2105.00391v1 [cs.CR] 2 May 2021

arxiv

SPINNER: Automated Dynamic Command Subsystem
Perturbation

Meng Wang, Chijung Jung, Ali Ahad, and Yonghwi Kwon
University of Virginia
Charlottesville, Virginia 22904, USA
{mwétd,cj5kd,aa5rn, yongkwon}@virginia.edu

ABSTRACT

Injection attacks have been a major threat to web applications. De-
spite the significant effort in thwarting injection attacks, protection
against injection attacks remains challenging due to the sophisti-
cated attacks that exploit the existing protection techniques’ design
and implementation flaws. In this paper, we develop SPINNER, a
system that provides general protection against input injection
attacks, including OS/shell command, SQL, and XXE injection. In-
stead of focusing on detecting malicious inputs, SPINNER constantly
randomizes underlying subsystems so that injected inputs (e.g.,
commands or SQL queries) that are not properly randomized will
not be executed, hence prevented. We revisit the design and im-
plementation choices of previous randomization-based techniques
and develop a more robust and practical protection against various
sophisticated input injection attacks. To handle complex real-world
applications, we develop a bidirectional analysis that combines
forward and backward static analysis techniques to identify in-
tended commands or SQL queries to ensure the correct execution
of the randomized target program. We implement SPINNER for
the shell command processor and two different database engines
(MySQL and SQLite) and in diverse programming languages includ-
ing C/C++, PHP, JavaScript and Lua. Our evaluation results on 42
real-world applications including 27 vulnerable ones show that it
effectively prevents a variety of input injection attacks with low
runtime overhead (around 5%).

1 INTRODUCTION

Injection attacks have been a long-standing security problem, listed
as the first security risk in the OWASP Top 10 security risks [116].
Among them, input injection (e.g., shell command/SQL injection)
is one of the most prevalent injection attacks. It happens when
malicious inputs (shell commands or SQL queries) are injected
and executed on the victim system. Despite the effort in thwarting
injection attacks [16, 21, 27, 30, 68-71, 75, 80, 84, 101, 106, 123,
137, 145, 158, 159, 164], injection vulnerabilities are still pervasive
in practice because, in part, the ever-evolving attacks exploit the
limitations of the prevention measures.

Existing Prevention Techniques. Input sanitization/validation
is a recommended practice to prevent input injection attacks [10,
16, 75]. However, implementing a sanitizer that can filter out all
malicious inputs is extremely challenging due to the large and com-
plex input space (e.g., grammars for OS/shell commands and SQL
are expressive, allowing various inputs). Another straightforward
approach is first identifying all allowed inputs on each call-site
of APIs and only allowing them. However, this cannot prevent
attacks that inject the allowed inputs twice. For instance, attack-
ers can inject new “rm” commands to a vulnerable code snippet

“system("rm logfile $opt")” (Details can be found in Appen-
dix 9.3.1). There are more advanced prevention techniques, such as
those leveraging dynamic taint analysis [30, 68, 70, 106, 123, 145].
However, they suffer from over/under tainting issues and runtime
overhead. Techniques that build models of benign commands/SQL
queries to detect anomalies [21, 69, 137] require accurate modeling
of attackers and target applications, which have been evolving over
the years.

Randomization-based Prevention. There are techniques [27,
120] that randomize SQL keywords (in SQL engine and benign
SQL queries) to prevent the execution of injected SQL queries that
are not randomized. While the idea is effective, they have a crit-
ical limitation in their design choices. To deploy the techniques,
they rely on a proxy to translate a randomized query to a stan-
dard query using a parser. If the proxy’s translator fails because
of sophisticated SQL queries and grammar differences between
SQLs (e.g., SQL dialects [85] as discussed in Section 5.4.1), mali-
cious queries can be injected or benign queries may not be properly
executed. Diglossia [140] is an injection attack prevention tech-
nique that proposes the dual-parsing approach. Unfortunately, it
also relies on the accuracy of the parser used in the dual-parser
(Details on how Diglossia will fail are presented in Section 5.4.2).
Other randomization techniques [27, 120] are susceptible to attacks
that leak randomization key because their randomization scheme
is not dynamically changing. Attackers can then prepare and inject
a randomized command.

Our Approach. We propose a robust and practical randomization-
based technique called SPINNER to prevent input injection attacks.
The technique works by randomizing words in inputs (e.g., com-
mands and SQL queries) and the subsystems (e.g., shell process and
SQL engine) that parse and run the inputs. The randomized subsys-
tems does not allow commands that are not properly randomized
to be executed. For instance, if ‘rm’ is randomized to ‘xc’ (rm » xc),
the original command ‘rm’ will result in an error (i.e., the command
not found error) while ‘xc’ command will work as same as the
original ‘rm. To ensure the intended benign commands from appli-
cations work correctly with the randomization, we analyze target
programs to identify and instrument the intended commands to be
randomized. To this end, legitimate commands are correctly ran-
domized at runtime, while injected commands are not randomized
and prevented from being executed.

1) Revisiting Design Choices: To mitigate sophisticated attacks
evading existing randomization based preventions [27, 120], we
revisit the design choices made by existing techniques. First, we
eliminate the proxy and parser requirement for the shell process
randomization by hooking APIs called before and after the shell
process’s original parser. Second, for SQL engines that are difficult

to blend our technique in, we develop a bidirectional randomization
scheme based on a scanner (Details in Section 4.2.2) to prevent
sophisticated attacks (e.g., those exploiting bugs/flaws of parsers).
Third, SPINNER changes the randomization scheme at runtime so
that even if an attacker learns a previously used randomization key
and injects a randomized command, the attack will fail.

2) Program Analysis Approaches for Input Randomization: We
propose practical program analysis techniques that can effectively
analyze large and complex programs for input randomization. In
particular, we show that our approach, bidirectional data flow anal-
ysis (Section 4.1.1), is scalable to real-world applications including
WordPress [65]. Our contributions are summarized as follows:

e We propose an approach that can prevent various types of input
injection attacks by randomizing the subsystems that run or
process the inputs.

e We design and develop an effective static data flow analysis
technique called bidirectional analysis that can identify intended
commands in complex real-world applications.

e We implement a prototype of SPINNER in diverse programming
languages, including C/C++, PHP, JavaScript and Lua.

e QOur evaluation results show that it prevents 27 input injection
attacks with low overhead (=5%).

e We release our implementation and data-sets publicly [146].

2 DEFINITIONS AND BACKGROUNDS

Scope of Inputs for Randomization. We consider three types of
inputs to randomize: OS/shell commands, SQL queries, and XML
queries. This is because they are commonly exploited in web server
applications that SPINNER aims to protect, according to the OWASP
Top 10 document [116]. Those inputs are used by a program to
leverage external programs’ functionalities. For example, a program
can compress files by executing a shell command that executes
‘gzip’. SQL queries are for SQL engines to store and retrieve values
to/from the database. An XML query is an interface for interacting
with XML entities (e.g., reading and writing values in the entities).
Choice of Term ‘Command’ SPINNER focuses on preventing
three different input injection attacks: shell injection, SQL injection,
and XXE injection attacks. In this paper, we use the term command
to include the three input types to facilitate the discussion. We con-
sider SQL queries and XXE entities commands as they eventually
make the subsystem run or execute particular code.

Command Execution APIs. We define a term Command Execu-
tion API to describe APIs that execute a command or a query. A list
of command execution APIs is shown in Table 1.

Command Specification. A command passed to a command exe-
cution API should follow a certain specification. Specifically, shell
commands should use correct command names or external exe-
cutable binary file names. SQL queries should follow the predefined
SQL keywords and grammar. If a command does not follow the
specification (e.g., a wrong file name), its execution will fail.
Input Injection Vulnerability. Input injection happens when an
attacker injects malicious inputs to the composed command string
or SQL query string passed to a command execution API as an
argument. In practice, programs may try to validate and sanitize
suspicious inputs that might contain malicious inputs. Typically,
when a program composes a command, the command name (e.g.,

‘gzip’) is defined as a constant string or loaded from configura-
tion files that are not accessible to attackers (hence can be trusted).
However, some programs allow users to define arguments of the
command. As a result, attackers aim to inject malicious commands
through the arguments. After a command is composed, the pro-
gram calls command execution APIs (e.g., exec(), system(), or
mysql_query()) to fulfill the command execution.
Limitations of Existing Randomization Techniques. There
are existing techniques [26, 27, 120] that randomize the keywords
and grammars. While we share the similar idea to them, our work
differs from them as we aim to solve the following three limitations.
First, existing techniques leverage parsers to randomize/deran-
domize commands. Unfortunately, attackers often exploit bugs or
design flaws in parsers to evade the prevention techniques that rely
on them. In particular, the parsers may not handle complicated be-
nign inputs (e.g., because of the use of SQL dialects [85]), breaking
benign functionalities or allowing injection attacks. We elaborate
details of such weaknesses of existing techniques in Section 5.4.1.

SPINNER handles this by integrating our randomization scheme
to the internal parser in the shell process and leveraging our
bidirectional randomization scheme for SQL engines. The bidirec-
tional randomization is grammar and keywords agnostic, mean-
ing that attacks exploiting flaws of parsers will be prevented.

Second, existing automated approaches [120, 149] leverage static
analysis techniques to identify intended (i.e., benign) commands in
the source code. We find that their static analysis techniques are
not scalable to complex real-world applications.

We propose a practical and scalable bi-directional data flow anal-
ysis (Details in Section 4.1.1) that can effectively identify benign
commands in complex real-world applications.

Third, existing techniques randomize the command specification
statically, meaning that the commands are randomized only once. If
an attacker learns the randomization scheme (e.g., via information
leak vulnerabilities), the attacker can inject randomized commands
which will not be prevented.

SPINNER dynamically randomizes the command specification
whenever a command execution API is called. To this end, even
if an attacker learns a previously used randomization key, it will
not help subsequent attacks.

Threat Model. SPINNER aims to prevent remote input injection
attacks (including SQL/XXE injections) on server-side applications.
We expect server-admins and web-developers as typical users of
SPINNER. Client-side attacks such as XSS (Cross Site Scripting) and
XSRF (Cross Site Request Forgery) are out of the scope. We assume
the subject program and inputs from trusted sources (defined by
the user) are benign, but inputs from untrusted sources can include
malicious commands. Typical trusted sources are local configu-
ration files. We trust local software stacks, including OS kernel,
applications, and libraries. If they are compromised, attackers can
disable SPINNER. SPINNER does not focus on preventing attacks that
compromise non-command parts such as arguments of commands
(e.g., a directory traversal attack). SPINNER does not aim to prevent
binary code injection (e.g., shellcode injection).

Vulnerable website

¢ C & website address’

URL: [http://... Arm,/*} Fo3

FILTER_VALIDATE_URL)===false)

die("invalid url"); 8

. , 4 system("wget ".$url); 9

. 5 /* Executed commands: wget, rm */ 10
I 11

LI

(a) Malicious Input (b) Vulnerable Program

$url =($_POST['url']; 6
if(filter_var($url, 7

system(

/* Executed command: wget (qjpc) wget /bin/wget
Failed command: rm */
rm /bin/rm

Org. |/|b|i|n|w|g|e|t|r|m|...

sur1 =(3_POstl url']) Rond,

if(filter_var($url,

FILTER_VALIDATE_URL)===false)

" (d) Randomization Scheme
die("invalid url");

Cmd Binary Path Rand.Cmd. Rand. Path

Lt Mogurl);

(c) Instrumented Program .
(e) Randomized Commands

Figure 1: Example of SPINNER Preventing a Command Injection Attack

3 MOTIVATING EXAMPLE

Figure 1 shows an example of a shell command injection attack to
a vulnerable server-side program written in PHP. From a website
shown in Figure 1-(a), an attacker sends a malicious input (with
a malicious command) through the textbox on the webpage. The
server-side program, shown in Figure 1-(b), is vulnerable because
it directly passes the input to system(), executing the injected
command (line 4). It tries to sanitize inputs via filter_var () at
line 2 (commonly recommended [11, 22, 151]), but it fails.

Command Specification Randomization. In this example, SPIN-
NER randomizes commands in the shell process. There are two types
of shell commands [89]: (1) internal commands that are imple-
mented inside of OS/shells such as ‘cd’ and (2) external commands
that are implemented by separate binaries such as ‘grep’.

For internal commands, we randomize the command names by
hooking and overriding APIs in the shell process (Details in Sec-
tion 4.2.1). For external commands, since the shell process will look
up a binary file for the external command to execute (i.e., check
whether a binary for the command exists), we randomize the binary
file names and paths (e.g., ‘rm’ = ‘os’ as shown in Figure 1-(e)) in
the file I/O APIs. This will prevent injected malicious (and not ran-
domized) commands from being executed. For the randomization,
we use a one-time substitution cipher. Specifically, as shown in
Figure 1-(d), we create a mapping between the original input and
its randomized character. To execute a command “wget” under this
randomization scheme, one should execute “qjpc” as shown in
Figure 1-(e). To prevent brute-force attacks against the random-
ized commands, SPINNER provides two mitigations. First, SPINNER
creates a new randomization scheme on every new command to
mitigate attacks leveraging previously used randomized commands.
Second, to further make the brute-force attacks difficult, SPINNER
supports one to multiple bytes translation, enlarging the searching
space. Details can be found in Appendix 9.3.3.

Instrumentation by SPINNER. Once the commands are random-
ized in the shell process, the system cannot understand commands
that are not randomized. In other words, it affects every command
in the program including intended and benign commands, breaking
benign functionalities. To ensure the correct execution of intended
commands, we statically analyze the program to identify intended
(hence benign and trusted) commands that are originated from
trusted sources (e.g., defined as a constant string or loaded from a
trusted configuration file). We describe our bidirectional command
composition analysis for identifying intended commands in Sec-
tion 4.1.1. Then, we instrument the target program to randomize
intended commands. Figure 1-(c) shows the instrumented program.

At line 9, as “wget” is the intended command (because it is a con-
stant string), it is instrumented with “rand (). Note that $url that
includes an injected command “{rm, . /*}” is not instrumented be-
cause it is originated from an untrusted source ($_POST[‘url’]).

1 | "Constant” :"String”,

2 | "Configuration":["/var/www/html/wp/wp-config.php",
"/var/www/html/wp/wp-config-sample.php",
"/etc/php5/cli/php.ini"],

3 | "API ["ini_get"]
(a) For WordPress
4 "Constant":"String", 6 "Constant" :"String",
5 | "API" :["getenv"] 7 | "Directory":["/var/www/html/cgi-bin"]
(b) For Composer (c) For Lighttpd

Figure 2: Trusted Command Specification Examples

4 DESIGN

Figure 3 shows the workflow of SPINNER with two phases.

4.1 Instrumentation Phase

SPINNER takes a target program to protect and specification of
trusted commands as input. It analyzes the target program to iden-
tify intended commands to instrument randomization primitives.
Target Program. SPINNER analyzes and instruments target pro-
grams’ source code. Hence, it requires the target program’s source
code. Note that we do not require source code of the subsystems
(e.g., shell process and database engines).

Trusted Command Specification. Another input that SPINNER
takes is the trusted command specification which is a list of trusted
source definitions as shown in Figure 2. We provide a semi-automated
tool to derive the trusted command specification as well (Details
can be found in Appendix 9.1.7). There are four types of trusted
source definitions: (1) a constant string containing known com-
mand names such as hard-coded command (Lines 1, 4, and 6), (2)
a path of a configuration file that contains definitions of trusted
commands (Line 2), (3) a path of a folder where all the files in that
folder are trusted (Line 7), and (4) APIs that read and return values
from trusted sources (Lines 3 and 5).

The first type represents a command in a constant string. We
consider a hard-coded command is an intended command by the
developer. The second type is to handle a command defined in the
program’s configuration file. For example, a PHP interpreter can
execute other applications (e.g., sendmail for mail()) which is
defined in php. ini. We include the php. ini file in our analysis as
shown in Figure 2 at line 2. The third type is a folder. It is to define all
files under the folder to be trusted. For instance, a web-server may
trust all the CGI (Common Gateway Interface) programs found at

Target Program
Command
e Composition P
Analysis —> Instrumentation
Trusted (Sectiony 411) (Section 4.1.2)
Commands Spec. o
I ———
Instrumentation Phase >

Existing Subsystems

Subsystem Randomization

Instrumented N
Program o (Section 4.2)
i 4 Randomization/
Ralzd Q v i Derandomization
Su;”’izefio,; ? Runtime Support Component
Po, (Section 4.3)

Runtime Phase

Figure 3: Overview and Workflow of SPINNER (Design details are presented in the annotated sections)

the time of offline analysis with a configuration shown in Figure 2 at
line 7. The fourth type describes APIs that read trusted sources. For
instance, getenv () returns values of local environment variables.
If a user assumes that the local environment variables cannot be
modified at runtime, it can add the API to the trusted sources.

For most applications, specifying the first type (i.e., hard-coded
commands) as a trusted source is sufficient. For some applications,
configuration files may define trusted commands. In such a case,
the command specification should include the trusted configuration
files’ file paths so that, at runtime, commands originated from the
configuration file are trusted. Note that SPINNER checks whether a
trusted source (e.g., configuration file) can be modified by remote
users. If there is any data flow between untrusted sources and
trusted sources, SPINNER notifies the users to redefine the trusted
command specification. Similar to the values from configuration
files, values from databases are trusted, only if there is no data-flow
from untrusted sources to the database. We define untrusted sources
as any sources controlled by remote users (i.e., potential attackers).
Further, to prevent modifications of trusted sources, we hook APIs
that can change the trusted sources (e.g., setenv ()) to make them
read-only and detect attempts to modify during our evaluation.

