7.2
NOTEARS-KKTS 2.74±0.22 49.25±0.66 70.9±1.9 2.92±0.22 96.41±0.90 289.8±7.4
NOTEARS-1e-5 4.42±0.33 48.94±0.67 12.4±0.6 5.28±0.50 95.84±0.92 66.3±2.8
NOTEARS-1e-5-KKTS 2.95±0.22 49.15±0.67 22.1±0.6 2.88±0.20 96.36±0.89 131.8±2.9
Abs 9.23±0.56 49.88±0.77 5.2±0.3 18.05±0.76 95.52±1.14 26.5±1.4
Abs-KKTS 3.93±0.30 49.00±0.65 15.3±0.3 6.18±0.40 95.84±0.93 95.4±1.6
FGS 20.92±0.70 52.16±0.89 0.6±0.0 31.17±0.82 103.36±1.16 0.9±0.0
FGS-KKTS 6.86±0.65 49.64±0.76 10.4±0.1 6.82±0.56 96.95±0.93 66.7±0.7
MMHC 29.96±0.70 34.56±0.37 0.7±0.0 50.80±0.87 79.48±0.63 4.5±0.2
MMHC-KKTS 14.35±0.96 50.08±0.78 6.4±0.1 19.22±1.16 97.61±1.05 45.9±0.5
PC 39.35±0.79 55.57±0.62 2.5±0.0 61.35±1.08 117.41±0.88 3.9±0.1
PC-KKTS 11.29±0.71 49.58±0.71 8.9±0.1 14.75±1.00 96.78±1.03 66.6±1.0
Search 18.11±0.82 48.58±0.67 26.8±0.2 31.22±1.22 94.18±0.99 282.7±3.0
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Table 15: Results (mean ± standard error over 100 trials) on ER4 graphs with Gumbel noise, n = 2d.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 9.49±0.40 21.11±0.35 2.9±0.2 17.19±1.01 64.34±0.90 50.3±2.4
NOTEARS-KKTS 9.16±0.37 21.84±0.32 3.1±0.2 13.63±0.63 63.82±0.77 53.9±2.5
NOTEARS-1e-5 9.43±0.40 20.95±0.35 2.1±0.1 18.56±1.05 64.10±0.90 18.5±0.8
NOTEARS-1e-5-KKTS 9.12±0.38 21.84±0.31 2.2±0.1 14.00±0.70 64.12±0.86 21.9±0.8
Abs 9.37±0.41 21.11±0.33 0.9±0.1 23.71±1.20 67.86±0.98 8.2±0.5
Abs-KKTS 8.68±0.32 21.82±0.32 1.1±0.1 16.51±0.90 64.77±0.84 11.4±0.5
FGS 20.34±0.47 32.84±0.56 0.4±0.0 50.57±1.54 64.90±1.33 0.6±0.0
FGS-KKTS 11.25±0.43 20.44±0.33 0.5±0.0 32.61±1.66 67.68±1.05 3.7±0.1
MMHC 17.81±0.37 5.74±0.12 0.4±0.0 50.29±0.86 23.78±0.28 0.5±0.0
MMHC-KKTS 12.20±0.51 19.90±0.35 0.5±0.0 43.91±1.73 69.74±1.12 2.4±0.0
PC 20.10±0.34 7.22±0.26 2.2±0.0 58.42±0.86 35.84±0.45 2.3±0.0
PC-KKTS 13.24±0.47 19.56±0.40 2.4±0.0 42.51±1.65 68.63±1.15 4.2±0.0
Search 13.37±0.54 17.81±0.40 0.4±0.0 42.55±1.16 55.10±0.73 8.4±0.1

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 20.49±1.39 102.65±1.26 156.3±3.8 30.60±1.89 202.11±1.60 660.5±10.3
NOTEARS-KKTS 11.38±0.76 100.56±1.09 171.1±3.8 16.17±1.29 200.32±1.52 771.9±10.4
NOTEARS-1e-5 21.26±1.29 101.84±1.19 52.3±1.7 30.92±1.89 201.33±1.63 265.0±9.0
NOTEARS-1e-5-KKTS 13.37±0.95 101.33±1.15 66.2±1.7 16.47±1.27 200.17±1.50 375.2±9.2
Abs 33.02±1.93 109.21±1.56 28.9±1.8 55.70±2.25 214.18±1.93 142.7±7.7
Abs-KKTS 17.00±1.14 102.61±1.20 43.2±1.9 25.22±1.55 203.79±1.71 253.4±7.7
FGS 76.30±2.29 121.86±2.14 1.0±0.0 108.31±3.42 246.38±3.90 2.0±0.0
FGS-KKTS 46.87±2.65 113.11±1.74 13.4±0.3 57.28±3.40 214.57±2.30 104.5±1.9
MMHC 78.41±1.34 44.90±0.49 1.6±0.0 141.90±1.91 106.56±0.73 8.4±0.1
MMHC-KKTS 69.17±3.13 118.96±1.79 9.0±0.1 118.61±4.77 238.61±3.20 84.0±1.4
PC 93.50±1.33 66.67±0.64 2.5±0.0 163.85±2.18 140.41±1.03 4.3±0.1
PC-KKTS 74.18±3.03 120.62±1.94 9.8±0.1 124.97±5.04 239.79±3.10 63.0±0.7
Search 65.70±2.02 94.82±1.07 47.1±0.5 111.35±2.53 190.97±1.42 700.1±4.3
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Table 16: Results (mean ± standard error over 100 trials) on SF4 graphs with exponential noise,
n = 2d.

