
HAT-DRL: Hotspot-Aware Task Mapping for Lifetime
Improvement of Multicore System using Deep Reinforcement

Learning∗

Jinwei Zhang, Sheriff Sadiqbatcha, Yuanqi Gao, Michael O’Dea, Nanpeng Yu and Sheldon X.-D. Tan
Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 USA

{jzhan319,ssadi003,ygao024,mode001,nanpeng.yu,sheldon.tan}@ucr.edu

ABSTRACT
In this work, we propose a novel learning-based task to core map-
ping technique to improve lifetime and reliability based on advanced
deep reinforcement learning. The new method, called HAT-DRL, is
based on the observation that on-chip temperature sensors may not
capture the true hotspots of the chip, which can lead to sub-optimal
control decisions. In the new method, we first perform data-driven
learning to model the hotspot activation indicator with respect
to the resource utilization of different workloads. On top of this,
we propose to employ deep reinforcement learning algorithm to
improve the long-term reliability and minimize the performance
degradation fromNBTI/HCI effects. It penalizes continuously stress-
ing the same hotspots and encourages even stressing of cores. The
proposed algorithm is validated with an Intel i7-8650U four-core
CPU platform executing CPU benchmarks for various hotspot ac-
tivation profiles. Results show that HAT-DRL balances the stress
between all cores and hotspots, and achieves 50% and 160% longer
lifetime compared to non-hotspot-aware and Linux default schedul-
ing respectively. The proposed method can also reduce the average
temperature by exploiting the true-hotspot information.

CCS CONCEPTS
•Hardware→ Operations scheduling; Aging of circuits and
systems.

KEYWORDS
task mapping; multicore; lifetime; reinforcement learning

ACM Reference Format:
Jinwei Zhang, Sheriff Sadiqbatcha, Yuanqi Gao, Michael O’Dea, Nanpeng
Yu and Sheldon X.-D. Tan. 2020. HAT-DRL: Hotspot-Aware Task Mapping
for Lifetime Improvement of Multicore System using Deep Reinforcement
Learning. In 2020 ACM/IEEE Workshop on Machine Learning for CAD (ML-
CAD ’20), November 16–20, 2020, Virtual Event, Iceland. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3380446.3430623

1 INTRODUCTION
Power density keeps increasing with technology scaling, causing
severe thermal and reliability problems in high performance multi-
core systems [14]. Temperature has a profound impact on all the
major long-term reliability effects such as electro-migration (EM)
for interconnects, and negative bias-temperature-instability (BTI)
and hot-carrier-injection (HCI) for CMOS devices [1]. In order to
find efficient methods to solve the high temperature issue and im-
prove both system performance and reliability, researchers have
proposed many dynamic thermal/reliability management (DTM/
DRM) methods, such as task mapping strategies [6, 7, 9].

Recently deep learning based approaches have been explored
for DTM/DRM [9]. Das et al [2] proposed to take advantage of
the thermal profile within (intra) and across (inter) applications
based on Q-learning, which learns the relationship between the
task allocation, voltage/frequency and device aging/mean-time-
to-failure (MTTF). Lu et al [8] presents a task allocation method
based on core and router temperatures and predicts near-future
temperature that assists the DTM. Rathore et al [10] proposed a
heuristic approach to manage the dimensions of state action space
and a task mapping technique across heterogeneous cores through
Q-learning. Recently, Kim et al [6] proposed a DRM technique
by considering both long-term reliability (hard errors) and soft
errors. All of those methods, however, have several drawbacks.
First, they mainly depend on the temperature information from
sensors and do not consider the true hotspots, which we will show
in this paper, can be quite different than the sensor temperature.
Recent study [11] shows that one can identify the true hotspots
of multicore processors with advanced characterization. Second,
existing approaches mainly use simple table-based Q-learning or
its variations, which is not very robust and does not scale well for
large control problems for many-core processors.