4.1.1 Command Composition Analysis. Analyzing data-flows
from the trusted command definitions (i.e., sources) to command
execution APIs (i.e., sinks) is a challenging task, particularly for
complex real-world applications. A naive approach that uses for-
ward analysis (e.g., taint analysis) from trusted sources to sinks
often leads to the over-approximation (i.e., over-tainting), resulting
in instrumenting variables that are not relevant to the commands
(i-e., false positives) hence breaking benign functionalities. On the
other hand, backward data-flow analysis from the sinks (i.e., tracing
back the origins of variables from arguments of command execu-
tion APIs) to trusted sources is also difficult due to the complicated
data dependencies. After analyzing challenging cases from both
analyses, we realize that combining two analyses can significantly
reduce their limitations (i.e., over and under-approximations).
Bidirectional Command Composition Analysis. We propose
a bidirectional analysis, which is the key enabling technique that
makes SPINNER effective in analyzing complex data-flow in real-
world applications. Specifically, we conduct forward data flow anal-
yses (1) from trusted sources to identify variables holding trusted
commands and (2) from untrusted sources to identify variables that
are not relevant to commands. SPINNER automatically derives the
definitions of untrusted sources: (a) return values of APIs that are
not included in the trusted command specifications (e.g., gets())
and (b) constant strings that do not contain command names. From
the forward data flow analysis, we obtain two sets of variables: a
set of trusted variables and another set of untrusted variables.

1 bool there_is_another patch (...) {

2 chars_read =

3 p_name[i] = parse_name (} o)

4

51}

6 int mak¢_tempfile (char const **name, ..., fhar const *real_name, ...) {
7 ﬁf dir_name (real_name);

8 sprintf (| S H
9

10}

11 int main() {

12 there_is_another_patch (...);

13 outfd = make_tempfile (|

14 do_ed_script (...);

15 |}

16 | void do_ed_script (...){

17 static char const editor_program[] =

18 sprintf (buf, "%s %s%s",
19 pipefp = popen eed)s
}

(a) Source code of GNU-Patch executing a command with popen()

|

(c) Backward Data Flow Analysis and Bidirectional Analysis Results

Figure 4: Bidrectional Analysis on GNU-Patch [66]

Next, we conduct a backward data flow analysis from the argu-
ments passed to command execution APIs (e.g., system()). While
we analyze the program to trace back the origin of the arguments, if
we encounter a node originated from a variable in the trusted vari-
able set, we conclude the argument is an intended command hence
instrumented. If it meets a node originated from a variable from
the other set, untrusted variable set, we stop the backward analysis
and conclude that the argument is not relevant to the command.
Running Example. Figure 4-(a) shows a real-world program GNU-
Patch [66]’s code snippet consisting of 4 functions. At line 19,
it calls popen() which executes a shell command composed at
line 18. The buf variable contains the composed command from
editor_programand TMPOUTNAME via sprintf (). First,editor_
program is defined as a constant string containing a known binary
program path in line 17, meaning that it is an intended command
and hence instrumented. Second, TMPOUTNAME is defined through
multiple functions. It is used as an argument of make_tempfile ()
function (line 13). Inside the function, it is defined by sprintf ()
where its value is originated from the dir_name () function. As
described, there are multiple functions involved to define the value
TMPOUTNAME, making it difficult to trace back the origin.

1) Forward Analysis: Figure 4-(b) shows the results of our forward
data flow analysis from the trusted/untrusted sources. @ shows
the data flow graph from the trusted source. It shows the /bin/ed
command is propagated to buf. @ and @ show two graphs from

untrusted sources. Specifically, @ shows that the return value of
dir_name () (line 7) is propagated to *name (line 9), affecting the
first argument of the make_tempfile(). As a result, the graph in-
clude the make_tempfile () asanode, meaning that the function’s
return values are untrusted and not intended commands. O also
shows that the values from untrusted source pget_line() (read-
ing inputs from the standard input) are propagated to outname.

2) Backward Analysis: Figure 4-(c) shows our backward analysis
from the sink function: popen (). Table 1 shows sink functions (i.e.,
Command Execution APIs) for each command subsystem. From
the argument of popen (), buf, we analyze how the argument is
composed. First, it identifies editor_program[] is concatenated
via sprintf () at line 18. Second, it finds out that TMPOUTNAME
is a part of the command and it is defined by make_tempfile(),
which can be found in the forward data flow analysis result @).

3) Connecting Forward and Backward Analysis Results: The bidirec-
tional analysis merges results from forward and backward analysis
together as shown in @ and @). Note that our backward analysis
will terminate when it reaches any nodes in the forward data flow
analysis results. This effectively reduces the complexity of the data
flow analysis. Typically, the forward analysis is mostly localized
and the backward analysis quickly reaches nodes in the forward
analysis results. Note that SPINNER conducts inter-procedural anal-

Algorithm 1: Bidirectional Analysis for Instrumentation

Input: F,;: a set of functions in a target program.
Output: Ins,,: a set of variables to instrument.
1 function BIDIRECTIONALANALYSIS(Fye;)
Insoys < {}
for VF; € Fy,; do
for Yu; € F; do
if v; is from a trusted source then
‘ FORWARDANALYSIS(CREATEDEPTREE(0;, F;, TRUSTED), v;)
else if v; is from an untrusted source then
\ FORWARDANALYSIS(CREATEDEPTREE(0;, F;, UNTRUSTED), 0;)

PRI

o | for VF; € Fy, do
10 for VS; € F; do

11 if S; is a sink function then

12 Vargs « ARGS(S;)

13 for YV; € Vyyys do

n | BackwarDANALysis(V;, F;)

15 return Ins,,;

16 procedure FORWARDANALYSIS(Ty, V)
17 | for VYV € GETUsES(V) do

18 if V is an argument x of a function F then

19 ‘ FORWARDANALYSIS(APPENDNODE(T,,,, F), X)

20 else if V is a variable in an assignment X = expression’ then
21 L FORWARDANALYSIS(APPENDNODE(T,;, X), X)

22 procedure BACKWARDANALysIS(V, F)
23 | if V is a command from a trusted source then

L . . . 24 ‘ Insgy < Insgyy UV
ysis if function arguments (e.g., name at line 9) or global variables 25 | else if V is from an untrusted source then
(e.g., TMPOUTNAME at line 18) are affected. 26 | | return
27 | else
28 Viefs < GETDEFVARsS(V)
Table 1: Command Execution APIs (Sink Functions). 2 for VV; € Vg do
30 if V; € ArGs(F) then
T Functi Lang.
ype unction Ang 31 Falers < GETCALLERS(F)
exec()l, system(), popen () C/C++ 32 for VF; € Vgjjers do
passthru(), system(), popen(), shell_exec(), exec(), proc_open() PHP 33 L BACKWARDANALYSIS(GETCALLERARG(V;, F;), F;)
Shell ;

e os.execute(), io.popen() Lua 34 else if V; is a global variable then
span ()%, exec)%, execFile ()’]S 35 ngefs « GETGLOBALDEFVARs(V;)
xmlParseFile (), xm1ParseChunk () C 36 for VV] € ngefs do

XML simplexml_load_file(), simplexml_load_string(), xpath(), PHP 37 L BACKWARDANALYSIS(V]" GETCONTAININGFUNC(VJ'))
xml_parse() 38 else

Database mysqli::multi_query(), mysqli::prepare() PHP 39 ‘ BACKWARDANALYSIS(V;, F)

(MySQL) mysql_query (), mysql_real_query() C/C++ -

Database sqlite_query(), sqlite_exec() PHP

(SQLite) sqlite3_prepare(), sqlite3_exec() C/C++

TIncluding exec (), execvpe (), execvp(), execv (), execlp(), execle(), execl(), execve ().
2Inclucling spawnSync () ,execSync (), execFileSync().

Algorithm. Alg. 1 shows our bidirectional data flow analysis algo-
rithm for identifying variables used to create commands.

— Step 1. Bidirectional Analysis: BIDIRECTIONALANALYSIS takes a set
of functions of a target program F,; as input. Then, it conducts
the forward analysis (lines 3-8). Specifically, for each variable (lines
3-4), if a variable is from a trusted source (line 5), it creates a tree
that describes dependencies between variables as shown in Fig-
ure 4-(b)-e. The return value is the root node of the tree and it
is passed to FORWARDANALYsIS (line 6). Similarly, we also build
trees for untrusted sources (lines 7-8) as shown in Figure 4-(b)-®
and @ Next, it starts the backward analysis (lines 9-14). In each
function and each statement (lines 9-10), it searches for invocations
of sink functions (line 11). For each identified sink function, we
obtain variables used as arguments of the function (line 12). For
each argument V;, we call the BACKWARDANALYSIS (line 14) that
identifies the commands that need to be instrumented.

— Step 2. Forward Analysis: Given a variable V, it enumerates all the
statements that use V via the GETUSsEs function, which returns the
results of the standard def-use analysis [72, 141]. For each statement
that uses V, if it is used as an argument x of a function call F (line
18), we add the function as a node to the tree (T,,) via APPENDNODE
which returns a subtree where the added node is the root of the
subtree. It continues the analysis by recursively calling FORWARD-
ANALYsIs with the subtree and the variable x (line 19). If V is used
in an assignment statement ‘x = expression’, where expression con-
tains V, it adds the node x to the tree, and call FORWARDANALYSIS
with the subtree and x (lines 20-21).

— Step 3. Backward Analysis: From a variable V and a function F con-
taining V, BACKWARDANALYSIS identifies variables that are used to
compute the value of V recursively (lines 23-39). For the identified
variables, it checks whether the variable is a command and is from
a trusted source (i.e., it is found during the trusted forward analysis
results) (line 23). If so, the variable is added to Insyy;, which is a set

that contains variables to be instrumented. If the variable can be
found in the untrusted results, it terminates (lines 25-26).

If V is also computed from other variables (e.g., V=V, +V}), we
also find origins of the contribution variables (e.g., Vx and V)
(line 28). Specifically, GETDEFVARs(V) returns such contributing
variables at the last definition of the variable V (e.g., Vy and V).
The contributing variables are stored in V.. We check the vari-
able’s type of each variable V; in Vgeg. If it is an argument of the
current function, we extend our analysis into the caller function.
GETCALLERS returns all of them. To find out the corresponding
variable passed to the function in the caller, we use GETCALLER-
ARG(V;). Then, we continue the analysis in the caller function F;
(lines 32-33). If V; is a global variable, it searches all statements
that define the variable, then get rvalues of the statements via GET-
GLOBALDEFVARS (line 35). It recursively calls BACKWARDANALYSIS
to extend the analysis on the functions defining the global variable
via GetContainingFunc (line 37). Lastly, if V; is a local variable (line
38), it recursively conducts backward analysis (line 39).
Inter-procedural Analysis. We build a call graph [131] of a target
program for inter-procedural analysis. In Alg. 1, GETCALLERS uses
the call graph. After our intra-procedural analysis, we leverage the
call graph to identify callers and obtain backward slices from them.
We repeat the analysis until there are no more callers to analyze.
Indirect Calls. Call targets of indirect function calls are deter-
mined at runtime. As they are not included in the call graphs we
generate, they may cause inaccurate results. To handle this problem,
given an indirect call, we conservatively assume that the call target
can be any functions in the program that have the same function
signature (e.g., number of arguments and types). However, as this
is a conservative approximation, we may include more callers. To
mitigate this, we check the origins of the variables passed to callee
functions. If the origins are not relevant to commands (i.e., they are
not passed to command execution APIs), we prune out the caller.

4.1.2 Program Instrumentation. We instrument the variables
identified in the previous section (Section 4.1.1).

function init_vars() {
$bin = "1s";

7 __function delete lo,
> M

function create lo 9|}
10 | function run_command() {
11 $cmd = $bin.$options;
20 systemtsemd)y;]
3 13 | }

(a) Source Code

AWN R

(b) Data-dependency
Graph for $bin

Figure 5: Command used in Multiple Places

Avoiding Instrumenting Non-command Strings. If an instru-
mented variable is used in other contexts that do not execute com-
mands, it could break the benign execution. Figure 5 shows an
example. The sink function, system(), executes $cmdline, which
is composed by concatenating $bin and $options (line 11) where
$bin at line 2. Our analysis described in Section 4.1.1 will attempt
to instrument "1s" at line 2, adding a randomization primitive
to the definition of the command: “$bin = rand("1s")”. In an
original execution, “1s.1log” file is created at line 5 and unlinked
at line 8. However, the instrumentation at line 2 will change the
file name to a randomized name. For instance, if the randomized
name is “mt” (e.g., 1s = mt), the instrumented program will create
and unlink “mt . log”, which is different from the original program.

To solve this problem, we leverage dependency analysis to find a
place to instrument that does not affect the other non-command ex-
ecution APIs (e.g., fopen() and unlink() at lines 5 and 8). Specif-
ically, we obtain a data-dependency graph, as shown in Figure 5-(b).
Nodes are statements in line numbers, and edges between the nodes
represent the direction of data flow. From a target variable for in-
strumentation ($bin), we identify statements that use the target
variable. If we instrument at the root node ($bin), it affects all
the child nodes, including those with non-randomized functions
(lines 5 and 8). Hence, among the nodes between the root node and
the node including the system() function (line 12), we pick the
node line 11 to instrument. This is because instrumenting at line
11 only affects the command execution API system(). Essentially,
from the root node, we pick a child node along the path to the sink
function. We move toward the sink function until the picked node’s
children do not include any non-randomized functions.

4.2 Runtime Phase

4.2.1 OS/Shell Command Processor Randomization. We random-
ize the OS/shell command processor by hooking two critical paths
of the command execution: (1) the creation of the shell process and
(2) file I/O and shell APIs that access external binary files in the
shell process. Recall that there are two types of OS/shell commands:
internal and external [89]. For all commands, a program spawns a
shell process (e.g., ‘//bin/sh’). The shell process, which contains
the implementation of internal commands, directly executes in-
ternal commands (e.g., cd). External commands are executed by
further calling APIs (e.g., execve) that run an external program.

Figure 6 shows how SPINNER randomizes internal and external
commands, following the typical execution flows. To execute an
OS/shell command, the program often composes a command via
string operations. If a command is composed of trusted inputs,
the command names are randomized via the instrumentation ().
Commands originated from the untrusted inputs are not random-
ized (@). The composed command is then passed to the command
execution APIs such as system (). In the following paragraphs, we
explain how SPINNER works after the command execution APIs are
called depending on whether the command is internal or external.
Internal Commands. To execute an internal command, an ap-
plication calls a command execution API, which spawns a shell
process (€)) and passes the command to the spawned process. As
the internal commands are implemented within the shell process,
it does not make further API calls to access external binary files.
External Commands. After the shell process is spawned (€)),
if the command is an external command (@), the shell process
calls a few files I/O APIs such as stat () to check whether the
binary file for the command exists or not (@). If the binary exists,
it will execute the binary (@)). We provide a randomized view of
the underlying file system by hooking file I/O and shell APIs and
only allowing access with properly randomized file paths. If the
command is not randomized, API calls such as stat () will fail,
preventing the execution of the command. A randomized command
is derandomized and executed via APIs such as execve () (@).

4.2.2 Database Engine Randomization. Database engines are
complicated and some are proprietary (i.e., closed source), meaning

Instrumented Application

[~ Trusted Input

o Instrumentation o
Randomize
[Shell command \1
(keywords from trusted input are randomized) | Legend
. Component
[Command Execution APIs (e.g., system()) } of SPINNER
: Intra-process
9: Spawn a shell process Workflow
Initializer Hook > Inter-process
Workflow
. Randomized
Component

Execute an
external binary

Derandomize

{ External Binary Program Process }

Shell Process (e.g., ‘/bin/sh’)

Figure 6: OS/Shell Command Processor Randomizer

that it is difficult to randomize them in practice. As a result, pre-
vious approaches (e.g., [27]) leverage a database proxy to parse a
randomized query and rewrite it to a standard (i.e., derandomized)
query. Implementing a robust parser for multiple database engines
is challenging as shown in Section 5.4.1. Moreover, they rely on a
list of known SQL keywords to randomize and derandomize, failing
to prevent sophisticated attacks presented in Section 5.4.2.

update profile set name=E'%\'s%' mmmp CsDwHz sjWNelz qzH VwLz=G'%\'s%'
T T Randomization ‘ gT

Figure 7: Scanner Recognizing Words for Randomization

Bidirectional Randomization with Scanner. We propose a bidi-
rectional randomization approach that applies the randomization
scheme twice, one for randomization and another for reverse-
randomization. Unlike existing techniques requiring knowledge
of known SQL keywords and grammar, SPINNER uses a scanner
that works without such knowledge. As shown in Figure 7, SPIN-
NER only needs patterns of words, special characters, and strings.
For each identified word, it (1) derandomizes randomized intended
queries and (2) randomizes (and breaks) injected malicious queries
at the same time. Specifically, in a program that accesses a database,
SPINNER instruments strings that are used to compose a SQL query
as shown in Figure 8 (@)). Note that untrusted inputs are not ran-
domized by this instrumentation (@)). Finally, randomized trusted
inputs and untrusted inputs are combined to compose a query and
then passed to a SQL API such as mysql_query (). We hook such
SQL APIs to apply our reverse-randomization (or derandomization)
scheme before the query is passed to the database engine (€)). We
apply it for every recognized term (not only for the SQL keywords
because our scanner does not have the notion of known SQL key-
words), resulting in derandomizing all the randomized terms as
well as randomizing (with the reverse-randomization scheme) SQL

queries from untrusted inputs. To this end, if all terms in a SQL
query are from the trusted sources, the resulting query can be suc-
cessfully executed. However, if some terms are from the untrusted
inputs, they are randomized (via the reverse-randomization) and
cannot be executed, preventing injection attacks.