d = 10 d = 30

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 7.02±0.35 15.39±0.27 1.3±0.1 7.63±0.37 50.74±0.49 17.5±0.3
NOTEARS-KKTS 6.85±0.34 15.54±0.26 1.5±0.1 7.27±0.34 50.44±0.45 20.1±0.4
NOTEARS-1e-5 6.95±0.35 15.26±0.27 0.8±0.0 7.50±0.36 50.48±0.49 4.8±0.1
NOTEARS-1e-5-KKTS 6.82±0.34 15.53±0.26 0.9±0.0 7.25±0.34 50.30±0.44 7.4±0.2
Abs 6.30±0.32 15.18±0.26 0.3±0.0 9.37±0.52 50.30±0.57 2.3±0.1
Abs-KKTS 6.70±0.34 15.49±0.26 0.5±0.0 7.83±0.41 50.14±0.45 4.9±0.1
FGS 17.57±0.55 29.69±0.70 0.3±0.0 37.53±0.55 28.26±0.56 0.5±0.0
FGS-KKTS 7.11±0.34 15.13±0.27 0.4±0.0 14.93±0.89 50.26±0.58 3.2±0.0
MMHC 12.49±0.22 4.16±0.13 0.4±0.0 43.18±0.42 15.28±0.25 0.5±0.0
MMHC-KKTS 7.67±0.34 14.64±0.29 0.5±0.0 18.58±1.19 50.29±0.71 2.1±0.0
PC 13.96±0.16 5.82±0.21 2.2±0.0 47.17±0.44 24.56±0.41 2.2±0.0
PC-KKTS 7.19±0.30 14.74±0.25 2.3±0.0 17.10±0.90 51.20±0.54 3.8±0.0
Search 7.95±0.35 13.95±0.27 0.3±0.0 19.55±1.09 47.54±0.53 4.8±0.1

d = 50 d = 100

SHD nnz time (sec) SHD nnz time (sec)

NOTEARS 5.94±0.29 86.62±0.48 49.7±0.9 6.91±0.65 182.18±0.65 203.0±3.6
NOTEARS-KKTS 5.98±0.33 86.69±0.49 60.1±0.9 6.12±0.61 182.02±0.64 281.6±4.0
NOTEARS-1e-5 6.04±0.29 86.52±0.48 12.5±0.5 6.97±0.65 182.15±0.65 73.7±2.7
NOTEARS-1e-5-KKTS 5.94±0.33 86.56±0.49 22.7±0.6 6.15±0.61 181.99±0.64 150.5±3.1
Abs 13.46±1.33 87.19±0.81 7.0±0.5 19.81±1.44 182.82±1.03 48.4±3.4
Abs-KKTS 9.41±0.86 86.80±0.60 17.2±0.5 11.04±1.12 181.49±0.69 123.3±3.7
FGS 63.93±0.80 50.98±0.90 0.6±0.0 121.68±1.82 119.36±1.80 1.0±0.0
FGS-KKTS 22.54±1.70 86.05±0.82 10.9±0.1 50.50±3.58 180.72±1.70 75.4±1.0
MMHC 73.67±0.56 29.46±0.34 1.5±0.0 145.51±1.12 74.83±0.62 5.4±0.0
MMHC-KKTS 31.46±2.11 86.52±0.89 7.3±0.1 75.14±4.37 181.41±1.49 55.4±0.6
PC 77.16±0.57 45.53±0.53 2.3±0.0 146.92±1.05 100.22±0.71 3.4±0.1
PC-KKTS 35.87±2.20 88.69±0.85 8.2±0.1 66.27±4.40 177.25±1.60 43.5±0.5
Search 28.94±1.77 81.59±0.67 23.5±0.3 57.61±3.44 173.72±1.00 253.1±2.6
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