To capitalize on the recent advances in true hotspot identifica-
tion and DRL, we propose a novel DRM method, called HAT-DRL,
for performing more efficient task mapping to improve the lifetime
and reliability based on an advanced deep reinforcement learning
(DRL) technique. We first develop a data-driven approach based
on deep neural network (DNN) to model the hotspot activation

∗This work is supported in part by NSF grants under No. CCF-1816361, in part by NSF
grant under No. CCF-2007135 and No. OISE-1854276.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MLCAD ’20, November 16–20, 2020, Virtual Event, Iceland
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7519-1/20/11.
https://doi.org/10.1145/3380446.3430623

https://doi.org/10.1145/3380446.3430623
https://doi.org/10.1145/3380446.3430623


Figure 1: The overall HAT-DRL framework and algorithm workflow

profile/indicator with respect to the resource utilization of work-
loads. Then, we propose to employ a recently proposed highly
robust, sample-efficient DRL technique, called soft-actor-critic or
SAC method [3]. SAC is a model-free off-policy DRL algorithm
that provides sample-efficient learning while retaining the ben-
efits of stability. The algorithm has been successfully applied in
many engineering domains such as the smart grid [15]. In this pa-
per, it learns optimal policy to improve long-term reliability from
NBTI/HCI effects and minimize performance degradation. The pro-
posed approach is experimented with an Intel i7-8650U quad-core
CPU platform executing CPU benchmarks for various hotspot acti-
vation profiles. Experimental results show that HAT-DRL balances
the stress between all cores and hotspots, and achieves 50% and
160% longer lifetime than non-hotspot-aware and Linux default
scheduling, respectively. The proposed method can also reduce the
average temperature by exploiting the true-hotspot information.

2 THE OVERALL FRAMEWORK AND
ALGORITHM FLOW

The whole algorithm flow, shown in Fig. 1, contains two stages.
The first stage estimates how much percentage a hotspot area is
activated (intensive power) or idle (low power). For the Intel i7
8650U quad-core processors, we find that each core has two primary
hotspot areas. The second stage performs the task mapping based
on an advanced DRL method. The new scheduler will take action of
assigning or migrating tasks from current core(s) to desired core(s)
every ∆t interval.

The framework consists of three modules: the processor related
dynamic environment, the state and reward functions based on
NBTI/HCI thermal effects and aging, and the agent that interacts
with as well as learns from the environment, as shown in Fig. 1.

In the environment, aging and thermal effect values of all vari-
ables of hotspots will form the states of the environment, hence the
states are continuous. The actions are discrete, deciding which one
of the cores to move to. Rewards are evaluated based on how well
the aging and thermal effects are controlled, especially in terms
of the worst hotspot. The policy is learned by using the recently
proposed SAC algorithm [3] consisting of the state value network,
state-action value network as critics and the actor network.

3 MOTIVATION EXAMPLE
3.1 Thermal sensors v.s. true hotspots
Direct sensor readings may miss the true hotspots of the cores,
which can lead to sub-optimal task migration decisions. Fig. 2(a)
illustrates an interesting case when temperature of all cores are the

(a) (b)

Figure 2: Thermal measurements without and with power
distribution information on each core.

same at 90◦C from a four-core system. However, the power distribu-
tion of the each core can be different due to different workloads, as
shown in Fig. 2(b). As shown in the sequel, those deep knowledge
of the true hotspots of a core can lead to different results for both
temperature and reliability of the whole multicore processor.

3.2 Motivation example for hotspot-aware v.s.
non-hotspot-aware

In essence, the motivated idea is to avoid stressing the same hotspot
continuously for long period of time, thus minimizing the weakest
point of the entire processor. Basically, there are three pieces of
required information. First, the number of primary hotspots in each
core. Second, the hotspot stress conditions of all cores. Third, the
hotspot activation percentage of the task(s). Before we dive into the
DRL based control algorithm and the complete workflow, we first
prove that the hotspot-aware idea indeed has positive difference
over the non-hotspot-aware scheduling.