— Handling Escaping String Constant: Note that Figure 7 shows an
example of PostgreSQL’s unique feature of escape string constant,
which is a special way of defining a string with a capital letter
‘E’ before a string. Since it is a unique grammar for PostgreSQL,
many parsers [24, 81, 102, 148, 160] do not support it, resulting in
a parsing error. SPINNER considers the ‘E’ as a word, and random-
ize/derandomize correctly, preserving content in the string.

Instrumented Application

Trusted Input

Legend

1 Instrumentation
e . Component of SPINNER
Bidirectional
Randomization
@ Randomization

B Reverse-
SQL APIs (e.g., mysql_guery()) Randomization

API Hook SQL Query (with the
first randomization)
m SQL Query (with the
- second randomization)

SQL Query
(Terms from trusted

SQL Query = Intra-system Workflow
(Terms from trusted input are derandomized,
terms from untrusted inputs are r ized) ++# Inter-system Workflow

]
{ = Database Engine (e.g., MySQL, SQLite)

Figure 8: Randomization for Database Engines

Execution of Intended SQL Queries. Figure 9-(a) shows exam-
ples of how a benign SQL query is processed by SPINNER with a
randomization scheme shown in Figure 9-(c), along the execution
path of Figure 8. Specifically, when an intended SQL statement is
executed, it goes through the instrumentation (@) hence random-
ized and then is passed to a SQL API. The randomized query is
shown in the second row of Figure 9-(a). All recognized terms, in-
cluding the table name ‘users’, are randomized. Then, in our hook
function of the SQL API, we apply our reverse-randomization for
all terms. Since there are no terms from untrusted input, every term
is derandomized (€)), as shown in the third row. The last column
of Figure 9-(a) shows whether the query can be executed without
errors or not. The query after @) is executable.

Execution of Injected SQL Queries. An injected SQL query is not
randomized because it is not instrumented (@). Figure 9-(b) shows
an example query with an injected query highlighted in red. Specif-
ically, assume that select * from users where id=‘$id’ is
the vulnerable SQL query, and an attacker injects a query by pro-
viding a value highlighted in Figure 9-(b) to $id. When the query
is passed to the SQL APIs, the beginning part of the query (from
trusted inputs up until the single quote) is randomized, but the
later part outside the quotes (i.e., the injected query) is not. On
the hooked API, SPINNER applies the reverse-randomization in ev-
ery term we recognize. As a result, it effectively derandomizes the
(trusted) beginning part of the query while randomizing the later
part of the query from untrusted inputs. Note that the reverse-
randomization applies the substitution rule in the reverse order (i.e.,

Query Executable

Original select * from users where id=123’ Yes
After o xoyozi * lvrj kxovx teovo na=‘123" No
After 9 select * from users where id=‘123" Yes

(a) Benign SQL Query Example

Query Executable
Original select * from users where id="[I GICXCCIPIOS ;' Yes
After o xoyozi * Ivrj kxovx teovo na="[[EGICKEIPN0E ;’ No
After @) | select * from users where id="| NN No

(b) Injected SQL Query Example (Injected Query is_)

(c) Randomization Scheme
(Randomization: Org. > Rand., Reverse-Randomization: Rand. - Org.)

Figure 9: Example of Benign and Injected Query Execution

Randomized + Original). For example, ‘a = £’ is a randomization
rule of a reverse-randomization ‘f - a’. After @), the injected query
is prevented as it is reverse-randomized.

Randomized Table Name Translator. The bidirectional random-
ization scheme randomizes all terms that are not originated from
trusted sources. As a result, we observe that if a table name in a SQL
query is originated from untrusted sources without quotes (e.g.,
‘select * from $input’), the table name can be randomized, re-
sulting in a wrong query. While using input as a table name is a poor
programming practice, there exist programs composing queries in
that way. To this end, we additionally instrument tb1_derand () to
the variables that are not quoted. At runtime, it will check whether
the instrumented string contains a randomized table name. If and
only if it contains a single table name, we derandomize it to the
original table name. Note that it does not derandomize if the in-
strumented string contains multiple terms (i.e., words) to prevent
injection attacks targeting the instrumented variables.

4.2.3 XML Processor Randomization. An XML processor is a
program or module that parses an input XML file and executes the
annotated actions in parsed XML elements described via tags.
XML External Entity (XXE) Attack. Among the entities, there
is an XML External Entity (XXE) which refers to data from external
sources (e.g., other files or networks). The entity can refer to a
sensitive password file using the following entity: “<!ENTITY xxe
SYSTEM "file://FILE">”. An XML processor parses the entity,
then it reads to include the content of ‘FILE’ in the output.

XML Processor Randomization. We randomize external resources’
namespaces such as file names and network addresses at APIs that
access them (e.g., file I/O APIs and network APIs). With the ran-
domization, only the API calls with randomized file names, paths,
IPs, and URLs will succeed. To ensure benign requests are properly
handled, we analyze a target program to identify all intended XML
files. Specifically, we identify XML files and data passed to the XML
sink functions shown in Table 1. If they are originated from trusted
sources (e.g., constants or from configuration files), we mark them
to be randomized at runtime. At runtime, when a trusted XML file
is loaded, we randomize resource names/paths of XXEs in the file.
As we randomized the namespaces in the application through APIs,
intended accesses through the randomized XXEs will be successful.
For untrusted XMLs, file names, paths, and URLs in XXEs are not
randomized and passed to the file I/O and network APIs, resulting

in errors and preventing injection attacks. Note that when SPINNER
analyzes the program to identify trustable XML files, we assume all
the local XML files during the offline analysis are not compromised.
SPINNER’s goal is to prevent future XXE injection after the analysis.

4.3 SPINNER Runtime Support

4.3.1 Dynamic Randomization Support. SPINNER randomizes
commands in the subsystems at runtime dynamically. We change
our randomization scheme (or table) on every command execution
function invocation (or per input) so that knowing previously used
randomization schemes will not help subsequent attacks.

4.3.2 Randomization Primitives. The runtime support provides

two primitives: randomization and derandomization primitives.
— Randomization Primitive is a function that takes a string as input
and returns a randomized string via a mapping between each byte
in the input and randomized byte(s). To mitigate brute-force attacks
against the randomized commands, the mapping is created per input.
It also supports multiple randomization schemes that convert 1 byte
to 2 bytes (‘x’ = ‘ab’), 4 bytes (‘x’ » ‘cdef’), and 8 bytes (‘'x’ »
‘ghijklmn’). Details can be found in Appendix 9.3.3.

At runtime, we maintain a pair of a randomized string and its ran-

domization table, which we call randomization record. The record is
later used in the derandomization function. Note that two different
strings can be randomized into the same string with two different
one-time pads. For example, a one-time pad ‘a = ¢’ and another
one-time pad ‘b = ¢’ will randomize both ‘a’ and ‘b’ to ‘c’, leading
to the ambiguity in derandomization. To solve this problem, when
it randomizes, it checks whether the randomized string exists in the
existing randomization records. If it exists, it randomizes the input
string again until there are no matching strings in the records.
— Derandomization Primitive takes a randomized string as input
and returns the original value of the string. Given a list of random-
ization records, it finds a record that has a matching randomized
string. Then, it leverages the record’s randomization scheme to
derandomize the input string.

5 EVALUATION

Objectives. We evaluate SPINNER on four aspects. First, we present
analysis results on the instrumented code and its impact to show
the correctness of SPINNER (Section 5.1). Second, we run PoC ex-
ploits against a set of vulnerable programs and their SPINNER instru-
mented versions, to show the effectiveness of SPINNER in preventing
command injection attacks (Section 5.2). Third, we measure the
performance overhead of SPINNER (Section 5.3). Fourth, we present
case studies to show the effectiveness of SPINNER in advanced
command injection attacks (Section 5.4).

Implementation. We implement our static analysis tool by lever-
aging LLVM [4] for C/C++, php-ast [108] and Taint’em All [125]
for PHP, Acorn [92] for JavaScript and Lua SAST Tool [32] for Lua.
SPINNER uses LD_PRELOAD that requires access to the shell. Hence,
it does not support a web hosting service such as cPanel [33].
Setup. All the experiments were done on a machine with Intel Core
17-9700k 3.6Ghz, 16GB RAM, and 64-bit Linux Ubuntu 18.04.
Program Selection. We search publicly known input injection
vulnerabilities (including SQL and XXE injections) in recent five
years. Among them, we reproduced 27 vulnerabilities and used the

Table 2: Selected Programs for Evaluation and Instrumented Results

Instrumentations

Instr. Affecting # Affected Vars./Funcs. Dep. Analysis

. Vulner- Lang- X

ID Name Size ability uage%s) Const. Dynamic Sinks BB' Fnz Fns3 L0C314 Globals F“n°36 For- Back-

1-5 6-10 >11 (Total) (Total) (Total) ward ward
s1 WordPress [65] 4260 MB Cmd’ [35] PHP 38 279 127 18 7 3 1 458 1139 (178) 295 (15) 7.04 (90) 102%° 6.9°
s2 Activity Monitor [57] 099MB Cmd/ [38] PHP 6 12 9 0 6 2 4 21 98 (27) 277 (2) 753 (34) 77 63"
s3 AVideo-Encode [163] 893MB Cmd. [110] PHP 2 48 8 3 27 3 37 21 098 (63) 0 (0) 136 (79) 1.7 6.7
s4 Pepperminty-Wiki [143] 23.00 MB XXE® [36] pHP' 0 2 0 0 2 0 2 0 0 (2) 0 (0) 1 (2) 1 1
s5 PHPSHE [2] 1191 MB XXE® [43] PHP* 54 183 26 7 5 54 0 23 382 (%) 0 (0) 376 (67) 5.7 3.6
s6 Pie Register [139] 551MB SQL’ [37] PHP* 0 68 5 0 2 0 0 73 306 (26) 3 (3) 428 (27) 63 72°
s7 Lighttpd [88] 17.40 MB SQL’ [34] € 5 4 0 1 0 5 5 0 05 (5 0 (0 05 (5 16 7.3
s8 Leptonica [23] 2410 MB Cmd.’ [41] C 0 0 0 2 2 0 2 0 2 @ 0 0 2 (2 24 121
s9 GNU-Patch [66] 496 MB Cmd. [42] c) 0o 7 2 0 1 6 100 (6) 086 (5) 357 (1) 49 102
510 Goahead [60] 1820 MB Cmd.” [47] C 0o 0 0 1 10 1 0 1@ 0 (0 1 (1 3 9
s11 LuCI [112] 4310MB Cmd. [52] C,Lua 19 102 17 2 52 19 37 84 224 (136) 0 (0) 196 (132) 24 6.4
s12 jison [166] 1.25MB Cmd.” [45] Js° 0 2 0 0 2 2 0 0 0o © 0 (© 0 (0 1 3
s13 Kill-port [73] 3480 KB Cmd” [129] JS° 0 5 0 0 2 5 0 0 o © o0 (© o0 (0 1 45
s14 egg-scripts [58] 5840 KB Cmd.” [49] JS§ 2 1 0 0 3 3 0 0 0 (0) 0 (0 0 (0) 1 3.3
s15 node-df [7] 40.00KB Cmd” [104] JS° 0 1 0 0 10 1 0 1 @ o (0 1 (O 1 2
s16 PM2 [144] 442MB Cmd/ [126] JS° 7 25 2 1 34 21 23 2 077 (21) 0 (0) 1.95 (31) 13 53
s17 fs-git [95] 130.00KB Cmd.” [46] JS° 0 1 0 0 1 0 0 1 1 1 0 (0 2 (@ 2 4
s18 Meta-git [157] 262.00 KB Cmd.” [98] JS° 0 1 0 0 30 0 1 2 @ 0 © 2 (@ 1 5
s19 Listening Process [96] 131.00KB Cmd.” [109] JS§ 0 3 0 0 3 3 0 0 0 (0) 0 (0) 0 (0) 1 3
s20 NPM Isof [54] 18.00KB Cmd’ [51] Js° 0o 3 0 0 3 3 0 0 0 (0 o0 (© 0 (0 1 2
521 NPM opencv [121] 2260 MB Cmd. [50] Js® 1 2 0 0 3 3 0 0 o © o0 (© o0 (0 1 2.3
522 logkitty [118] 51400KB Cmd. [44] JS° 0 2 0 0 2 0 0 2 2 (3 0 (0 25 (4 3 3
523 gitpublish [28] 3200KB Cmd’ [99] JS° 0 9 0 0 3 2 0 7 2 ® 0 (0 2 (8 1 5.7
s24 codecov [19] 20000KB Cmd. [53] JS° 4 0 20 6 4 2 0 05 (3 0 (0 05 (3 1 7.4
525 pdfinfojs [63] 77.00KB Cmd” [48] JS° 0 3 0 0 3 3 0 0 o © o0 (© o0 (0 1 43
s26 libnmap [79] 157.00KB Cmd. [39] Js® 0 1 0 0 1 0 0 1 4 @ 1 @1 4 @ 3 4
s27 pdf-image [94] 1400KB Cmd.” [40] JS§ 0 1 1 0 2 0 0 2 0 (2) 0 (0 2 (4) 2 7.5

1: Basic block. 2: Function. 3: Multiple Functions. 4: Local variable (Avg.). 5: Global/member variable (Avg.). 6: Functions (Avg.). 7: Shell Command Injection. 8: XXE Injection.
9: SQL Injection. ¥: PHP and XML. }: PHP, XML, and SQL. *: PHP and SQL. §: JavaScript. a: 4 FN (False negative) cases. 5: 24 FN cases. y: 3 FN cases. 8: 2 FN cases.
(a, B, vy, 0): No FN cases when we apply the bidirectional analysis. FN cases are caused when only forward or backward analysis is applied alone.

vulnerable programs as shown in Table 2. Note that the versions of
the evaluated programs can be found in Appendix 9.1.6 (Table 4).
The selected programs are diverse, including popular programs
such as WordPress [65] and OpenCV [121]. They are also written
in diverse programming languages such as PHP, C/C++, Lua, and
JavaScript. The programs and vulnerabilities are on [146].

Input Selection. To obtain realistic test input (or test data) that
can cover diverse aspects of the program, we leverage publicly
available input data sources. For instance, Leptonica [23] provides
278 test cases with 192 images. Other programs also have developer
provided test cases: NPM-opencv [121], fs-git [95], PM2 [144] and
codecov [19]. For the programs with less than 100 test cases, we
extend them on different inputs with around 100 cases. For the
programs that accept PDFs (e.g., pdfinfojs), videos (e.g., Avideo-
Encoder), and patches (e.g., GNU-Patch), we crawl more than 100
samples for each type from public websites [3, 105]. To run the
programs for the performance evaluation (Section 5.3), we leverage
Apache Jmeter [64] and Selenium [138] for web applications. We
also use Selenium scripts provided by [15] to simulate requests and
interactions for web services such as WordPress. OLPTBench [55],
which aims to conduct extensive tests on relational database sys-
tems, is used to test diverse SQL queries. In addition, a large publicly
available XML data-set (1026 MB total) [100] is used. We also in-
clude popular web servers [13, 29, 88, 111], SQL engines [115, 142],
and XML libraries [90, 122, 130, 153] in our evaluation.

5.1 Instrumentation Results and Correctness

Table 2 presents the results of our instrumentation in detail.

Statistics. The “Const.” and “Dynamic” columns represent the num-
ber of completely constant commands and the number of dynami-
cally composed commands with other values respectively. There
are three groups based on the number of variables involved in cre-
ating a command or query dynamically. The first group includes
cases where 1~5 variables are involved, that are trivial to verify
that they do not break benign functionalities. Most cases belong to
this group. The second and third groups indicate 6~10 and more
than 11 variables are involved respectively. We checked them all
that they do not break benign functionalities. Examples and details
can be found in Appendix 9.2.6. The “Sinks” column represents the
number of sink functions identified by SPINNER. Note that while
there are applications that require many instrumentations (e.g., 462
for WordPress), most of them are constants or dynamic cases with
only a few variables are involved. WordPress is a content manage-
ment system stores/retrieves contents from databases, PHPSHE is a
website builder, and Pie Register is a user registration form service.
LuClI is a web interface for configuring OpenWrt [114] that runs
various commands in nature. These programs include many SQL
queries, leading to a large number of instrumentations. However,
patterns of queries in those programs are simple and similar to each
other. Further, we analyze the dynamically composed commands.

Most cases are appending file names to base folders to compose
paths and adding table names in queries.

Correctness. We run test cases and analyze all the instrumented
code to show the instrumented programs’ correctness.

— Testing Instrumented Programs: To empirically show that our
instrumentation does not break the original functionalities, we run
test cases that can cover instrumented code and other parts of the
program code affected by the instrumentation. We leverage test
cases provided by developers of the target applications. If there are
no provided test cases or test cases are not sufficient, we manually
extend test cases to cover those. All the test cases are presented
in Table 7. In total, we run 15,916 test cases for the 27 programs,
achieving the average code coverage of 78.17%. For the code that is
not covered by the test cases, we manually checked that they are
not affected by our instrumentation.

— Manual Analysis of Instrumentation: We analyze the impact
of our instrumentations and categorize them into three types: in-
strumentations that affect (1) a single basic block (the BB! column),
(2) a single function (the Fn® column), and (3) multiple functions
(the Fns® column). The first category only affects statements within
its basic block. Mostly, they are the cases where a constant string
is instrumented and directly passed to a sink function. For this
case, it is trivial to prove that it does not impact the correctness
of the program as the impact of the instrumentation is contained
within the current basic block. For the second category (i.e., single
function), the instrumented values are stored into local variables,
but it does not affect other functions (i.e., they are not returned or
passed to other functions). Hence, the impact of instrumentation is
limited within the function. The last category (i.e., multiple func-
tions) means that the instrumentation affects multiple functions
because the instrumented value is stored to a variable shared be-
tween functions (e.g., global variable) or passed to other functions
as arguments. We verify all the cases in the three categories that
they do not break the original functionalities of the target programs
by tracing dependencies caused by our instrumentations. Details
with example code for the three categories are in Appendix 9.2.6.