We deploy two tasks on just two cores of the processor where
the two tasks have complementary hotspot activation areas, as a
motivation experiment. We use two single-threaded benchmark
tasks hint and postmark from the Phoronix Test Suite to do an
experiment on an Intel i7-NUC mini PC (with i7-8650U quad-core
CPU). The mini PC has four cores, from which we will use core-0
and core-3 to execute the two tasks, one on each core at the same
time. We learned that each core contains two primary hotspots,
marked as A and B. Besides that, we also learned that task hint
(actually its subtask DOUBLE) almost always activates the hotspot
B much greater than A, while postmark almost always activates A
much greater than B, as shown in Fig. 5(b) and Fig. 5(c). We will
elaborate on the method of how we learned the primary hotspots
of the processor and the hotspot activation profile of the different
tasks in Sec. 4.

There are two experiment settings, in the first setting, i.e. the non-
hotspot-aware setting, each core will execute one task respectively
and continuously for some time without task migration. In the



Figure 3: The hotspot-aware scheduling in the motivation
experiment, where two tasks swap the cores every other in-
terval.

Figure 4: Temperature results of motivation experiment.
Blue: non-hotspot-aware setting. Orange: hotspot-aware set-
ting.

second setting, i.e. the hotspot-aware setting, two cores will execute
the two tasks interchangeably every 20 seconds (Fig. 3). Note that
we run the second setting sufficiently long after the first setting run,
waiting for the processor to cool down after the first run andmaking
sure both runs have the same initial temperature. The background
applications are minimized that their energy consumption can be
ignored.

The temperature measured from sensors of core-0 and core-3 are
recorded and plotted in Fig. 4. We conducted the same experiment
repeatedly and found that the average temperature of the second
setting always shows a 0.7 ∼ 1.1◦C reduction. As for the execution
time of the tasks, postmark are almost same on the two settings
(average 52 seconds per execution). Actually hint shows a little bit
faster execution on the second setting (average of 6 mins and 30
seconds per execution) over the first setting (average of 6 mins and
35 seconds per execution). Hence the performance of the system is
not degraded at all.

We remark, in addition to the temperature reduction, more sig-
nificant is to mitigate the long-term aging effect. As the migration
of hot tasks (with hotspots) among different cores can lead to recov-
ery effects of NBTI and HCI, which can lead to significant lifetime
improvement as we show later. Hence, we have shown and proved
that the hotspot-aware scheduling can indeed bring brand new
opportunities to improve the aging and reliability of multicore
systems.

4 DATA-DRIVEN MODEL FOR HOTSPOT
ACTIVATION

One important aspect of the proposed method is to know which
hotspots are active for a given workload. This can be achieved
by using deep neural networks. As mentioned in the motivation
example, for each core, we have two primary hotspot. In our work,
we build a machine learning model to predict the hotspot activation
indicator p based on the the on-chip workload utilization metrics.
Here p is normalized to [0, 1], where 1 means fully activated, and 0
not activated. We propose to build DNN based supervised learning

method that takes use of the processor’s IPCM [4] data to estimate
the task’s hotspot activation indicator. In our case, we select 24 most
relevant PCM metrics as inputs for the DNN model, which is built
by a multi-layer perception neural (MLP) network. Input vectors
are obtained by the IPCM tool. IPCM tool is launched at the same
time when the processor is under workload, data of the PCM vector
is sampled at the frequency of 60 Hz. So the input matrix for the
training data will have 24 columns where each column represents
a time series of a PCM metric, and each row is one sample of the
PCM vector.

As for the hotspots been activated, they are found indirectly
through the use of thermal imaging system. We follow the similar
hotspot characterization method in [11] in which hotspots are
obtained by computing power maps from the measured thermal
maps first. Then we take the power peaks that surpass a certain
threshold as the activated hotspots. Note that thermal images must
be synchronized with the PCM data sampling, so that each hotspot
label will be connected to the correct PCM vector.

5 PROPOSED DRL-BASED APPROACH
In this section, we first formulate the task-to-core control problem
as an MDP, then discuss the soft actor critic algorithm to solve the
MDP problem.

5.1 Formulating the task-to-core control
problem as an MDP

5.1.1 The basics of MDP. Wewill use the following notations for an
MDPM = (S,A, P, r ) [13]:S andA are the state and action spaces,
respectively. P(s ′ |s,a) ∀s ′, s ∈ S,a ∈ A is the environment state
transition probability. r (s,a) is the reward function. For each time
step t , the RL agent takes an action at based on the environment’s
state st . Then the environment returns a reward rt+1 = r (st ,at ) and
moves to the next state st+1 according to P(st+1 |st ,at ). The goal of
the RL agent is to learn a policy π (a |s) that maximizes the expected
long-term return starting from any state, which are captured by the
action value function Qπ (s,a) = Eπ [

∑
t=0 γ

t rt+1 |s0 = s,a0 = a] or
the state value function V π (s) = Ea∼π (· |s)[Q

π (s,a)]. γ ∈ [0, 1) is
the discount factor. Next, we identify the state, action, and reward
for the task mapping problem.

5.1.2 Formulation of states. As discussed in Section 3, an important
factor that determines the lifetime and reliability of a core is their
hotspots and related lifetimes.

The state is defined as st = [dAt ,dVt , Pt ], where dAt =
[p1
tdA

1
t , ..., p

N
t dANt ] denotes the increments of aging of the N

hotspots at time t ; similarly, dVt = [p1
tdV

1
t , ..., p

N
t dV N

t ] denotes
the threshold voltage shift of the N hotspots. pit denotes the power
activation rate of the i-th hotspot. In this paper, the increment of ag-
ing and threshold voltage shift are assumed to be linear in the power
activation. They are used to distinguish the aging and stress of dif-
ferent hotspots. Finally, Pt ∈ {P1

t , ..., P
J
t } where P

j
t = [P

j1
t , ..., P

jM
t ]

stands for the power activation profile of the j workload thread,
which contains the power profile of the task to be mapped or mi-
grated.M is the number of primary hotspots per core.

5.1.3 Formulation of actions. The Action taken by the HAT-DRL
agent is defined as the indexes of mapped cores corresponding to
the tasks.



5.1.4 Formulation of rewards. The reward function reflects the
aging and threshold voltage shift of the worst hotspot and is defined
as follows

r (st ,at ) = c1 · range(At ) + c2 · range(Vt ) (1)
where At and Vt are aging and voltage shift of all hotspots at time
t ; range(x) is the difference between the largest and the smallest
elements of vector x ; c1 and c2 are scaling constants. The detailed
formulation of each of the terms in (1) is discussed below:
• Thermal aging At : The thermal aging related lifetime reli-

ability of a hotspot is defined as R(t) = e−At
β t where At is the

aging rate of the core per iteration of the application and is given
by ([12])

At =
1
tp

∑
i

∆ti
α(Ti )

(2)

where tp is the period of the application graph and α(Ti ) is the
fault density (typically Weibull or Lognormal distribution).Ti is the
average temperature in the time interval ∆ti . The MTTF of hotspot
hsj with reliability Rj (t) is given by

MTTFj =

∫ ∞
0

Rj (t)dt =

∫ ∞
0

e−t (Aj )
β
dt (3)

We define the fault density as a Weibull distribution by

α(Ti ) =
β

η

(
Ti
η

)β−1
e
−

(
Ti
η

)β
(4)

where η is a positive constant and β ∈ (0, 1], α(Ti ) declines mono-
tonically as the temperature Ti increases. Hence, to maximize the
thermal aging related lifetime is equivalent to minimize the aging
rate.
• NBTI effect model: NBTI effect is an increase in the absolute

threshold voltage, a degradation of the mobility, drain current, and
trans-conductance of p-channel MOSFETs. NBTI related threshold
voltage shift of a PMOS in the stress phase is given by [5]

∆Vth,st = δ · t
0.25

δ = BNBT I · tox ·
√
Cox (Vdd −Vth ) · e

(
Vdd −Vth
tox ×E0

−
Ea
k×T )