We also inspect local and global variables and functions affected
by the instrumentations. In the next three columns, the average
number of variables/functions affected by each instrumentation
is presented, followed by the total number of variables/functions
affected in the entire program. The average number of variables
and functions affected per instrumentation is not large: less than
12 local variables, 2 global variables, and 8 functions. We verify all
of them and SPINNER does not break the benign functionality.

5.2 Effectiveness

5.2.1 Against PoC (Proof of Concept) Exploits. We reproduce
27 PoC exploits on SPINNER instrumented programs, as shown in
Table 2. The “Vulnerability” column shows attack type (e.g., Com-
mand injection, XXE injection, and SQL injection) with citations.
All the PoC (Proof of Concept) attacks are successful in the vanilla
versions, while prevented in the SPINNER protected programs.

5.2.2 Against Automated Vulnerability Discovery Tools. To see
whether SPINNER can prevent diverse malicious commands, in ad-
dition to the tested CVEs in Section 5.2.1, we leverage three auto-
mated vulnerability discovery tools, Commix [31], sqlmap [20], and

10

xcat [150], to test a diverse set of known malicious commands. We
launch 102 command injection attacks, 97 SQL injection attacks,
and 24 XXE injection attacks, leveraging the three tools. They es-
sentially brute-force the target programs’ inputs using the known
malicious commands. Then, they check whether it is vulnerable to
command injection attacks. The result shows that SPINNER success-
fully prevents all 223 tested attacks. Details are in Appendix 9.1.2.

5.2.3 Bidirectional Analysis Compared to Backward and Forward
Analysis. We apply forward and backward data flow analysis alone
to the programs and presented the average length of dependency
chain obtained from each analysis in the last two columns of Table 2.
We observe that data-flow analysis accuracy, including forward and
backward analyses, decreases as the data dependency chain’s length
becomes larger than 10 in general, causing false negatives. We find
such cases in WordPress [65], Activity Monitor [57], and Pie Regis-
ter [139], marked with a, 5, y, and § with the red cell background
color. We manually verified that all the results from our analy-
sis are true-positives. In particular, we run other static/dynamic
taint-analysis techniques [5, 6, 119] and manually verify that the
dependencies identified by the existing techniques but not by ours
are false-positives. Appendix 9.2.4 and 9.2.5 provide more details
including examples and accuracy of the bidirectional analysis.
5.3 Performance Evaluation
Runtime Overhead (Overhead: ~5%). We measure the runtime
overhead of SPINNER on the 27 programs in Table 2 as shown
in Figure 10. Note that each application has 4 measures as we
use 4 different randomization schemes mapping 1 byte to 1, 2, 4,
and 8 bytes. In each bar, the bottom black portion represents the
overhead caused by creating randomization tables, including those
for rerandomization, while the top gray portion is the overhead
from the computations for randomization. For each program, we use
100 typical benign test inputs that cover instrumented statements.
For each input, we run ten times and take the average. The average
overhead is 3.64%, 3.91%, 4.28% and 5.01% for 1, 2, 4, and 8 bytes
randomization schemes respectively.

8%
6%
4%
2%

HNE\’) Iﬂ‘Dl\&OSO—‘NM?LO(DI\wQEQﬂNMQLOEDl\
7 - Hgﬁ—tNNNNNNNN

Flgure 10: Runtime Overhead

0%

Throughput of Full Stack Web Servers (WordPress). We mea-
sure the overhead on throughput of full-stack web services to under-
stand the performance overhead of realistic deployment of SPINNER.
We applied SPINNER to four different web servers: Apache 2.4.41,
Lighttpd 1.4.55, Cherokee 1.2.102, and Openlightspeed 1.5.11. We
also apply SPINNER to SQLite 3.31.0, PHP 7.2, and WordPress 4.9.8,
along with the listed vulnerable plugins. Apache Jmeter [64] is used
to request 10,000 concurrent webpages, covering various function-
alities of WordPress, including posting blogs, changing themes, and
activating/deactivating/configuring plugins. The average overhead
on throughput is 3.69% (4.33%, 3.76%, 3.18%, and 3.47% overhead on
Apache, Lighttpd, OpenLightSpeed, and Cherokee respectively).

Overhead on Database Engines and XML Parsers. We apply
SPINNER to SQLite and MySQL and run various SQL queries us-
ing data-sets from OLTP-Bench [55]. The result shows that the
overhead with SQLite is 4.9% and MySQL is 5.3%. We also measure
the overhead on four XML parsers [90, 122, 130, 153]. The average
overhead is 1.4% (Details in Appendix 9.1.4).

Memory Overhead. SPINNER needs to maintain randomization
tables on memory during execution. Memory overhead for one
randomization table is 54 bytes, 106 bytes, 209 bytes and 417 bytes
respectively when SPINNER is configured to randomize 1 to 1, 2, 4,
and 8 bytes. At runtime, the memory overhead is ~1MB on large
programs such as WordPress, with 8 bytes randomization scheme.

5.4 Case Study

5.4.1 Advanced SQL Injections Exploiting Parsers. We present a
few sophisticated injection attacks exploiting flaws of 11 popular
parsers [9, 24, 25, 76, 78, 81, 91, 102, 107, 148, 160], showing the
weaknesses of the parser-based for randomization approaches [27,
120, 140]. All of the cases are successfully prevented by SPINNER,
demonstrating the effectiveness of SPINNER.

Query 1) Query 2

(a) Injected SQL Query via COmment|

Query 1 Comment

(b) py-sqlparse and JS-parser do not recognize a query in [Gomment

Al: Dialect SQL Grammar

(c) Parsers recognize # as [

o Query 1) Query 2 i

[=¥

> (d) Successfully injected SQL query

%) Query 1

7 seect from users where name i (selectname from cusomers)

w

2 (e) php-parse recognizes the sub-query as a Stingl
Query 1 Query 2

=

S solect™ from users where name="\"; drop table users; ~*

E” (f) Successfully injected SQL query

g Query 1

A - ~

£ select from users where name="\"; drop table users; =

<

(g) Moz-sqlparser and py-sqlparse recognize the injected query as a [

Figure 11: SQL Injections that Parsers Fail to Recognize (Yel-
low: keywords, Blue: strings)

A1: Dialect SQL Grammar ((a), (b), and (c)). The dialect SQL
attack shows that using a parser is an insecure design choice of the
existing techniques. For instance, MySQL supports a SQL dialect: if
aquery in a comment starts with “/*!”, it can be executed, as shown
in Figure 11-(a). However, many parsers do not support this dialect.
An attacker can inject a malicious payload inside the comment,
exploiting parsers that cannot recognize queries in a comment. We
confirmed py-sqlparse [24] and JS-parser [148] fail to recognize
injected queries in a comment as shown in Figure 11-(b). In addition,

11

as shown in Figure 11-(c), PostgreSQL [67] considers the ‘4’ symbol
as an XOR operator, while others typically consider it as a single line
comment operator. An attacker can also inject a malicious query
with ‘#’. Note that some techniques may automatically remove
queries after ‘#’, removing injected queries. However, this will break
benign queries using # is an XOR operator as shown in as shown
in Figure 11-(c): doing a simple XOR encryption on a password.

A2: Sub-query Parsing Error ((d) and (e)). Attackers can inject
malicious queries as a subquery to exploit approaches relying on
parsers that cannot parse sub-queries correctly. For instance, Fig-
ure 11-(d) shows a SQL statement including two queries where
the second query is a sub-query. As shown in Figure 11-(e), php-
parse [78] parses the entire sub-query as a string. Note that we
present a specific case study for this attack type in Section 5.4.2.

A3: String Parsing Error ((f) and (g)). Moz-sqlparser [102] and
py-sqlparse [24] have a bug in parsing a string [12], allowing in-
jected queries to be considered as a string that is not a randomiza-
tion target. For example, Figure 11-(f) shows two SQL queries where
the Query 2 is an injected malicious query. [24, 102] mistakenly
consider the entire second query as a part of a string (blue marked).

5.4.2 Comparison with Existing Techniques. We compare SPIN-
NER with two state-of-the-art techniques [140, 149].

mysql_query("SELECT * FROM users WHERE name IN
(SELECT name FROM customers WHERE name = '{$_POST['id'}")";
(a) Vulnerable PHP Code

$_POST['id’] = SELECT * FROM users WHERE name IN (SELECT name FROM
"X';DROP TABLE USERS;"; customers WHERE name = 'X';DROP TABLE users;")
(b) Malicious Input (c) Injected Query
Root Root
Stmt1 Stmt1
SELECT || FROM WHERE KEhENu | | Skzw FpEKE
* users | | name X # MaXRa | | gLaX X
customers || name IN (SELECT IMaAbgXRa f| name IN (SELECT

name FROM customers
'WHERE name = 'X'

name FROM customers
'WHERE name = 'X'

(d) Original Parse Tree (e) Shadow Parse Tree

Figure 12: Diglossia with php-parse [78]

Diglossia [140] vs SPINNER. Diglossia runs two parsers, the orig-
inal parser and the shadow parser, together. The shadow parser is
created to use a different language than the original parser and its
input is obtained by translating the original input into the other
language. At runtime, it obtains two parse trees from the parsers.
Different nodes between the trees indicate the parts originated
from untrusted sources. If identical nodes are representing key-
words (not strings/numbers), it detects an injection attack. In this
experiment, we implement our own version of Diglossia using php-
parse [78] and SPINNER’s randomization scheme for the translation,
since Diglossia does not provide its source code.

Figure 12-(a) shows a vulnerable PHP code. Given the malicious
input shown in Figure 12-(b), the malicious query is injected as
shown in Figure 12-(c). As explained in Section 5.4.1, the parser
failed to parse the subquery after the IN keyword, resulting in an
incorrect tree as shown in Figure 12-(d). The last two children nodes
(with red borders) of WHERE are unknown type nodes. When the
malicious input is injected, both parse trees have the injected query
as unknown nodes, resulting in a broken trees. As a result, it failed
to recognize injected query. Note that Figure 12-(d) and (e) show

that they have identical nodes, marked with red borders. However,
they are considered as literal nodes, hence not considered as an
injected code. Worse, while the parser fails to process the query, it
does not show error messages but silently suppresses the errors,
missing the opportunities to detect the attack. On the other hand,
SPINNER successfully prevents the injected SQL query DROP TABLE
users from being executed. Note that the performance of SPINNER
(about 5%) is slightly better than and Diglossia (7.54%).
sqlrand-1lvm [149] vs SPINNER. sqlrand-1lvm [149] is an imple-
mentation of SQLRand using LLVM. It hooks mysql_query () to
tokenize a randomized input query and compare each token with a
list of randomized SQL keywords. It then derandomizes the matched
tokens and then pass the deranomized query to the SQL engine.

Query Executable
Original select * from users where id=*[INGICRCCIPI0E ;’ Yes
* sd_c
Randomized select123 fl‘OlTl)123 users where123 id="[ll No
Derandomized | select * from users where id=" [GIECXCOIDEOS ;' Yes

Figure 13: SQL Injection Example with sqlrand-1lvm [149]

1) SQL Injection with New Keywords: sqlrand-llvm maintains a
list of known SQL keywords and another list of randomized key-
words. If a query with a keyword that is not included in the list
are injected, it cannot prevent. For instance, as shown in Figure 13,
SQL keywords in the original query are randomized by appending
123 to the keywords. During the derandomization process, if it
encounters a SQL keyword that is not randomized, it considers the
keyword is injected. However, it does not support exec and proc
keywords according to the sqlrand-llvm’s source code [149]. As
shown in Figure 13, exec and proc in the injected query (high-
lighted) are not detected. Note that exec proc can execute a stored
procedure called proc. SPINNER prevents the attack with a similar
performance: SPINNER (5%) and sqlrand-llvm (4.13%).

2) Breaking Benign Queries: sqlrand-llvm uses strtok() to ran-
domize/derandomize keywords even if they are a part of a string.
This results in an error if a string contains a SQL keyword. Consider
aquery “select * from users where name=°‘$name’”, where
the value of $name is ‘grant’. Its randomized query is “select123
* from123 users wherel23 name=‘grant’”. The value grant
is from the user at runtime, hence not randomized. Unfortunately,
grant is one of the known SQL keywords used in sqlrand-llvm,
meaning that it will detect an injection attack (false positive) be-
cause the grant is not randomized. SPINNER does not have this
issue as it does not randomize string type values.

6 DISCUSSION

Prepared Statements. Prepared statements [103] aim to prevent
SQL injections by separating input data from a SQL query during
the query construction. While effective, they have limitations. First,
some SQL keywords are not supported in prepared statements
such as PASSWORD and DESC (5 more in Appendix 9.3.2). Second,
changing existing SQL queries to prepared statements requires
manual effort. Note that we manually check 866 SQL queries from
all our target programs, and none of them is a prepared statement,
showing the needs of SPINNER in practice (Appendix 9.3.2).

12

Memory Disclosure on Randomization Records. SPINNER main-
tains randomization records that contain previously used random-
ization schemes. Attackers who can leak the memory pages con-
taining the records may obtain SPINNER’s previously used keys.
However, SPINNER chooses a new randomization key on every new
input. Hence, knowing previous randomization keys does not help
in launching subsequent attacks. Also, existing memory protection
techniques [77] can be used to protect the records.

Limitations. When a target application is updated, one needs to
run SPINNER to analyze and instrument the updated target appli-
cation. Typically, this simply requires re-running SPINNER on the
updated application. However, if an update significantly changes
program code relevant to the trusted commands, it requires man-
ual efforts to redefine the trusted command specifications. Fur-
ther, we analyze updates of 42 applications, including popular pro-
grams, to check whether updates in practice lead to changes in
trusted command specifications. The results show that they do
not change trusted command specifications. Details are in Appen-
dix 9.3.4. If an application runs a completely dynamic command
(e.g., system("$_GET[‘cmd’]"), SPINNER blocks it and notifies
users to fix the program.

7 RELATED WORK

Runtime Protection of Web Application. There have been many
researchers that have proposed runtime protection systems against
command and SQL injection attacks [21, 27, 30, 68-71, 106, 123,
137, 145]. Taint tracking techniques track untrusted user inputs in
server-side applications at runtime [30, 68, 106, 123, 145]. [69, 137]
leverage static analysis to infer possible benign commands and use
them to detect injection attacks. CANDID [21] employs dynamic
analysis to extract and model an accurate structure of SQL queries.
[70] proposes positive tainting that dynamically tracks trusted in-
puts. Unlike them, SPINNER focuses on randomizing trusted com-
mands, which is more lightweight than existing approaches (e.g.,
up to 19% overhead in [70]). Diglossia [140] proposes a dual parsing
technique that uses different languages during the parsing to detect
injected SQL queries. However, it relies on parsers which can be
exploited as shown in Sections 5.4.1 and 5.4.2.

Among the existing approaches, SQLRand [27, 120] is the closest
work to our approach. It randomizes SQL keywords and uses a
proxy that can parse and derandomize the randomized SQL state-
ments. Compared to SQLRand, SPINNER does not rely on parsers
which can be attacked and exploited as presented in Section 5.4.1.
There are also randomization based techniques such as Instruction
Set Randomization [17, 26, 82]. While sharing the randomization
idea, SPINNER’s design provides solutions for preventing advanced
attacks exploiting ambiguous grammars [85], as shown in Sec-
tion 5.4.1. [26] randomizes a programming language, leveraging a
similar method to SQLRand. However, it is vulnerable to attacks
exploiting language specification changes across different versions.
Security Analysis of Web Applications/Randomization. Re-
searchers have proposed various techniques to analyze vulnerabili-
ties in web applications [16, 75, 80, 84, 101, 158, 159, 164]. [75] uses
static analysis to identify vulnerabilities in PHP applications. Xie
et al. [164] propose a symbolic execution based program analysis

technique to find SQL injection vulnerabilities. String-taint analy-
sis [101, 158, 159] tracks untrusted substrings from user inputs to
prevent information leak attacks. [16] combines dynamic and static
analysis to find vulnerabilities in input sanitizers. SPINNER also uses
static taint analysis and data flow analysis. [8] studies the impact
of timing of rerandomization. SPINNER rerandomizes subsystems
per input event, following the paper’s recommendation.

Security Testing for Web Applications. Security testing aims to
identify inputs that can expose input validation vulnerabilities in
web applications [16, 18, 56, 74, 83, 93, 97, 132, 133]. [74] is a pioneer
of web application testing by injecting XSS and SQL attacks. Mcal-
lister et al. [97] propose a guided and stateful fuzzing technique to
improve the performance. Doupé et al. [56] propose incrementally
building a state machine during crawling to understand the internal
structure of the web applications for better web application fuzzing.
To enhance input generation efficiency, Martin et al. [93] leverage
model checking and static analysis, ARDILLA [83] applies symbolic
execution, and Saxena et al. [132, 133] use both dynamic taint analy-
sis and symbolic execution for input mutation space pruning. [127]
systematically measures security issues in the payment card in-
dustry’s webservices. SPINNER aims to provide runtime protection.
They are orthogonal to SPINNER and are complementary.

8 CONCLUSION

In this paper, we introduce SPINNER, a randomization based in-
put injection prevention technique. SPINNER is more robust than
state-of-the-art randomization techniques. Our extensive evalu-
ation results show that SPINNER successfully prevents advanced
attacks with low overhead (<4%). We release our tool’s source code
and result to public [146].

REFERENCES

[1] Dependency Manager for PHP. https://github.com/composer/composer.

[2] Online Shopping Website Framework. https://gitee.com/koyshe/phpshe.

[3] TED Ideas worth spreading. https://www.ted.com/talks.

[4] The LLVM Compiler Infrastructure Project. https://llvm.org/.

[5] 2020. GitHub - vimeo/psalm: A static analysis tool for finding errors in PHP

applications. https://github.com/vimeo/psalm.

[6] abiusx. 2015. Taint Tracking and Inference analysis and breaking tool. https:
//github.com/abiusx/taintless/.

[7] Adriano D.Giovanni. 2020. A cross-platform Node.js wrapper around the standard
Unix program df. https://github.com/adriano-di-giovanni/node-df.

[8] Salman Ahmed, Ya Xiao, Kevin Z Snow, Gang Tan, Fabian Monrose, and Danfeng
Yao. 2020. Methodologies for quantifying (Re-) randomization security and
timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 1803-1820.

[9] Alibaba. 2020. Generic SQL engine for Web and Big-data. https://github.com/

alibaba/nquery.

Muath Alkhalaf. 2014. Automatic Detection and Repair of Input Validation and

Sanitization Bugs. Ph.D. Dissertation. University of Californida, Santa Barbara.

Anastasionico. 2019. Good Practices: how to sanitize, val-

idate and escape in PHP. https://dev.to/anastasionico/

good-practices-how-to-sanitize-validate-and- escape-in-php-3-methods-139b.

Andi Albrecht. 2020. Multiple parsing failures identifying Comment Tokens .

https://github.com/andialbrecht/sqlparse/issues/558.

Apache. 2019. Apache Web Server. https://httpd.apache.org/.

Automattic. 2020. Automatically checks all comments and filters out the ones

that look like spam. https://wordpress.org/plugins/akismet/.

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:

Quantifying the Security Benefits of Debloating Web Applications. In 28th

USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa

Clara, CA, 1697-1714. https://www.usenix.org/conference/usenixsecurity19/

presentation/azad

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. 2008. Saner: Composing Static and Dynamic Analysis to Validate

[10]

[16]

13

(17]

[27

[28

[29]

Sanitization in Web Applications. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008). 387-401. https://doi.org/10.1109/SP.2008.22

Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanovic, and Dino Dai Zovi. 2003. Randomized Instruction Set Emula-
tion to Disrupt Binary Code Injection Attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS ’03). Association for
Computing Machinery, New York, NY, USA, 281-289.

J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. 2010. State of the Art: Automated
Black-Box Web Application Vulnerability Testing. In 2010 IEEE Symposium on
Security and Privacy. 332-345. https://doi.org/10.1109/SP.2010.27

Joe Becher. 2019. Codecov Node]JS Uploader. https://www.npmjs.com/package/
codecov.

Bernardo Damele A. G. and Miroslav Stampar. 2020. sqlmap. https://github.
com/sqlmapproject/sqlmap.

Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. 2010. CANDID: Dy-
namic Candidate Evaluations for Automatic Prevention of SQL Injection Attacks.
ACM Trans. Inf. Syst. Secur. 13, 2, Article Article 14 (March 2010), 39 pages.
https://doi.org/10.1145/1698750.1698754

BitDegree. 2017. Learn PHP Sanitize Input: Example of Input Sanitization In-
cluded. https://www.bitdegree.org/learn/php-sanitize-input.

Dan Bloomberg. 2020. Leptonica. http://www.leptonica.org/.

John Bodley. 2020. A non-validating SQL parser module for Python.
//github.com/andialbrecht/sqglparse.

BorseGo AG. 2019. Parse SQL (select) statements into abstract syntax tree
(AST) and convert ASTs back to SQL. https://github.com/godmodelabs/
flora-sql-parser/.

Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis,
and Vassilis Prevelakis. 2010. On the General Applicability of Instruction-Set
Randomization. IEEE Trans. Dependable Secur. Comput. 7, 3 (July 2010), 255-270.
Stephen W. Boyd and Angelos D. Keromytis. 2004. SQLrand: Preventing SQL
Injection Attacks. In Applied Cryptography and Network Security, Markus Jakob-
sson, Moti Yung, and Jianying Zhou (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 292-302.

Frank Lyder Bredland. 2016. git-publish. https://www.npmjs.com/package/
git-publish.

Cherokee. 2019. Cherokee is an innovative, feature rich, lightning fast and easy
to configure open source web server designed for the next generation of highly
concurrent secured web applications. https://cherokee-project.com/.

Erika Chin and David Wagner. 2009. Efficient Character-Level Taint Tracking
for Java. In Proceedings of the 2009 ACM Workshop on Secure Web Services (SWS
’09). Association for Computing Machinery, New York, NY, USA, 3-12.
Commix Project. 2020. Automated All-in-One OS command injection and ex-
ploitation tool. https://github.com/commixproject/commix.

Andrei Costin. 2017. Lua Code: Security Overview and Practical Approaches
to Static Analysis. In 38th IEEE Symposium on Security and Privacy Workshops
(SPW). IEEE. https://doi.org/10.1109/spw.2017.38

cPanel. 2021. Hosting Platform of Choice. https://cpanel.net/.

CVE. CVE-2014-2323. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-2323.

CVE. CVE-2016-10033.
CVE-2016-10033.

CVE. CVE-2017-10004.
CVE-2017-10004.

CVE. CVE-2018-10969.
CVE-2018-10969.

CVE. CVE-2018-15877.
CVE-2018-15877.

CVE. CVE-2018-16461. https://nvd.nist.gov/vuln/detail/ CVE-2018-16461.
CVE. CVE-2018-3757. https://www.cvedetails.com/cve/CVE-2018-3757/.
CVE. CVE-2018-3836. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-3836.

CVE. CVE-2019-13638.
CVE-2019-13638.

CVE. CVE-2019-976.
CVE-2019-976.

CVE. CVE-2020-8149. https://nvd.nist.gov/vuln/detail/CVE-2020-8149.

CVE. CVE-2020-8178. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8178.

CVE. 2017. CVE-2017-1000451.
name=CVE-2017-1000451.

CVE. 2017. CVE-2017-17562. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-17562.

CVE. 2018. CVE-2018-3746. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-3746.

CVE. 2018. CVE-2018-3786. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-3786.

https:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=
https://cve.mitre.org/cgi-bin/cvename.cgi?name=
https://cve.mitre.org/cgi-bin/cvename.cgi?name=

https://cve.mitre.org/cgi-bin/cvename.cgi?name=

https://cve.mitre.org/cgi-bin/cvename.cgi?name=

https://cve.mitre.org/cgi-bin/cvename.cgi?name=

https://cve.mitre.org/cgi-bin/cvename.cgi?

https://github.com/composer/composer
https://gitee.com/koyshe/phpshe
https://www.ted.com/talks
https://llvm.org/
https://github.com/vimeo/psalm
https://github.com/abiusx/taintless/
https://github.com/abiusx/taintless/
https://github.com/adriano-di-giovanni/node-df
https://github.com/alibaba/nquery
https://github.com/alibaba/nquery
https://dev.to/anastasionico/good-practices-how-to-sanitize-validate-and-escape-in-php-3-methods-139b
https://dev.to/anastasionico/good-practices-how-to-sanitize-validate-and-escape-in-php-3-methods-139b
https://github.com/andialbrecht/sqlparse/issues/558
https://httpd.apache.org/
https://wordpress.org/plugins/akismet/
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://doi.org/10.1109/SP.2008.22
https://doi.org/10.1109/SP.2010.27
https://www.npmjs.com/package/codecov
https://www.npmjs.com/package/codecov
https://github.com/sqlmapproject/sqlmap
https://github.com/sqlmapproject/sqlmap
https://doi.org/10.1145/1698750.1698754
https://www.bitdegree.org/learn/php-sanitize-input
http://www.leptonica.org/
https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://github.com/godmodelabs/flora-sql-parser/
https://github.com/godmodelabs/flora-sql-parser/
https://www.npmjs.com/package/git-publish
https://www.npmjs.com/package/git-publish
https://cherokee-project.com/
https://github.com/commixproject/commix
https://doi.org/10.1109/spw.2017.38
https://cpanel.net/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2323
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2323
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10033
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10033
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10004
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10004
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10969
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10969
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15877
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15877
https://nvd.nist.gov/vuln/detail/CVE-2018-16461
https://www.cvedetails.com/cve/CVE-2018-3757/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3836
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3836
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13638
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13638
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-976
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-976
https://nvd.nist.gov/vuln/detail/CVE-2020-8149
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8178
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8178
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000451
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000451
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17562
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17562
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3746
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3746
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3786
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3786

[50]

[51]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

3
=

CVE. 2019. CVE-2019-10061. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-10061.

CVE. 2019. CVE-2019-10783. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-10783.

CVE. 2019. CVE-2019-12272. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-12272.

CVE. 2020. CVE-2020-7597. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-7597.

Dav Glass. 2015. Isof. https://www.npmjs.com/package/lsof.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277-288.

Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna. 2011. Fear
the EAR: Discovering and Mitigating Execution after Redirect Vulnerabilities.
In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS '11). ACM, New York, NY, USA, 251-262.

Edward. 2018. Plain View Activity Monitor. https://wordpress.org/plugins/
plainview-activity-monitor.

Egg. 2019. eggscripts. https://www.npmjs.com/package/egg-scripts.
Elementor. 2020. A website builder that delivers high-end page designs and
advanced capabilities. https://wordpress.org/plugins/elementor/.

Embedthis. 2019. GoAhead. https://www.embedthis.com/goahead,/.

Fabien Potencier. 2020. free feature-rich PHP mailer. https://packagist.org/
packages/swiftmailer/swiftmailer.

Fabien Potencier. 2020. Symfony Console Component. https://packagist.org/
packages/symfony/console.
Fagbokforlaget V&B AS. 2018. pdfinfojs.
pdfinfojs.

Apache Software Foundation. 2019. Apache JMeter. https://jmeter.apache.org/.
WordPress Foundation. 2019. WordPress. https://wordpress.com/.

GNU. 2018. Patch. https://savannah.gnu.org/projects/patch/.

PostgreSQL Global Development Group. 2020. PostgreSQL: The World’s Most
Advanced Open Source Relational Database. https://www.postgresql.org/docs/
9.4/functions-bitstring.html.

Vivek Haldar, Deepak Chandra, and Michael Franz. 2005. Dynamic Taint Propa-
gation for Java. In Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC 05). IEEE Computer Society, USA, 303-311.

William G.J. Halfond and Alessandro Orso. 2005. AMNESIA: Analysis and Moni-
toring for NEutralizing SQL-Injection Attacks. In Proceedings of the International
Conference on Automated Software Engineering. Long Beach, California, USA.
William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL Injection Attacks.
In Proceedings of the Symposium on the Foundations of Software Engineering.
William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2008. WASP:
Protecting Web Applications Using Positive Tainting and Syntax-Aware Evalua-
tion. Transactions on Software Engineering 34, 1 (2008), 65-81.

Mary Jean Harrold and Mary Lou Soffa. 1994. Efficient Computation of Interpro-
cedural Definition-Use Chains. ACM Trans. Program. Lang. Syst. 16, 2 (March
1994), 175-204.

Daniel Hillmann. 2019. kill-port-processes. https://www.npmjs.com/package/
kill-port-process.

Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. 2003.
Web Application Security Assessment by Fault Injection and Behavior Monitor-
ing. In Proceedings of the 12th International Conference on World Wide Web (WWW
’03). Association for Computing Machinery, New York, NY, USA, 148-159.
Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,
and Sy-Yen Kuo. 2004. Securing Web Application Code by Static Analysis and
Runtime Protection. In Proceedings of the 13th International Conference on World
Wide Web (WWW °04). ACM, New York, NY, USA, 40-52.

HYRISE. 2020. SQL Parser for C++. Building C++ object structure from SQL
statements. https://github.com/hyrise/sql-parser.

Intel. 2019. Software Guard Extensions. https://software.intel.com/en-us/sgx.

https://www.npmjs.com/package/

78] Isaac Bennetch. 2020. SQL Parser. https://github.com/phpmyadmin/sql-parser.

[79]

[80]

[81]

[82]

Jason Gerfen. 2019. NPM API to access nmap from node.js. https://www.npmjs.
com/package/libnmap.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper). In
Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P "06). IEEE
Computer Society, USA, 258-263. https://doi.org/10.1109/S&P.2006.29

Justin Swanhart. 2019. A pure PHP SQL (non validating) parser w/ focus on
MySQL dialect of SQL. https://github.com/greenlion/PHP-SQL-Parser.
Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003. Countering
Code-Injection Attacks with Instruction-Set Randomization. In Proceedings of
the 10th ACM Conference on Computer and Communications Security (CCS 03).
Association for Computing Machinery, New York, NY, USA, 272-280.

14

[83] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. 2009.

Automatic Creation of SQL Injection and Cross-Site Scripting Attacks. In Proceed-

ings of the 31st International Conference on Software Engineering (ICSE "09). IEEE

Computer Society, USA, 199-209. https://doi.org/10.1109/ICSE.2009.5070521

Engin Kirda, Christopher Krugel, Giovanni Vigna, and Nenad Jovanovic. 2006.

Noxes: A client-side solution for mitigating cross-site scripting attacks. In SAC’06.

Kevin E. Kline and Daniel Kline. 2001. SQL in a Nutshell. O'Reilly.

Lerna. 2020. A tool for managing JavaScript projects with multiple packages.

https://github.com/lerna/lerna.

Jinyuan Li, Maxwell N Krohn, David Mazieres, and Dennis E Shasha. 2004. Secure

Untrusted Data Repository (SUNDR).. In Osdi, Vol. 4. 9-9.

Lighttpd. 2019. Lighttpd Web Server. https://www.lighttpd.net/.

LinuxConfig.org. 2015. Internal vs External Linux shell commands - LinuxCon-

fig.org. https:/linuxconfig.org/internal-vs-external-linux-shell-commands.

LuaExpat. 2020. XML Expat parsing for the Lua programming language. https:

//matthewwild.co.uk/projects/luaexpat/.

Margaret Brewster. 2019. Parses Sql to an AST and re-stringifies SQL ASTs.

https://www.npmjs.com/package/druid-sql-parser.

Marijn Haverbeke. 2020. A small, fast, JavaScript-based JavaScript parser. https:

//github.com/acornjs/acorn.

Michael Martin and Monica S. Lam. 2008. Automatic Generation of XSS and SQL

Injection Attacks with Goal-Directed Model Checking. In Proceedings of the 17th

Conference on Security Symposium (55°08). USENIX Association, USA, 31-43.

Masafumi Oyamada. 2018. NPM Provides an interface to convert PDF’s pages to

png files in Node.js. https://www.npmjs.com/package/pdf-image.

Masahiro Wakame. 2017. fs-git. https://www.npmjs.com/package/fs-git.

Matthew Gonzalez. 2017. listening-processes. https://www.npmjs.com/package/

listening-processes.

Sean McAllister, Engin Kirda, and Christopher Kruegel. 2008. Leveraging User

Interactions for In-Depth Testing of Web Applications. In Recent Advances in

Intrusion Detection, Richard Lippmann, Engin Kirda, and Ari Trachtenberg (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 191-210.

Michele Romano. 2019. Hackerone-728040. https://hackerone.com/reports/

728040.

[99] Michele Romano. 2020. Hackerone-730121.
730121.

[100] Gerome Miklau. 2019. xmldata.
projects/xmltk/xmldata/.

[101] Yasuhiko Minamide. 2005. Static Approximation of Dynamically Generated
Web Pages. In Proceedings of the 14th International Conference on World Wide
Web (WWW °05). ACM, New York, NY, USA, 432-441.

[102] Mozilla. 2020. Moz SQL Parser. https://github.com/mozilla/moz-sql-parser.

[103] MySQLTUTORIAL 2020. MySQL Prepared Statement. https://www.
mysqltutorial.org/mysql-prepared- statement.aspx/.

[104] National Vulnerability Database. 2019. CVE-2019-15597. https://nvd.nist.gov/
vuln/detail/CVE-2019-15597.

[105] Trent Nelson. 2020. Technically-oriented PDF Collection. https://github.com/
tpn/pdfs.

[106] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. 2005. Automatically Hardening Web Applications Using Precise Tainting.
In Security and Privacy in the Age of Ubiquitous Computing. Springer, 295-307.

[107] Nick Galbreath. 2018. SQL / SQLI tokenizer parser analyzer. https://github.
com/client9/libinjection.

[108] Nikita Popov. 2020. Extension exposing PHP 7 abstract syntax tree.
//github.com/nikic/php-ast.

[109] notpwnguy. 2018. Hackerone-511459. https://hackerone.com/reports/511459.

[110] NVD. 2019. CVE Details: CVE-2019-5127. https://nvd.nist.gov/vuln/detail/
CVE-2019-5127.

[111] OpenLiteSpeed. 2019. OpenLiteSpeed is the Open Source edition of LiteSpeed
Web Server Enterprise. https://openlitespeed.org/.

[112] OpenWrt. 2019. LuCL https://openwrt.org/docs/guide-user/luci/start.

[113] OpenWrt. 2019. uHTTPd. https://openwrt.org/docs/guide-user/services/
webserver/uhttpd.

(98]
https://hackerone.com/reports/

http://aiweb.cs.washington.edu/research/

https:

[114] OpenWrt 2020. OpenWrt Project. https://openwrt.org/.

[115] Oracle. 2019. Mysql. https://www.mysql.com/.

[116] OWASP. 2019. OWASP Top Ten. https://owasp.org/www-project-top-ten/.
[117] Packagist. 2020. The PHP Package Repository. https://packagist.org.

[118] Pawel Trysla. 2020. Display pretty Android and iOS logs without Android

Studio or Console.app, with intuitive Command Line Interface. https://github.
com/zamotany/logkitty.