(5)

where tox is the oxide thickness, and Cox the gate capacitance per
unit area. The constants E0 and Ea stand for device-dependent pa-
rameters, BNBT I is a technology-dependent constant, and k the
Boltzmann constant. T represents the temperature, and t the con-
tinuous stress time. As discussed, the threshold voltage shift of
a PMOS transistor will be partially recovered if the transistor is
placed in the recovery phase. Then the final undesired threshold
voltage shift of PMOS transistors is expressed as following

∆Vth,NBT I = ∆Vth,st ×

(
1 −

√
ε

tr ec
tr ec + tst

)
(6)

where ε is equal to 0.35, and tst and tr ec represent the stress and
recovery time durations in a short term, respectively.
• HCI effect model: HCI is a phenomenon in solid-state elec-

tronic devices where electrons or holes have high kinetic energy
to tunnel through the thin oxide gate to show up as gate current,
or as substrate leakage current and eventually cause performance
degradation. The equation given below evaluates the HCI-induced

threshold voltage shift [5]

∆Vth,HCI = ω · f · t
0.5

ω = BHCI · ν · e
(
Vdd −Vth
tox ×E1

)
(7)

where t stands for time, ν for the activity factor and f for the
core frequency, respectively. In addition, tox is the oxide thickness,
and E1 depends on the device specifications, temperature, and Vdd .
Further, BHCI is a technology-dependent constant. For the con-
venience of computation, we treat δ and ω as constants in this
work.

5.2 Task-to-core control by SAC-based
reinforcement learning

Traditional DRL methods suffer very high sample complexity and
poor convergence due to high sensitivity of hyperparameters. Re-
cently SAC method [3] was proposed to address the above men-
tioned challenges. It combines off-policy actor (policy function) and
critic (value function) architecture with stochastic maximum en-
tropy framework, which balances the exploitation and exploration
nature in the DRL to achieve better performance and convergence.

5.2.1 Soft actor critic (SAC) algorithm in a nutshell. SAC is built on
the maximum entropy RL framework, which regularizes the reward
with the entropy of the policy. The value functions under entropy
regularized reward are shown to satisfy the Bellman equations:

V h
π (s) = Ea∼πEs ′∼P

[
r (s,a) + γV h

π (s
′)

]
+ αH (π (·|s)) (8)

Qh
π (s,a) = r (s,a) + γEs ′∼P

[
V h
π (s
′)

]
(9)

V h
π (s) = Ea∼π [Q

h
π (s,a)] + αH (π (·|s)) (10)

where H is the entropy function. α is a constant coefficient. Super-
script h denotes the entropy regularization. (8)-(10) will be used for
the training of the SAC agent.

To handle continuous state spaces, SAC uses function approxi-
mations for both the Q-value and the policy, and alternates between
optimizing both networks with stochastic gradient descent using
data from a memory buffer D = {(st ,at , rt+1, st+1)}. Parameterized
state value function Vψ (st ), soft Q-value Qθ (st ,at ), and a tractable
policy πϕ (at |st ) are considered, where the value networks are called
critics and policy network is called the actor. The parameters of
these neural networks areψ , θ and ϕ.

The loss functions are derived on (8)-(10).ψ is trained to mini-
mize:

JV (ψ ) = Est∼D

[
1
2

(
Vψ (st ) − Eat∼πϕ [Qθ (st ,at ) − α logπϕ (at |st )]

)2
]

(11)

which is a sample-approximated version of (10). Similarly, θ is
trained to minimize the sample-approximated version of (9):

JQ (θ ) = E(st ,at )∼D

[
1
2

(
Qθ (st ,at ) − Q̂(st ,at )

)2
]

(12)

with Q̂(st ,at ) = r (st ,at ) + γVψ̄ (st+1), where Vψ̄ is the target value
network and ψ̄ is an exponentially moving average of the value
network weights updated by ψ̄ ← ρψ̄ + (1− ρ)ψ . Finally, the policy
parameter ϕ is learned by minimizing the objective function:

Jπ (ϕ) = Est∼D

[
Eat∼πϕ (· |st )