[119] PECL. 2021. PECL :: Package :: taint. https://pecl.php.net/package/taint.

[120] Jeff Perkins, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson, Stelios
Sidiroglou-Douskos, and Martin Rinard. 2016. AutoRand: Automatic Keyword
Randomization to Prevent Injection Attacks. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721 (DIMVA’16). Springer-Verlag, Berlin, Heidelberg, 37-57.

[121] Peter Braden. 2019. OpenCV. https://www.npmjs.com/package/opencv.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10061
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10061
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7597
https://www.npmjs.com/package/lsof
https://wordpress.org/plugins/plainview-activity-monitor
https://wordpress.org/plugins/plainview-activity-monitor
https://www.npmjs.com/package/egg-scripts
https://wordpress.org/plugins/elementor/
https://www.embedthis.com/goahead/
https://packagist.org/packages/swiftmailer/swiftmailer
https://packagist.org/packages/swiftmailer/swiftmailer
https://packagist.org/packages/symfony/console
https://packagist.org/packages/symfony/console
https://www.npmjs.com/package/pdfinfojs
https://www.npmjs.com/package/pdfinfojs
https://jmeter.apache.org/
https://wordpress.com/
https://savannah.gnu.org/projects/patch/
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.npmjs.com/package/kill-port-process
https://www.npmjs.com/package/kill-port-process
https://github.com/hyrise/sql-parser
https://software.intel.com/en-us/sgx
https://github.com/phpmyadmin/sql-parser
https://www.npmjs.com/package/libnmap
https://www.npmjs.com/package/libnmap
https://doi.org/10.1109/S&P.2006.29
https://github.com/greenlion/PHP-SQL-Parser
https://doi.org/10.1109/ICSE.2009.5070521
https://github.com/lerna/lerna
https://www.lighttpd.net/
https://linuxconfig.org/internal-vs-external-linux-shell-commands
https://matthewwild.co.uk/projects/luaexpat/
https://matthewwild.co.uk/projects/luaexpat/
https://www.npmjs.com/package/druid-sql-parser
https://github.com/acornjs/acorn
https://github.com/acornjs/acorn
https://www.npmjs.com/package/pdf-image
https://www.npmjs.com/package/fs-git
https://www.npmjs.com/package/listening-processes
https://www.npmjs.com/package/listening-processes
https://hackerone.com/reports/728040
https://hackerone.com/reports/728040
https://hackerone.com/reports/730121
https://hackerone.com/reports/730121
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/
https://github.com/mozilla/moz-sql-parser
https://www.mysqltutorial.org/mysql-prepared-statement.aspx/
https://www.mysqltutorial.org/mysql-prepared-statement.aspx/
https://nvd.nist.gov/vuln/detail/CVE-2019-15597
https://nvd.nist.gov/vuln/detail/CVE-2019-15597
https://github.com/tpn/pdfs
https://github.com/tpn/pdfs
https://github.com/client9/libinjection
https://github.com/client9/libinjection
https://github.com/nikic/php-ast
https://github.com/nikic/php-ast
https://hackerone.com/reports/511459
https://nvd.nist.gov/vuln/detail/CVE-2019-5127
https://nvd.nist.gov/vuln/detail/CVE-2019-5127
https://openlitespeed.org/
https://openwrt.org/docs/guide-user/luci/start
https://openwrt.org/docs/guide-user/services/webserver/uhttpd
https://openwrt.org/docs/guide-user/services/webserver/uhttpd
https://openwrt.org/
https://www.mysql.com/
https://owasp.org/www-project-top-ten/
https://packagist.org
https://github.com/zamotany/logkitty
https://github.com/zamotany/logkitty
https://pecl.php.net/package/taint
https://www.npmjs.com/package/opencv

[122] PHP. 2019. SimpleXML Extension.
simplexml.php.

[123] Tadeusz Pietraszek and Chris Vanden Berghe. 2005. Defending against injection
attacks through context-sensitive string evaluation. In International Workshop
on Recent Advances in Intrusion Detection. Springer, 124-145.

[124] QEMU. 2019. Generic and open source machine emulator and virtualizer.
https://www.qemu.org/.

[125] Quan Yang. 2019. Taint’em-All: a taint analysis tool for the PHP language.
https://github.com/quanyang/Taint-em- All.

[126] Rafal Janicki. 2019. Hackerone-633364. https://hackerone.com/reports/633364.

[127] Sazzadur Rahaman, Gang Wang, and Danfeng Yao. 2019. Security Certification
in Payment Card Industry: Testbeds, Measurements, and Recommendations. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19). ACM, New York, NY, USA, 481-498.

[128] RaymondDesign. 2012. Advanced-XML-Reader. https://wordpress.org/plugins/
Advanced-XML-Reader/.

[129] Renan Rocha. 2019. Hackerone-661959. https://hackerone.com/reports/661959.

[130] Robbie Chipka. 2020. GitHub - libxmljs:libxml bindings for v8 javascript engine.
https://github.com/libxmljs/libxmljs.

[131] B. G.Ryder. 1979. Constructing the Call Graph of a Program. IEEE Trans. Softw.
Eng. 5,3 (May 1979), 216-226.

[132] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Xiaodong Song.
2010. FLAX: Systematic Discovery of Client-side Validation Vulnerabilities in
Rich Web Applications. In NDSS.

[133] Prateek Saxena, David Molnar, and Benjamin Livshits. 2011. SCRIPTGARD: Au-
tomatic Context-Sensitive Sanitization for Large-Scale Legacy Web Applications.
In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS °11). ACM, New York, NY, USA, 601-614.

[134] Sebastian Bergmann. 2020. Library that helps with managing the version
number of Git-hosted PHP projects. https://packagist.org/packages/sebastian/
version.

[135] Sebastian Bergmann. 2020. PHPUnit is a programmer-oriented testing frame-
work for PHP. https://phpunit.de/.

[136] Sebastian Bergmann. 2020. Provides functionality to handle HHVM/PHP envi-
ronments. https://packagist.org/packages/sebastian/environment.

[137] R.Sekar. 2009. An Efficient Black-box Technique for Defeating Web Application
Attacks. In Network and Distributed System Security Symposium (NDSS’09).

[138] Selenium. 2021. SeleniumHQ Browser Automation. https://www.selenium.dev/.

[139] Genetech Solutions. 2020. Pie Register - Custom Registration Form, Invitation
based Registrations and User Login WordPress Plugin. https://wordpress.org/
plugins/pie-register/.

[140] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2013. Diglossia: Detect-
ing Code Injection Attacks with Precision and Efficiency. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security (CCS ’13).
Association for Computing Machinery, New York, NY, USA, 1181-1192.

[141] Amie L. Souter and Lori L. Pollock. 2003. The Construction of Contextual
Def-Use Associations for Object-Oriented Systems. IEEE Trans. Softw. Eng. 29,
11 (Nov. 2003), 1005-1018.

[142] SQLite. 2019. What Is SQLite. https://www.sqlite.org/index.html.

[143] Star Beam Rainbow Labs. 2020. Pepperminty-Wiki. https://github.com/sbrl/
Pepperminty-Wiki.

[144] Alexandre Strzelewicz. 2019. PM2. https://www.npmjs.com/package/pm2.

[145] Zhendong Su and Gary Wassermann. 2006. The Essence of Command In-
jection Attacks in Web Applications. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’06). Association for Computing Machinery, New York, NY, USA, 372-382.

[146] SPINNER. 2020. SPINNER Project Website. https://github.com/cmd-spinner/
commandrandom-spinner-php.

[147] Takayuki Miyoshi. 2020. Contact Form 7 can manage multiple contact forms.
https://wordpress.org/plugins/contact-form-7/.

[148] Tao Zhi. 2020. Nodejs SQL Parser. https://www.npmjs.com/package/
node-sql-parser.

[149] Theofilos Petsios. 2014. sqlrand-llvm. https://github.com/nettrino/SQLRand.

[150] Tom Forbes. 2020. Github-orf/xcat:Automate XPath injection attacks to retrieve
documents. https://github.com/orf/xcat.

[151] Joe Topjian. 2009. Sanitize and Validate Data with PHP Filters. https://code.
tutsplus.com/tutorials/sanitize-and-validate- data- with-php-filters--net-2595.

[152] TryGhost. 2020. The #1 headless Node.js CMS for professional publishing.

https://github.com/TryGhost/Ghost.

Daniel Veillard. 2019. libxml. http://xmlsoft.org/.

Vercel. 2020. Generate changelogs. https://github.com/vercel/release.

Veselin. 2020. Easy package.json exports. https://www.npmjs.com/package.

Voidcosmos. 2020. KILLO: List any node_modules directories in your system.
https://github.com/voidcosmos/npkill.

[157] Matt Walters. 2019. meta-git. https://www.npmjs.com/package/meta-git.

[158] Gary Wassermann and Zhendong Su. 2007. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In Proceedings of the 28th ACM

https://www.php.net/manual/en/book.

[153]
[154]
[155]
[156]

15

SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). Association for Computing Machinery, New York, NY, USA, 32-41.

[159] Gary Wassermann and Zhendong Su. 2008. Static Detection of Cross-Site
Scripting Vulnerabilities. In Proceedings of the 30th International Conference on
Software Engineering (ICSE "08). ACM, New York, NY, USA, 171-180.

[160] Wenbin Xiao. 2018. SQL Parser implemented in Go. https://github.com/
xwb1989/sqlparser.

[161] WordPress. 2020. The WordPress Importer will import the content from a
WordPress export file. https://wordpress.org/plugins/wordpress-importer/.

[162] WordPress. 2020. WordPress Plugins. https://wordpress.org/plugins.

[163] World Wide Broadcast Network. 2020. AVideo-Encoder. https://github.com/
WWBN/AVideo-Encoder.

[164] Yichen Xie and Alex Aiken. 2006. Static Detection of Security Vulnerabilities
in Scripting Languages. In Proceedings of the 15th Conference on USENIX Security
Symposium (Security’06). USENIX Association, USA, Article Article 13.

165] Yoast BV. 2020. Yoast SEO. https://yoast.com/wordpress/plugins/seo/.

[166] Zach Carter. 2017. An API for creating parsers in JavaScript. https://www.

npmjs.com/package/jison.

9 APPENDIX

9.1 Supplementary Text and Experiment

9.1.1 Sink Functions. In addition to Table 1, Table 3 provides
additional sink functions for XML and database subsystems.

Table 3: Sink Functions

Sink Functions Subsystem Language

mysqli::multi_query(), mysqli::prepare(),
mysqli::real_query(),mysqli::select_db(),
mysqli::send_query()

MySQL PHP

mysql_create_db(), mysql_drop_db(),
mysql_query (), mysql_real_query(),
mysql_select_db()

MySQL C/C++

sqlite_array_query(), sqlite_exec(),
sqlite_open(), sqlite_query(),
sqlite_popen(), sqlite_single_query(),
sqlite_unbuffered_query()

SQLite PHP

sqlite3_get_table(), sqlite3_exec(),

sqlite3_prepare() ! sqlite3_preparel6 0% SQLite C/C++

sqli’ce.'S_open()3

libxml.parseXmlString(), parser.parseString(),

parser.push(), element.find (), element.get () XML

JavaScript

XML

1: inlcuding sqlite3_prepare_v2(), sqlite3_prepare_v3().

2: inlcuding sqlite3_prepare16_v2(), sqlite3_preparel6_v3().
3: inlcuding sqlite3_open16(), sqlite3_open_v2().

callbacks.StartDoctypeDecl (), parser:parse() Lua

9.1.2 Automated Vulnerability Discovery Tools. Commix [31]
is an automated testing tool that aims to find command injection
vulnerabilities on web server-side applications. We test all pro-
grams except for s4 and s5 which do not have functions executing
OS/shell commands. Commix identified vulnerabilities shown in
Table 2, and successfully executed 102 malicious commands, while
it failed to do so for SPINNER protected programs. sqlmap [20] is a
penetration testing tool for SQL injection vulnerability testing. We
apply sqlmap to the applications that use SQL database engines:
s1 (WordPress), s5 (Pie Register), and s6 (Lighttpd). We instruct
sqlmap to inject the SQL statements through typical input channels
(e.g., GET and POST requests). sqlmap supports various types of
injection attack payloads, including boolean blind SQL injection,
error-based SQL injection, stacked queries SQL injection, and time
blind SQL injection, just to name a few. SPINNER mitigates all the
injected statements. xcat [150] is a command line tool to exploit
and investigate XML injection vulnerabilities. We tested s4 and s5,

https://www.php.net/manual/en/book.simplexml.php
https://www.php.net/manual/en/book.simplexml.php
https://www.qemu.org/
https://github.com/quanyang/Taint-em-All
https://hackerone.com/reports/633364
https://wordpress.org/plugins/Advanced-XML-Reader/
https://wordpress.org/plugins/Advanced-XML-Reader/
https://hackerone.com/reports/661959
https://github.com/libxmljs/libxmljs
https://packagist.org/packages/sebastian/version
https://packagist.org/packages/sebastian/version
https://phpunit.de/
https://packagist.org/packages/sebastian/environment
https://www.selenium.dev/
https://wordpress.org/plugins/pie-register/
https://wordpress.org/plugins/pie-register/
https://www.sqlite.org/index.html
https://github.com/sbrl/Pepperminty-Wiki
https://github.com/sbrl/Pepperminty-Wiki
https://www.npmjs.com/package/pm2
https://github.com/cmd-spinner/commandrandom-spinner-php
https://github.com/cmd-spinner/commandrandom-spinner-php
https://wordpress.org/plugins/contact-form-7/
https://www.npmjs.com/package/node-sql-parser
https://www.npmjs.com/package/node-sql-parser
https://github.com/nettrino/SQLRand
https://github.com/orf/xcat
https://code.tutsplus.com/tutorials/sanitize-and-validate-data-with-php-filters--net-2595
https://code.tutsplus.com/tutorials/sanitize-and-validate-data-with-php-filters--net-2595
https://github.com/TryGhost/Ghost
http://xmlsoft.org/
https://github.com/vercel/release
https://www.npmjs.com/package
https://github.com/voidcosmos/npkill
https://www.npmjs.com/package/meta-git
https://github.com/xwb1989/sqlparser
https://github.com/xwb1989/sqlparser
https://wordpress.org/plugins/wordpress-importer/
https://wordpress.org/plugins
https://github.com/WWBN/AVideo-Encoder
https://github.com/WWBN/AVideo-Encoder
https://yoast.com/wordpress/plugins/seo/
https://www.npmjs.com/package/jison
https://www.npmjs.com/package/jison

which are vulnerable to the XXE injection. xcat successfully discov-
ers XXE injection vulnerability in the original programs while it
failed with the SPINNER protected application.

9.1.3 Overhead on Database Engines. We use OLTP-Bench [55],

which is an extensible testbed for benchmarking relational databases.

It provides 15 data-sets. However, when we test the data-sets on the
vanilla MySQL and SQLite, only three data-sets (TPC-C, Wikipedia,
and Twitter) were successfully completed while all others lead to
crashes. Hence, we select the three working data-sets. The average
overheads are 4.9% and 5.3% for SQLite and MySQL respectively.

9.1.4 Overhead on XML Library. We use Libxml [153], Sim-
pleXML [122], libxmljs [130], and LuaExpat [90]. For XML test-data,
we download a data-set (1GB in total) from the University of Wash-
ington [100]. The average overheads are 1.5%, 1.38%, 1.43%, and
1.29% for Libxml, SimpleXML, LuaExpat, and libxmljs respectively.

9.1.5 Overhead on OpenWrt. We applied SPINNER to the Open-
Wrt firmware’s uHTTPd [113] web server and LuCI web configu-
ration interface [112]. We use QEMU [124] to run OpenWrt ARM
firmware with 256MB RAM, which represents the standard router
hardware specification. We use Apache Jmeter to generate 1,000
concurrent requests to visit the LuCI interface to get system sta-
tus information. Note that 1,000 parallel requests are sufficient to
exhaust the test system’s resources and the test workload is more
intensive than the common usage. The average overhead is 5.83%.

9.1.6 Versions of the Evaluated Programs. Table 4 shows the
versions of all the evaluated programs including those in Table 6.

Table 4: Versions of the Evaluated Programs

ID Version ID Version ID Version ID Version
s1 5.3.2 s12 0.4.18 523 0.2.4-beta s34 5.1.3
s2 201612281 s13 1.1.0 s24 3.6.1 s35 2.0.4
s3 2.3 si4 2.6.0 s25 0.3.6 s36 6.2.3
s4 0.15 s15 0.14 s26 0.4.13 s37 3.0.2
sb 1.7 s16 3.5.0 s27 1.0.2 s38 3.36.0
s6 3.09 s17 1.0.1 s28 5.2.2 s39 3.22.1
s7 1435 s18 1.1.2 s29 15.2 s40 0.7.2
s8 1.74.4 s19 1.2.0 s30 4.1.7 s41 6.3.0
s9 2.7.6 s20 0.1.0 s31 3.0.12 s42 1.0.0-pre.45
s10 3.6.5 s21 6.0.0 s32 0.7

si1 0.10 s22 0.7.0 s33 5.1.8

1: This project does not have an explicit version number. This is
the date of the last commit.

9.1.7 Trusted Command Specification (TCS) Generation Tool. We
provide an automated trusted command specification generation
tool [146] that takes a list of sink-functions (e.g., Table 1) and trusted-
folders (e.g., /var/www/) as input. It derived all the TCSs used in
the paper without significant domain-knowledge and completed
the analysis in less than four minutes. It can also detect incomplete
specifications (e.g., untrusted commands passed to sink-functions).
Note that we did not observe incomplete specifications.
Performance of TCS Generator. Table 5 shows the time required
to generate the TCS by our TCS generator. We generate the same
TCS used in our evaluation. Note that generating TCS for Leptonica

16

(s8) took the longest time: 217.75 seconds, which is 3 min 37.75
seconds.