(
logπϕ (at |st ) −Qθ (st ,at )

)]
(13)



0 5000 10000 15000 20000 25000 30000 35000 40000

Time (s, 2500s/episode)

0.00

0.25

0.50

0.75

1.00

1.25

T
h
e
rm

a
l 
A

g
in

g

Thermal Aging

0A

1A

2A

3A

0B

1B

2B

3B

0 5000 10000 15000 20000 25000 30000 35000 40000

Time (s, 2500s/episode)

0.00

0.05

0.10

0.15

V
o
lt

a
g
e
 S

h
if
t

Threshold Voltage Shift

0A

1A

2A

3A

0B

1B

2B

3B

0 500 1000 1500 2000 2500

Action Iterations (15s/migration action)

− 40

− 30

− 20

− 10

0

10

R
e
w

a
rd

Training reward

(a)

0 1000 2000 3000 4000 5000 6000

Timesteps

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
c
ti
v
a
ti
o
n
 R

a
te

Hotspot A - Measured

Hotspot B - Measured

Hotspot A - Model

Hotspot B - Model

(b)

0 1000 2000 3000 4000 5000 6000

Timesteps

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
c
ti
v
a
to

n
 R

a
te

Hotspot A - Measured

Hotspot B - Measured

Hotspot A - Model

Hotspot B - Model

(c)

Figure 5: Model training visualization. (a) SAC-based model training, 2500 seconds per episode and 15 seconds per iteration
interval. (b) Hotspot activation profile of hint and (c) postmark computed by the DNN model.

Figure 6: Scattered hotspots activated by various workloads.

5.2.2 SAC-based task-to-core control. In our work, we implement
the actor network, Q-critic and V-critic networks as three-layer fully
connected DNNs, respectively. Once the action is determined by
the agent, the scheduler of the operating system will be overridden
by setting the CPU mask of the corresponding tasks dynamically
in the run-time.

6 EXPERIMENT RESULTS AND DISCUSSIONS
6.1 Results for hotspot activation indicator

modeling
We experimented with 9 benchmark tasks from Phoronix Test Suite
and for each task we captured over 10 thousand IPCM data samples
and corresponding thermal images. The power peaks are scattered
in Fig. 6. Hotspots are mainly dropped into two clusters in each core.
Hence there are two primary hotspots (A and B) can be activated.
Hotspot activation profiles are recorded as the label values. For
example, if a task activates hotspot A of core-0 at 50% and B of
core-1 at 95% in a four-core processor, then the output label of the
DNN is formed as [0.5, 0, 0, 0.95, 0, 0, 0, 0].

The results of hotspot activation indicator model are reasonably
accurate. We used the profiling result of task hint as an example to
demonstrate its logic and accuracy. As illustrated in Fig. 5(b) and
Fig. 5(c), this model is able to correctly characterize the hotspot
activation rates for workloads respectively when the processor is
under workloads.

6.2 Experiment setup for DRL-based control
model

The study of the proposed method is conducted on a target test
device and a simulator. As aforementioned, the hotspot activation
model is trained based on the thermal measurements of the test
device (Intel i7-8650U). This model is trained offline efficiently.

The SAC-based DRL model is trained from scratch as we train
the agent with fresh memory while it interacts with the environ-
ment. Training process on real multi-core processors can be very
time consuming as we set 10-20 seconds for task migration action
interval (∆t ) for real processors. It may cause undesired migration
overhead it the interval is too short.

To facilitate the model training process, we built a simulator of
environment to accelerates the training with only sub-millisecond
per action. The simulator essentially simulates two functionalities
of the physical system. One of the functionalities is the pseudo IPCM
process that simulates the IPCM based on the hotspot activation
and thermal profile, and the current core mapping of the tasks
running in the system. The second is the OS scheduler simulated
by a pseudo scheduler which manages a task mapping table. This
is how pseudo IPCM works, when a task is mapped to a core, the
pseudo IPCM creates the sequences of frequency, hotspot activation
rate, temperature, and time for that core being mapped according to
the task’s profiles that we studied. The pseudo IPCM generates such
sequences for every core. We assume there will be no multiple tasks
mapped onto the same core at the same time, and that the tasks in
this work are all single-threaded. To include the random behavior
of the tasks, we added ±5% uniform random noise to the mean of
hotspot activation rates, ±5◦C to the temperature and ±0.3GHz to
the frequency.

6.3 Results and comparison for the SAC-based
DRL model

The proposed DRL based method demonstrates robust behavior
during the control for multiple task to core mapping.

First of all, Fig. 7 demonstrates the MTTF of the system under
three different kinds of scheduling policies - Linux default schedul-
ing, non-hotspot-aware and hotspot-aware (HAT-DRL). MTTF is



Figure 7: Normalized MTTF results.

0 2000 4000 6000 8000

Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
h
re

s
h
o
ld

 V
o
lt

a
g
e
 S

h
if
t

0A

1A

2A

3A

0B

1B

2B

3B

Figure 8: Threshold voltage shift traces of all 8 hotspots for
the test device under HAT-DRL mapping.

0 2000 4000 6000 8000

Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

T
h
re

s
h
o
ld

 V
o
lt

a
g
e
 S

h
if
t

0A

1A

2A

3A

0B

1B

2B

3B

Figure 9: Threshold voltage shift traces of all 8 hotspots for
the test device under non-hotspot-aware mapping.

normalized with the longest core to be 10 years. The MTTF of each
core is presented by the worst hotspot on that core. And the sys-
tem overall lifetime is limited by the shortest MTTF of all its cores.
Non-hotspot-aware policy is a comparison with the hotspot-aware
such that its input state vector does not distinguish the elements
between the different types of hotspots. In our case, we replaced
the elements of agings and voltage shifts of hotspot A and B with
their mean value of each core in the state vector, hence the agent
network cannot distinguish the hotspot stresses in the input state.
It shows that HAT-DRL balances the stress between all cores and
hotspots, which achieves about 50% and 160% longer lifetime than
non-hotspot-aware and Linux default scheduling.

Training process and rewards are presented in Fig. 5(a). We
implement episodes in the training which remarkably makes the
training efficiently. Every 2500 seconds (15s between 2 iteration
actions) the environment resets and the aging grows from start.
As we see the aging and threshold voltage shift of eight hotspots
grow very unevenly in the first few episodes, then they gradually
grow evenly, meaning the worst stressed hotspot is dynamically
mitigated.

Further, Fig. 8 shows the threshold voltage shift history of hots
pots under hint and postmark controlled by HAT-DRL. The curves

of hotspots under the same tasks with non-hotspot-aware schedul-
ing is shown in Fig. 9. It is obvious that HAT-DRL minimizes the
variation and maximum of threshold voltage shift quite well.

7 CONCLUSION
We propose a novel learning-based task to core mapping techniques
to improve the lifetime and reliability based on advanced deep rein-
forcement learning technique. The new method, called HAT-DRL, is
based on the observation that on-chip temperature sensors may not
capture the true hotspots of the chip, which can lead to sub-optimal
control decision. The new method is able to reduce the temperature
by 1◦C tested on Intel i7-8650U CPU. It also improves the lifetime
by 50% over the limitation by temperature measurements and 160%
over the Linux default scheduling. Furthermore, the threshold volt-
age shift is significantly mitigated for the multicore system.

REFERENCES
[1] H. Amrouch, V. M. van Santen, T. Ebi, V. Wenzel, and J. Henkel. 2014. Towards

interdependencies of aging mechanisms. In 2014 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). 478–485. https://doi.org/10.1109/
ICCAD.2014.7001394

[2] Anup Das, Rishad A Shafik, Geoff VMerrett, Bashir M Al-Hashimi, Akash Kumar,
and Bharadwaj Veeravalli. 2014. Reinforcement learning-based inter-and intra-
application thermal optimization for lifetime improvement of multicore systems.
In Proceedings of the 51st Annual Design Automation Conference. ACM, 1–6.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[4] Intel. [n. d.]. Intel Performance Counter Monitor (PCM). https://software.intel.
com/en-us/articles/intel-performance-counter-monitor.