Table 5: Time to generate TCS for each application

ID Time(s) ID Time(s) ID Time (s)
sl 165.59 s15 1.25 s29 31.96
s2 7.82 s16 22.29 s30 4.13
s3 5.18 s17 1.18 s31 29.24
s4 7.99 s18 1.59 s32 2.88
sb5 14.73 s19 1.14 s33 4.71
s6 6.23 s20 1.22 s34 7.31
s7 100.32 s21 0.83 s35 28.64
s8 217.75 s22 0.75 s36 18.38
s9 12.28 s23 0.74 s37 9.23
s10 54.02 s24 1.17 s38 15.19
si1 146.36 s25 1.35 s39 8.28
s12 9.76 s26 0.58 s40 0.98
s13 1.18 s27 1.28 s41 1.19
s14 1.61 s28 9.68 s42 0.87

9.2 Effectiveness of SPINNER

9.2.1 Applicability of SPINNER. To understand whether SPINNER
can be a generic solution for various applications, we additionally
collect the five most popular applications from three well-known
open-source package managers (NPM [155], Packagist [117] and
WordPress Plugin [162]) as shown in Table 6. We prune out pro-
grams that are not meant to be deployed such as a unit-test frame-
work [135]. SPINNER successfully handled them without errors

9.2.2 Correctness of Instrumentation. Table 7 shows the number
of test cases. Our additional test cases to cover all the instrumented
code and increase code coverage are shown in the “Added” column.

9.2.3 Supporting Polymorphic Objects. SPINNER supports com-
plex real-world applications including OOP programs such as Word-
Press in Table 2. In this example, we show that our analysis han-
dles polymorphism and dynamic bindings. In particular, Figure 14
shows how SPINNER analyzes polymorphic objects in a WordPress
plugin called Elementor [59]. From line 11, we identify an instan-
tiation of an object with a string ($class_name). We backtrace
the string variable (annotated via red arrows), identifying that the
class name starts with “Control_”. However, as the return value of
get_control_names() can be updated at runtime, we conserva-
tively assume that any class that has name starting with Control_
(i.e., Control_x) can be created at line 11.

Then, we conduct a forward analysis to identify the object’s
usage (annotated through black arrows). Figure 14 shows only a
few of the forward flows due to space. We check all the omitted
flows and they are not relevant to command execution.

9.2.4 Effectiveness of Bidirectional Analysis. This section pro-
vides an example of the effectiveness of bidirectional analysis.

1) Backward Analysis: The backward flow analysis begins from
the sink function mysql_query () at line 32. Following the back-
ward data flow (depicted as purple arrows), it reaches to line 38,
which is a SQL query. However, the backward analysis alone is
not able to identify the original of $wpdb->users to determine

Table 6: Popular Applications From Pakcage Managers

Instrumentation

ID Name Size Source

Const. Dynamic Sinks

1-5 6-10 >11
s28 Contact-Form-7 [147] 744.00 KB WordPress 1 4 0 0 5
529 Yoast SEO [165] 13.70 MB WordPress 6 12 9 0 6
s30 Akismet Spam Protection [14] 288.00 KB WordPress 0 17 0 0 17
s31 Elementor Website Builder [59] 18.00 MB WordPress 2 21 0 0 23
s32 WordPress Importer [161] 100.00 KB WordPress 0 2 0 0 2
s33 Symfony Console [62] 584.00 KB Packagist 8 10 0 0 15
s34 Environment [136] 49.00 KB Packagist 3 0 0 0 %
s35 Composer [1] 120.00 KB Packagist 4 4 0o 0 8
s36 Swiftmailer [61] 2.08 MB Packagist 0 1 0 0 1
s37 Version [134] 20.00 KB Packagist 1 0 0o 0 1
538 Ghost [152] 58.80 MB NPM 1 0 0 0 1
s39 Lerna [86] 12.10 MB NPM 1 0 0 0 1
s40 Npkill [156] 7.69 MB NPM 2 7 0 0 9
s41 Release [154] 900.00 KB NPM 0 3 0 0 3
s42 Yalc [134] 704.00 KB NPM 0 4 0 0 4

Table 7: Test Cases and Code Coverages

ID Line of # of Test Cases Cov— ID Line of # of Test Cases Cov—
Code Added Total erage Code Added Total erage
sl 116,356 200 11,677 58.54% s15 146 39 63 76.14%
s2 9,881 100 142 75.76% s16 12,281 50 332 72.78%
s3 67,560 404 404 70.49% s17 402 50 60 88.33%
s4 6,124 161 161 82.30% s18 69 49 53 86.21%
sb 12,872 219 219 71.56% s19 78 51 54 89.74%
s6 9,944 188 188 73.92% s20 76 50 58 83.85%
s7 42,840 100 459 64.00% s21 1,912 49 141 86.00%
s8 86,668 97 443 65.38% s22 999 40 53 79.17%
s9 30,011 100 107 71.00% s23 301 60 62 79.46%
s10 58,994 233 289 68.96% s24 792 38 122 83.22%
s11 34,237 396 396 72.42% s25 145 38 48 91.19%
s12 1,431 10 122 78.23% s26 284 60 64 74.11%
s13 174 50 53 83.73% s27 143 55 57 87.50%

s14 281 55 89 96.65%

whether this is from a trusted source (hence requires instrumenta-
tion) or not. Note that the value of $wpdb->users is assigned by
dynamic construct, which is unreachable by the backward analysis.

2) Forward Analysis: Our forward analysis starts from trusted
sources such as constant strings at lines 1, 8, and 9. $table_prefix
(global variable) is assigned to $this->base_prefix at line 20
(@). which will be used at line 13 in tables (). Figure 15-(b) shows
values of variables at the lines marked by circled numbers. From
lines 8 and 9, the two arrays are merged at line 12 (@), resulting in
an array shown in Figure 15-(b). At line 15, it constructs an array
consisting of pairs of table names and table names with wp_ prefix
(@). The composed new table ($_table) is returned by tables (),
which is called at line 21 in set_prefix (). Hence, we further
analyze set_prefix() which iterates arrays shown in Figure 15-
(b)-@. Note that PHP allows a string variable to be used to specify
a member variable’s name in an object (line 22). To this end, the
line 22 essentially executes statements shown in Figure 15-(b)-@.
Note that the first statement define $this->users, where $this
is essentially $wpdb.

3) Combining Forward and Backward Analysis: Recall that the
backward analysis stops at line 37, as it was unable to resolve
$wpdb->users, while the forward analysis can resolve the value.

17

1 class Controls_Manager {

2

3

4 public static function get_controls_names() {

5

6 }

7 private function register_controls() {

8 foreach (L
9

10

11 $this->register_control($control_id, new $class_name() s=s=——
12

13

14 public function register_control($control_id, Base_Control $contjrol_instance) {
15 —
16

17 public function get_controls() {

18

19 }

20 public function get_control($control_id) {

21

22

23 }

24 |}

25 class Base {

26 final public function get_style_controls(

27 Controls_Stack $controls_stack, array $controls = null) {
28

29 if ($control_obj instanceof Control_Repeater)

30 $style fields = [];

31 if (!$control_obj instanceof Base_Data_Control)

32 continue;

33

34 }

35 |}

v
Omitted

Figure 14: Handling Polymorphic Objects (Red and black ar-
rows represent backward and forward analysis respectively)

wp_';

function wp_set_wpdb_var§() {

}

class wpdb {

= array('posts', 'comments', ...);
= array('users', 'usermeta');

VLONOUAWN R

10 public $users;
11 public function tables($scope = 'all’,

$prefix = true, $blog id = @)|{

19 public function set_prefix($prefix, $set_table_names = true) {

P }
24 }

25 public function get_results($query = null, $output = OBJECT) {

26 $this->query(

27 }
28 public function

32 $this->result = mysql_query(

33 }

34 1) —— Backward Data Flow

36 | function foo()

$this->dbh); — Forward Data Flow

Legend ——

Start of Forward
Analysis

Start of Backward
Analysis

- Combined Analysis

{
37| Supdb-get_results EREG—G_—_—-
)

(a) Bidirectional Command Composition Analysis on WordPress

$this-sbase $_tables=(0=>"users’, $_tables=('users’ =>'wp_users’,
0 5. O ‘usermeta’, @ ‘usermeta’=>'wp_usermeta’
2=>"posts’,...); ‘posts’ =>'wp_posts',...);
$tablename=('users’, 'usermeta’, 'posts’,...); $this->users "wp_users’; // $this=$updb
@ sprefixed table=(‘wp_users’, 'wp_usermeta’, @ sthis-susermeta = ‘wp_usermeta’;
‘wp_posts’,...); $this->posts = 'wp_posts'; ...

(b) Example Concrete Values of Variables

Figure 15: Bidirectional Analysis on WordPress

Bidirectional analysis successfully finds out that the variable in the
query ($wpdb->users) is a constant string from a trusted source.

9.2.5 Evaluation of Bidirectional Analysis’s Accuracy. In this sec-
tion, we explain the details of how we evaluate SPINNER’s bidi-
rectional analysis’s effectiveness and correctness. Note that since
obtaining the ground-truth is challenging, we try to evaluate the
bidirectional analysis’s accuracy as follows. We manually verified
that all the results from our analysis are true-positives. We also
run other static/dynamic taint-analysis tools [5, 119, 125] and com-
pare the results (i.e., dependencies) from them with the result from
SPINNER. As shown in Table 8, we observe that SPINNER covers
the majority of the dependencies chains that are generated by the
other tools. For dependencies not covered by SPINNER, we manually
check them and find that they are false-positives (hence we are not
missing anything covered by other tools).

Note that during this process, we have updated and implemented
a few tools. First, we update the AST parser of taintless [6] to the
new version and add extra rules to help it handle WordPress’s call-
back function hook. Second, we add additional plugins to psalm [5]
to enhance its ability on tracing data flow on object inheritance.
Third, we add additional sinks to PECL taint [119] for tainting
WordPress.

Procedure of the Evaluation. We do our evaluation as follows.

1. Run the bi-directional analysis and manually verify the depen-
dency chains identified by the analysis. a) Manually check the
propagation rules applied by the bi-directional analysis (both for-
ward and backward analyses). b) Verify that all the dependencies
identified by the bi-directional analysis are true-positives.

2. Run other static/dynamic analysis tools to get dependency chains
(Note that static/dynamic analysis tools suffer from over and
under-approximations). a) If other tools find more dependencies,
then they might be potential false-negatives of the bi-directional
analysis. We manually verify them all, and the result shows that
they are all false-positives, meaning that we did not find false-
negatives from the bi-directional analysis. b) If other tools find
lesser dependencies, then they might be potential false-positives
of the bi-directional analysis. We manually verify them all, and
the result shows that they are all false-negatives, meaning that
we did not find false-positives from the bi-directional analysis.

Procedure and Method for Manual Analysis. Our manual anal-
ysis leverages existing static/dynamic analysis techniques. While
they are inaccurate, we only apply them for a single dependency
chain and reason about the result. Since we only reason a single
dependency at a time, the task was manageable even though it is a
time-consuming task. We conduct inter-procedural manual analy-
sis, meaning that we follow through the callee functions’ arguments
if values propagate through the functions. The analysis finishes
when the data reaches a trusted/untrusted source. In addition to
the static/dynamic taint analysis techniques, we manually run the
programs and observe how the concrete values are propagated by
changing inputs and checking output differences. Note that if an
output value is changed from the above testing due to the input
change, there is a dependency.

To make sure SPINNER’s bi-directional analysis does not miss any-
thing, we compared the results with existing techniques (Taintless,
Psalm, and PECL taint). We manually analyzed them and verified
that all the results from bi-directional analysis are true-positives.
Details on the notable cases are as follows.

18

Table 8: Effectiveness of SPINNER’s bidirectional analysis
compared with existing techniques

Testbeds SPINNER Taintless Psalm PECL taint
WordPress* 462 413 426 537
Activity Monitor* 27 16 17 27
Avideo Encoder* 61 66 61 61
PHPSHE* 270 301 266 223
Pie Register” 73 79 71 73
Pepperminty WiKi 2 2 2 2
Contact-Form-7 5 5 5 5
Yoast SEO 27 27 27 27
Akismet Spam Protection 17 17 17 17
Elementor Website Builder 23 23 23 23
WordPress Importer 2 2 2 2
Symfony Console 18 18 18 18
Environment 3 3 3 3
Composer 8 8 8 8
Swiftmailer 1 1 1 1
Version 1 1 1 1

*: Except for these 5 applications, there is no difference between the tools.

1. WordPress: Compared to Taintless, Taintless has 49 false nega-
tives. Among them, 24 false negatives are caused as described in
Figure 15. 5 false negatives are caused by handling PHP dynamic
function call (e.g., call_user_func_array()). 20 false nega-
tives are caused by handling WordPress apply_filter which
invokes a function by the nickname registered by add_filter.
Compared to Psalm, Psalm has 24 false negatives as described in
Figure 15. Psalm is not accurate in handling object inheritance.
It will miss the data dependencies from subclass methods to base
class methods in 36 cases. Compared to PECL taint, PECL taint
has 35 false positives caused by handling WordPress do_action
dynamic function hook. PECL taint has 40 false positives caused
by string array filtering operation.

2. Activity Monitor: Compared to Taintless, Taintless has 11 false

negatives. Among them, 3 false negatives are caused as shown
in Figure 15. 8 false negatives are caused by not supporting
WordPress apply_filter which invoke a function registered
by add_filter dynamically. The data flow will be broken when
it goes into such APIs. Compared to Psalm, Psalm has 14 false
negative and 4 false positive cases. Among them, 3 false negatives
are caused as shown in Figure 15. 8 false negatives are caused by
add_filter and apply_filter. 3 false negatives are caused
by mishandling object inheritance. Variables defined in base
class will not be recognized in subclass. 4 false positive cases are
caused by mishandling regex matching API preg_match.

3. Avideo-Encoder: Compared to Taintless, Taintless has 2 false neg-

atives and 7 false positives. Among them, 2 false negatives are
caused by unsupported API DateTime () which should be con-
sidered as trusted. 7 false positives are caused by mishandling
regex APl preg_match.

4. PHPSHE: Compared to Taintless, Taintless has 16 false negatives
and 47 false positives. Among them, 16 false negatives are caused
by parsing error on one PHP file. Internal bug on an old version
of PHP-Parser. 47 false positives are caused by history upgrad-
ing scripts. Compared to Psalm, Psalm has 15 false negatives
and 11 false positives. Among them, 3 false negatives are caused
by time() APL 12 false negatives are caused by class object

inheritance. 11 false positives are caused by SQL keywords in ar-
guments used matching pattern of preg_match functions. Com-
pared to PECL taint, PECL taint has 47 false negatives because
of PHP fatal error in executing database update script

5. Pie-register: Compared to Taintless, Taintless has 2 false negatives
and 8 false positives. Among them, 2 false negatives are caused
by the case shown in Figure 15. 8 false positives are caused by
SQL keywords in the embedded HTML while they are not SQL
statements. Compared to Psalm, Psalm has 2 false negatives
caused by the case shown in Figure 15.

1 function getProcesses (command) {

2 execSync(prand('1sof')+ -i TCP -P -n | = +

3 rand('grep')+ '${command}\\s.*:[@-9]* (LISTEN)' | +
4 rand('cat'), {encoding: 'utf-8’})

5 .toString().split('\n');

6

(a) Instrumentation affecting a single basic block

7 | 1_int32 gplotMakeOutput(GPLOT *gplot)

8

9 char buf[L_BUF_SIZE];

10 snprintf(buf, L_BUF_SIZE, "%s %s", rand(“gnuplot"), ...);
11 ... = system(buf);

12 |}

(b) Instrumentation affecting a single function

13 class WP_Site_Health {

14 private function prepare_sql_data() {

15 ... = $wpdb->get_var();
16 }

17 |}

18 class wpdb {

19 var $last_query;

20 public function get_var(= 1, ...) A{

21 if (...) $this->query(j;

22 } s 4

23 public function query(

24 ‘%:iésé
25 $this->_do_query(+

¥ 00—

27 private function _do_query(

7 W
29 $this->result =

30 LT

31 }

32 public function print_error($s) {

33 C

34 = sprintf('WordPress dat¥base error ...'
35 $str, 'H
36

37

38 ces

39 }

40 |}

(c) Instrumentation affecting multiple functions (5 functions)

Figure 16: Examples of Impact of Instrumentation

9.2.6 Impact Analysis for Instrumentated Code. Figure 16 shows
examples of instrumentations impacting a single basic block (a), a
single function (b), and multiple functions (c).

Single Basic Block (the BB column in Table 2). This is the sim-
plest type of instrumentation. As shown in Figure 16-(a), all the
instrumented commands (i.e., 1sof, grep, and cat) are directly
fed into the sync function (execSync at line 2). The instrumented
commands are not saved and transferred to other functions.

Single Function (the Fn column in Table 2). Instrumented com-
mands can affect or stored in local variables. However, they only
affect statements within the same function and do not propagate
to other functions. In Figure 16-(b), the instrumentation (rand ()
at line 10) affects a local variable buf. However, the local variable
does not affect any other statements nor passed/returned to other

19

functions. Note that it is relatively easy to verify the impact of
instrumentation since it only requires analysis within the function.
Multiple Functions (the Fns column in Table 2). In this type,
an instrumentation affects multiple functions through function
calls and global/member variables. Figure 16-(c) shows an example.
The instrumented SQL query is shown at line 15. The random-
ized query is passed to get_var() (@)). The query is then used
to call query () function (@) and passed to the function again
(@). In the query () function, it is stored to the $last_query
member variable (at line 24, @) and passed to the _do_query ()
function (@). Finally, in the _do_query () function, the query
is used to call a sink function which is mysql_query(). Note
that the $1last_query variable that stores the randomized query
is used later in the print_error () function at lines 34 and 37
(@ and @). In this example, the instrumentation at line 15 af-
fects 5 functions (prepare_sql_data(), get_var(), query(),
_do_query(), and print_error()).