[5] Naghmeh Karimi, Thorben Moos, and Amir Moradi. 2019. Exploring the effect of
device aging on static power analysis attacks. UMBC Faculty Collection (2019).

[6] Taeyoung Kim, Zeyu Sun, Hai-Bao Chen, Hai Wang, and Sheldon X.-D. Tan. 2017.
Energy and Lifetime Optimizations for Dark Silicon Manycore Microprocessor
Considering Both Hard and Soft Errors. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems 25, 9 (2017), 2561–2574.

[7] Z. Liu, S. X.-D. Tan, X. Huang, and H. Wang. 2015. Task migrations for distributed
thermal management considering transient effects. IEEE Trans. on Very Large
Scale Integration (VLSI) Systems 23, 2 (2015), 397–401.

[8] Shiting Lu, Russell Tessier, and Wayne Burleson. 2015. Reinforcement learning
for thermal-aware many-core task allocation. In Proceedings of the 25th edition
on Great Lakes Symposium on VLSI. 379–384.

[9] S. Pagani, P. D. S. Manoj, A. Jantsch, and J. Henkel. 2020. Machine Learning for
Power, Energy, and Thermal Management on Multicore Processors: A Survey.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39, 1 (2020), 101–116.

[10] Vijeta Rathore, Vivek Chaturvedi, Amit K Singh, Thambipillai Srikanthan, and
Muhammad Shafique. 2019. LifeGuard: A Reinforcement Learning-Based Task
Mapping Strategy for Performance-Centric Aging Management. In Proceedings
of the 56th Annual Design Automation Conference 2019. ACM, 179.

[11] Sheriff Sadiqbatcha, J. Zhang, H. Zhao, H. Amrouch, J. Hankel, and Sheldon X.-D.
Tan. 2020. Post-silicon heat-Source identification and machine-learning-based
thermal modeling using infrared thermal imaging. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (2020). https://doi.org/10.1109/TCAD.
2020.3007541

[12] Jayanth Srinivasan, Sarita V Adve, Pradip Bose, and Jude A Rivers. 2004. The
case for lifetime reliability-aware microprocessors. ACM SIGARCH Computer
Architecture News 32, 2 (2004), 276.

[13] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[14] Sheldon X.-D. Tan, Mehdi Tahoori, Taeyoung Kim, Shengcheng Wang, Zeyu
Sun, and Saman Kiamehr. 2019. VLSI Systems Long-Term Reliability – Modeling,
Simulation and Optimization. Springer Publishing.

[15] Wei Wang, Nanpeng Yu, Jie Shi, and Yuanqi Gao. 2019. Volt-VAR Control in
Power Distribution Systems with Deep Reinforcement Learning. In 2019 IEEE
International Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm). 1–7. https://doi.org/10.1109/SmartGridComm.
2019.8909741

https://doi.org/10.1109/ICCAD.2014.7001394
https://doi.org/10.1109/ICCAD.2014.7001394
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://doi.org/10.1109/TCAD.2020.3007541
https://doi.org/10.1109/TCAD.2020.3007541
https://doi.org/10.1109/SmartGridComm.2019.8909741
https://doi.org/10.1109/SmartGridComm.2019.8909741

	Abstract
	1 Introduction
	2 The overall framework and algorithm flow
	3 Motivation example
	3.1 Thermal sensors v.s. true hotspots
	3.2 Motivation example for hotspot-aware v.s. non-hotspot-aware

	4 Data-driven model for hotspot activation
	5 Proposed DRL-based approach
	5.1 Formulating the task-to-core control problem as an MDP
	5.2 Task-to-core control by SAC-based reinforcement learning

	6 Experiment results and discussions
	6.1 Results for hotspot activation indicator modeling
	6.2 Experiment setup for DRL-based control model
	6.3 Results and comparison for the SAC-based DRL model

	7 Conclusion
	References