9.3 Additional Discussions

9.3.1 Alternative Approach: Screening Unintended Commands.
One can develop an approach that only allows intended commands
identified. For instance, given a function call “system("rm file
$opt")”, the approach will only allow the “rm” command. Such an
approach (i.e., allowlist method) is fundamentally different from
SPINNER since it cannot distinguish different instances of commands
and enforce the same rule for every commands on an API. For
example, it cannot prevent if an attacker injects the same command
(e.g., “rm” in this case). SPINNER randomizes the first “rm” and leaves
the second “rm” command, which is injected, preventing the attack.
For SQL injections, approaches relying on known/allowed SQL
keywords cannot prevent attacks leveraging keywords that are not
considered (e.g., Section 5.4.2) while SPINNER can prevent them.

9.3.2 Prepared Statements in Practice. As mentioned in Section 6,
prepared statements are not well adopted in practice. We analyze
all the SQL queries in the applications used in our evaluation. We
find that 866 SQL queries from WordPress [65] (459 queries), Pie
Register [139] (70 queries), PHPSHE [2] (277 queries), AVideo-
Encode [163] (39 queries), and Plainview Activity Monitor [57]
(21 queries). None of them use the prepared statements.
Unsupported Keywords. The following SQL keywords are not
supported: DESCRIBE (or DESC), ALTER DATABASE, LOAD DATA,
LOAD XML, RENAME USER, and SHOW TABLES LIKE. In particular,
WordPress (s1) is using the unsupported keywords, i.e., DESC, SHOW
TABLES LIKE, in their queries, making it challenging to convert.

9.3.3 Brute-force Attack SPINNER. Attackers may inject multiple
commands (or a shell script file containing multiple commands) to
try out a number of guesses of randomization schemes. From the
attacker’s perspective, if any of the guesses lead to the successful
execution of the command, the attack is successful. Figure 17-(a)
shows such a shell script containing multiple commands. We find
that the Linux shell process handles individual commands sepa-
rately, causing multiple command execution API invocations for
each command. Recall that SPINNER uses different randomizations
on command execution API invocations. To this end, we randomize
the subsystems differently, as shown in Figure 17-(b-e). The first
command failed because we randomize ‘1s’ = ‘cT’. The second

attempt also failed as ‘ka’ is expected. Even if an attacker learned
this previous randomized command and injects ka next time, as
shown in this example, it still fails as SPINNER changes the random-
ization scheme to ‘1s’ - ‘ml’. Finally, one may try to inject a large
number of the same command (e.g., millions of s1), waiting for
our randomization scheme to become ‘1s’ » ‘s1’. Unfortunately,
SPINNER allows can be configured to use multiple bytes translation
rules. For example, the randomization scheme 4 translates a single
byte to 4 bytes. With this, searching space is practically too large
to brute-force. Specifically, assume our randomization schemes use
all printable ASCII characters (94 of them) to substitute, two-byte
commands such as ‘1s’, can be randomized to 8,741 (=P(94, 2) — 1)
different two-byte characters. For 4 bytes commands, the space
becomes extremely large: P(944, 2)-1.

1s; 1t; ka; ml;
(a) Shell Script

1ls - cT
*

1ls - k a
* ¢

Scheme. 1

(b) Randomization
with Scheme 1

1ls - m1
B

(d) Randomization
with Scheme 3

(c) Randomization
with Scheme 2

1l s +— satvcyeu
(e) Randomization
with Scheme 4

Scheme. 2

(f) Different Randomization Schemes

Figure 17: Randomization Schemes Used for Each Command

Effectiveness of Dynamic Randomization. SPINNER dynami-
cally changes randomization scheme on every command, which
we call dynamic randomization. To understand the effectiveness of
dynamic randomization compared with the static randomization
which uses a single randomization scheme during the entire ex-
ecution, we tried brute-force attacks on both static and dynamic
randomization approaches. In general, attackers need to try twice
more attacks to break the dynamic approach than the static ap-
proach. For instance, using the dynamic approach (1-to-1 mapping)
for three characters-long commands requires 70,191 more attempts
to succeed the attack (which we believe quite effective) than the
static approach.

Experiment Results. We conduct brute-force attack experiments.
Specifically, we brute-force four different randomization schemes
to show the effectiveness of the dynamic randomization scheme.

Table 9: Brute force attacks on static and dynamic random-
ization schemes

1tol 1to2 1to3 1to4

Static randomization 71.1K 9.8M 1,389T* 195Q*
Dynamic randomization 141.3K 19.7M 2,779T* 391Q*

T: Trillion. Q: Quintillion. *: Estimated value.

Table 9 shows the number of failed attempts before the first
correct guess, leading to a successful attack. For instance, using the
1 to 1 mapping scheme, the static method prevents 71.1K attempts
successfully. With the dynamic randomization scheme, the attack
has to run 141.3K commands until the first successful guess. Note
that we decided to use the estimation for 1 to 3 and 1 to 4 random-
ization schemes because the experiment did not finish within 10

20

hours. We observe this result follows the distribution (i.e., static
randomization approach follows the uniform distribution and dy-
namic randomization approach follows the geometric distribution).
According to this observation, we put the expected value through
the statistical method. For the case of 1 to 2 scheme, using dynamic
approaches for this command requires 9,807,906,470 more attempts
to succeed the attack than static randomization.

Table 10: Update History of All Evaluated Programs

ID Trusted Src.! Language #8% #V Timeline (dd/mm/yyyy) Dur.!

s Const” N Conf® PHP 7 16 11/16/2017 ~ 10/29/2020 35
s2 Const”, Conf’® PHP 6 17 05/11/2014 ~ 08/26/2018 51
s3 Const.5 PHP 27 3 08/12/2017 ~ 01/13/2020 29
s4 Const.s PHP 2 20 11/25/2014 ~ 09/11/2020 69
s5 Const.s s Conf.6 PHP 5 3 01/01/2017 ~ 09/05/2018 20
s6 Const.”, Conf® PHP 219 10/04/2011 ~ 10/22/2020 108
s7 Consh5 ,Path C 10 25 01/02/2016 ~ 10/25/2020 57
s8 Const.5 C 2 20 01/14/2016 ~ 07/28/2020 54
s9 Const.5 C 2 7 09/12/2012 ~ 02/06/2018 64
s10 Const.s ,Path C 1 3 12/22/2018 ~ 07/15/2020 18
si1 Const.5 Lua 52 13 10/09/2014 ~ 09/28/2020 71
s12 Const. JavaScript 2 54 12/28/2009 ~ 06/18/2012 29
13 Const. JavaScript 2 9 01/05/2018 ~ 10/01/2019 20
s14 Const’ JavaScript 3 23 08/02/2017 ~ 02/24/2020 30
s15 Const. JavaScript 1 4 06/03/2014 ~ 02/16/2018 44
s16 Const.” JavaScript 34 20 09/15/2016 ~ 09/29/2020 48
17 Const. JavaScript 1 14 09/20/2014 ~ 06/01/2017 32
18 Const. JavaScript 3 6 03/03/2017 ~ 11/26/2019 32
s19 Const. JavaScript 3 5 08/12/2017 ~ 08/18/2017 <1
$20 Const. JavaScript 3 2 05/23/2014 ~ 01/06/2020 67
s21 Const” JavaScript 3 4 12/23/2013 ~ 05/16/2020 76
522 Const.’ JavaScript 2 15 01/25/2019 ~ 01/10/2020 11
523 Const. JavaScript 3 6 04/07/2016 ~ 03/23/2017 11
s24 Const. JavaScript 6 23 10/16/2015 ~ 05/09/2017 18
25 Const. JavaScript 3 11 02/22/2013 ~ 06/28/2018 64
26 Const. JavaScript 1 25 11/23/2016 ~ 10/30/2019 35
527 Const’ JavaScript 2 4 06/30/2015 ~ 01/30/2016 7
528 Const.”, Conf.’ PHP 535 05/06/2013 ~ 10/21/2020 89
529 Const.”, Conf.’ PHP 6 28 09/03/2019 ~ 10/15/2020 13
530 Const. , Conf® PHP 17 27 03/04/2016 ~ 10/15/2020 55
s31 Const.”, Conf® PHP 2 23 05/30/2016 ~ 10/20/2020 52
$32 Const.”, Conf.® PHP 2 11 10/25/2010 ~ 04/04/2020 113
s33 Const.5 PHP 15 32 01/07/2015 ~ 10/04/2020 68
s34 Const.5 PHP 3 10 02/18/2014 ~ 09/28/2020 29
$35 Const’,Env.’ PHP 8 14 04/15/2016 ~ 10/24/2020 54
s36 ConstA5 PHP 1 13 12/19/2016 ~ 11/12/2019 34
s37 Const.5 PHP 1 10 03/03/2017 ~ 09/28/2020 42
38 Const. JavaScript 1 38 03/26/2014 ~ 10/20/2020 78
$39 Const JavaScript 1 32 12/04/2015 ~ 06/08/2020 54
40 Const” JavaScript 7 20 07/29/2019 ~ 01/20/2020 5
s41 Const. JavaScript 3 21 12/28/2016 ~ 07/28/2020 43
s42 Const. JavaScript 227 11/22/2017 ~ 10/22/2020 35

1: Trusted Sources. 2: Versions. 3: Sinks. 4: Duration in months. 5: Constant String.
6: Configuration File. 7: Environment Variable. 8: Less than 1 month.

9.3.4 Impact of Software Updates on SPINNER. As discussed in
Section 6, if software updates of a target application cause changes
in the trusted command specification, manual analysis of the target
application is required. To understand how prevalent such cases
are in practice, we study the update history of 42 applications (27
applications in Table 2 and 15 programs in Table 6). As shown in Ta-
ble 10, we track major version updates from the first stable version
to the most recent major update until November 2020. We analyze

each major update to understand whether the trusted command
specification of an old version should be updated for a new version
to use SPINNER. The result shows that none of the trusted command
specifications are changed between versions.

Table 10 shows the results. All 42 applications use constant
strings as a trusted source. There are 9 programs that have both
configuration files and constant strings as trusted sources. Their
trusted command specification is similar to Figure 2-(a). s7 and s10
have folder paths and constant strings as trusted sources and can
be defined as shown in Figure 2-(c). s35 requires the environment
variable as a trusted source. For this program, to prevent attacks that
attempt to compromise environment variables, we hook setenv
and getenv.

Table 11: Performance of SPINNER

Program Version used in Section 5 Latest version

WordPress 4.33% (released in 12/18/19)
Leptonica 4.25% (released in 6/11/17)

4.41% (released in 2/22/21)
4.21% (released in 7/28/20)

SPINNER on Different Versions of Target Programs. To un-
derstand the impact of software updates on the performance of
SPINNER, we applied SPINNER to WordPress (v5.6.2; released on Feb
22, 2021) and Leptonica (v1.8; released in July 28, 2020) in addition
to the versions we have evaluated in Section 5, as shown in Table 11.
The resulting protected programs are correct where we observe a
similar average overhead of 4.31%.

9.3.5 Preventing Trusted Sources from Being Compromised. SPIN-
NER often trusts configuration files that cannot be modified by re-
mote attackers. However, if our analysis is incomplete or the system
has other vulnerabilities that allow attackers to compromise the
trusted configuration files, SPINNER’s protection can be affected.
As a mitigation, we implement a kernel module that denies any
modifications to the configuration files. We also tried secure file
systems [87] to prevent unauthorized modifications to the configu-
ration files. We enabled them during our evaluation, and we do not
observe any errors caused by them, meaning that users may also
use such approaches to protect SPINNER.

9.4 Diglossia [140] vs SPINNER

$SQL = "SELECT name FROM users WHERE id = B'10001' # B'{$_POST[‘id"]}";
(a) Vulnerable PHP Code

SELECT name FROM users WHERE id =
B'10001' # B'01101;DROP TABLE users;'

$_POST[id’] =
“\;DROP TABLE users”;

(b) Malicious Input (c) Injected Query

| [| |
[wieie | [iEnena] [Show | [ooeie |

[Tname | [users | [(eLax | [maxra|

#B'01101;DROP
TABLE users;'

+X/01101';DROP
TABLE users;/

(d) Original Parse Tree (e) Shadow Parse Tree

Figure 18: Failure Case of Diglossia with PHP-SQL-Parser

In addition to Section 5.4.2, we compare SPINNER with another

our own implementation of Diglossia [140] using PHP-SQL-Parser [81],
21

which is the most popular SQL Parser for PHP in GitHub. Figure 18-
(a) shows a vulnerable PHP program’s code. Given the malicious
input shown in Figure 18-(b), the malicious query is injected as
shown in Figure 18-(c). Figure 18-(d) and (e) show parse trees from
the original parser and the shadow parser. Nodes with yellow back-
grounds represent keywords while nodes with gray backgrounds
represent strings or numbers which are allowed to be injected.
Nodes with green borders are correctly translated in the shadow
parser, meaning that they are intended nodes. Nodes with the violet
borders are those that are not fully translated, meaning that some
values (i.e., the first 2 characters) are translated and some are not.
Note that Diglossia detects an injected input by identifying nodes
with the same values between the two parse trees. In this case,
we do not have such nodes, meaning that Diglossia will miss the
attack. The injected code is not properly parsed due to the bug of
the parser. It fails to recognize SQL grammar after the # symbol, an
XOR operator in PostgreSQL.

SPINNER uses a scanner and applies reverse-randomization scheme
to the injected query, preventing the attack.

9.4.1 Preventing XXE Injection. XML External Entity (XXE) in-
jection allows attackers to inject an XML external entity in an XML
file. XML external entity is a custom XML tag that allows an entity
to be defined based on the content of a file path or URL. An attacker
can abuse the external entity to leak the content of arbitrary files. In
this case, we use a WordPress plugin, Advanced XML Reader [128],
to demonstrate how SPINNER prevents the XXE injection attack.

/% XML + Malicious External
IS Entity (evilXML.xmlI)

o Worderess
&> Article with WordPress
Y the shortcode

< H
.
@«c» 5{ |
?») Data Ieakvm the .

E. 1 El
xternal Entity WordPFess

A

Attacker

XML Reader

<"~ Shortcode
(a) Attack Scenario

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE_foo
<!ENTITY

SYSTEM
<doc> Contents of passwd: </doc>

(b) XML + Malicious External Entity (evilXML.xml)
[advanced-xml tag=|GN
(c) Article with the Shortcode
Figure 19: XXE Injection Attack Scenario

AW R

Figure 19-(a) shows an attack scenario. The attacker first sends
a malicious XML file with a malicious external entity (@)). The
malicious XML file’s content is shown in Figure 19-(b). The XML file
defines an <!ENTITY SYSTEM> tag with a file path /etc/passwd.
The tag is used in line 4, which will be the content of the XML
file when it is requested. The vulnerable plugin uploads the XML
file and returns a shortcode (@), which is essentially the name of
the uploaded file to refer to the XML content in the future. Now,
the attacker posts an article with the shortcode (€)) as shown in
Figure 19-(c). Note that the tag value indicates the uploaded file’s
name. Once the post is uploaded, WordPress sends it to the plugin
(Advanced XML Reader), which will parse and resolve the XML file

referred to in the post (@)). During the processing, the plugin reads
the password file and returns the content. When the posted article
is requested, the password file’s content will be delivered (@)).
Figure 20 shows how SPINNER ensures benign operations while
preventing the XXE injection attack described in Figure 19.

Process External Entity

Read XML
I i . Trusted XMLs
) Return v
x File system
Advanced Simplexml (Randomized)
XML Reader Untrusted XMLs
(a) Preventing XXE Injection

1 | <?xml version="1." encoding 1 | <2xml version="
2 | <IDOCTYPE e [2 | <IDOCTYPE e [
3 | <lENTITY x SysTEM * B - 3 EVTITY x SVSTEM ° T
4 | <doc> &x; </doc> 4 | <doc> Contents of passwd: &x; </doc>

(b) Trusted XML Files (Randomized) (c) Untrusted XML Files
Figure 20: Preventing an XXE Injection Attack

Benign Operation. When the plugin reads an XML file (€)), Spin-
NER intercepts the file I/O and check whether it reads a trusted XML
file or not. Note that SPINNER maintains a list of trusted XML file
paths. Typically, those are the XML files provided by an administra-
tor, not the files that are uploaded by remote users. If the file path
of the XML file is in the list, SPINNER randomizes the external enti-
ties’ file contents (@)). Then, it tries to access the file system with
the randomized file name. As the file paths of the file system are
randomized by SPINNER, it successfully reads the file and returns
(@ and @). Finally, the content is returned (@)).

Preventing XXE Injection. When an attacker uploads a mali-
cious XML file, it is not included in the trusted XML file list. When
the plugin tries to read an XML file that is uploaded by a remote
user (which is not trusted, @), the XML file’s entity will not be
randomized. As a result, it will not be able to access the file system
correctly, leading to a file open error.

22

	Abstract
	1 Introduction
	2 Definitions and Backgrounds
	3 Motivating Example
	4 Design
	4.1 Instrumentation Phase
	4.2 Runtime Phase
	4.3 Spinner Runtime Support

	5 Evaluation
	5.1 Instrumentation Results and Correctness
	5.2 Effectiveness
	5.3 Performance Evaluation
	5.4 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	9 Appendix
	9.1 Supplementary Text and Experiment
	9.2 Effectiveness of Spinner
	9.3 Additional Discussions
	9.4 Diglossia diglossia vs Spinner

